
Nova Southeastern University
NSUWorks

CEC Theses and Dissertations College of Engineering and Computing

2017

Enhanced Prediction of Network Attacks Using
Incomplete Data
Jacob D. Arthur
Nova Southeastern University, ja1333@mynsu.nova.edu

This document is a product of extensive research conducted at the Nova Southeastern University College of
Engineering and Computing. For more information on research and degree programs at the NSU College of
Engineering and Computing, please click here.

Follow this and additional works at: https://nsuworks.nova.edu/gscis_etd

Part of the Computer Sciences Commons

Share Feedback About This Item

This Dissertation is brought to you by the College of Engineering and Computing at NSUWorks. It has been accepted for inclusion in CEC Theses and
Dissertations by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.

NSUWorks Citation
Jacob D. Arthur. 2017. Enhanced Prediction of Network Attacks Using Incomplete Data. Doctoral dissertation. Nova Southeastern
University. Retrieved from NSUWorks, College of Engineering and Computing. (1020)
https://nsuworks.nova.edu/gscis_etd/1020.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NSU Works

https://core.ac.uk/display/215343282?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1020&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1020&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1020&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1020&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/cec?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1020&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1020&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1020&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu

Enhanced Prediction of Network Attacks Using Incomplete Data

by

Jacob D. Arthur

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in
Computer Information Systems

Graduate School of Computer and Information Sciences
Nova Southeastern University

July 19, 2017

Abstract

An Abstract of a Dissertation Submitted to Nova Southeastern University
in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Enhanced Prediction of Network Attacks Using Incomplete Data

By
Jacob D. Arthur
July 19, 2017

For years, intrusion detection has been considered a key component of many
organizations’ network defense capabilities. Although a number of approaches to
intrusion detection have been tried, few have been capable of providing security
personnel responsible for the protection of a network with sufficient information to make
adjustments and respond to attacks in real-time. Because intrusion detection systems
rarely have complete information, false negatives and false positives are extremely
common, and thus valuable resources are wasted responding to irrelevant events. In
order to provide better actionable information for security personnel, a mechanism for
quantifying the confidence level in predictions is needed. This work presents an
approach which seeks to combine a primary prediction model with a novel secondary
confidence level model which provides a measurement of the confidence in a given
attack prediction being made. The ability to accurately identify an attack and quantify the
confidence level in the prediction could serve as the basis for a new generation of
intrusion detection devices, devices that provide earlier and better alerts for
administrators and allow more proactive response to events as they are occurring.

Acknowledgements

As I reflect on the effort that has gone into this work, it is clear to me that this effort was
not completed on accident or without substantial sacrifice from those around me. To my
beautiful wife Katie, who supported my decision to pursue this effort and picked me up
the many times I became frustrated, I could not have done this without your
encouragement and patience. To my two favorite little girls, thank you for invading my
office frequently and reminding me of what is really important in life.

I would like to thank Dr. Cannady for his guidance, assistance, and patience as I worked
to navigate the dissertation process. Also, thanks to my committee members, Dr. Li and
Dr. Gowing, both of you provided excellent suggestions that helped clarify my direction
and ensure that I had articulated both my goals and a pathway to achieve them.

I would also like to thank my numerous colleagues at Lipscomb University for
supporting my efforts to pursue this degree and for providing encouragement for me on
the road. Also, to my war-room compadres at Formos Consulting, thank you for letting
me monopolize the whiteboards on far too many occasions and for letting me talk
through ideas though I know you had very little interest in them.

Finally, thanks to my extended family and friends for your kind words of encouragement,
and for helping pick up the slack in caring for my wife and kids when coursework or
library time took me far from home. It does indeed take a village, and we have a great
one.

And finally, to my Lord, Jesus Christ, through whom all things are possible.

v

Table of Contents

Abstract iii

Table of Contents v

List of Tables 7

List of Figures 8

Chapter 1 Introduction 9

Introduction 9

Problem Statement 10

Dissertation Goal 11

Relevance and Significance 11

Barriers and Issues 13

Summary 15

Chapter 2 Review of the Literature 16

The Roots of Intrusion Detection 16

Challenges in Classical Misuse and Anomaly Detection 19

Use of Machine Learning 21

Feature Selection 38

Approaches to Prioritizing Intrusion Detection Output 44

Chapter 3 Methodology 67

Overview 67

System Architecture 68

Data Sets 80

Experiment 83

Resources 86

Chapter 4 Results 87

Introduction 87

System Operation Observations 87

vi

Comparison of Results – DARPA & McPAD Dataset 93

Comparison of Results – Custom Web Application Intrusion Dataset 95

Limitations 96

Summary of Results 98

Chapter 5 Conclusions, Implications, Recommendations, and Summary 99

Conclusions 99

Implications 100

Recommendations 101

Summary 103

References 105

 7

List of Tables

Tables

Table 1 – Comparison of detection rates in early ensemble approach 56

Table 2 - Available Packet Elements 71

Table 3 – Attack Types 83

Table 4 – Matthews correlation coefficient examples 92

Table 5 – Performance Comparison on DARPA/McPAD data set pair 94

Table 6 – Sample Confidence Levels reported by CLIP 94

Table 7 – Custom Dataset Results 95

 8

List of Figures

Figures

Figure 1 - Basic System Design 69

Figure 2 – Matthews correlation coefficient formula 84

Figure 3 – Classic confusion matrix 91

Figure 4 – Visualized continuouslayered confusion matrix 92

 9

Chapter 1

Introduction

Introduction

Interconnection between networks around the globe has increased exponentially

in volume and variance. A parallel increase has occurred in the number and nature of

potential threats against those networks (S. H. Kim, Wang, & Ullrich, 2012). Modern

network attacks typically involve a series of discrete stages focused on collecting data,

identifying vulnerabilities, and executing exploits (Katipally, Yang, & Liu, 2011). For

example, in order to breach a database system, an attacker must discover its existence and

address, determine available access methods, and select a method (or methods) to gain

access to the system. In the event the selected approach is ineffective in compromising

the system, the attacker will either select a different approach or select a new target

(Alserhani, Akhlaq, Awan, Cullen, & Mirchandani, 2010).

Though the phases of network intrusion (explore, expose, and exploit) are logical,

they are neither transparent nor simplistic (Katipally, Gasior, Cui, & Yang, 2010). Modern

intrusion detection systems (IDSs) lack full visibility into all of the activities that

comprise an attack. Partial visibility of relevant attack data leads to both false negatives

and false positives in the alert streams generated by modern IDSs (Soleimani &

Ghorbani, 2012). The perceived value of such alerts is reduced, as administrators respond

to events ultimately determined to be irrelevant while failing to respond in a timely

 10

manner to those which potentially pose widespread threat of harm (Sharma & Mukherjee,

2012).

Solutions to limits in IDSs have ranged from increasing the number and

coordination among sensors (Abdullah, Xu, & Geva, 2011; Zargar, Takabi, & Joshi,

2011), to distributed individual agent processing (Carvalho & Perez, 2011). Both

approaches present challenges. In the case of the former, each sensor contributes an

additive resource cost as well as an exponential increase to the search space that must be

processed by control nodes. The latter approach results in each sensor making decisions

with a lack of overall visibility. Although machine learning techniques have been shown

to provide some good results in terms of attack prediction within a network (D. Ariu, R.

Tronci, & G. Giacinto, 2011; Fries, 2008), the occurrence of false positives and false

negatives in those applications remains high. Ensuring organizational resources are

invested in preventing genuine attacks requires improvement in the ratio of valid to

invalid alerts. In order to improve that ratio, this work presents experiments on the

results of augmenting predictions made by an IDS with actionable confidence levels.

Problem Statement

Modern network-based intrusion detection systems (IDSs) often fail to accurately

detect attacks for which only fragments of the attack are visible to the sensors in place.

As a result, true attacks occur without raising an alert and normal activity might

precipitate an alert that wastes the resources of analysts.

 11

Dissertation Goal

The goal of the proposed research was to develop an improved means of

identifying an ongoing attack based on small fragments of attack activity with a lower

rate of false positives and false negatives than has been previously achieved by utilizing

existing methods. The improvement in prediction rate was primarily captured via the

augmentation of the system output with a confidence level based on prior network traffic

and alerts that have been raised. In order to deal with the common issue of false positives

and false negatives, the primary focus of this research was on the development of an

approach for providing both a meaningful confidence level in predictions that the system

makes.

Relevance and Significance

Interconnection between networks around the globe has increased, becoming an

integral part of daily functioning within the arenas of business, education, governmental

operations, and economics. Accompanying the increase in network activity and

connection is a parallel increase in security risk (S. H. Kim et al., 2012). The importance

of networks and the potential impacts of their compromise are most often evident to the

“general public” in the fields of retail or education, as consumers learn through public

media of a breach which may threaten their personal finances, credit, or identity. Even

more critical, the growing prevalence of network connectivity in fields such as flight

control and power grid management contributes to growing urgency in the field. As

sensitive information and critical infrastructure increasingly rely on computer systems

and those systems become more complex, the intrusion prevention technologies must also

 12

become more sophisticated (Mitchell & Chen, 2014; Shameli-Sendi, Cheriet, & Hamou-

Lhadj, 2014).

Because of the great risks associated with both internal and external threats,

organizations, both public and private, have deployed various technologies to both limit

the attack surface area as well as to gain insight into the potentially massive amounts of

data traversing the network. Denning (1987) conceived of one such technology, the

intrusion detection system, to give administrators specific intelligence about events

happening on the network in real-time or near real-time. Although a vast array of

information would serve as inputs, the goal was to distill the information down into a set

of alerts that could be outputted in the event that patterns of concern were observed in the

network stream. These intrusion detection systems have served well for many years and

have provided significant insight into what was occurring moment by moment in

networks they observed (Weir, 2012). However, the significant increase in network

traffic as bandwidth has increased has resulted in intrusion detection systems that output

either too much information to be useful (alert flooding) or systems which filter out so

much information that they fail to produce alerts when events in the network represent

meaningful threats (S. H. Kim et al., 2012).

As the number of alerts produced by intrusion detection systems have increased,

the ability of system and security administrators to respond to each individual alert has

decreased (Zargar et al., 2011). A common method of limiting the volume of alerts is to

raise an alert only after a specific number of login failures have been detected over a

rolling period of time. However, this approach has its own deficiency, in that an attacker

who is able to determine the time period through experimentation or insider knowledge

 13

may be able to remain under the alert threshold constantly. Clearly, better technology is

needed; this need led to the introduction of machine learning and other more advanced

methods of intrusion detection.

Barriers and Issues

The first barrier to this research is related to feature selection (Zaman, El-Abed, &

Karray, 2013). Though much work has been done on feature selection in intrusion

detection, this research began with a very unclear picture on the features or trends that

would be relevant for assigning a confidence level to a prediction being made. This was

further complicated by the fact that confidence levels have always been considered

inherently, that is, a system would not predict that a packet represented an attack if it was

not more confident than not. The challenge for this research was to apply existing

knowledge to draw out the confidence level explicitly. Although some of the classic

features will certainly be applicable, one of the most significant factors in determining

confidence level is based on how similar the current traffic is to traffic that has been seen

previously. If very similar traffic was previously classified correctly, then this research

concluded it would be reasonable to place more confidence in the prediction than if

similar traffic had not been seen or had been classified incorrectly.

Another significant barrier to the completion of this study was access to an

appropriate data set for development and testing. In research related to intrusion

detection, the Defense Advanced Research Projects Agency (DARPA) 1998 and 1999

data has been a common data set used for testing (Laboratory; Lippmann et al., 2000), as

has the derivative KDD Cup 1999 data (University of California, 1999). However, all of

these data sets have issues, with the most significant being the age and relevance of the

 14

data set for representing modern attacks. This research used a testing approach that

aligned with previous research in similar types of attacks, and made use of the attack data

that had previously been used for those works for comparison purposes. Additionally,

this research also created an additional new dataset that may represent the largest single

corpus of modern HTTP-protocol attacks for the purposes of testing the flexibility of the

proposed approach. The researcher plans to release this dataset concurrently with this

work for future researchers to benefit from.

In addition to challenges related to feature selection and data set accessibility, the

iterative and multi-layer nature of the system described in this research created

substantial problems related to available resources on the system being used for training.

To address that issue, this research designed a framework called a packet data repository

which represents common storage location for packet data. This framework explicitly

allows the implemented modules to specify whether the repository is used for a given

data point, so while points like frame number do not repeat and would not be a good

candidate, items like source and destination MAC and IP addresses can be substantially

de-duplicated and replaced with a reference to the repository. This represents an explicit

time-memory tradeoff decision for each module involved, and it allowed tuning of the

system to run at good speeds across a range of data input volumes. Additionally, the

repository framework allows the easy presentation of a subset of data from within the

repository, which allowed the researcher to readily cross-train and validate using different

subsets of data.

 15

Summary

This dissertation presents an approach taken to produce a system that is capable of

not only making classifications about network traffic seen, but also provides a confidence

level in the prediction made to assist those tasked with reacting to alerts that are created.

This chapter provided an overview of the research problem as well as a description of the

proposed approach to addressing the problem. Additionally, the case was made for the

usefulness of the proposed approach in many real-world intrusion detection scenarios. In

the following chapters, the current related research landscape will be explored, and

further details on the specific implementation and the results will be discussed. The goal

was to develop a method for producing meaningful confidence levels, and to propose

metrics which are relevant in the comparison of the developed system that are useful as

benchmarks for comparison in other research studies.

 16

Chapter 2

Review of the Literature

The Roots of Intrusion Detection

The seminal paper on intrusion detection was published by Denning (1987). This

paper outlined a model for real-time intrusion detection built on a rule-based pattern

matching system. Key to the model was the assumption system compromise would be

evident in abnormal usage patterns once standard operations were known. Denning’s

assumptions regarding, and use of, rule-based pattern matching are evident in current

literature’s references to misuse/signature and anomaly detection mechanisms

(Karamcheti, Geiger, Kedem, & Muthukrishnan, 2005; Papadogiannakis, Polychronakis,

& Markatos, 2010 ; Sekar, Guang, Verma, & Shanbhag, 1999).

In addition to outlining the above-referenced model, Denning (1987) defined

several key terms still present in a core common vocabulary and idea set for modern

intrusion detection systems. For example, as defined by Denning, subjects are the

initiators of actions on the system in question, while objects are the resources on the

system with which the subjects are interacting. Audit records represent a log entry

generated by the system in response to a particular subject’s action with regards to an

object. Profiles are definitions of potential expected behaviors of subjects within the

system, and anomaly records are generated when there is a deviation from a profile.

 17

Finally, activity rules are actions taken when a specified condition is met, to perform an

action of some sort in the system independent of the subject’s action.

Although all of these terms are certainly relevant to the problem at hand, of

particular interest is the profile, the potential behaviors of a subject with regard to one or

more objects. It is this profile that essentially determines the behavior that will be

classified as either normal or anomalous in an anomaly-based system, and the same

profile which is matched to user behavior to locate threats in a signature-based system.

The profile is particularly relevant to this work because matching subsets of it will be

required for achieving the goal of locating an attack based on visible fragments only.

Host-Based Intrusion Detection

One of the earliest implementations of an IDS was the “Haystack” system created

for use by the U.S. Air Force (Smaha, 1988). Smaha noted three driving forces behind

the need for increased security at the time: establishment of government standards and

criteria for security, creation of multi-vendor operating systems, and requirements for

utilization of standards for computer procurement. Although Smaha distinguished

between insider and external threats, he concluded this distinction was irrelevant once

outsiders had successfully penetrated a system.

The Haystack system was created with the goal of reducing large amounts of audit

trail data to manageable and meaningful summaries (Smaha, 1988). The system

endeavored to accomplish this through the use of two distinct but complimentary

methods. First, the system would search for behavior that was out of the ordinary for the

user in question and flag such behavior for further review. Second, the system would

watch for activity which had been previously defined as “bad” behavior in the context of

 18

the system log being reviewed. Although the Haystack system would recognize behavior

defined as normal, the definition of “bad” behavior required input from a human expert.

One of the most notable contributions from the Haystack system arose from the

fact the monitoring system was required to be much less powerful than the mainframe it

was designed to monitor (Smaha, 1988). Instead of processing all traffic in real-time,

Haystack was designed to operate against a tape produced by the mainframe that

contained the audit trail file. In processing the file, the system would select specific data

points deemed relevant for retention and analysis rather than retaining the entirety of the

audit log. This process of feature selection served as the basis for later intrusion

detection models, as it offered significantly better performance than full log retention and

processing.

Expansion to Local Area Networks

Heberlein et al. (1990) expanded on the aforementioned host-based intrusion

detection technologies by applying the concepts to the Local Area Network (LAN)

environment. Their efforts were specifically relevant to the proliferation of LANs in

academics, business, and research. Acknowledging LANs were initially designed to be

shared by trusted users, the authors highlighted risks to network security, both intentional

and unintentional, malicious and benign.

In addition to describing a standard attack model, Heberlein et al. (1990) created

the Network Security Monitor (NSM). Consistent with Denning’s (1987) rule-based

model, the NSM analyzed traffic that was traversing a LAN and attempted to identify

traffic that either met certain pre-defined “bad behavior” rules, or fell outside what was

considered “normal” traffic patterns. This dual search allowed the NSM to identify both

 19

well-known attacks as well as identifying statistical outliers for follow-up that could

represent previously un-seen attacks. Also of note, the NSM applied a Monte Carlo-based

statistical model for determining the most likely subsets of network traffic to search. By

using this approach, the system was able to perform at real-time speeds by adjusting the

depth of search to the available resources. The contributions of Heberlein et al., in terms

of both attack model and application of intrusion detection concepts to network traffic

streams, laid the ground work for research to follow.

Challenges in Classical Misuse and Anomaly Detection

The classical methods of IDS introduced and developed by Denning (1987),

Smaha (1988), and Heberlein et al. (1990) were proposed and implemented in response to

environmental pressures for accountability and increased security. However, though a

necessary response to the pressures prompting their development, classical methods were

(and remain) insufficient. Of particular concern is the evolving nature of the work setting

and the human resource investment required to ensure a system’s rules and definitions

regarding both “bad” and acceptable behavior remain current, in addition to the ever

changing flow of internet traffic (Papadogiannakis et al., 2010). Changes in staff

assignment, agency policy/procedure, and related regulations all impact parameters for

appropriate and inappropriate use of network functionality. At the very least, continual

updating of the specification to reflect new and changed network conditions and hosts

would create a significant management problem in ongoing use (Smaha, 1988).

For example, a change in a user’s job responsibilities might require the use of new

or different tools, and the change associated with that use would be flagged erroneously

as a system security breach. A manual review would ultimately resolve the situation.

 20

However, the additional work required to complete that review could result in a delay in

addressing other true breach attempts (Heberlein et al., 1990).

Inherent in a system’s ability to accurately identify “bad” behavior are two issues.

First, the definition of “bad” behavior requires a human expert for classification.

Secondly, “bad” is defined based upon that which has previously been known, without a

mechanism for recognizing novel threats -- those not previously encountered by a given

system (Heberlein et al., 1990; Katipally et al., 2011).

Relevant to both signature and anomaly-based IDSs is the challenge of system

patterns which are either incomplete or only partially visible. Signature-based IDSs

typically rely on multiple conditions which must all be met to raise an alert. In the event

that a prerequisite condition existed but was not visible to the IDS, no alert would occur,

resulting in a false negative. Likewise, anomaly-based IDSs rely on the appearance of

sufficient deviation from “normal” behavior to conclude an attack is in progress.

However, if a deviation is subtle enough to avoid detection by sensors in place, the attack

would not raise an alert, resulting in a false positive (S. H. Kim et al., 2012; Ning & Xu,

2004).

Evolution of the IDS field has included a response to the recognition of the

challenges posed by classical methods (Chen & Kim, 2013; Cuong & Giang, 2012).

Efforts to address the challenges and maximize performance have included those which

minimize the role of on-going human expertise and input. Additionally, attempts have

focused on enhancing the ability of systems to respond to information which is

incomplete, or not fully visible.

 21

Use of Machine Learning

Overview of Machine Learning

Machine learning is an area of computer science deriving from both

computational learning and pattern recognition. Within the field of machine learning, the

field is further segmented into supervised learning, unsupervised learning, and

reinforcement learning. Generally though, all three approaches share a common core of

classifiers which are relevant to the problem domain in question, objective functions that

quantify the quality of the classifiers with respect to addressing the problem, and an

optimization process which handles iteration of the various inputs to the classifiers in

search of a sufficiently acceptable solution. Classifiers also are generally further

subcategorized into either multi-class classifiers that attempt to classify an observation

into one of n known class types or one-class classifiers that attempt to answer the

question of whether a particular observation belongs to a particular known class (Sommer

& Paxson, 2010).

Both classifiers types are used for intrusion detection purposes in different

contexts. One-class classifiers are typically applied to classify traffic as either “normal”

or “malicious,” with many systems opting to document a model of normal and consider

anomalous traffic to be malicious (Hai, Franke, & Petrovic, 2010). The primary reason

for this choice is in many systems it is easier to obtain a representative set of the traffic

which should be seen for a particular application than it is to obtain a representative set of

all the possible attacks which might be directed at that application. By definition, “zero

day” type attacks have never been see before, thus it will always be difficult to define a

complete model of malicious behavior that includes all possible malicious patterns when

 22

some of those patterns are by definition not yet known (Mahoney, 2003). Multi-class

classifiers generally tend to be applied in an intrusion detection context with a goal of

identifying particular types of attacks with the reasoning that a particular type of attack

will generally follow a particular structure for which a representative set can be created.

In one such system, the researchers opted to create four separate classes to represent

denial of service (DoS), probe, user-to-root (U2R), and remote to local (R2L) attacks

respectively.

Unsupervised machine learning focuses on learning a structure from an unlabeled

dataset, and is generally well suited to low-dimensionality, discrete data, even in high

volumes. However, as the dimensionality of data increases or more data points become

continuous, unsupervised approaches do not generally scale well in terms of the resource

requirements and ability to create meaningful boundaries. Indeed, even as dimensionality

n approaches very moderate values, the performance can suffer seriously in a highly

heterogeneous dataset. Because network data flows contain many potential attributes for

consideration and are highly variable in their contents, unsupervised approaches to

intrusion detection generally do not perform well except in niche areas such as

identifying DoS attacks (Jeong, Yoo, Yi, & Choi, 2014).

Supervised and reinforcement learning approaches are fundamentally different in

that they both aim to provide the system with real-time feedback in one way or another

regarding the “correctness” of classifications being made. Supervised learning systems

aim to do this by actually training the system starting with a set of training data pairs that

are generally an input vector of some sort coupled with an output value representing the

classification or desired output from the system based on the input vector. Reinforcement

 23

learning is different in that specific input/output pairs are not presented to the algorithm

(Wilson, Fern, & Tadepalli, 2010). Instead, the system (typically termed an “agent”) has

the ability to observe the environment in certain ways, knows that available set of actions,

and can determine based on actions taken the resulting state of the system and the

immediate reward received for the particular action selected. Over a period of time, the

agent is designed to attempt to maximize the total reward received, and as such, many

such systems are built to deal with realities where sacrifices must be made in the short

term in the form of lower immediate rewards in exchange for achieving a higher longer

term total reward.

Supervised learning methods also generally require that data be segmented into

training and testing data sets, with optimally no overlap between them (R. Smith,

Japkowicz, Dondo, & Mason, 2008). These methods are very sensitive to the diversity

and volume of data available for training as well, with much better results generally being

achieved by training with data sets that provide more complete and thorough coverage of

the problem domain. The goal of minimizing overlap between the training and testing

datasets is important due to the idea of “overfit,” or the idea that a model learns a

particular dataset too precisely and becomes unable to generalize its capabilities on to

other relevant datasets from the problem domain (Reiser, 2017). Use of the appropriate

material for training is a particularly important issue with respect to the research

described in this work, as the depth and breadth of network traffic means that it is highly

likely that intrusion detection systems will encounter never-before-seen traffic given the

nature of computer networks (N. Sen, Sen, & Chattopadhyay, 2014).

 24

Application of Machine Learning to Intrusion Detection

To address the challenges in classical signature and anomaly-based approaches, a

number of machine learning techniques have been introduced. Among the earlier

machine learning techniques were hidden Markov models (Ourston, Matzner, Stump, &

Hopkins, 2003) and genetic algorithms (Pillai, Eloff, & Venter, 2004). More recent

machine learning techniques applied to intrusion detection have included neural networks

(Choudhary & Swarup, 2009), Bayesian classifiers (Luo, 2010), support vector machines

(Cuong & Giang, 2012), artificial immune systems (Akyaz & Uyar, 2010), and fuzzy

logic-based data mining (Chapke & Deshmukh, 2015). Of note, Bayesian classifiers

(Luo, 2010) and support vector machines (Cuong & Giang, 2012) share a common core

with HMMs in the idea of states, one of the key building blocks of Markov models, and

good performance has been seen with several of these (Milenkoski, Vieira, Kounev,

Avritzer, & Payne, 2015; Xiang, Westerlund, Sovilj, & Pulkkis, 2014). A discussion of

the application of Markov models will further illuminate their relevance to present-day

IDSs and this research in particular.

Background on Hidden Markov Models

The seminal work on Hidden Markov Models (HMMs) was produced by Baum

and Petrie (1966). Their research documented the mathematical theory behind discrete

Markov chains. It was Baum and Petrie who documented for the first time an extension

where some states were considered “hidden,” that is, states with relationships or

probabilities not directly apparent to the creator of the chain. Rather, relationships were

defined by the use of a probabilistic function which allows the system to model and infer

the value of unknowns given a set of known inputs and outputs. Four years later, Baum

et al. (1970) expanded on the 1966 work by providing additional documentation and

 25

proof for a maximization technique intended to make sure that the probabilistic functions

underlying the Markov chain relationship prediction were reaching the most accurate

possible output value (Baum, Petrie, Soules, & Weiss, 1970).

Key Components of HMMs for Implementation

Subsequent papers on the application of HMMs documented the key components

of HMMs from an implementation perspective (Rabiner, 1989; Rabiner & Juang, 1986).

In a given HMM, the system must contain an N number of states, an M number of

distinct possible observations per state, the A state transition probability distribution, the

B observation symbol probability distribution, and the initial state distribution,

represented by the π symbol. These elements must be generally present in any system

that is considered an HMM, but in some specific cases, the system may be used to solve

for one particular input given the others, as the relationship between them is fixed.

Additionally, Rabiner (1989) documented several known issues with the general

application of HMMs that implementations must take into account. These issues include

appropriate scaling of values during state transition coefficient re-estimation, proper

initial estimation of A state transition parameters, and the impact of insufficient training

data on the results of the algorithm. All of these factors must be considered if the

resulting model is going to be viable; but, perhaps the most important contribution was

the proposal of the Viterbi algorithm (Rabiner, 1989; Viterbi, 1967) as a solution to

dealing with one of the three core problems with HMMs, the question of how to

determine the likelihood that a given model could give rise to a particular observation

sequence. The Viterbi algorithm performs a recursive backtracking maximization of the

state transitions until the maximum probability series of transition has been located. This

 26

probability can be correctly thought of as the “best case” likelihood that the series of

events was generated from the model in question.

HMMs and Pattern Recognition

HMMs have been shown to be a valuable tool in associating data points and

recognizing the presence of a pattern in several fields. Success in fields with similar

types of problems and complicating factors is relevant to the likely performance of

HMMs within the field of intrusion detection. Fields in which HMMs have been useful

include visual recognition (Stoll & Jun, 1995) and speech processing (Scherer, Glodek,

Schwenker, Campbell, & Palm, 2012). Additionally, HMMs have been deemed valuable

in the field of intrusion detection (Corona, Ariu, & Giacinto, 2009; Xie, Zhang, Seifert, &

Zhu, 2010).

Visual Recognition

An early application of HMMs to a pattern recognition problem was documented

by Stoll and Jun (1995) in the area of visual recognition. The researchers used HMMs to

model human movement with the goal of classifying a particular movement as one of six

defined sport activities. The complexity of the particular problem is increased because of

the fluid nature of human movements, variations with which different individuals

perform similar motions, and the frequent self-occlusion inherent in visibility from a

small number of fixed cameras. The HMMs performed well, with accuracy between

seventy five and one hundred percent depending on the level of noise in the input video

data, substantially higher than other methods that were current at that time.

Speech Processing

Speech processing is another pattern recognition problem to which HMMs have

been frequently applied. Scherer et al. (2012) used HMMs as a recognition tool for

 27

laughter in conversations. The researchers compared HMMs to other models including

support vector machines (SVMs), which are also frequently applied in the intrusion

detection space. Although SVMs performed well in offline testing, the HMM-based

model far outperformed the SVM in online testing, and the researchers posit two potential

reasons for that. First, they highlight the fact that HMMs perform particularly well on

un-segmented and unlabeled data. This characteristic was also particularly useful in the

application proposed in this work, as network traffic flows are also un-segmented and

may be unstructured. Second, the researchers noted that the HMMs were able to be

trained more effectively than SVMs because the SVMs were far more sensitive to the

ratio of laughter to speech in the training set. Because the ratio of the target state

(laughter) was particularly low, the SVMs did not perform well on the identification. This

is also applicable to the proposed research, as malicious packets were generally far less

common than benign packets in a general network environment.

Intrusion Detection

Of particular interest to this work, HMMs have also been frequently applied for

pattern recognition in intrusion detection with substantial success. Corona et al. (2009)

applied HMMs for the identification of attacks against web applications. The researchers

used an ensemble of HMMs (between three and seven) trained independently on the same

dataset but with varying initial parameters to classify web requests as either normal or

malicious. The dataset used was labeled using a semi-automated process, with just under

one percent of the dataset representing malicious requests. Even with relatively low

occurrence of malicious requests, the ensemble HMM used was able to detect ninety-six

percent of attacks with less than one percent false alarms, demonstrating that it was a

viable choice for pattern recognition.

 28

Another example of HMMs being applied for pattern recognition in intrusion

detection focused on device-level malware detection for cellphones (Xie et al., 2010).

The researchers used HMMs to model normal user behavior, including both keyboard and

touch interactions as well as system calls being made to key functions in the operating

system. The HMM was built with states representing the various stages of user

interaction and the resulting system call from each interaction. At each stage, the current

action was modeled against the “known good” interaction from the user’s normal

behavior, and the system could block access to critical function calls if the percentage

match with the “known good” interaction dropped below a defined threshold. This work

further demonstrated the ability of HMMs to model a particular behavior (in this case,

valid behavior) and identify behavior that fell outside of the expected model. This

capability was foundational for the research proposed in this work, as the ability of

HMMs to model a process and determine the likelihood a particular set of actions match

the modeled process is precisely the application intended for use.

Environmental Incentives for HMM Usage

Research has also focused on the use of HMMs in chaotic, noisy environments

similar to conditions frequently seen in large-scale networks (Myers, Singer, Shin, &

Church, 1992). This work proposed the use of a discrete space model with continuous

observations, a design in which the states in the model did not directly relate to actual

states seen in the modeled system. Instead, only the final output states of the model were

associated to actual output states in the modeled system, leaving the remainder of the

system to adjust itself as needed to achieve noise reduction. The researchers’ goal was to

be able to implicitly isolate and remove noise without the need for explicit noise removal.

This concept is particularly applicable in the context of the work proposed in this paper

 29

as any attempts to remove noise in a network environment could result in the removal of

important data that could be useful for prediction purposes.

Another major contribution to the application of HMMs focused on the ability to

remove the state independence assumption present in early iterations of HMMs (F. J.

Smith, Ming, O'Boyle, & Irvine, 1995). The independence assumption is particularly

troublesome for applications to network intrusion detection, as it causes the loss of

information about the temporal relationship between successive events. Although a

temporal relationship between packets does not necessarily mean the packet contents are

related, research on attacker behavior has shown that they generally follow a defined flow

of activities (Ning & Xu, 2004), and time relationships between packets proved to be

important in the systems developed for this research.

Suitability Issues with Other Machine Learning Approaches

 As has been previously mentioned, a variety of machine learning

approaches have been applied in Intrusion Detection. Some of the other methods have

included genetic algorithms (Pillai et al., 2004), neural networks (Choudhary & Swarup,

2009), Bayesian classifiers (Luo, 2010), and support vector machines (Cuong & Giang,

2012). Although some of these methods have been shown to be successful in certain

approaches (R. Sen, Chattopadhyay, & Sen, 2015), there are challenges with each for

particular aspects of this research.

Genetic algorithms, while well suited for feature selection, have proven to be

relatively ineffective in actually classifying events and identifying intrusions. Indeed, the

more successful attempts at applying genetic algorithms have generally done so in the

context of another method (Ahmad, Hussain, Alghamdi, & Alelaiwi, 2014; Sujatha,

 30

Priya, & Kannan, 2012). Additionally, the structural composition of genetic algorithms

does not lend itself to the probability estimation that this research is focused on.

Even recent application of advanced neural network structures such as Back

Propagation Neural Networks (R. Sen et al., 2015) have shown issues with application in

real-world environments. Although the researchers were able to achieve very high

accuracy rates with respect to the synthetic KDD data set, their system was suitable only

for batch processing, and they admitted that substantial additional effort and modification

would have been required to make the system ready for online operation and learning.

Computational capability of their model was also limited by both the dimensionality of

the feature space as well as the more advanced algorithm in use, and they were quick to

admit that their method was not yet suitable for online use from a performance

perspective in a production-scale network.

Bayesian classifiers (Luo, 2010) and support vector machines (Cuong & Giang,

2012) both share some characteristics with HMMs in terms of function and operation.

Most notably, all three approaches use the idea of discrete states with data mapping into a

particular state based on its characteristics. However, in terms of practical application,

both have some design differences which make them less applicable to this research.

Naïve Bayesian classifiers are, by their nature, unable to learn interactions between

features, a key shortcoming in intrusion detection as varying combinations of features

will often indicate different results, and a fact noted in changing datasets seen by

Swarnkar and Hubballi (2016). Additionally, both Bayesian classifiers and support

vector machines lack the concept of probabilistic transitions between states, instead,

opting to represent states as chains of conditional probability or in N-dimensional

 31

hyperplanes, respectively. While both approaches are viable and useful in particular

concepts, the probabilistic transition matrix inherent in an HMM more directly lends

itself to feeding a confidence-level calculation, which is critical to the success of this

work.

HMMs and Multi-Stage Attack Detection

One of the early attempts to apply machine learning to detect multi-stage attacks

using HMMs was documented by Ourston et al. (2003). They proposed the design and

application of an HMM to make determinations about potential attacks in progress,

defending the selection of an HMM over various other available models. Specifically,

they suggested design of an HMM implies that each step’s probability is independent of

the previous step that led to it. This independence of each step allows a rather accurate

modeling of a scenario common in the intrusion detection space whereby a particular

resultant state could be reached by several different paths, and the path which led to the

current state may not be directly relevant to the prediction being made.

Another approach for correlating multi-stage attacks was the attack graph

approach addressed in research by Wang, Liu, and Jajodia (2006). This research

attempted to address the problem that many correlation methods use which relies on an

in-memory index of known recent alerts. Because of the problem of finite memory, the

index was typically based on a sliding window, resulting in particular difficulty

performing a match when an attacker either by chance or intentionally spread their attack

phases over a period of time. The method proposed used an attack queue graph approach

to selectively search for and retrieve only the most recent relevant alert when attempting

correlation, an optimization that the researchers noted provided significant improvements

 32

in ability to process alerts in real time as well as the ability to match alerts in a live

system. However, the limitation of the processing to those alerts that are both “recent”

and “relevant” could mean that alerts which were relevant for correlation are not

included.

An extension of the attack graph applications called causal event graphs was the

focus of research by Pan, Morris, Adhikari, and Madani (2013). In their work, they

applied the concept of attack graphs linked via Bayesian network-styled relationships.

This extension gave them the capability of modeling cause-and-effect probabilities on top

of standard attack graphs, enabling the system to learn more complex relationships and

expose that expertise in its attack classification. However, the attack graph and causal

event graph methods were both generally used for producing appropriate signatures for

diagnosis of attacks, and neither approach provides the confidence level capabilities

sought by the current research.

HMMs and “Silent” Attacks

Khanna and Liu (2006) proposed a system for dealing with attacks which are

considered “silent,” that is, that they operate under the configured thresholds for detection

of deviant behavior either because of extremely conservative attack configuration or

insider knowledge of the values that would raise an alarm. These silent attacks are a

frequent cause of false negative error in intrusion detection systems. The system

proposed by the researchers included a Gaussian model used to describe observations on

likely attacks which then fed an HMM engine with a hidden state used to predict whether

an attack is in progress.

 33

Although the specific application proposed was in mobile ad hoc networks, the

work was significant because it described an intrusion engine which includes both a

standard HMM engine as well as a feedback component. The inclusion of a feedback

mechanism allowed the system to adjust in real-time to behavior changes which are part

of normal network operation. Nonetheless, the researchers also pointed out that the

proposed use of the HMM model contains a serious limitation in its design: the nature of

the model means intrusion state cannot be inferred from reviewing specific inputs or with

regards to certain targets, thus an attack in progress is quantified through only a statistical

probability with no supporting information that would be useful to responders.

HMMs and Attack Prediction

Research by D. Ariu et al. (2011) also investigated the use of Hidden Markov

Models in attack prediction, specifically as applied to HTTP traffic. They found the

HMM algorithm was able to demonstrate better performance than previous attempts by

specifically including packet payload in the modeling rather than just trying to make a

determination based on packet metadata. Further, the system also demonstrated an

enhanced level of accuracy obtained using multiple classifier functions within the system.

Finally, the researchers proposed an algorithm for composition of results from multiple

classifiers. This approach led to a net decrease in the computational cost of the algorithm,

because efficiencies were gained by selectively excluding certain classifiers based on

values obtained for others that had already been executed.

HMMs and Attacker Behavior Analysis

Katipally et al. (2011) sought to build on successes with previous models of

attacker behavior by outlining a generic system using Hidden Markov Models to analyze

and predict attacker behavior based on alerts generated by a Snort IDS system. One of

 34

the inputs for their HMM was a human expert opinion of the attacker type and intention

based on analysis of the full attack stream. Based on the results described in their

research, this input value appears to be very meaningful in predicting the behavior of an

attacker while an attack is in progress. Specifically, attacker types were broken into one

of eight groups. The groups generally also fell into two categories. The first was

attackers who were generally in pursuit of money or other resources, which included

criminal groups seeking to attack a system for direct monetary gain, phishers seeking to

steal identities or information, spyware/malware authors intending to produce and

distribute harmful code, and bot-net operators compromising and controlling networks of

systems for the purposes of executing attacks that require a critical mass of resources to

be effective (phishing, denial of service, etc.). The second category was those who were

focused on power or notoriety, including insiders representing disgruntled employees,

terrorists aiming to incapacitate or manipulate critical infrastructure in order to cause

casualties or damage public confidence, hackers breaking into networks for the challenge,

and nations acting on information-gathering or espionage grounds.

In the work by Katipally et al. (2011), each attack stream was reviewed by the

human expert and associated with the actions likely to be taken by each type of attacker

in an attack situation. The researchers acknowledged that the use of a human expert

represented a weak point in their approach, as the model relied on human input for

classification in a key parameter. Although this is certainly feasible in back-testing

scenarios, it would be impossible to do accurately and completely in real-time, thus

depriving the HMM of a key input variable.

 35

HMMs and Botnet Traffic

Another use of HMMs in intrusion detection was attempted by Lu and Brooks

(2011). Their work focused on the application of HMMs to detect and distinguish botnet

traffic in a network. Specifically, the HMM produced as part of their research focused on

the relationships between packet timings in botnet command and control traffic to

identify traffic that was related to a common botnet, Zeus. Packet timings were selected

for the focus of the work because they are readily identified and quantified without

reverse engineering malware or decrypting traffic. A typical HMM relies on a priori

knowledge of the structure of the model in order to make predictions, that is, the

relationships between the states must be fully known, and the probabilities of transition

between states is then inferred. The work by Lu and Brooks (2011) used a modified

version of an HMM which created both the states and transition structure from a set of

sample data with no prior knowledge of the states and relationships (Shalizi &

Crutchfield, 2001; Shalizi & Shalizi, 2004). The ability to build an HMM based on the

dataset with no prior knowledge was critical for the system described in this report, as the

necessary states and relationships between the visibility of one or more fragments and the

presence of a larger attack are not well understood and may even be different for different

classes of attacks. Another key contribution made by Lu and Brooks (2011) was the

application of confidence intervals based on receiver operating characteristic (ROC)

curves such as those described by Brooks, Schwier, and Griffin (2009) to determine

which of a series of generated HMM models represents the best trade-off between true

positives and false positives. A version of this model was used for comparison in the

research described in this work, as it helped address a number of the classical HMM

problems documented by Rabiner (1989) and referenced above.

 36

Exploration of Enhancements to HMMs

In addition to the above-referenced applications of HMM technology to intrusion

detection, some non-HMM work related to multi-stage attack detection has offered key

insight into potential improvements to standard HMM models. One such significant

contribution in the area of multi-stage attack detection was made by Alserhani et al.

(2010), who identified a number of issues facing modern approaches to detecting multi-

stage attacks. Consistent with Ning and Xu (2004), they observed most existing methods

relied on either rule-based methods, likely to miss new attacks because of the lack of

defined rules, or statistical methods that related stages based on probability without a

cause and effect component. Their research described a statistical model which added an

explicit cause and effect relationship model, allowing for the viewing of attack stages as a

“waterfall” of sorts where the visibility of early stages contribute to the expectation of

and correlation with later stages of the attack.

Ultimately, the proposed model of Alserhani et al. (2010) achieved detection rates

marginally higher than existing methods, but it substantially reduced the number of false

positives that were present in the alert stream. Although their work still relied on

visibility of a substantial portion of the attack for alerting, the addition of cause-and-

effect relationships represents an important idea for the research documented in this

work. The idea of causality would likely be a major factor in predicting the likelihood

that a given fragment of traffic is part of a larger attack, and the approach they

documented appears to be viable for use with HMMs.

Other attempts have been made to leverage the research on multi-stage attacks

and the relationships between the various stages to provide general predictions about

 37

attacks which may be seen in the environment. One such approach used general history

to build a graph of related attacks and leveraged that graph to make forward predictions

on the upcoming attacks based directly on previous attacks (Cipriano, Zand,

Houmansadr, Kruegel, & Vigna, 2011). Their approach used a two phase approach.

Phase one focused on building a table based on a series of Snort (Roesch, 1999) alerts

based on four attributes within the alert, the attack type, the source address, the

destination address, and the time the alert was received. The system would then traverse

the alert list with a sliding time window to match alerts into a set of attack sessions,

defined as attacks that met one of three criteria: same destination address, same source

address, or source address for the alert is the same as the destination address for an alert

already received within the window.

After performing the data extraction process, the Nexat system created a hash

table which was then fed to an HMM for training. The algorithm had the advantage of

pre-associating the alerts before they were provided to the HMM, which substantially

reduced the training time needed since the HMM’s only focus was to learn the

relationship between a small subset of alerts rather than the entirety of the traffic set. The

HMM is effectively being taught in this case not to recognize an attack, that task was left

to Snort, but just to learn the pattern of attacks that have actually occurred so that they

can be recognized in the future. This approach was able to achieve a high prediction

accuracy for an attack coming, but had a relatively low rate of accuracy on predicting the

specific attack which was to occur, which limits its utility for security personnel

responding to an attack. Additionally, because it was built on Snort as an alert provider, it

 38

was not able to locate or predict never-before-seen attacks in a stream (Cipriano et al.,

2011).

Neural Networks and Confidence Levels

Neural networks have been used with some success to perform attack

identification and classification (Elfeshawy & Faragallah, 2013; Staudemeyer & Omlin,

2013). While they have been very successful with certain classes of attacks, Staudemeyer

and Omlin (2013) do point out specific shortcomings with accurately identifying remote-

to-local and user-to-root attacks. Specifically, neural networks are well suited to events

which exist in a single view of the data, in this case, a specific packet. Attacks which

occur over a range of packets and which cannot be reassembled directly based on the

protocol in use are much harder to locate as neural networks do not maintain state

effectively. However, this research did apply neural networks in byte occurrences within

a particular HTTP stream very effectively, with the end result being very high relative

classification rates as part of the overall meta-analyzer in certain types of attacks. Even

more important for this research, neural networks also excel at consolidating different

input sources and determining proper weighting, and a neural network was ultimately

selected for the meta-analyzer layer described below due to both its effectiveness and its

portability.

Feature Selection

A discussion of IDS and machine learning technologies would be incomplete

without addressing feature selection algorithms, as the features selected for system

learning are integral to a system’s ability to accurately predict an outcome (Azzouzi &

Kadiri, 2015). Specifically, Sommer and Paxson (2010) observed that the features

 39

selected for a given type of event would even likely differ based on an understanding of

the machine learning algorithm in use. Below, this work outlines specific research on the

evaluation of the suitability of feature selection methods for IDS, as well as specific

feature selection methods which have been used in the context of IDS and observations

from their use.

Suitability of Feature Selection Methods for IDS Application

There are several well-documented ideas on the suitability of a given feature for

use in intrusion detection technology. Wressnegger, Schwenk, Arp, and Rieck (2013)

presented three such ideas in the context of the use of n-grams in anomaly-based

intrusion detection, but the suitability criteria they developed are relevant to other models

as well. The first idea put forth by Wressnegger et al. (2013) was that of perturbation, or

the expected percentage of benign packets which were not part of the data available for

training. A high perturbation value implies that many new values are being seen which

should be identified as benign but were not seen or classified during training. The

presence of new values is virtually a given in a network environment, and so the feature

method must be capable of adapting the feature space in real time and adjusting the

system training appropriately.

The second idea described by the researchers was density, or the ratio of unique

packet contents to the total number of possible contents available in the underlying

alphabet which defines the packet structure. Higher density implies that the feature space

is more crowded, and can lead to difficulty correctly classifying items (Torrano-Gimenez,

Nguyen, Alvarez, & Franke, 2015). In some cases, it may be necessary to arbitrarily

stretch the feature space in order to reduce density. In these cases, logarithmic functions

 40

may be useful in the comparison process as they can allow scaling of values over a

stretched space. In general, a discretization function should take into account density,

and optimally, features which represent benign behavior should be distanced from those

representing malicious behavior as far as possible to optimize training time.

The third criterion for suitability as a defining feature is variability, or the overall

entropy of the data set compared to the maximum possible entropy of the underlying

alphabet. Higher variability implies higher randomness in packet contents, and portends

difficulty in classification due to the inherent variability of the feature. Additionally, it

has been observed in several cases that the growing prevalence of “dev ops,” where

developers are able to make key operational decisions around selecting and deploying the

application stack, has led to substantial growth in the variability of common protocols

(Ahmadi, Biggio, Arzt, Ariu, & Giacinto, 2016; Mehetrey, Shahriari, & Moh, 2016).

Optimally for the purposes of the research described in this work, all three criteria should

be minimized by the discretization methods in use for each feature.

Clustering Approaches to Feature Selection

One approach to feature selection layered fuzzy C-means clustering with neural

networks and support vector machines to select optimal features at each layer for

classification of network traffic (Chandrashekar & Raghuveer, 2012). Fuzzy C-means

clustering was used because the method generally achieves better results than other

clustering methods because of its inherent ability to allow data to be assigned to more

than one cluster. Specific research on clustering techniques and their use in feature

selection for intrusion detection has evaluated fuzzy c-means, k-means, and hierarchical

clustering. The ability of the fuzzy c-means approach to allow a single feature to be

 41

selected for more than one cluster enables much more flexibility and better modeling of

complex relationships between different network packets (Nadiammai & Hemalatha,

2012). Specifically, clustering algorithms are generally considered a good fit for feature

selection as they are specifically designed for learning and quantifying the relationships

between different data values. Once the clusters were formed, neural networks are

trained based on each of the clusters, with each cluster being assigned its own network

(Chandrashekar & Raghuveer, 2012). This process allows each network to learn the

specific subset of relevant data, and the results are then fed into a support vector machine

for ultimate classification of packets. Although the research used a support vector

machine rather than an HMM, the two approaches are similar in their requirements, and

thus, the approach to feature selection and pruning is likely viable for HMM based

approaches as well as long as the HMM model is capable of self-generation of states and

transitions (Shalizi & Shalizi, 2004).

Bayesian Probability in Feature Selection

Another, rather different, approach to feature selection was documented by

Sharma and Mukherjee (2012) in their work on naïve Bayes classifiers used for intrusion

detection. The researchers’ total population of possible features included 41 different

data points, but they created a separate classifier for each of the types of attacks their

system was intended to detect. The classifiers’ categories included denial-of-service,

probe attacks, user-to-root, and remote-to-local. For each of the distinct category

classifiers, the researchers applied domain knowledge coupled with a sequential search of

the feature set, removing one feature at a time until the accuracy dropped below a given

required minimum threshold.

 42

Once the subset of features was determined for each category, the classifier for

that category was trained to specifically detect attacks of that kind using the features that

were determined to be relevant (Sharma & Mukherjee, 2012). This split-model approach

where the classifiers were separated by category allowed each category’s model to be

tuned more specifically than a classical single model approach would typically allow.

Ultimately, this led to better recall than non-split layered models achieved using the same

dataset and criteria.

Two particular contributions of note were made in the work by Sharma and

Mukherjee (2012). First, the researchers documented the observation that there are

drastic differences in the frequency of different classes of attacks and their hypothesis

that those differences contribute to the difficulty with precision and recall typically faced

by intrusion detection systems. Second, the approach of using different classifiers for

different types of attacks appears to offer some viable improvements, and since the naïve

Bayes approach is closely related to HMMs in structure and functionality, a similar

approach may prove to be useful for the research proposed in this work.

Evolutionary Algorithms and Feature Selection

Evolutionary algorithms have also been evaluated for their use in optimizing

feature selection. Zaman et al. (2013) tested several evolutionary algorithms including

binary particle swarm optimization and different evolution to determine which algorithms

yielded the best trade-off between number of features (which directly drives state space)

and accuracy of the results. Each of the evolutionary algorithms were then applied using

both a neural network and a support vector machine to see which algorithm consistently

produced the best and most concise set of features. Using different evolution, the total

 43

number of features selected was cut by 68% on average across their experiments,

providing a substantial reduction in the overall state space which must be maintained by

the machine learning algorithm used for classification.

Another proposed approach to feature selection for intrusion detection applied

genetic algorithms to select a subset of a population of 41 features in the KDD Cup ’99

dataset as relevant for training a support vector machine (SVM) to perform intrusion

detection (Saha, Sairam, Yadav, & Ekbal, 2012). For each generation created, the fitness

of each combination of classifiers was calculated based on the error rate of the SVM run

against the test data set. The best performers were more likely to be maintained in each

generation, crossovers and mutations were performed, and the next generation was

formed and evaluated. The process iterates for a defined number of generations, at which

point the best found combination is used going forward to train the SVM for continued

operation. Use of the genetic algorithm iteration for feature selection reduced the error

rate from 22% to 13%, once again showing that iterative machine learning models were

capable of improving the feature selection process and achieving a good combination of

features for performing intrusion detection.

Y. Zhang and Rockett (2009) demonstrated an approach to feature selection based

on multi-objective genetic programming (MMOGP) which included a mechanism for

evolving both a feature extraction and feature selection that represents a good fit for the

problem at hand. The work on MMOGP compared it with a variety of other classifier

algorithms including several that are frequently used in intrusion detection. In many

cases, MMOGP demonstrated an improvement over the other algorithms on common

classification problems, and in no case was it worse than any of the other options. The

 44

algorithm performed at least as well as every other algorithm it was compared to

primarily because it essentially evolves a good method specifically for the problem to

which it is being applied. This makes it extremely powerful, as it can be used to re-

evolve the relevant feature set as the threat landscape changes. Additionally, the multi-

objective design allows the introduction of arbitrary objectives beyond simple fitness

relevant to the specific application such as reducing complexity in systems where

computational resources are a primary limitation, which is often the case in IDS

applications.

Approaches to Prioritizing Intrusion Detection Output

On the Accuracy of Intrusion Detection Output

Before one can focus on prioritizing output of an IDS, one must first be concerned

about the overall accuracy of the alerts the system is producing. One of the most

significant problems in intrusion detection is determining an objective method of

measuring the ability of a given system to correctly classify events as either normal

traffic or attack traffic. Although various methods have been proposed and used, it is

difficult for any one approach to fully capture all relevant information with respect to the

accuracy of an alert stream. Largely this problem is structural within the field of

intrusion detection – the volume of traffic in most production systems and the ever

changing nature of network traffic both contribute to the complexity of accurately

classifying traffic. To combat this issue, various specialized metrics have been

introduced with the goal of quantifying the accuracy of alerts generated by a given

system.

 45

One such specialized metric was described by Gu, Fogla, Dagon, Lee, and Skoric

(2006) in their work on the Intrusion Detection Capability (“CID”) metric. The CID

metric is described as an application of information theory that applies a joint probability

mass function to quantify mutual information and compare that to overall entropy in the

dataset. The result is a metric which is capable of capturing all of the primary metrics

generally used in the measurement of an IDS: true positive rate, false positive rate,

positive predictive value, negative predictive value, and base intrusion rate. However,

the CID metric is useful only at the level of measuring the overall quality of IDS output.

As such, it can answer the question of whether a particular IDS performs better

generally (though not necessarily for a given environment) than another, but it offers an

analyst tasked with reviewing output from the IDS no additional information in terms of

prioritization of alerts for response. Although such a metric may be suitable for IDS

comparison and tuning, the aggregate approach necessarily falls short in addressing the

goals of the research proposed in this work. The major limitation is that the results of the

metric are only available in retrospect, that is, the results of the classification can be

compared against the known classifications to determine to what extent the algorithm

produced the correct classifications, but the metric offers no indication of how accurate a

forthcoming prediction is expected to be.

Recent work on summarizing the common methods of evaluating intrusion

detection output has indeed underscored the myopic nature of reviewing intrusion

detection performance. In their summary work on the evaluation of intrusion detection

systems, Milenkoski et al. (2015) are able to summarize the aspects of the metrics that are

reported in to two categories, those related to security and those related to performance.

 46

According to the researchers, the security metrics used to evaluate intrusion detection

systems can essentially be summarized in to three categories: attack detection accuracy,

attack coverage, and resistance to evasion techniques.

Amongst that group, research from Sommer and Paxson (2010) shows that the

general focus is on detection accuracy and coverage, as practical applications in most

environments are not concerned with specific efforts to exploit IDS edge cases for

evasion. Although all three of those metrics are important to some extent, there is a clear

lack of metrics related to the ability of an IDS to predict the accuracy of its own output.

Review of the metrics they classified as performance-related metrics shows that nothing

in that space would indicate the general use of predicted-accuracy metrics either

(Milenkoski et al., 2015).

Rather than a system or metric that is only calculable and relevant in retrospect, it

seems desirable to be able to include as an explicit output a value which represents the

level of confidence that should be place in the prediction being made. The ability to

make a skill estimate with respect to a prediction would be useful for analysts who are

tasked with following up on alerts which are the result of a prediction. A similar situation

regarding retrospective accuracy calculations existed in the field of weather modeling and

forecasting approximately thirty years ago, and the inability to make skill predictions in

that field led to significant work in the field of uncertainty modeling.

Uncertainty Modeling

The specific exercise of quantifying and characterizing uncertainties arising from

the imprecise modeling of systems is known as uncertainty modeling. One of the

primary use cases of uncertainty modeling is seen in weather forecasting. Although

 47

forecast uncertainty output is not directly reported, the presence and degree of uncertainty

is certainly represented through the percentages generally associated with particular

events (i.e. a 70% chance of rain on a given day or within a given time window), and thus

the creation of systems which can quantify the uncertainty effectively is important within

the domain. Uncertainty related to predictability of forecasts primarily arises out of two

specific components of the forecast: the initial conditions and the model formulation

(Palmer, 2000).

Uncertainty with respect to the initial conditions generally does not arise out of an

inability to know absolutely what the conditions are, but instead, it generally arises out of

scarcity of resources necessary to fully determine the initial conditions (Z. Zhang &

Krishnamurti, 1997). Take for example, a forecast with respect to the continental United

States. Although the initial conditions are generally known from a variety of weather

reporting stations and technologies, knowledge of the specific conditions at a given

location are generally a function of the location’s distance from the nearest active

reporting station and may also be affected by the quality of the equipment at the reporting

station (Palmer, 2000; Rabier, Klinker, Courtier, & Hollingsworth, 1996).

Uncertainty with respect to the model formulation is another significant issue.

Since models are generally built based on historical data (Z. Zhang & Krishnamurti,

1997), they are, by definition, limited in design only to the best available information

with respect to prior events. In recent years, the quality of measurement has been

generally high, allowing models to be very tightly fit to actual events. However, weather

patterns generally follow a much longer horizon than a few years, and the ability to

obtain accurate data about weather system movement and activity for time periods is

 48

generally lower as a model attempts to work backwards in time (Palmer, 2000).

Additionally, weather models are also limited to basis in previously seen events, and may

not be able to reflect weather patterns which are new to an area or which are the result of

new or expanded outside forces impacting the climate. An extreme example of such an

impact is discussed in work by Lelieveld, Kunkel, and Lawrence (2012) where there is an

attempt to quantify some of the potential impacts of a nuclear reactor accident on weather

patterns and the overall climate. Ultimately, they reach the conclusion that while some

impact may be determinable, largely the full impact is beyond the scope of any

reasonable ability to model.

The issues with precise determination of initial conditions are also present in the

field of intrusion detection. As an example, consider a network which has existed prior to

the introduction of an intrusion detection system. It is certainly possible that even at the

outset of the IDS operation, the network already contains one or more systems infected

by a malicious agent. Even if the resources were committed to perform an exhaustive

scan of the environment, there exists the possibility that an undetectable piece of malware

exists that is operating and is not located by a scan. Additionally, it is common for

production networks to have remote portions which are not covered by the same volume

or quality of traffic sensors as the “core” network. In these areas, like in outlying rural

areas in the weather analogy, it is difficult to determine precise details of the nature of the

traffic.

Similarly, the issues with model formulation also have striking similarities with

challenges within the field of intrusion detection. Although intrusion detection benefits

from being able to capture a much higher percentage of the history of internet traffic in its

 49

models (due primarily to the relative youth of the Internet), there are still significant

resource limitations to being able to process that volume of traffic. Indeed, the amount of

concern around performance of IDS systems in research (Ahmad et al., 2014; Sekar et al.,

1999; Staudemeyer & Omlin, 2013) implies that it is unlikely that a given IDS could

benefit from a complete history of internet traffic even if it were available, as the

resources required to process that traffic meaningfully would be the limiting factor.

Additionally, there are significant additional challenges within intrusion detection around

never before seen traffic. While weather patterns generally repeat and tend to change

over longer periods of time, the introduction of a new service or protocol can change the

landscape of a particular network rapidly. Indeed G. Kim, Lee, and Kim (2014) observed

that in active environments such changes might occur several times per year. While

significant weather-impacting events such as nuclear reactor accidents are a rarity,

significant network impacting events are a rather common occurrence in the information

age. Furthermore, as is the case in weather modeling, the dimensionality of the inputs

tends to be very high, further complicating the creation of meaningful models that are

capable of outputting accurate and precise predictions.

In the field of weather forecasting, it is generally agreed that the ability to

generate predictions is of very little use without the ability to supply some information

with respect to the accuracy of those forecasts (Tennekes, 1992). Indeed, this agreement

was formalized into the slogan “No forecast is complete without a forecast of forecast

skill” by Tennekes, Baede, and Opsteegh (1986). To that end, Tennekes et al. (1986)

proposed that “predictability”, in this case referring to the ability to quantify the likely

accuracy of the prediction being made, should be treated as a variable that is calculated in

 50

similar fashion and with the same level of rigor and support as the forecast itself. For the

purposes of this work, the term used to capture this same meaning will be “defined

predictability.” Prior to agreement on this point within the field of forecasting, forecast

error was tracked in terms of global error and the error statistics were compiled only after

the fact to determine how accurate a given model had been. The researchers contended

that, though the historical error data on accuracy of a model was useful, calculating error

only in retrospect failed to provide useful and important data for those responsible with

using the forecast. Indeed, a similar situation exists in intrusion detection, where the vast

majority of systems have generally focused on the grading of performance merely on

statistics regarding the determined accuracy of alerts that were previously made.

Forecasting and Defined Predictability

In order to better understand the case for the importance of predictability in

intrusion detection, it is helpful to explore the precursors to the case for defined

predictability within the field of weather forecasting. First, and perhaps most significant,

Tennekes et al. (1986) posited that the lack of defined predictability from weather

forecasts was a question of credibility. With such significant investments in technology

and expertise for the time, the frequency at which a predicted weather forecast was

incorrect presented a challenge to forecasters’ professional reputations and credibility.

The spirit of concern over this was captured in the question: “Do we really want the

public to become as cynical about weather forecasts as many of us are about economic

forecasts?” (Tennekes et al., 1986) Indeed, a similar situation could be said to exist with

respect to intrusion detection capabilities today. Existing intrusion detection technologies

do not typically quantify confidence levels for their alerts, leaving practitioners to decide

based on their own experience and expertise whether a particular alert deserves to be

 51

pursued (Milenkoski et al., 2015). Furthermore, because so many commercial systems

operate in this way, it has essentially become the de-facto normal course of operation for

intrusion detection technology, and little more is typically expected of intrusion detection

systems. This focus has also resulted in a “limit approaching zero” situation where

fractional increases in the percentage of accuracy of predictions is considered a success,

regardless of whether those changes practically improve the ability of an operator to

respond to the alerts in question.

In addition to the general problem of credibility and confidence, Tennekes et al.

(1986) also made the case that, though defined predictability metrics were not commonly

reported, many forecasters were willing to privately share their assessment of the

accuracy of a given forecast based on the specific weather conditions and their own

experiences. In a number of situations where organizations needed to make decisions

based on the forecasts, assessments on the accuracy of the forecasts would be solicited,

and at least in terms of common experiences shared by the researchers, the estimates

made by knowledgeable individuals seemed to generally be correct. Although the

researchers admitted this was certainly not scientific evidence that skill predictions could

be made accurately, the subjective assessments and the reasoning behind those

assessments pointed to the existence of a theoretical foundation on which defined

predictability could be reasonably based and studied. The estimated produced by defined

predictability, they asserted, were intrinsically valuable to the users of the forecasts, and

thus further research and study was both justified and needed to codify and hold

accountable the process by which those statistics were created (Tennekes, 1992).

 52

Their work went on to present the first of a number of methodologies designed to

specifically quantify the “skill” of a given forecast, essentially a measure of how accurate

the forecast was expected to be. The model presented was built on a rather simple core

idea which they believed to be the basis of most of the informal assessments that

researchers gave, namely, that the accuracy of the output of a model produced on a given

day, was a function of how significant that model differed from the one produced by the

same system in the previous time period (in their case, the one from the previous day).

Essentially, a model which made a prediction for a day which was largely consistent with

the previous day’s prediction was believed to be more accurate, while one that diverged

from the previous prediction was suspect to some extent, with the extent of suspicion

directly related to the extent of the divergence (Tennekes et al., 1986).

Of particular importance to this method is the need for the models to be

forecasting in the same or a comparable output space. Comparing the differences in the

output is only relevant if the output can be made to be comparable. As an example, a

model which primarily predicted the presence of precipitation would not be directly

comparable to a model that primarily predicted temperature, though the two are most

certainly related. This comparability was guaranteed in the initial implementation

because the same model was being compared across two different time periods, but this

must be taken into account in any comparisons where different models are being used to

accomplish a similar prediction (Tennekes et al., 1986).

One particular caveat related to predictability came in the form of the assertion

that predictability is not a global concern, but rather should be considered a local

variable, where the locality is defined as the area of interest. The primary reason for this

 53

is that the accuracy of a forecast for an area is the function of a number of variables that

are themselves local in nature such as specific blocking situations such as high pressure

air masses. This caveat has proven important to the field of intrusion detection as well,

since it is analogous to conditions which may be specific to a given network but may not

exist on the internet as a whole (Mitchell & Chen, 2014). Indeed, in virtually all cases a

specific network may have contributing or blocking factors with respect to a particular

attack vector. Although it may be difficult to enumerate all of those factors individually,

a recognition of the existence of those factors must be considered if an accurate skill

prediction is going to be made. In the context of intrusion detection, this means that the

level of difference considered between the models must be tunable by the system to

ensure an appropriate level of sensitivity given the number of hosts and services as well

as other network conditions.

Although the application of this idea is somewhat relevant in the field of intrusion

detection, two primary issues must be dealt with to apply the idea directly. First, network

environments generally change very quickly as compared to the changes seen in weather

patterns, and thus any comparisons between one time period and the next must

necessarily be much shorter than the twenty-four hour period which is commonly used in

weather forecasting. In addition to the challenge presented by the speed of change, the

scale of change is also a significant problem. While individual instantaneous events that

impact weather models significantly by introducing new facts or information are

generally very few and far between (Lelieveld et al., 2012; Z. Zhang & Krishnamurti,

1997), the network environment has ports, protocols, and systems coming and going from

a particular environment almost constantly. It could be said that though the scope of the

 54

entire universe of networking changes may not shift quickly, the scope that is relevant to

a particular network may shift multiple times per day (S. Sen, 2014). As such, while a

twenty-four hour window was a good initial value with respect to the ensemble

comparisons that (Tennekes et al., 1986) attempted, a much lower value is likely needed

in intrusion detection. In networks with a high volume of changes, it may be better to

exclude time based comparisons completely and instead focus on comparisons between

various models.

Another aspect of defined predictability that should be visited is the problem of

infinite regression with respect to the predictability model. Popper (1988) claims that if

an event is predictable, it must, by definition, be predictable to any arbitrary degree of

precision provided that the predictive model is sufficiently detailed and the initial

conditions are precisely known. Any failure to make a correct prediction, therefore,

should be quantifiable in advance based on known and demonstrable gaps in either the

quality of the model or the precision of the initial condition data. However, out of this

principle, and issue arises. If a researcher must be able to quantify the extent to which

the prediction is suspect, he or she must have a model for that quantification. This model

must take into account not only the quality of the model itself, but the uncertainty

contributed by imprecision in the initial conditions. Thus the model that determines the

skill prediction is unlikely to be any better than the original predicting model, and in all

but the best case, will likely be worse (Tennekes, 1992). Popper (1988) posits that this

requirement for accountability within the model will then continually call for levels of

regression which quickly become unreasonable when faced with a complex system. The

resulting conclusion of Tennekes (1992) is that our expectations of the precision of the

 55

skill forecast (that is, the second-order prediction made regarding the accuracy of the

first-order prediction) should be tempered in light of the complexity of the system being

modeled.

It is also worth noting that one need look no further than any modern forecast to

see the ideas around the relevance and importance of defined predictability presented by

Tennekes et al. (1986) are now a foregone conclusion in the field of weather forecasting.

Indeed, there is significant recent work which is built upon the supposition that the ability

to forecast the skill of a given forecast is important (Fortnow & Vohra, 2008; Grover,

Kapoor, & Horvitz, 2015; Leutbecher & Palmer, 2008 ; Zarnani & Musilek, 2013). Later

work has extended on the comparison between forecasts over a time period primarily

through the introduction of same-period ensemble forecasts. In the ensemble forecast

approach, a number of models are used to generate predictions regarding the forecasts,

and the predictability metric is then calculated based on the level of divergence seen

amongst the different models in both the current time period and the previous time

periods, a value known as the ensemble mean (Roulston, 2005). The use of ensemble

models has not been limited to weather forecasting, and the specific application of

ensemble models to machine learning has been used within intrusion detection in a

number of cases that are discussed below.

Ensemble Modeling in Intrusion Detection

The concept of “ensemble” methods is not new in applications within the field of

intrusion detection. The earliest application of ensemble methods was demonstrated by

Mukkamala, Janoski, and Sung (2002) in their work on the use of an ensemble IDS using

both neural networks and support vector machines for classification. Their work applied

 56

their proposed ensemble method to the 1998 DARPA dataset. They combined the output

from three different types of neural networks (backpropagation, scale conjugate gradient,

and one-step secant) with the output from a support vector machine using a formula

which calculated the lowest absolute difference in the outputs with respect to any given

classification. They focused on a 5-class approach using the major categories within the

DARPA dataset that had been previously tagged. The ensemble method achieved higher

classification accuracy than any of the individual classification methods because it was

able to leverage the strengths of each method in performing the classification. Of note,

the improvement in some classes appeared significant, while the improvement seen in

areas which were already strong in terms of prediction ability was substantially lower.

The range in improvement is shown below in Table 1.

Class
Best Performing

Independent Method
Ensemble Method

Accuracy
Increase (Decline)

in Accuracy

Normal Neural - OSS - 99.64% 99.71% 0.07%

Probe SVM - 98.57% 99.86% 1.29%

DoS SVM - 99.11% 99.95% 0.84%

User-to-Root
(U2R)

SVM - 64% 76% 12.0%

Remote-to-
Local (R2L)

Neural – SCG - 98.22% 99.64% 1.42%

Table 1 – Comparison of detection rates in early ensemble approach

The researchers did note that it was not clear if the improvement in accuracy was

statistically significant in all cases, but they maintained that the improvements showed

the ensemble method held promise within the intrusion detection field (Mukkamala et al.,

2002).

 57

Additional use of ensemble methods were demonstrated within the sub-area of

feature selection and reduction (Chebrolu, Abraham, & Thomas, 2004). In their work,

they applied both Bayesian networks as well as classification and regression trees to a

reduced set of features within the KDD Cup ’99 data set and were able to achieve better

results with the reduced data set than either method operating independently given a

particular set of features. The same group of researchers also demonstrated an end-to-end

ensemble IDS a year later which used an ensemble approach for all aspects of the IDS

functionality. The more mature version of their system actually selected a specific

classifier or the ensemble meta classifier on a per-class basis, allowing the system to

optimize the results based on the classifiers which performed best when applied to a

given data set (Chebrolu, Abraham, & Thomas, 2005). Similarly, (Folino & Sabatino,

2016) also allowed flexibility for their classification mechanism to prefer the more

accurate classifiers on a per-protocol basis.

The use of ensemble methods has continually grown, and with that growth, IDS

systems have generally become more and more accurate as different machine learning

methodologies may be better suited to addressing different classes of attacks. Another

variation on the concept of ensemble models has appeared in the use of distributed IDS

systems such as the one proposed by Abraham, Jain, Thomas, and Han (2007). Their

work used fuzzy rule-based classifiers placed on agents across the network. Each agent

independently developed its own rule set in collaboration with the others, and the results

were aggregated on a central server which assigned relevant weights to the agent output,

provided feedback to the agent, and ultimately made classification decisions based on the

various output values.

 58

Similar concepts have been applied as well across logical layers in the creation of

IDS systems which have visibility at the network, host, platform, and software levels and

have support systems which reconcile and react from the data being received from all of

the layers (Zargar et al., 2011). Although their work was originally oriented to usage in a

cloud computing environment, similar concepts are certainly applicable in a locally

hosted network environment. Of particular interest is the explicit creation of both local

and global data sets within their proposed system. Rather than allowing each sensor to

collect and correlate data and then sending the output to a central server for the master

correlation to occur only there, the central coordinator also sends back to each agent a

current copy of the global data set to use in its local processing. These are events which

have been seen by other agents but which the coordinator believes are likely to be

relevant for other agents as they make decisions about events in progress. The controller-

agent approach was also used by Mehetrey et al. (2016), but they noted issues with

visibility around certain attacks in the system where the data could not be consolidated in

time to make an appropriate decision.

However, in all of the applications of ensemble approaches for various

components of IDS functionality, there have not been attempts to apply the ensemble

approach explicitly to making an estimation of the skill of a given prediction related to a

network event. Indeed, the picture within the intrusion detection space seems to be much

more similar to the one that existed in weather forecasting that was discussed by

Tennekes et al. (1986). Like weather prediction of that time, predictions in intrusion

detection are made constantly, but the accuracy of the predictions are only generally

reviewed and quantified in retrospect.

 59

This has resulted in a similar credibility problem that modern IDS systems are

facing today, with the result being that analysts are frequently unable to follow up on all

the alerts being generated and have difficulty prioritizing response to the alerts being

generated appropriately (Mitchell & Chen, 2014). Perhaps even more problematic is that

the credibility problem has become “baked in” to some extent in terms of the way that

operators handle alerts being raised. Rather than explicitly considering the likely

accuracy of each alert based on the rules or track record of the system that generated it,

analysts in practice tend to focus first on the alerts that would represent the most

significant risk were they actually realized. While this is likely to be a good approach in

the current environment, it certainly represents an opportunity in terms the ability to

provide more accurate estimations of how likely an alert is to be correct. Not only would

this help the analyst better respond, but in the long term, it would likely drive better

intrusion detection technologies since the presence of alerts which are frequently low

likelihood but high risk will help drive advances that will allow the likelihood to be better

and more accurately quantified. In the interest of addressing these challenges, this work

below explores some approaches which have been applied to making skill predictions in

various areas. Although some of these are not directly relevant to intrusion detection,

they form the foundation of a set of ideas that this work built upon for development of the

system.

Confidence Levels and Bayesian Probability

Bayesian approaches to probability prediction have proven to be valuable in the

context of intrusion detection and prioritization in a number of instances (Chen & Kim,

2013; Sharma & Mukherjee, 2012). Similar methods have also been used to address the

general problem of estimating probability of a given event using a number of inputs.

 60

Classic Bayesian networks are defined by a series of nodes and edges which together

comprise a directed acyclic graphical model of a particular system (Geiger & Heckerman,

2002). While these models can be excellent at predicting probability in the optimal cases,

they rely heavily on a priori knowledge of the possible states and the relationships

between those states. If the system lacks the appropriate knowledge or if the

relationships change over time, Bayesian approaches can suffer significantly in their

accuracy. However, in the context of an ensemble system design, Bayesian approaches

have substantial advantages as support comparisons for the defined probability since they

are generally very efficient to calculate in real time and can scale well to high throughput

systems (Gao, Mei, Chen, & Chen, 2014). Additionally, Bayesian networks could be

used as a simplifying structure for models with high output complexity to allow the

model comparison algorithm to focus in on specific aspects of the output that are judged

to be the most advantageous during training while still incorporating the entire output in

the decision making process.

Evolutions of the Bayesian network have also added the concept of dynamic

Bayesian models, with the major advantage being that the relationships can be redefined

over time to better model the problem (Darwiche, 2003; Wiggers, Mertens, & Rothkrantz,

2011). However, these still suffer from substantial learning time and the network

structures may not change quickly enough to produce accurate results. Additionally, use

of these dynamic models in IDS scenarios must take care in application to ensure that a

malicious attacker cannot intentionally create “drift” within the system by introducing

changes over a sufficiently long time window to allow the model to adapt and avoid

triggering an alert.

 61

Another improvement on the Bayesian network is the concept of the naïve Bayes

model. Naïve Bayes classifiers are a special case of the Bayesian network, one that

includes the assumption that all features are independent of each other. Although this is a

simplifying assumption that can reduce accuracy, a naïve Bayes classifier may even

outperform other approaches if the available training data is sufficient. Lowd and

Domingos (2005) demonstrated that the naïve Bayes model was capable of achieving

accuracy comparable with the classic Bayesian network, but that those results were

achieved in a fraction of the time, making the naïve Bayes model a better fit for real-time

uses such as intrusion detection. Naïve Bayes classifiers have also been improved in

recent years by semi-naïve models, models that remove the assumption of independence

and allow features to be conditionally related in some cases. These relationships are

typically limited to one or two per feature to limit complexity to less than that of the full

Bayesian network, but they still allow some improvement to prediction accuracy while

maintaining a significant time advantage over traditional models (Taheri, Mammadov, &

Bagirov, 2011).

Another relevant proposed improvement to naïve Bayes was presented by S. Sen

(2014). His work focused on the idea of “concept drift,” or the natural change in

expected behavior over time. He proposes the use of instance weighted naïve Bayes, an

approach which has been demonstrated to significantly improve performance in instances

where the available unlabeled data far exceeds the available labeled data (Jiang, 2012).

In the instance weighted approach, the originally labeled data is used to classify and the

unlabeled data, and the classifications are then used to label and weight the originally

 62

unlabeled data based on the relative confidence that the new label is correct based on the

naïve Bayes model.

S. Sen (2014) applied this idea to the challenge of concept drift by applying lesser

weights to newly seen behaviors but increasing those weights over time as the behavior

becomes more frequent. This idea holds much promise in the area of intrusion detection,

as network traffic and applications are constantly changing and the ability to adapt to

these changes in real time significantly increased the ability of the developed system to

remain relevant in different traffic patterns. Furthermore, the existence of concept drift

underscores the need for the ability of a model to output a confidence value that reflects

how well it believes it reflects the reality of the situation occurring within the network.

At the very least, a network which has drifted from the assumptions made in the

development and training of a given model should result in the model being able to

estimate the extent of the drift and the likely impact on the reliability of the prediction. In

the ensemble approach, the concept of drift estimation would also be useful to baseline

the expected amount of change versus the change actually seen and further improve the

accuracy of the skill prediction made regarding the alert output.

Fuzzy Set Theory and Applications in Intrusion Detection

Fuzzy set theory has also been applied to the issue of determining the relevance

and quality of alerts being generated from an IDS in several cases. Fuzzy sets were first

introduced by Zadeh (1965), and they were defined in that work as a “class of objects

without a precisely defined criterion of membership.” Rather than using precise criteria,

fuzzy sets instead define a membership function which then assigns a value within a

specified range, generally between zero and one. The resulting output values are often

 63

useful in domains in which the input information is incomplete or imprecise, as the

output allows the determination of a degree to which an input matches rather than simply

a binary output in which all additional data about the degree to which the match occurred

is lost.

In the original work, Zadeh (1965) specified that the range between zero and one,

inclusive, with the defined function bearing responsibility for the distribution values as

expected within the range by the particular use case. Although there are an unlimited

number of membership functions that could possibly be applied, generally membership

functions are specified in terms of triangular, step, trapezoidal, or Gaussian functions.

Use of these function types generally allow the function to be defined more concisely and

computed more directly than more complex definitions, and they have been shown to be

effective in handling most relevant cases that fuzzy sets are a good fit for (Zimmermann,

2001).

Zadeh (1965) also defined common set operations with respect to fuzzy sets, with

the definitions of union and intersection being particularly relevant for this work. With

respect to union, the union U of two fuzzy sets, A and B, can be concisely defined as the

smallest fuzzy set that contains both A and B. The membership function of the union

fuzzy set U can thus be defined as:

fU (x) = Max (fA, fB)

The intersection I of fuzzy sets A and B is defined in similar terms as the largest

fuzzy set which is contained within both A and B. The membership function of the

intersecting set I is:

 64

fI (x) = Min (fA, fB)

 Many anomaly-based IDS applications implicitly apply fuzzy set theory

towards the classification of incoming events as either normal or intrusive. Rarely would

a given event definitively fall into a class with no uncertainty, instead, generally an event

is determined to be intrusive or not based on how close it is to one classification or the

other. As an example, in a classic DNS amplification UDP flood DoS attack, DNS

responses coming to the targeted system are the result of spoofed requests and generally

represent traffic that should be classified as intrusive. However, a user actively using a

system being attacked (or behind a network address translating-device which is the target

of the attack) might be making DNS requests as part of the normal course of using the

system, and the responses to those requests may be classified as intrusive because the

anomaly system is flagging all DNS response traffic once the volume crossed a certain

reasonable number of responses per second.

In this case, the valid DNS response should be classified as normal, but it could

be classified as intrusive by an over-aggressive IDS because it would match the criteria of

the fuzzy set which defined the intrusive behavior. However, most modern IDS systems

would still ultimately reduce the output to a binary output, the request is either “normal”

or “intrusive.” The research proposed in this work would not seek to do away with that

classification, but to more fully embrace the opportunity provided by the concept of fuzzy

sets to output the degree to which the event is either normal or intrusive, providing the

operator of the IDS with additional information upon which a decision can be made.

Another such example is detection of brute force attempts amidst failed logins to

a system (Javed & Paxson, 2013). A single such failed login would likely not be

 65

classified as intrusive, but systems generally define a fuzzy set that increases the

likelihood of raising a brute force alert as the number of failed logins increase. In this

case, the use of a fuzzy membership function allowed the researchers to identify

distributed brute force attempts by measuring the number of failed attempts against a

specific system (or related group of systems) over a sliding window of time and defining

the membership function in such a way that it was able to correctly classify outliers. In

their specific case, the researchers also parameterized the function to allow the detection

sensitivity to be tuned to generate a volume of alerts that takes into account the amount of

available analyst time to follow up on the events. Although this particular capability is

not included in the scope of the research defined here, further development of the ability

to allow a system to flex its output to match the available time and resources of operators

to follow up on the alerts being produced should be considered a potential area of

improvement for future work.

Another application of fuzzy set theory was demonstrated in work by Yu, Tsai,

and Weigert (2008). They proposed an adaptive and automatically tuning intrusion

system that they termed “ADAT.” ADAT applied the SLIPPER rule learning algorithm

(Cohen & Singer, 1999) to the KDD Cup 1999 dataset with a modification to utilize

fuzzy set theory rather than simple rule classification. The SLIPPER algorithm generates

a set of rules which are then combined into a smaller set of binary classifiers, with each

rule contributing a score to the classifier based on whether the rule matches the input

record.

In the case of the ADAT system, there were five binary classifiers created based

on each of the five classes of traffic present in the KDD Cup 1999 dataset. Each of the

 66

binary classifiers were designed to output not just a binary response, but to output a

magnitude that reflected the number of rules within the classifier that were considered a

“match” by the event in question. Additionally, the ADAT system was designed to be

able to determine if an event raising the same sequence of alerts had been previously

seen, and if it had, the resulting classification also took into account feedback on the

accuracy of the previous predictions that had been made. Fuzzy set theory was applied to

determine when to keep an alert based on the current backlog of alerts and the relevance

of the incoming alert as compared to the existing ones. As the backlog became longer or

the analyst processing alerts grew slower at responding, a low priority alert was less

likely to be retained. This ability of the alert queue to flex in real time enabled better

response capabilities for the individuals who were tasked with following up on the alerts

(Yu et al., 2008). However, certain risks must be addressed in that any system built with

such a design should be careful not to remove high-risk alerts from the stream just

because a backlog of alerts exists.

 67

Chapter 3

Methodology

Overview

For the purposes of this research, the problem of creating an approach to provide

a confidence value for a prediction was handled as a combination of both a pattern

classification problem as well as a statistical analysis problem. This project leveraged

several well-known constructs, including hidden Markov models and neural networks, to

create a system capable of producing a prediction about whether a given packet is part of

an attack or not as well as a confidence level related to the prediction. The system

proposed in this research used existing state-of-the-art intrusion detection systems as a

point of comparison where relevant, but it also proposed the confidence level extension to

current state of the art work that presented challenges in terms of making direct

comparison with other works in the field. The goal of this work was not to maximize

solely the accuracy or precision of the predictions being made; in addition to being

correct, the system had a second goal of maximization of the accuracy of the skill

prediction (that is, the prediction regarding the likelihood of the alert being correct).

The researcher created a system called the Confidence Layer Introduction

Prototype, or CLIP, as the implementation of the ideas developed in this research, then

proceeded to test it against network traffic, including both normal traffic as well as attack

traffic. This approach of testing is typical in the intrusion detection space, and allows

 68

ready comparison between the system produced for the current project and other state-of-

the-art systems. For the purpose of testing accuracy, multiple datasets were utilized.

Among those used were a dataset that has been widely used in the literature for

comparability, along with an additional dataset used in prior research specifically in the

area of web application intrusion detection. One additional dataset developed by the

author specifically for the purposes of this work was also included in the testing.

System Architecture

The design of the CLIP system are outlined more fully below, including the

following:

1. Data Input and Normalization

2. Feature Selection

3. Packet Processing Modules

4. Meta-Analysis Output Module

The system developed for this work utilizes an ensemble approach that couples

various state-of-the-art IDSs with a purpose-built HMM-based IDS created specifically

for this work. The core of the system used several state-of-the-art IDS systems (termed

“modules” for this work) described in prior research or developed for this work to

evaluate packets as they entered the system (either in real-time or via replay). The

modules used by the system fell into two categories. The first category, a wrapped

intrusion module (“WIM”), represented a state-of-the-art IDS system with classifications

that had been converted into results that the CLIP system could use. The second category

of modules, a native intrusion module (“NIM”), produced pipelined results in flow for

 69

each packet presented. Each module’s output was then combined in a neural network

layer, producing both a final classification and a confidence level reflecting the predicted

accuracy of the classification being made. The predicted accuracy values were then

compared with actual classifications and the system was graded on how closely the

predicted accuracy matched the actual classification. The system was also designed with

feed-back improvement capability using the back-propagation capabilities of a neural

network to tune the weightings and relevance of the input data based on the ongoing

performance. The basic architecture of the system is shown below in Figure 1.

Data Input and Normalization

The first phase of the CLIP system encompassed data input and normalization. In

this phase, the system read incoming packet data either from a PCap or PCapNG

formatted capture file or directly from a network interface using the LibPcap library

(Group, 2009). LibPcap was selected because it was available across all relevant

platforms and provided low level access to incoming packets on the network interface

while maintaining good performance and binding support from higher level languages.

Figure 1 - Basic System Design

 70

The incoming packets were then parsed and relevant features were ingested into the

system. As designed, the system included a modular repository-based feature storage

mechanism which enabled the system to reduce duplicate data storage. This mechanism

checked the value of a given feature of an incoming packet (such as the source IP

address) and then stored only a reference to the repository-stored full IP address rather

than storing multiple copies of all such data. Additionally, the repository was

implemented as a generic interface, and thus it could be backed against a high-

performance in-memory database such as Redis if required. However, for the purposes of

the experiments documented in this dissertation, no remote data storage was used; only

local memory on the system processing the packets was utilized.

Feature Selection

In the second phase of operation, packets are parsed and a feature set is presented

to each module of the CLIP system. Wrapped modules always received full packet data

for every packet that entered the system, while native modules were free to select

relevant features from among the set available within the incoming packets. This

functionality was closely coupled with the previously-described input and repository

capabilities as the system could be configured to maintain in memory only features

relevant to the registered modules, while writing the full packet data to a file for later

further review and/or long term storage. The relevant features, as had been determined

via the training process for each module, were then passed into the loaded modules,

which were responsible for further processing.

 71

The current features that are available for subscription and use by native modules

included the raw binary representation of the packet, as well as the following pre-parsed

elements:

Packet / Data-
Link Layer

Network Layer (IP) Transport Layer
(TCP & UDP)

Application Layer
(HTTP)

Packet Time IP Version TCP Source Port HTTP Host
Packet Length IP Header TCP Destination Port HTTP Request
 IP Flags UDP Source Port HTTP User Agent
 IP TTL UDP Destination Port HTTP Referer
 IP Protocol Sequence # HTTP Cookies
 IP Checksum Acknowledgement # HTTP All Other

Headers
 IP Source TCP Flags HTTP Payload
 IP Destination UDP Flags

Table 2 - Available Packet Elements

The NIMs produced for use in this research leveraged a large percentage of the listed

elements, but the system is designed such that if elements are available which are not

used, the system operator can opt for them not to be stored to reduce necessary storage

and memory overhead. Specific details on the features used by each module are included

below in each module’s respective descriptions.

Packet Processing Modules

The third phase of the CLIP system’s operation included the execution of various

packet processing modules responsible for producing an analysis result (“AR”) for each

received packet or stream, depending on the configuration. An AR was made up

minimally of a packet number or other identifier, an analysis source defining the module

that produced it, and a simple binary classification of either normal or attack.

Additionally, the AR could contain a confidence value as well as a detailed classification

of the packet in question (i.e. “injection attack” or “buffer overflow”).

 72

Wrapped Intrusion Modules

Wrapped Intrusion Modules made up a significant part of the input for the CLIP

system. Part of the novel contribution of this work was the creation of a wrapper capable

of ingesting the results produced by other state-of-the-art IDS systems. For the purposes

of this work, the researcher used both HMMPayl (Davide Ariu, Roberto Tronci, &

Giorgio Giacinto, 2011) and the Layered HMM Payload Anomaly Detection System

(LHMMP) (Taub, 2013) as input systems, designing ingestion wrappers for each.

Because neither of the aforementioned systems were designed to output a

confidence measure, the ingestion wrapper assumed a base confidence for each prediction

made of 100%, or 1.0. This assumption was based on the belief that the designers of each

of the utilized systems designed their systems to output alerts only for packets/streams

which they believed were sufficiently likely to be attacks that a security analyst should

act on them. Ultimately, though, the choice of 1.0 was arbitrary, and it did not make a

difference in the final results produced by the system as long as it was held constant for a

given system (i.e. all alerts produced by a given system were considered to have the same

base confidence value from the reporting system’s perspective). Additionally, neither of

the wrapped modules have been equipped with conversion logic necessary to produce

detailed classification on specific attack type; thus, the ARs produced by the wrappers

only populated the binary normal/attack classification.

Native Intrusion Modules

In addition to the wrapped modules, the CLIP system was designed with the

ability to host native intrusion modules which conformed to the interface defined by the

Meta Analysis System. The interface contract required the module register to receive

particular data related to the packet (up to and including full packet or reassembled

 73

stream data), accept callbacks with the requested details, and return an analysis result for

each function call. Although the CLIP system was run on a single host, it could be

readily decomposed and split across multiple systems if required for throughput or fault

tolerance reasons. For the purposes of the experiments described in this work, the

researcher produced two NIMs. The first was a NIM called “StreamSeq” that applied

Hidden Markov Models as anomaly detectors to patterns within an HTTP Stream to

locate attacks, while the second was a NIM that used Neural Networks to detect

previously unknown HTTP-based attacks within an HTTP stream, known as

“StreamFreq”. Both NIMs provided good exercise of the data processing layer as they

registered for fully reassembled HTTP streams rather than individual packets, and thus

they were more able to identify fragmented attacks than most of the systems against

which either was compared.

StreamFreq NIM was specifically designed to address shortcomings noted in the

pre-existing WIMs; it focused on the byte frequency and weighted location within the

payload of a given packet. Generally speaking, a number of the most critical attacks such

as buffer overflows rely on the use (and often repetition) of special, often non-ASCII

printable bytes for functions such as NOP sleds and handling of control flow in a

successful attack. Because the StreamFreq NIM was concerned about byte frequency, it

leveraged the raw unparsed HTTP stream to directly produce its results. Using the

unparsed results had the added advantage of allowing the system to “see” attacks that

were not part of a section of the packet that was being formally processed and named.

The StreamFreq module generally operated by noting and flagging those instances as

attacks with a high degree of confidence. The confidence level of the prediction was

 74

based on the similarity of the packets to previously-seen and correctly-flagged packets.

Thus, lower confidence predictions (sub-50%) were produced for packets similar to

others previously predicted incorrectly.

After collecting the total counts for each character, the character counts are then

fed into a vector containing 256 values (one for each possible character), and the vector is

supplied to the neural network to use for execution. Neural networks were selected for

the core of the StreamFreq NIM for several reasons. First, they have been well

documented to perform better than most machine learning approaches in the presence of

very high numbers of inputs, which was a requirement given the potential size of the

input space (maximum of 256 possible inputs in ISO-8859-1 mode, or 65,536 possible

Unicode characters per plane in Unicode mode). Second, the multi-layer nature of neural

networks allow the network to form conditional-like relationships between neurons

allowing high counts of certain characters to trigger greater interest in the counts of other

characters, a capability more linear models such as SVMs and Bayes point machines

lack. Furthermore, the StreamFreq implementation and the offline training capability of

the overall system meant that the relatively longer training times of a neural network

were not a problem for the performance of the system.

The StreamSeq NIM was designed to identify specific patterns or sequences

within an HTTP request that were indicative of attack traffic. The module operated based

on sliding windows similar to those used by HMMPayl and LHMMP. However, unlike

prior systems which simply used the base, StreamSeq’s expanded approach included the

entirety of the HTTP stream, consisting of both parameter and post data, and focused on

the unique sections of known-bad packets rather than attempting to model an entire

 75

packet. More specifically, the StreamSeq NIM operated on all the available named HTTP

fields at the application layer, as well as iterating through the unknown header collection

and including the full payload in the analysis. The StreamSeq NIM works by

reassembling the TCP stream if it is not already complete, and iterating through the

characters of the stream in sequences of length N. During the training process, the

complete list of sequences is built and then de-duplicated in streams unique to the attack

sequence. For this reason, the StreamSeq module benefits from the largest corpus of

unique captures in terms of requests for both the attack data and the known clean data.

Thus, it could reasonably be expected to suffer significantly in a case where data is

mislabeled since it would eliminate potentially valid attack patterns. The deduplication

process is significant because it substantially reduces the total number of sequences that

must be included in training, making the process both faster and more accurate.

After de-duplication, HMMs representing each attack sequence are built with

length N matching the selected sequence length. The Hidden Markov model was selected

as the modeling and recognition engine because the HMM approach is well suited to

arbitrary pattern recognition within a given range as has been demonstrated previously

(Yolacan, Dy, & Kaeli, 2014). Because StreamSeq’s focus is specifically on identifying

known attack characteristics based on specific known bad sequences of input, HMMs are

particularly well suited for the recognition process.

The possibilities of NIMs are particularly interesting in practice because it is

possible to leverage the confidence level to produce a tightly scoped module aimed at

detecting a specific class of attack. As long as the NIM reports an appropriately low

confidence level for packets it is not designed to handle well, the meta-analysis layer will

 76

adjust in order to not place any weight on those predictions. Just as in other ensemble-

based method fields such as forecasting, the design of a particular system can be readily

aimed at addressing a recognized shortcoming of existing models. Indeed, the researcher

designed the StreamFreq module after reviewing the most prevalent false positives and

false negatives produced by the systems that were already incorporated into the CLIP

system and noting their areas of greatest weakness.

Meta-Analysis System

The fourth and final phase of the CLIP system was the meta-analyzer layer. The

meta-analyzer accepted as input a series of analysis results from any number of systems,

with the goal of distilling those into a single AR which could form the basis of a final

determination. Additionally, the meta-analyzer had access to the packet repository,

allowing it to factor into its decision-making process the specific type of packet being

received. The current version of the meta-analyzer was built using a neural network that

took up to three inputs per AR and used those to produce a final analysis result. A neural

network was selected for this portion of the system because of the high potential number

of inputs and the ability of the system to utilize multiple layers to model relationships

between the analysis results that are useful for improving the prediction.

The neural network was designed to with an input layer, two hidden layers, and an

output layer. The first hidden layer was built with four neurons per input module, plus an

additional four. For each source reporting on a given packet, there were three input

nodes: binary classification, confidence level, and the detailed classification if present,

leaving one node per input module for future use. For the purposes of the experiments

detailed below, four input systems were used, meaning the first layer had a total of twenty

 77

neurons. The second hidden layer was built with two neurons per input system plus an

additional two extra, for a total of ten neurons in the training system. The output layer

provided two outputs, the first being the classification and the second is the confidence

level in the prediction in the range [0...1]. Each layer used a bipolar sigmoid activation

function, and the overall network was trained using resilient backpropagation learning

(Naoum, Abid, & Al-sultani, 2013). The meta-analysis module did not require a given

module to produce output for every packet, as any sources that were part of training but

missing in operation were input as zeroes.

Anatomy of a Detection

In order to better understand the detection process, an example of a potential

detection follows. Consider an HTTP request flowing through the system that looks like

the following:

This request is normal in all respects, with the exception of the text “’or 3382=3382--”

included in the referrer field, which is actually a test for a SQL injection vulnerability.

When the request is captured by the CLIP system, the full packet data for the request is

forwarded to the wrapped intrusion modules in PCAP format for processing and

determination. Each module is allowed to return a result which is then translated into a

per-module AR for input into the meta-analysis layer. The loaded native intrusion

GET /WebGoat/start.mvc HTTP/1.1
User-Agent: Mozilla/5.0 (Windows NT 10.0; WOW64; rv:53.0)
Gecko/20100101 Firefox/53.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Referer: http://www.google.com/search?hl=en&q=12918193' or
3382=3382--
Cookie: JSESSIONID=76B2A14515F0632AF86EDFC986722976
DNT: 1
Connection: close

 78

modules are also forwarded the packet details, but in their case, they receive only the

details that are relevant for the information they are reviewing. In the case of StreamFreq

only a full raw binary representation of the HTTP portion of the packet is provided, and

in the case of StreamSeq the various parsed HTTP data fields of the packet is provided.

StreamFreq reviews the occurrence of the characters within the packet, and

ultimately determines that this packet doesn’t appear abnormal, so it returns a “normal”

classification. However, since StreamFreq is designed to recognize a specific kind of

abnormality (high counts of unusual, non-printable characters that frequently occur in

byte-code), and that abnormality does not exist, it also returns a low confidence value

since it is aware that this is not a type of packet it has been built to accurately classify.

This low confidence value is ultimately useful to the meta-analysis system when all the

results are available and final classification is made.

StreamSeq receives the parsed packet information, and analyzes the various fields

within the packet. Based on previously provided training, it has learned that the sequence

of a single quote, followed by a SQL Boolean operator, followed by a SQL comment

operator generally is indicative of SQL injection, and so it classifies this packet as an

attack with a relatively high confidence level, in this case, approximately 90%. If the

attack would have also included SQL keywords such as select, update, or delete or other

SQL operators or comments, the confidence level could have increased even more,

leading to even more weight being placed on the classification.

Once the distinct analysis results have been received, the meta-analysis later

inputs each of the values into its neural network for a final classification and confidence.

Through prior training in this case, the network has learned that low confidence

 79

observations from StreamFreq are generally not reliable since StreamFreq is “good” at

reporting on packets it believes it can classify well according to its intended purpose.

The attack classification received from the StreamSeq NIM is given significantly more

weight since it was produced with high confidence, and one of the wrapped intrusion

modules made a similar attack classification as well with respect to this packet. In this

case too, the system has also learned that these particular two modules agreeing results in

very high classification accuracy, so a final classification of “attack” is produced with

approximately 98% confidence.

In the event no modules would have produced high-confidence classifications for

the packet, the meta-analysis system would have still produced a classification, but would

have done so at much lower confidence than it did in this case. The meta-analysis layer

can also learn to ignore the confidence levels produced by a given module, and does in

the case of the wrapped modules where all confidence levels are produced at a 1, but the

production of good confidence levels improves the overall output of the system

significantly. This is the basis of a recommendation for future work below.

As an example of the specific improvement shown in this work, consider the

example of a similar packet that is not an attack.

GET /search?hl=en&q=union+select+syntax HTTP/1.1
User-Agent: Mozilla/5.0 (Windows NT 10.0; WOW64; rv:53.0)
Gecko/20100101 Firefox/53.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Cookie: JSESSIONID=76B2A14515F0632AF86EDFC986722976
DNT: 1
Connection: close

 80

In this case, the StreamFreq analyzes the packet contents with similar results as in the

first, essentially it doesn’t know how to classify the packet, and so the module makes its

best guess but with low confidence. When StreamSeq receives the packet, it recognizes

via its models the presence of several operators that are keywords for SQL, but

presumably due to the lack of various significant punctuation (single quotes, double-

dashes), it classifies as an attack but with only a 40% confidence level. Once again, the

classification matches the result from another module, and the system ultimately outputs

a 48% confidence level for the packet. Ultimately, the system produced the wrong result,

but the confidence level provided explicit insight into the fact that the prediction was

suspect. Were both of these alerts received simultaneously, an analyst would have clear

indication of the one which should be prioritized, the primary goal of this research.

Data Sets

The CLIP system described above was employed with data sets similar to those

used in previous research on intrusion detection systems, with experiments conducted

using three distinct data sets. First, the publicly available DARPA 1999 dataset provided

a baseline for initial system design and testing. Although the complaints against this

dataset are both many and generally valid, the researcher’s inclusion of it was intentional

and dual-purposed. First, a large majority of intrusion detection research still utilizes it,

which results in it representing a common set to compare against for reference. Second,

though the dataset is problematic, the problems and shortcomings of it are well

documented (Elfeshawy & Faragallah, 2013; Lippmann et al., 2000) and thus the bias

introduced is a known quantity.

 81

In addition to the DARPA dataset, the researcher also utilized the McPAD dataset,

used previously for comparison purposes by several proposed anomaly-based IDSs. The

McPAD data set is composed of a set of generic attacks originally made available by

Ingham and Inoue (2007) that contained 66 generic HTTP attacks and 11 shellcode-based

HTTP attacks. Additionally, the McPAD researchers used the shellcode attacks in the

base data set to produce 96 additional polymorphic versions of the original attacks, for a

total of 173 unique attacks.

The third dataset used for comparison was a custom dataset produced by the

researcher, using a combination of open source, purpose-built vulnerable web

applications including WebGoat 7.1 and DVWA 1.9. Both of these applications are

intentionally vulnerable applications designed for teaching web application penetration

testing. As such, they made possible the efficient simulation of a wide variety of attacks

in a known-vulnerable environment. For the purposes of the testing, the researcher

produced three sets of data, a normal set, an attack training set, and an attack testing set.

The normal set of data contained normal traffic to both applications as well as several

other applications and public websites. The normal data set was produced by browsing

the applications using standard web browsers as well as spider tools designed to crawl the

available functions of the site.

The attack sets were then produced by following a similar process, but with attack

inputs rather than normal inputs. Additionally, several open source and commercial web

application penetration testing tools were also directed at the applications to provide a

varied baseline of what represents an actual web application attack. The attack training

set was prepared by targeting both applications, but with a subset of the attacks that were

 82

included in the attack testing set, a total of 5,830 attacks. For attack types that were

going to be present in both data sets, care was taken to ensure that each recorded attack

would accomplish the same goal as the attack but using slightly different variations where

possible. This created additional diversity of attacks, and ensured that the system was not

simply able to memorize known bad attack sequences and recognize them directly.

The total attack dataset was created by targeting the WebGoat application only,

and it contained 7,017 discrete attacks representing a variety at attack types and

encodings. The data was captured using the CLIP system’s PCAP functionality limited to

web application traffic only. This dataset aimed to capture a variety of modern web-

based attacks such as OS command/SQL injection, cross-site scripting, insecure object

references, and issues with authentication and session management. The specific attack

types that are part of the custom dataset are outlined below in Table 3.

Attack Type In Training Set? In Testing Set?
SQL Injection – MS SQL Yes Yes
SQL Injection – MySql Yes Yes
SQL Injection – Oracle No Yes
Reflected Cross-Site Scripting Yes Yes
Stored Cross-Site Scripting No Yes
File Path Traversal – Linux/Unix Yes Yes
File Path Traversal – Windows No Yes
OS Injection – Linux/Unix Yes Yes
OS Injection – Windows Yes Yes
Buffer Overflow – Linux/Unix Yes Yes
Buffer Overflow – Windows Yes Yes
Insecure direct object references Yes Yes
Session Management Attacks – IIS No Yes
Session Management Attacks – Apache Yes Yes
Authentication Manipulation No Yes
Reflected DOM Issues Yes Yes
Stored DOM Issues No Yes
XML Injection Yes Yes
XXE Attack No Yes
Cross-Site Request Forgery No Yes

 83

Server-side Template Injection No Yes

Table 3 – Attack Types

Experiment

The test approach for this research intentionally mimicked previous research in

intrusion detection, with a specific focus on HTTP-based detection since the modules

implemented for the purposes of this research were both HTTP-focused. The researcher

used several HTTP-capable intrusion detection systems for comparison including

HMMPayl and LHMMP. Both systems were executed on the datasets described above,

and the results were then prepared for comparison against the system described in this

research.

The results for HMMPayl, and LHMMP were both originally evaluated in their

respective research using the receiver operating characteristic (ROC), a metric primarily

focused on the sensitivity of a receiver and most useful when the goal is focused

minimization of false positives. However, the use of ROC for comparison was not

meaningful for this research, as the inclusion of multiple classifiers make reduction to a

ROC very difficult in practice. Additionally, ROC curves are sensitive to the relative size

of the data sets being used for “normal” versus “abnormal” comparison, so a high ratio of

normal to attack packets will generally skew the calculation. Because of the sensitivity to

the characteristics of the dataset, ROC curves may not fully capture the efficacy of one

system compared to another. Specifically, the ratio of normal to attack traffic in the

DARPA/McPAD combined data set is very high, leading the ROC comparison to be

somewhat misleading.

 84

Instead, this research utilized the Matthews correlation coefficient (MCC)

(Matthews, 1975), a measure that generally performs well across a wide range of

scenarios including very unbalanced data class sizes, as well as the Bookmaker

Informedness (BM) and the Markedness (MK) measures (Powers, 2011). An MCC of 0

reflects random prediction, while +1 represents a perfect classifier and -1 represents total

disagreement between the expected results and the actual results. The formula for the

MCC is shown below in Figure 2.

Figure 2 – Matthews correlation coefficient formula

In addition to its ability to handle a range of input sizes, MCC also proved to be

an excellent choice for a comparison metric because it allowed correct representation and

adjustment for the confidence level idea within the calculation. For a classic IDS that

does not report confidence levels, each instance of a particular type of input (true

positive, true negative, false positive, or false negative) increments the count by 1.

However, the MCC was readily adapted to the concept of confidence levels by

incrementing by the percentage confidence in a given result rather than by the value 1. In

the simplest case where a system reports 100% confidence, the value would increment by

1, but in the case where the system reports 90% confidence instead in a prediction, the

relevant input would increase by only 0.9. A system which outputted all equal confidence

levels (for instance a confidence of 50%) would find that its MCC was completely

unaffected by the confidence level calculation, but if the confidence levels prove to be

meaningful, they should raise the MCC by weighting the results for towards the correct

 85

high-confidence predictions and losing less credit for incorrect low-confidence

predictions.

Similarly, Bookmaker Informedness and Markedness represent complimentary

measures of the usefulness of a given prediction (Powers, 2011). The two calculations

are inverses, that is, BM can be driven towards 1 while MK moves towards 0, and vice-

versa. Bookmaker Informedness is the expected return per bet made with a fair and

reasonable Bookmaker, thus the return of the bet increases as the chance of winning

drops. Markedness is calculated as precision less the inverse precision minus one, and it

quantifies how marked a condition is for a specific predictor, also represented as the

probability that a condition in terms of the predictor exceeds chance. Both work in

concert to additionally quantify the extent to which a prediction is valuable.

Because none of the comparison systems reported a BM, MK, or MCC statistics

as part of their original experiments, the researcher first had to obtain working models of

each system and prepare them for execution for comparison purposes. HMMPayl is

freely available online for download, and Lawrence Taub graciously provided a copy of

his LHMMP system for use in the comparisons. Some modifications were required for

each of the systems to produce interim detailed output sufficient for calculating the MCC,

but the effort was ultimately completed for both systems without substantial issues. The

confidence level assigned to the outputs of any system that was unaware of the concept of

confidence were assumed to be 100%, or 1.0 for the purposes of calculating the BM, MK,

and MCC. After creation of the needed outputs from the comparison systems, the outputs

were also prepared for ingestion into the meta-analysis system as wrapped intrusion

modules using the procedures described previously.

 86

After WIM preparation was completed, the system was then executed with the

WIM module output, the NIM modules running actively against the various input sets,

and the meta-analyzer ingesting all of the classification output. The DARPA dataset was

used as a pure “clean” data set, while the McPAD data was used as pure “attack” data.

The custom vulnerable data produced by the researcher was subdivided into both a

normal and an attack data set. The data was then split into training and test portions, with

80% being used for training and 20% being used for testing. Additionally, a portion of

the vulnerable attack data was reserved and was used purely for testing with no prior

specific subset included in training to better approximate conditions with which systems

frequently deal in operation around new and unseen attack vectors.

Resources

A number of resources were necessary to complete this research. In addition to

the data sets described above, the system described in this research required a computer

system with sufficient resources to process the data in near real-time. The researcher

used a custom-built PC running Windows 10 with an Intel Core I7-6700K 4GHz CPU

and 32GB of RAM. The system described was implemented using .Net 4.5 and .Net

Core in the Visual Studio development environment along with the LibPCap network

protocol capture and processing library. Additionally, some of the systems used for

comparison would only operate on Linux, and a VMWare virtual machine running on the

same hardware as described above was used for executing those.

 87

Chapter 4

Results

Introduction

This dissertation introduces a novel concept in intrusion detection, the reporting

of explicit confidence levels in predictions made by a system, as well as the use of those

levels to provide both an overall meta-prediction and a meaningful confidence level in

the meta-prediction (that is, the prediction about the predictions). The meta-analysis

from the CLIP system created by the researcher for this project includes the output of

both WIMs and NIMs. However, for the purposes of this chapter, the outlined

comparisons focus specifically on the relative performance of the comparison WIM

systems as they contributed to the meta-analysis produced by CLIP as well as the overall

performance of CLIP. Of particular note is the proposed variation on the Matthews

Correlation Coefficient described previously, and its impact on the overall reported

performance.

System Operation Observations

NIM – StreamSeq

The design of the StreamSeq NIM focused on certain patterns within a packet

representing attacks of various kinds. Within a given web request, there are a relatively

finite number of keywords and related syntax required to trigger certain types of attacks.

For example, an SQL injection attack must include certain characters or keywords in

 88

order to be successful, and the SQL language is relatively limited in terms of the

keywords that are sufficient to cause actual damage through data leakage or changes.

Similarly, OS command injection attacks include a relatively limited subset of

applications which are frequently leveraged by attackers to either test the efficacy of a

suspected injection vector or actually execute code on the host.

Once trained, the module evaluates an incoming TCP streams to determine how

closely they resemble known attack fragments. Hidden Markov models generally use a

cutoff value to determine the point at which the prediction changes over from one

classification to the other. The more positive a hidden Markov model reads, the higher

the likelihood the pattern matches training data. The StreamSeq also repurposes the

cutoff value and defines thresholds based on percentage of false positives at certain

intervals above the cutoff within the training data; those percentages are used to

approximate the confidence level output of the model in addition to the actual prediction

being made. The second tier processing provided by the confidence level is significant in

that it allows the model to self-advise the meta-analyzer on predictions in which it does

not have high confidence, allowing the overall system to react accordingly.

 Although this module is not particularly robust in its ability to detect a wide range

of different attacks, it is very good at detecting the particular types of attacks on which it

is trained. In cases of command injection attacks where the corpus of relevant effective

commands for an attacker is rather small, this module actually proved very effective even

in cases with commands structured differently from those seen in the training data. While

the module was significantly less effective at locating and identifying attacks not

previously seen by the system, it properly considered its predictions regarding those

 89

attacks to be very low confidence, prompting the meta-analysis layer to discount its

feedback in those cases.

NIM – StreamFreq

The second NIM that was part of the confidence-reporting portion of the CLIP

system was StreamFreq, a module aimed at identifying unusual patterns and frequencies

of characters within a given TCP stream. StreamFreq operates on the HTTP request and

works by collecting a total count of each of the characters within the request. The

original HTTP 1.1 specification RFC (Fielding, 1999) calls for a character set of ISO-

8859-1 unless some other character set is specified, although HTML5 has generally

switched to Unicode/UTF-8 as the default specified in the request. Although StreamFreq

is capable of operating on any either ISO-8859-1 or Unicode, all of the training data was

encoded using ISO-8859-1. This simplified the system for the purpose of execution in

this research to assume the ISO-8859-1 character set which requires one byte per

character.

Early experiments also tested the use of a weighting factor that attempted to

capture the relative location of the characters with respect to other characters, but the

weighting factor added significant computational complexity without any meaningful

increase in performance, so it was disabled in the testing process used to produce the data

in this report. Generally, the design of StreamFreq makes it excellent at recognizing

attacks that leverage non-printable characters as those do not typically show up in

significant quantities in normal HTTP traffic. In fact, the module was near perfect in its

identification of shellcode and buffer-overflow based attacks.

 90

The confidence value for this module was based on an amplified delta between

the “normal” and “attack” outputs to the network. Thus, output values situated very close

together generally lead to rather low confidence, while values that were further apart

slowly increased the confidence value up to a maximum of 1.0 in the case where one

output was maximized to 1 while the other was minimized to 0. Although perhaps less

accurate than the explicit confidence value supplied by the previously-described

StreamSeq NIM, this implicit confidence value still proved effective at providing

meaningful feedback to the meta-analysis layer that allowed the meta-analyzer to

improve performance with the metric as compared to performance without it.

Comparisons both with and without the confidence output are shown below in the results.

Meta-Analysis Layer

The meta-analysis layer is responsible for consolidating the results produced by

the various modules and reporting the final classification back to the controller. The

meta-analysis functionality is provided by a neural network configured with three inputs

per module. The first input for a given module inputs the module’s prediction with

respect to the TCP packet or stream. The second input is the confidence interval value

from the module in the range of [0…1], and a one is used if no value is supplied. As

previously explained, the purpose of the confidence value is to allow an analyst working

with the system to prioritize alerts based on not only the severity of the alleged event, but

the confidence the system has that the event actually occurred. The design is such that a

module which frequently reports false positives with a high confidence level will, given

sufficient data, have its weighting and relevance dropped, resulting in a lower overall

confidence level. The classic confusion matrix which consists of true positives (“TP”),

 91

true negatives (“TN”), false positives (“FP”), and false negatives (“FN”) is shown below

in Figure 3.

Figure 3 – Classic confusion matrix

In contrast, the continuous layered confusion matrix (“CLCM”) proposed and

produced by this system described in this work, is more faithfully represented as a three-

dimensional object which would be more accurately represented by Figure 4. Although

the CLCM is shown below as a two layer object, it could be thought of better as a cube,

with the two layers shown representing the front and rear sides, and the actual values

being continuous all the way through.

 92

Figure 4 – Visualized continuous layered confusion matrix

The results of the meta-analysis layer are scored using a combination of the

accuracy of the prediction made multiplied by the confidence level in the prediction

itself. Thus, a prediction with 100% confidence would be a 1.0, while a prediction with

an 80% confidence level would be scored a 0.80. The weighted values are then used to

total to the TP, TN, FP, and FN values, which are then used as inputs to calculate

Bookmaker Informedness, Markedness, and the Matthews Correlation Coefficient. The

output of the MCC in some simplistic cases are shown below in Table 4.

Description TP TN FP FN BM MK MCC
Random guessing, No weighting 1 1 1 1 0.00 0.00 0.00
Perfect prediction, No weighting 2 2 0 0 1.00 1.00 1.00
Random guessing, but incorrect

predictions are supplied at only 50%
confidence

1 1 0.50 0.50 0.33 0.33 0.33

One incorrect guess, incorrect
supplied at 50% confidence

2 1 0 0.50 0.80 0.67 0.73

Random guessing, All predictions at
50% confidence

0.50 0.50 0.50 0.50 0.00 0.00 0.00

Table 4 – Matthews correlation coefficient examples

 93

Analysis of the table above shows that in the case where two systems are equally

good at making predictions, the one able to supply better confidence data about the

predictions it is making will ultimately have improved BM, MK, and MCC values.

Demonstrating the ability to separate good predictions from poor predictions in a

quantifiable way is one of the stated goals of this dissertation, and it aligns intellectually

with the expected value and usability of reliable versus unreliable predictions.

Comparison of Results – DARPA & McPAD Dataset

Research for the current project began the comparison process by consolidating

the DARPA and McPAD datasets into a single runnable test set. The testing dataset was

composed of the DARPA test set (604,055 packets, all clean) as well as the McPAD

dataset (1,035 packets, all representing attacks). In the case of the comparison systems

HMMPayl, LHMMP, and SnortIDS, the datasets were run separately through the

processor because the systems were not capable of processing more than a single PCap at

a time. In the case of the CLIP system, both PCaps were fed into the test harness

simultaneously which consolidated and processed them in a single pass. SnortIDS was

configured to ignore all non-HTTP traffic and attacks for comparison purposes, and all of

the other systems in question were designed to extract the relevant HTTP data as part of

their execution processes. In total, there were 84,448 HTTP packets in the consolidated

input dataset. Each of the comparison systems was executed individually, and then their

outputs were made available to CLIP for inclusion in its meta-analysis in addition to the

NIMs described previously. The results of the execution are shown below in Table 5.

 94

System TP TN FP FN BM MK MCC
HMMPayl 62 84342 0 44 0.5849 0.9995 .7645
LHMMP 70 83617 725 36 0.6518 0.0876 .2390
CLIP, no confidence
values used

71 84342 0 35 0.6698 0.9996 .8183

CLIP, weighted with
confidence values

64.83 84324.88 0 24.83 0.7231 0.9997 .8502

Table 5 – Performance Comparison on DARPA/McPAD data set pair

As the data contained in Table 5 above shows, the CLIP system gains a substantial

improvement over the MCC values achieved in the comparison systems. Of particular

note is the improvement with the inclusion of confidence values, which raises

performance of CLIP by approximately 4% over the naïve approach. This difference is

attributed to the fact that the average confidence across all correct predictions was 99.9%,

while the confidence across the incorrect predictions averaged only 70.9%. A subset of

specific false negatives from the CLIP system with confidence values included are shown

below in Table 6.

Packet Number Type Confidence Level
484 FN 0.430
416 FN 0.487
…
657 FN 0.961
21 FN 0.9998

Table 6 – Sample Confidence Levels reported by CLIP

The difference in confidence between the correct and incorrect predictions

accounts for the positive change in the MCC between the systems with and without the

confidence values included in the calculation. The gap in confidence levels also shows a

clear “tier-ing” of predictions that would be very useful for an analyst tasked with

prioritizing and responding to alert. Also of note, all of the WIM (non-native) input

systems were treated as having a confidence level of 100%, and the design of CLIP was

 95

clearly resilient to the meaningless input values in those cases as it is outperformed those

systems by a substantial amount.

Comparison of Results – Custom Web Application Intrusion Dataset

 Since the DARPA and McPAD datasets are both rather dated, this research

also produced a custom web application intrusion dataset for the purposes of testing the

proposed system performance against other state-of-the-art systems using current tools

and techniques. The HMMPayl, LHMMP, and CLIP systems were all run with the

custom web application intrusion dataset, first with a known clean dataset then with a

second set that contained attacks injected by the researcher. The results of the execution

are shown below in Table 7. Of note, the older HMMPayl system had several issues with

connecting some of the HTTP streams and, thus, reported them as separate streams, but

the CLIP system’s results were extrapolated by the researcher from per-stream to per-

packet level results to allow direct comparison. Additionally, the LHMMP system’s

output was not reported because the design of its layers (specifically, the request/response

layer) make it unable to operate meaningfully if the training data does not include traffic

from the site that the attack data is from.

System TP TN FP FN BM MK MCC
HMMPayl 6834 6509 3595 183 0.6181 0.6279 .6230
CLIP, no confidence
values included

6390 9681 423 627 0.8688 0.8771 .8729

CLIP, with
confidence values
included

6212.65 9310.25 295.23 308.32 0.9220 0.9226 .9223

Table 7 – Custom Dataset Results

Once again, the CLIP system gains meaningful improvement over the MCC

values achieved in the comparison system, especially with the consideration of the

 96

confidence values in the output of the system. Additionally, both the naïve and the

confidence-value aware versions of CLIP far outperformed the comparison HMMPayl

system.

The performance of CLIP was slightly worse than HMMPayl in terms of true

positives, largely due to the fact that HMMPayl excels at matching very specific patterns

and thus was better able to identify some attacks that CLIP did not. However, the trade

off in terms of additional true positives for HMMPayl came at a cost of more than eight

times the number of false positives, an extremely high count. Specific investigation of

the packets where CLIP performed worse than HMMPayl indicates that many of them are

cases where one of the subclassifiers provided a very high confidence, but incorrect, “not

attack” result. The majority of them were attacks that were very small changes from

other non-attack data, such as the insertion of single additional characters attempting to

test delimiter processing at the server. In the scope of HTTP vulnerabilities, these likely

represent a lower risk, because they are designed to be focused more on detecting

weakness than achieving compromise. In the event one of these caused an error

condition on the server, a would-be attacker would then follow it up with a request that

included some sort of command to inject or other indicator that the system would be

more likely to catch. This also demonstrates the value that factoring in risk in a

calculation regarding response priority would have to the overall process, and is the basis

of a recommendation on future research below.

Limitations

The focus of this research, production of useful confidence measurements for

predictions being made, is a new area within intrusion detection research. During the

 97

course of the experiments outlined in this research, a number of limitations arose that

need to be considered for understanding the current effort. Addressing these limitations

is also used below as the basis for recommendations on further research.

As is generally the case in anomaly-based research, the performance of the system

is dependent on the quality of the data used for training and the similarity of the training

data and the data that will ultimately be used for testing. The CLIP system is uniquely

positioned to deal with this challenge though because of its ability to signal the reliability

of its prediction output. Optimally, CLIP would recognize that a particular set of input

(whether attack or normal packet) is unlike anything which had been previously seen, and

the system should output a lower confidence value because of that. This capability has

been demonstrated in the current research by the improvement of the statistics when the

predictions are weighted based on the confidence values, but there are likely more

explicit ways to handle this would could yield even better results than those demonstrated

here.

The current implementation of CLIP is also designed such that the neural network

is trained with a maximum number of possible input modules in mind. This was

sufficient for demonstrating the viability of the approach described in this research, but it

also makes the implementation rather limited in terms of production use. A production-

ready version of this system would need to be able to accept output from an arbitrary

number of modules and produce both a classification as well as a confidence level

prediction. The ability to include an arbitrary number of inputs would increase the

usefulness of the system by allowing good predictions to be made about a range of

possible attacks.

 98

Summary of Results

This chapter provided details and analysis of the research using several data

sources to test the ability of the CLIP system to output a meaningful and relevant

confidence level value for predictions being made. The work performed included the

design of two native intrusion modules capable of outputting individual confidence level

values for their predictions along with the creation of the CLIP system, the meta-analyzer

that determines how to translate the intrusion module-produced confidence values into

meaningful output.

The research documented results using a total of three datasets, two chosen

specifically for comparability with prior systems and one designed to test the viability of

the approach on modern web-based attacks. The system employed neural networks and

hidden Markov models for the inner native intrusion modules. The meta-analyzer was

built using a neural network capable of ingesting output from external sources with either

explicit confidence levels or no confidence level specified. Most importantly, this

chapter provided evidence that clearly demonstrates the ability to improve the overall

prediction ability of the system by including the confidence level values within the

system, which provides evidence that the improvement is not simply due to the improved

functionality of the NIMs built for this work. Additionally, the ability to ingest and

utilize systems that have no concept of confidence level as part of the process is

meaningful, because it opens the door to significant expansion of capabilities by

expanded collaboration with tools that specialize in particular attack types.

 99

Chapter 5

Conclusions, Implications, Recommendations, and Summary

Conclusions

Intrusion detection continues to face a number of significant problems in real

world environments including the volume of data being processed, increased ability and

knowledge of attackers, and the finite resources available to respond to alerts. The work

conducted in this research demonstrates that confidence levels, when applied correctly,

can increase the relative value of predictions being made by the system by providing

additional metadata that is useful for prioritization of alerts being generated by the

system. Both neural networks and hidden Markov models have been applied effectively

for generating meaningful confidence levels.

This research was divided into three major phases. First, two previously proposed

intrusion detection systems were obtained and modified to allow the necessary

intermediate outputs for inclusion into the CLIP system. The original versions of these

systems were then used as points of comparison for the current research, with

performance measured using Bookmaker Informedness, Markedness, and Matthews

Correlation Coefficient (Powers, 2011). Second, this research created two modules that

explicitly output confidence values in the predictions to demonstrate the value of the

confidence level data. Third, the meta-analyzer was built to ingest the output produced

 100

by the other four systems and translate it to a final determination of both type of packet

and confidence level in the prediction.

Implications

This research expands on the state-of-the-art in intrusion detection with the advent

of an explicit confidence level that provides useful information about the predictions

being made. While most research in intrusion detection to date has focused on

optimizing for a single metric such as false positive rate, precision, accuracy, etc., this

work presents a case for a more holistic approach to intrusion detection, one that includes

explicitly in its goals the need to provide useful information to a responder beyond a

binary “attack”/”no attack” classification. The additional data provided by the

confidence level could be the difference between an analyst wasting resources on a false

positive and successfully stopping an attack in progress.

Also of note, while some recent work in intrusion detection has been done on

ensemble systems, prior efforts have used either naïve combinations of predictions or a

second layer of machine learning informed by nothing other than the core predictions.

This research demonstrated that the use of confidence levels also improves the results

over basic methods of ensemble prediction consolidation, as it can take into account the

input confidence levels from the systems that supply them. Although this is not helpful in

the case of wrapped (non-native) modules, any module that supplies even a semi-accurate

confidence level is providing meaningful additional data that may be used in the

combination process. Also of importance, the meta-analyzer layer is able to determine

via its own training process which classifiers produce useful confidence levels and the

 101

extent to which the supplied confidence values should be included in the decision making

process.

Recommendations

There are a number of opportunities to improve on the results being produced by

the CLIP system in future research. This list of recommendations is not intended to be

comprehensive, but is meant to provide guidance based on information gleaned during

the creation of testing of the system.

Although the confidence level prediction is the core value of the CLIP system, the

system as it currently exists makes no explicit recommendation to the user based on a

given confidence level, it merely provides the confidence level information. Although

some of the confidence levels produced by the system are so low that it is clear the

related alerts are suspect, more work could be done around determining the relative

meaning of different confidence levels and assigning a text-based tag to them based on a

scale. As an example of this, one of the confidence levels produced on a false positive in

testing was 0.24, while the other false positive in that test had a confidence level of 0.91.

Clearly, there is a significant difference in that case in how strongly the system believed

in its prediction, but in the case of a narrower gap, 0.85 to 0.91 for instance, there would

be value in providing the analyst with more guidance on what the relative difference

represents. It is also feasible that there would be value to discarding all alerts with a

confidence level lower than X, but again, further work would be needed to understand the

thresholds where data is meaningful.

Another significant opportunity for improvement in the system would be the

inclusion of relative risk as a component of the calculation process. For instance, if the

 102

CLIP system was 99% confident that a ping sweep is in progress and only 60% confident

that a SQL injection attack was in progress, naïve ordering by confidence level would

indicate that the ping sweep should be reviewed first, while in reality, the SQL injection

attack is far more likely to yield near-term negative results. The inclusion of risk would

require substantial additional effort to define and rank attacks in terms of severity, but

would be a meaningful and useful input into the process.

Although the native intrusion modules built for this study and the wrapped

intrusion modules selected for inclusion in this work proved relatively effective for the

comparison done in this research, there are numerous other approaches that could prove

useful and valuable additions to the process. Ultimately, any system for which one can

devise a method of calculating a useful confidence level would be worth considering for

addition. Since the core of the system, the meta-analyzer, is a controller designed to

operate and aggregate any number of available models, the system could be readily

expanded to include models tuned specifically to different types of attacks. The addition

of extremely targeted native modules that self-report low confidence on all packets they

are not designed to identify but report high confidence in the very small subset of events

that they are built to target could also prove to be a valuable addition to the system’s

capabilities. In a production implementation, it would also be desirable for the system

to be able to bring new models online as needed to address and train on new attack types

and train these using online training approaches as the system continues operation (Chis

& Harrison, 2015), and the choice of the neural network for the meta analyzer would lend

itself to that readily. That capability would also operate most efficiently if the system

 103

were able to load and unload modules in real-time, unloading ones that prove to be

consistently ineffective and loading alternatives in their place.

Another significant challenge for this research was the gathering and creation of

appropriate data for testing. Although live network data clearly represents the best

picture of “actual” real world data, it also is the most difficult to use in practice because

of issues with privacy, confidentiality, and even the ability to label the dataset with surety.

While artificially generated data is generally more available, virtually every significant

simulated data set produced to date has had problems identified that make it questionable

for use in comparison purposes. The production of robust data sets would be a very

useful area for future research that would have positive impacts on the research that is

being done in the field of intrusion detection.

Summary

Intrusion detection continues to improve both in the research and in commercial

applications, but there are still significant shortcomings to current approaches. The focus

on driving improvement in one dimensional metrics continues to yield small incremental

improvements, but real-world experiences have shown that it does not scale well. A

0.00001 false positive rate would still yield 10,000 false positives per day in a 1 billion

packets per day hyper-scale environment such as Amazon’s AWS (Mueller, 2016), and

the amount of data flowing across networks is only expected to increase as more and

more devices and people join the internet.

This research was conceived based on the thought process of an analyst who is

tasked with responding to alerts being produced by intrusion detection systems. In most

environments, the system produces more alerts than can be reasonably triaged by the

 104

available staff. To address that, this research has endeavored to propose a way to provide

additional data to an analyst that allows them more context in prioritizing their response

procedures when resources become scarce. The confidence level measurements proposed

and implemented in this research are a step in that direction, a successful attempt to

provide additional meta-data that is useful in the response process.

The CLIP system was tested against multiple datasets including both classic

comparison sets as well as a custom dataset designed to highlight a number of modern

HTTP attacks including command injection and cross-site scripting. In all cases, the

CLIP system was shown to outperform the comparison systems both with and without the

confidence level being included in the process. Just as important, CLIP with the

confidence level improved over the naïve version without access to the confidence level,

demonstrating that the confidence values being produced were meaningful in terms of

distinguishing a good prediction from a suspect one. The CLIP system has expanded on

the state-of-the-art, and has demonstrated the potential value of explicit confidence levels

in intrusion detection.

 105

References

Abdullah, N., Xu, Y., & Geva, S. (2011). Integrating Fusion Techniques into the

Collaborative Filtering Search-Based Recommender Systems. Proceedings of the
2011 IEEE/WIC/ACM International Conferences on Web Intelligence and
Intelligent Agent Technology - Volume 03.

Abraham, A., Jain, R., Thomas, J., & Han, S. Y. (2007). D-SCIDS: Distributed soft
computing intrusion detection system. Journal of Network and Computer
Applications, 30(1), 81-98.

Ahmad, I., Hussain, M., Alghamdi, A., & Alelaiwi, A. (2014). Enhancing SVM
performance in intrusion detection using optimal feature subset selection based on
genetic principal components. Neural Computing and Applications, 24(7-8),
1671-1682.

Ahmadi, M., Biggio, B., Arzt, S., Ariu, D., & Giacinto, G. (2016). Detecting Misuse of
Google Cloud Messaging in Android Badware. Proceedings of the 6th Workshop
on Security and Privacy in Smartphones and Mobile Devices, Vienna, Austria.

Akyaz, U., & Uyar, A. S. (2010). Detection of DDoS attacks via an artificial immune
system-inspired multiobjective evolutionary algorithm. Proceedings of the 2010
international conference on Applications of Evolutionary Computation - Volume
Part II, Istanbul, Turkey.

Alserhani, F., Akhlaq, M., Awan, I. U., Cullen, A. J., & Mirchandani, P. (2010, 20-23
April 2010). MARS: Multi-stage Attack Recognition System. Proceedings of the
2010 24th IEEE International Conference on Advanced Information Networking
and Applications.

Ariu, D., Tronci, R., & Giacinto, G. (2011). HMMPayl: An intrusion detection system
based on Hidden Markov Models. Computers and Security, 30(4), 221-241.

Ariu, D., Tronci, R., & Giacinto, G. (2011). HMMPayl: An intrusion detection system
based on Hidden Markov Models. Computers & Security, 30(4), 221-241.

 106

Azzouzi, A. E., & Kadiri, K. E. E. (2015). Semantic System for Attacks and Intrusions
Detection. International Journal of Digital Crime and Forensics, 7(4), 19-32.

Baum, L. E., & Petrie, T. (1966). Statistical Inference for Probabilistic Functions of Finite
State Markov Chains The Annals of Mathematical Statistics, 37(6), 1554-1563.

Baum, L. E., Petrie, T., Soules, G., & Weiss, N. (1970). A Maximization Technique
Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains.
The Annals of Mathematical Statistics, 41(1), 164-171.

Brooks, R. R., Schwier, J. M., & Griffin, C. (2009). Behavior detection using confidence
intervals of hidden Markov models. IEEE Transactions on Systems, Man, and
Cybernetics, 39(6), 1484-1492.

Carvalho, M., & Perez, C. (2011). An evolutionary multi-agent approach to anomaly
detection and cyber defense. Proceedings of the Seventh Annual Workshop on
Cyber Security and Information Intelligence Research, Oak Ridge, Tennessee.

Chandrashekar, A. M., & Raghuveer, K. (2012). Fusion of multiple data mining
techniques for effective network intrusion detection: a contemporary approach.
Proceedings of the Fifth International Conference on Security of Information and
Networks, Jaipur, India.

Chapke, P. P., & Deshmukh, R. R. (2015). Intrusion Detection System using Fuzzy Logic
and Data Mining Technique. Proceedings of the 2015 International Conference
on Advanced Research in Computer Science Engineering & Technology, Unnao,
India.

Chebrolu, S., Abraham, A., & Thomas, J. P. (2004). Hybrid feature selection for modeling
intrusion detection systems. Neural Information Processing.

Chebrolu, S., Abraham, A., & Thomas, J. P. (2005). Feature deduction and ensemble
design of intrusion detection systems. Computers & Security, 24(4), 295-307.

Chen, Z.-G., & Kim, S.-R. (2013). Combining principal component analysis, decision
tree and naive Bayesian algorithm for adaptive intrusion detection. Proceedings
of the 2013 Research in Adaptive and Convergent Systems, Montreal, Quebec,
Canada.

 107

Chis, T., & Harrison, P. G. (2015). Adapting Hidden Markov Models for Online Learning.
Electronic Notes in Theoretical Computer Science, 318, 109-127.

Choudhary, A. K., & Swarup, A. (2009). Neural network approach for intrusion
detection. Proceedings of the 2nd International Conference on Interaction
Sciences: Information Technology, Culture and Human, Seoul, Korea.

Cipriano, C., Zand, A., Houmansadr, A., Kruegel, C., & Vigna, G. (2011). Nexat: a
history-based approach to predict attacker actions. Proceedings of the 27th
Annual Computer Security Applications Conference, Orlando, Florida.

Cohen, W. W., & Singer, Y. (1999). A simple, fast, and effective rule learner.
Proceedings of the sixteenth national conference on Artificial intelligence and the
eleventh Innovative applications of artificial intelligence conference innovative
applications of artificial intelligence, Orlando, Florida, USA.

Corona, I., Ariu, D., & Giacinto, G. (2009, 14-18 June 2009). HMM-Web: A Framework
for the Detection of Attacks Against Web Applications. Proceedings of the IEEE
International Conference on Communications, Dresden, Germany.

Cuong, T. D., & Giang, N. L. (2012). Intrusion detection under covariate shift using
modified support vector machine and modified backpropagation. Proceedings of
the Third Symposium on Information and Communication Technology, Ha Long,
Vietnam.

Darwiche, A. (2003). A differential approach to inference in Bayesian networks. Journal
of the ACM, 50(3), 280-305.

Denning, D. E. (1987). An Intrusion-Detection Model. IEEE Transactions on Software
Engineering, SE-13(2), 222-232.

Elfeshawy, N. A., & Faragallah, O. S. (2013). Divided two-part adaptive intrusion
detection system. Wireless Networks, 19(3), 301-321.

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., and T. Berners-
Lee. (1999). Hypertext Transfer Protocol -- HTTP/1.1 RFC 2616.

Folino, G., & Sabatino, P. (2016). Ensemble based collaborative and distributed intrusion
detection systems. Journal of Network and Computer Applications, 66(C), 1-16.

 108

Fortnow, L., & Vohra, R. V. (2008). The complexity of forecast testing. SIGecom
Exchange, 7(3), 1-5.

Fries, T. P. (2008). A fuzzy-genetic approach to network intrusion detection. Proceedings
of the 2008 GECCO conference companion on Genetic and evolutionary
computation, Atlanta, GA, USA.

Gao, X.-G., Mei, J.-F., Chen, H.-Y., & Chen, D.-Q. (2014). Approximate inference for
dynamic Bayesian networks: sliding window approach. Applied Intelligence,
40(4), 575-591.

Geiger, D., & Heckerman, D. (2002). Parameter priors for directed acyclic graphical
models and the characterization of several probability distributions. The Annals of
Statistics, 1412-1440.

Group, L. N. R. (2009). LibPcap. Retrieved from https://ee.lbl.gov/

Grover, A., Kapoor, A., & Horvitz, E. (2015). A Deep Hybrid Model for Weather
Forecasting. Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Sydney, NSW, Australia.

Gu, G., Fogla, P., Dagon, D., Lee, W., & Skoric, B. (2006). Measuring intrusion detection
capability: an information-theoretic approach. Proceedings of the 2006 ACM
Symposium on Information, computer and communications security, Taipei,
Taiwan.

Hai, N., Franke, K., & Petrovic, S. (2010, 15-18 Feb. 2010). Improving Effectiveness of
Intrusion Detection by Correlation Feature Selection. Availability, Reliability, and
Security, 2010. ARES '10 International Conference on.

Heberlein, L. T., Dias, G. V., Levitt, K. N., Mukherjee, B., Wood, J., & Wolber, D. (1990,
7-9 May 1990). A network security monitor. Proceedings of the 1990 IEEE
Computer Society Symposium on Research in Security and Privacy, Oakland,
California, USA.

Ingham, K. L., & Inoue, H. (2007). Comparing anomaly detection techniques for HTTP.
Proceedings of the 10th international conference on Recent advances in intrusion
detection, Gold Goast, Australia.

 109

Javed, M., & Paxson, V. (2013). Detecting stealthy, distributed SSH brute-forcing.
Proceedings of the 2013 ACM SIGSAC conference on Computer &
Communications Security, Berlin, Germany.

Jeong, H., Yoo, Y., Yi, K. M., & Choi, J. Y. (2014). Two-stage online inference model for
traffic pattern analysis and anomaly detection. Machine Vision and Applications,
25(6), 1501-1517.

Jiang, L. (2012). Learning Instance Weighted Naive Bayes from labeled and unlabeled
data. Journal of Intelligent Information Systems, 38(1), 257-268.

Karamcheti, V., Geiger, D., Kedem, Z., & Muthukrishnan, S. (2005). Detecting malicious
network traffic using inverse distributions of packet contents. Proceedings of the
2005 ACM SIGCOMM workshop on Mining network data, Philadelphia,
Pennsylvania, USA.

Katipally, R., Gasior, W., Cui, X., & Yang, L. (2010). Multistage attack detection system
for network administrators using data mining. Proceedings of the Sixth Annual
Workshop on Cyber Security and Information Intelligence Research, Oak Ridge,
Tennessee.

Katipally, R., Yang, L., & Liu, A. (2011). Attacker behavior analysis in multi-stage attack
detection system. Proceedings of the Seventh Annual Workshop on Cyber
Security and Information Intelligence Research, Oak Ridge, Tennessee.

Khanna, R., & Liu, H. (2006). System approach to intrusion detection using hidden
Markov model. Proceedings of the 2006 international conference on Wireless
communications and mobile computing, Vancouver, British Columbia, Canada.

Kim, G., Lee, S., & Kim, S. (2014). A novel hybrid intrusion detection method
integrating anomaly detection with misuse detection. Expert Syst. Appl., 41(4),
1690-1700.

Kim, S. H., Wang, Q.-H., & Ullrich, J. B. (2012). A comparative study of cyberattacks.
Communications of the ACM, 55(3), 66-73.

Laboratory, M. L. (2013). MIT Lincoln Laboratory: Communication Systems and Cyber
Security: Cyber Systems and Technology: DARPA Intrusion Detection
Evaluation. Retrieved October 16th 2013, from

 110

http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/data/199
9data.html

Lelieveld, J., Kunkel, D., & Lawrence, M. G. (2012). Global risk of radioactive fallout
after major nuclear reactor accidents. Atmospheric Chemistry and Physics, 12(9),
4245-4258.

Leutbecher, M., & Palmer, T. N. (2008). Ensemble forecasting. Journal of Computational
Physics, 227(7), 3515-3539.

Lippmann, R. P., Fried, D. J., Graf, I., Haines, J. W., Kendall, K. R., McClung, D., . . .
Zissman, M. A. (2000, 2000). Evaluating intrusion detection systems: the 1998
DARPA off-line intrusion detection evaluation. Proceedings of the DARPA
Information Survivability Conference and Exposition, Hilton Head, South
Carolina.

Lowd, D., & Domingos, P. (2005). Naive Bayes models for probability estimation.
Proceedings of the 22nd international conference on Machine learning, Bonn,
Germany.

Lu, C., & Brooks, R. (2011). Botnet traffic detection using hidden Markov models.
Proceedings of the Seventh Annual Workshop on Cyber Security and Information
Intelligence Research, Oak Ridge, Tennessee.

Luo, Y.-X. (2010). The Research of Bayesian Classifier Algorithms in Intrusion Detection
System. Proceedings of the 2010 International Conference on E-Business and E-
Government, Guangzhou, China.

Mahoney, M. V. (2003). Network traffic anomaly detection based on packet bytes.
Proceedings of the 2003 ACM symposium on Applied computing, Melbourne,
Florida.

Matthews, B. W. (1975). Comparison of the predicted and observed secondary structure
of T4 phage lysozyme. Biochimica et Biophysica Acta, 405(2), 442-451.

Mehetrey, P., Shahriari, B., & Moh, M. (2016, Oct. 31 2016-Nov. 4 2016). Collaborative
Ensemble-Learning Based Intrusion Detection Systems for Clouds. 2016
International Conference on Collaboration Technologies and Systems (CTS).

 111

Milenkoski, A., Vieira, M., Kounev, S., Avritzer, A., & Payne, B. D. (2015). Evaluating
Computer Intrusion Detection Systems: A Survey of Common Practices. ACM
Computing Surveys, 48(1), 1-41.

Mitchell, R., & Chen, I.-R. (2014). A survey of intrusion detection techniques for cyber-
physical systems. ACM Computing Surveys, 46(4), 1-29.

Mueller, S. (2016). Another Day, Another Billion Packets. Presentation presented at
AWS re:Invent 2016, Las Vegas, NV.

Mukkamala, S., Janoski, G., & Sung, A. (2002). Intrusion detection using neural
networks and support vector machines. Proceedings of the 2002 International
Joint Conference on Neural Networks, Honolulu, Hawaii, USA.

Myers, C., Singer, A., Shin, F., & Church, E. (1992, 23-26 Mar 1992). Modeling chaotic
systems with hidden Markov models. Proceedings of the 1992 IEEE International
Conference on Acoustics, Speech, and Signal Processing, San Francisco,
California, USA.

Nadiammai, G. V., & Hemalatha, M. (2012). An evaluation of clustering technique over
intrusion detection system. Proceedings of the International Conference on
Advances in Computing, Communications and Informatics, Chennai, India.

Naoum, R. S., Abid, N. A., & Al-sultani, Z. N. (2013). An Enhanced Resilient
Backpropagation Artificial Neural Network for Intrusion Detection System.
International Journal of Computer Science and Network Security, 13(3), 98-104.

Ning, P., & Xu, D. (2004). Hypothesizing and reasoning about attacks missed by
intrusion detection systems. ACM Transactions on Information and System
Security, 7(4), 591-627.

Ourston, D., Matzner, S., Stump, W., & Hopkins, B. (2003). Applications of Hidden
Markov Models to Detecting Multi-Stage Network Attacks. Proceedings of the
36th Annual Hawaii International Conference on System Sciences (HICSS'03) -
Track 9 - Volume 9.

Palmer, T. N. (2000). Predicting uncertainty in forecasts of weather and climate. Reports
on Progress in Physics, 63(2), 71.

 112

Pan, S., Morris, T. H., Adhikari, U., & Madani, V. (2013). Causal event graphs cyber-
physical system intrusion detection system. Proceedings of the Eighth Annual
Cyber Security and Information Intelligence Research Workshop, Oak Ridge,
Tennessee, USA.

Papadogiannakis, A., Polychronakis, M., & Markatos, E. P. (2010). Improving the
accuracy of network intrusion detection systems under load using selective packet
discarding. Proceedings of the Third European Workshop on System Security,
Paris, France.

Pillai, M. M., Eloff, J. H. P., & Venter, H. S. (2004). An approach to implement a network
intrusion detection system using genetic algorithms. Proceedings of the 2004
annual research conference of the South African institute of computer scientists
and information technologists on IT research in developing countries,
Stellenbosch, Western Cape, South Africa.

Popper, K. R. (1988). The open universe: An argument for indeterminism (Vol. 2):
Psychology Press.

Powers, D. M. W. (2011). Evaluation: From precision, recall and f-measure to ROC,
informedness, markedness & correlation. Journal of Machine Learning
Technologies, 2(1), 37-63.

Rabier, F., Klinker, E., Courtier, P., & Hollingsworth, A. (1996). Sensitivity of forecast
errors to initial conditions. Quarterly Journal of the Royal Meteorological Society,
122(529), 121-150.

Rabiner, L. (1989). A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2), 257-286.

Rabiner, L., & Juang, B. H. (1986). An introduction to hidden Markov models. IEEE
ASSP Magazine, 3(1), 4-16.

Reiser, H. P. (2017). Towards intrusion-resilient security monitoring in multi-cloud
infrastructures. Proceedings of the 1st International Workshop on Security and
Dependability of Multi-Domain Infrastructures, Belgrade, Serbia.

Roesch, M. (1999). Snort - Lightweight Intrusion Detection for Networks. Proceedings of
the 13th USENIX conference on System administration, Seattle, Washington.

 113

Roulston, M. S. (2005). A comparison of predictors of the error of weather forecasts.
Nonlinear Processes in Geophysics, 12(6), 1021-1032.

Saha, S., Sairam, A. S., Yadav, A., & Ekbal, A. (2012). Genetic algorithm combined with
support vector machine for building an intrusion detection system. Proceedings
of the International Conference on Advances in Computing, Communications and
Informatics, Chennai, India.

Scherer, S., Glodek, M., Schwenker, F., Campbell, N., & Palm, G. (2012). Spotting
laughter in natural multiparty conversations: A comparison of automatic online
and offline approaches using audiovisual data. ACM Transactions on Interactive
Intelligent Systems, 2(1), 1-31.

Sekar, R., Guang, Y., Verma, S., & Shanbhag, T. (1999). A high-performance network
intrusion detection system. Proceedings of the 6th ACM conference on Computer
and communications security, Kent Ridge Digital Labs, Singapore.

Sen, N., Sen, R., & Chattopadhyay, M. (2014, 14-16 Nov. 2014). An Effective Back
Propagation Neural Network Architecture for the Development of an Efficient
Anomaly Based Intrusion Detection System. 2014 International Conference on
Computational Intelligence and Communication Networks (CICN), Bhopal, India.

Sen, R., Chattopadhyay, M., & Sen, N. (2015). An Efficient Approach to Develop an
Intrusion Detection System Based on Multi Layer Backpropagation Neural
Network Algorithm: IDS using BPNN Algorithm. Proceedings of the 2015 ACM
SIGMIS Conference on Computers and People Research, Newport Beach,
California, USA.

Sen, S. (2014). Using instance-weighted naive Bayes for adapting concept drift in
masquerade detection. International Journal of Information Security, 13(6), 583-
590.

Shalizi, C. R., & Crutchfield, J. P. (2001). Computational Mechanics: Pattern and
Prediction, Structure and Simplicity. Journal of Statistical Physics, 104(3-4), 817-
879.

Shalizi, C. R., & Shalizi, K. L. (2004). Blind construction of optimal nonlinear recursive
predictors for discrete sequences. Proceedings of the 20th conference on
Uncertainty in artificial intelligence, Banff, Canada.

 114

Shameli-Sendi, A., Cheriet, M., & Hamou-Lhadj, A. (2014). Taxonomy of intrusion risk
assessment and response system. Computers & Security, 45, 1-16.

Sharma, N., & Mukherjee, S. (2012). Layered approach for intrusion detection using
naive Bayes classifier. Proceedings of the International Conference on Advances
in Computing, Communications and Informatics, Chennai, India.

Smaha, S. E. (1988, 12-16 Dec 1988). Haystack: an intrusion detection system.
Proceedings of the Fourth Aerospace Computer Security Applications
Conference, Orlando, Florida, USA.

Smith, F. J., Ming, J., O'Boyle, P., & Irvine, A. D. (1995, 9-12 May 1995). A hidden
Markov model with optimized inter-frame dependence. Proceedings of the 1995
International Conference on Acoustics, Speech, and Signal Processing, Detroit,
Michigan, USA.

Smith, R., Japkowicz, N., Dondo, M., & Mason, P. (2008). Using unsupervised learning
for network alert correlation. Proceedings of the Canadian Society for
computational studies of intelligence, 21st conference on Advances in artificial
intelligence, Windsor, Canada.

Soleimani, M., & Ghorbani, A. A. (2012). Multi-layer episode filtering for the multi-step
attack detection. Computer Communincations, 35(11), 1368-1379.

Sommer, R., & Paxson, V. (2010, 16-19 May 2010). Outside the Closed World: On Using
Machine Learning for Network Intrusion Detection. Proceedings of the 2010
IEEE Symposium on Security and Privacy (SP), Oakland, California, USA.

Staudemeyer, R. C., & Omlin, C. W. (2013). Evaluating performance of long short-term
memory recurrent neural networks on intrusion detection data. Proceedings of
the South African Institute for Computer Scientists and Information Technologists
Conference, East London, South Africa.

Stoll, P. A., & Jun, O. (1995, 5-7 Jul 1995). Applications of HMM modeling to
recognizing human gestures in image sequences for a man-machine interface.
Proceedings of the 4th IEEE International Workshop on Robot and Human
Communication, Tokyo, Japan.

Sujatha, P. K., Priya, C. S., & Kannan, A. (2012). Network intrusion detection system
using genetic network programming with support vector machine. Proceedings of

 115

the International Conference on Advances in Computing, Communications and
Informatics, Chennai, India.

Swarnkar, M., & Hubballi, N. (2016). OCPAD. Expert Systems with Applications, 64(C),
330-339.

Taheri, S., Mammadov, M., & Bagirov, A. M. (2011). Improving naive Bayes classifier
using conditional probabilities. Proceedings of the Ninth Australasian Data
Mining Conference - Volume 121, Ballarat, Australia.

Taub, L. (2013). Application of a Layered Hidden Markov Model in the Detection of
Network Attacks. (Doctoral dissertation), Nova Southeastern University.
ProQuest database.

Tennekes, H. (1992). Karl Popper and the accountability of numerical weather
forecasting. Weather, 47(9), 343-346.

Tennekes, H., Baede, A. P. M., & Opsteegh, J. D. (1986). Forecasting forecast skill.
Workshop on Predictability in the Medium and Extended Range, Shinfield Park,
Reading.

Torrano-Gimenez, C., Nguyen, H. T., Alvarez, G., & Franke, K. (2015). Combining
expert knowledge with automatic feature extraction for reliable web attack
detection. Security and Communication Networks, 8(16), 2750-2767.

University of California, I., Information and Computer Science. (1999). KDD Cup 1999
Data. Retrieved February 23, 2014, from
https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

Viterbi, A. J. (1967). Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm. IEEE Transactions on Information Theory, 13(2),
260-269.

Wang, L., Liu, A., & Jajodia, S. (2006). Using attack graphs for correlating,
hypothesizing, and predicting intrusion alerts. Computer Communications,
29(15), 2917-2933.

Weir, J. (2012). Building a Debian\Snort based IDS. Retrieved December 1, 2013, from
http://www.snort.org/docs

 116

Wiggers, P., Mertens, B., & Rothkrantz, L. (2011). Dynamic Bayesian networks for
situational awareness in the presence of noisy data. Proceedings of the 12th
International Conference on Computer Systems and Technologies, Vienna,
Austria.

Wilson, A., Fern, A., & Tadepalli, P. (2010). Bayesian role discovery for multi-agent
reinforcement learning. Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent Systems: volume 1 - Volume 1, Toronto,
Canada.

Wressnegger, C., Schwenk, G., Arp, D., & Rieck, K. (2013). A close look on n-grams in
intrusion detection: anomaly detection vs. classification. Proceedings of the 2013
ACM workshop on Artificial intelligence and security, Berlin, Germany.

Xiang, J., Westerlund, M., Sovilj, D., & Pulkkis, G. (2014). Using extreme learning
machine for intrusion detection in a big data environment. Proceedings of the
2014 Workshop on Artificial Intelligent and Security Workshop, Scottsdale,
Arizona, USA.

Xie, L., Zhang, X., Seifert, J.-P., & Zhu, S. (2010). pBMDS: a behavior-based malware
detection system for cellphone devices. Proceedings of the third ACM conference
on Wireless network security, Hoboken, New Jersey, USA.

Yolacan, E. N., Dy, J. G., & Kaeli, D. R. (2014). System Call Anomaly Detection Using
Multi-HMMs. Proceedings of the 2014 IEEE Eighth International Conference on
Software Security and Reliability-Companion.

Yu, Z., Tsai, J. J. P., & Weigert, T. (2008). An adaptive automatically tuning intrusion
detection system. ACM Trans. Auton. Adapt. Syst., 3(3), 1-25.

Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.

Zaman, S., El-Abed, M., & Karray, F. (2013). Features selection approaches for intrusion
detection systems based on evolution algorithms. Proceedings of the 7th
International Conference on Ubiquitous Information Management and
Communication, Kota Kinabalu, Malaysia.

Zargar, S. T., Takabi, H., & Joshi, J. B. D. (2011, 15-18 Oct. 2011). DCDIDP: A
distributed, collaborative, and data-driven intrusion detection and prevention
framework for cloud computing environments. Proceedings of the 7th

 117

International Conference on Collaborative Computing: Networking, Applications
and Worksharing (CollaborateCom), Orlando, Florida, USA.

Zarnani, A., & Musilek, P. (2013). Learning uncertainty models from weather forecast
performance databases using quantile regression. Proceedings of the 25th
International Conference on Scientific and Statistical Database Management,
Baltimore, Maryland, USA.

Zhang, Y., & Rockett, P. I. (2009). A generic multi-dimensional feature extraction method
using multiobjective genetic programming. Evolutionary Computation, 17(1), 89-
115.

Zhang, Z., & Krishnamurti, T. N. (1997). Ensemble forecasting of hurricane tracks.
Bulletin of the American Meteorological Society, 78(12), 2785-2795.

Zimmermann, H.-J. (2001). Fuzzy set theory—and its applications: Springer Science &
Business Media.

	Nova Southeastern University
	NSUWorks
	2017

	Enhanced Prediction of Network Attacks Using Incomplete Data
	Jacob D. Arthur
	Share Feedback About This Item
	NSUWorks Citation

	Microsoft Word - DissertationReport - 36.docx

