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For years, intrusion detection has been considered a key component of many 
organizations’ network defense capabilities.  Although a number of approaches to 
intrusion detection have been tried, few have been capable of providing security 
personnel responsible for the protection of a network with sufficient information to make 
adjustments and respond to attacks in real-time.  Because intrusion detection systems 
rarely have complete information, false negatives and false positives are extremely 
common, and thus valuable resources are wasted responding to irrelevant events.  In 
order to provide better actionable information for security personnel, a mechanism for 
quantifying the confidence level in predictions is needed.  This work presents an 
approach which seeks to combine a primary prediction model with a novel secondary 
confidence level model which provides a measurement of the confidence in a given 
attack prediction being made.  The ability to accurately identify an attack and quantify the 
confidence level in the prediction could serve as the basis for a new generation of 
intrusion detection devices, devices that provide earlier and better alerts for 
administrators and allow more proactive response to events as they are occurring.
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Chapter 1 

Introduction 

Introduction 

Interconnection between networks around the globe has increased exponentially 

in volume and variance. A parallel increase has occurred in the number and nature of 

potential threats against those networks (S. H. Kim, Wang, & Ullrich, 2012).  Modern 

network attacks typically involve a series of discrete stages focused on collecting data, 

identifying vulnerabilities, and executing exploits (Katipally, Yang, & Liu, 2011).  For 

example, in order to breach a database system, an attacker must discover its existence and 

address, determine available access methods, and select a method (or methods) to gain 

access to the system.  In the event the selected approach is ineffective in compromising 

the system, the attacker will either select a different approach or select a new target 

(Alserhani, Akhlaq, Awan, Cullen, & Mirchandani, 2010). 

Though the phases of network intrusion (explore, expose, and exploit) are logical, 

they are neither transparent nor simplistic (Katipally, Gasior, Cui, & Yang, 2010). Modern 

intrusion detection systems (IDSs) lack full visibility into all of the activities that 

comprise an attack. Partial visibility of relevant attack data leads to both false negatives 

and false positives in the alert streams generated by modern IDSs (Soleimani & 

Ghorbani, 2012). The perceived value of such alerts is reduced, as administrators respond 

to events ultimately determined to be irrelevant while failing to respond in a timely 
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manner to those which potentially pose widespread threat of harm (Sharma & Mukherjee, 

2012).  

Solutions to limits in IDSs have ranged from increasing the number and 

coordination among sensors (Abdullah, Xu, & Geva, 2011; Zargar, Takabi, & Joshi, 

2011), to distributed individual agent processing (Carvalho & Perez, 2011). Both 

approaches present challenges. In the case of the former, each sensor contributes an 

additive resource cost as well as an exponential increase to the search space that must be 

processed by control nodes. The latter approach results in each sensor making decisions 

with a lack of overall visibility.  Although machine learning techniques have been shown 

to provide some good results in terms of attack prediction within a network (D. Ariu, R. 

Tronci, & G. Giacinto, 2011; Fries, 2008), the occurrence of false positives and false 

negatives in those applications remains high.  Ensuring organizational resources are 

invested in preventing genuine attacks requires improvement in the ratio of valid to 

invalid alerts.  In order to improve that ratio, this work presents experiments on the 

results of augmenting predictions made by an IDS with actionable confidence levels. 

Problem Statement 

Modern network-based intrusion detection systems (IDSs) often fail to accurately 

detect attacks for which only fragments of the attack are visible to the sensors in place.  

As a result, true attacks occur without raising an alert and normal activity might 

precipitate an alert that wastes the resources of analysts. 
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Dissertation Goal 

The goal of the proposed research was to develop an improved means of 

identifying an ongoing attack based on small fragments of attack activity with a lower 

rate of false positives and false negatives than has been previously achieved by utilizing 

existing methods.  The improvement in prediction rate was primarily captured via the 

augmentation of the system output with a confidence level based on prior network traffic 

and alerts that have been raised.  In order to deal with the common issue of false positives 

and false negatives, the primary focus of this research was on the development of an 

approach for providing both a meaningful confidence level in predictions that the system 

makes. 

Relevance and Significance 

Interconnection between networks around the globe has increased, becoming an 

integral part of daily functioning within the arenas of business, education, governmental 

operations, and economics. Accompanying the increase in network activity and 

connection is a parallel increase in security risk (S. H. Kim et al., 2012).  The importance 

of networks and the potential impacts of their compromise are most often evident to the 

“general public” in the fields of retail or education, as consumers learn through public 

media of a breach which may threaten their personal finances, credit, or identity.  Even 

more critical, the growing prevalence of network connectivity in fields such as flight 

control and power grid management contributes to growing urgency in the field.  As 

sensitive information and critical infrastructure increasingly rely on computer systems 

and those systems become more complex, the intrusion prevention technologies must also 
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become more sophisticated (Mitchell & Chen, 2014; Shameli-Sendi, Cheriet, & Hamou-

Lhadj, 2014). 

Because of the great risks associated with both internal and external threats, 

organizations, both public and private, have deployed various technologies to both limit 

the attack surface area as well as to gain insight into the potentially massive amounts of 

data traversing the network.  Denning (1987) conceived of one such technology, the 

intrusion detection system, to give administrators specific intelligence about events 

happening on the network in real-time or near real-time.  Although a vast array of 

information would serve as inputs, the goal was to distill the information down into a set 

of alerts that could be outputted in the event that patterns of concern were observed in the 

network stream.  These intrusion detection systems have served well for many years and 

have provided significant insight into what was occurring moment by moment in 

networks they observed (Weir, 2012).  However, the significant increase in network 

traffic as bandwidth has increased has resulted in intrusion detection systems that output 

either too much information to be useful (alert flooding) or systems which filter out so 

much information that they fail to produce alerts when events in the network represent 

meaningful threats (S. H. Kim et al., 2012). 

As the number of alerts produced by intrusion detection systems have increased, 

the ability of system and security administrators to respond to each individual alert has 

decreased (Zargar et al., 2011).  A common method of limiting the volume of alerts is to 

raise an alert only after a specific number of login failures have been detected over a 

rolling period of time.  However, this approach has its own deficiency, in that an attacker 

who is able to determine the time period through experimentation or insider knowledge 
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may be able to remain under the alert threshold constantly.  Clearly, better technology is 

needed; this need led to the introduction of machine learning and other more advanced 

methods of intrusion detection.   

Barriers and Issues 

The first barrier to this research is related to feature selection (Zaman, El-Abed, & 

Karray, 2013).  Though much work has been done on feature selection in intrusion 

detection, this research began with a very unclear picture on the features or trends that 

would be relevant for assigning a confidence level to a prediction being made.  This was 

further complicated by the fact that confidence levels have always been considered 

inherently, that is, a system would not predict that a packet represented an attack if it was 

not more confident than not.  The challenge for this research was to apply existing 

knowledge to draw out the confidence level explicitly.  Although some of the classic 

features will certainly be applicable, one of the most significant factors in determining 

confidence level is based on how similar the current traffic is to traffic that has been seen 

previously.  If very similar traffic was previously classified correctly, then this research 

concluded it would be reasonable to place more confidence in the prediction than if 

similar traffic had not been seen or had been classified incorrectly.   

Another significant barrier to the completion of this study was access to an 

appropriate data set for development and testing.  In research related to intrusion 

detection, the Defense Advanced Research Projects Agency (DARPA) 1998 and 1999 

data has been a common data set used for testing (Laboratory; Lippmann et al., 2000), as 

has the derivative KDD Cup 1999 data (University of California, 1999).  However, all of 

these data sets have issues, with the most significant being the age and relevance of the 
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data set for representing modern attacks.  This research used a testing approach that 

aligned with previous research in similar types of attacks, and made use of the attack data 

that had previously been used for those works for comparison purposes.  Additionally, 

this research also created an additional new dataset that may represent the largest single 

corpus of modern HTTP-protocol attacks for the purposes of testing the flexibility of the 

proposed approach.  The researcher plans to release this dataset concurrently with this 

work for future researchers to benefit from.   

In addition to challenges related to feature selection and data set accessibility, the 

iterative and multi-layer nature of the system described in this research created 

substantial problems related to available resources on the system being used for training.  

To address that issue, this research designed a framework called a packet data repository 

which represents common storage location for packet data.  This framework explicitly 

allows the implemented modules to specify whether the repository is used for a given 

data point, so while points like frame number do not repeat and would not be a good 

candidate, items like source and destination MAC and IP addresses can be substantially 

de-duplicated and replaced with a reference to the repository.  This represents an explicit 

time-memory tradeoff decision for each module involved, and it allowed tuning of the 

system to run at good speeds across a range of data input volumes.  Additionally, the 

repository framework allows the easy presentation of a subset of data from within the 

repository, which allowed the researcher to readily cross-train and validate using different 

subsets of data.   
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Summary 

This dissertation presents an approach taken to produce a system that is capable of 

not only making classifications about network traffic seen, but also provides a confidence 

level in the prediction made to assist those tasked with reacting to alerts that are created.  

This chapter provided an overview of the research problem as well as a description of the 

proposed approach to addressing the problem.  Additionally, the case was made for the 

usefulness of the proposed approach in many real-world intrusion detection scenarios.  In 

the following chapters, the current related research landscape will be explored, and 

further details on the specific implementation and the results will be discussed.  The goal 

was to develop a method for producing meaningful confidence levels, and to propose 

metrics which are relevant in the comparison of the developed system that are useful as 

benchmarks for comparison in other research studies.
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Chapter 2  

Review of the Literature 

The Roots of Intrusion Detection 

The seminal paper on intrusion detection was published by Denning (1987).  This 

paper outlined a model for real-time intrusion detection built on a rule-based pattern 

matching system.  Key to the model was the assumption system compromise would be 

evident in abnormal usage patterns once standard operations were known.  Denning’s 

assumptions regarding, and use of, rule-based pattern matching are evident in current 

literature’s references to misuse/signature and anomaly detection mechanisms 

(Karamcheti, Geiger, Kedem, & Muthukrishnan, 2005; Papadogiannakis, Polychronakis, 

& Markatos, 2010 ; Sekar, Guang, Verma, & Shanbhag, 1999). 

In addition to outlining the above-referenced model, Denning (1987) defined 

several key terms still present in a core common vocabulary and idea set for modern 

intrusion detection systems.  For example, as defined by Denning, subjects are the 

initiators of actions on the system in question, while objects are the resources on the 

system with which the subjects are interacting.  Audit records represent a log entry 

generated by the system in response to a particular subject’s action with regards to an 

object.  Profiles are definitions of potential expected behaviors of subjects within the 

system, and anomaly records are generated when there is a deviation from a profile.  
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Finally, activity rules are actions taken when a specified condition is met, to perform an 

action of some sort in the system independent of the subject’s action.   

Although all of these terms are certainly relevant to the problem at hand, of 

particular interest is the profile, the potential behaviors of a subject with regard to one or 

more objects.  It is this profile that essentially determines the behavior that will be 

classified as either normal or anomalous in an anomaly-based system, and the same 

profile which is matched to user behavior to locate threats in a signature-based system.  

The profile is particularly relevant to this work because matching subsets of it will be 

required for achieving the goal of locating an attack based on visible fragments only. 

Host-Based Intrusion Detection 

One of the earliest implementations of an IDS was the “Haystack” system created 

for use by the U.S. Air Force (Smaha, 1988).  Smaha noted three driving forces behind 

the need for increased security at the time: establishment of government standards and 

criteria for security, creation of multi-vendor operating systems, and requirements for 

utilization of standards for computer procurement.  Although Smaha distinguished 

between insider and external threats, he concluded this distinction was irrelevant once 

outsiders had successfully penetrated a system.   

The Haystack system was created with the goal of reducing large amounts of audit 

trail data to manageable and meaningful summaries (Smaha, 1988).  The system 

endeavored to accomplish this through the use of two distinct but complimentary 

methods.  First, the system would search for behavior that was out of the ordinary for the 

user in question and flag such behavior for further review.  Second, the system would 

watch for activity which had been previously defined as “bad” behavior in the context of 
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the system log being reviewed.  Although the Haystack system would recognize behavior 

defined as normal, the definition of “bad” behavior required input from a human expert. 

One of the most notable contributions from the Haystack system arose from the 

fact the monitoring system was required to be much less powerful than the mainframe it 

was designed to monitor (Smaha, 1988).  Instead of processing all traffic in real-time, 

Haystack was designed to operate against a tape produced by the mainframe that 

contained the audit trail file.  In processing the file, the system would select specific data 

points deemed relevant for retention and analysis rather than retaining the entirety of the 

audit log.  This process of feature selection served as the basis for later intrusion 

detection models, as it offered significantly better performance than full log retention and 

processing.   

Expansion to Local Area Networks 

Heberlein et al. (1990) expanded on the aforementioned host-based intrusion 

detection technologies by applying the concepts to the Local Area Network (LAN) 

environment.  Their efforts were specifically relevant to the proliferation of LANs in 

academics, business, and research. Acknowledging LANs were initially designed to be 

shared by trusted users, the authors highlighted risks to network security, both intentional 

and unintentional, malicious and benign.  

In addition to describing a standard attack model, Heberlein et al. (1990) created 

the Network Security Monitor (NSM). Consistent with Denning’s (1987) rule-based 

model, the NSM analyzed traffic that was traversing a LAN and attempted to identify 

traffic that either met certain pre-defined “bad behavior” rules, or fell outside what was 

considered “normal” traffic patterns.  This dual search allowed the NSM to identify both 
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well-known attacks as well as identifying statistical outliers for follow-up that could 

represent previously un-seen attacks. Also of note, the NSM applied a Monte Carlo-based 

statistical model for determining the most likely subsets of network traffic to search.  By 

using this approach, the system was able to perform at real-time speeds by adjusting the 

depth of search to the available resources.  The contributions of Heberlein et al., in terms 

of both attack model and application of intrusion detection concepts to network traffic 

streams, laid the ground work for research to follow. 

Challenges in Classical Misuse and Anomaly Detection 

The classical methods of IDS introduced and developed by Denning (1987), 

Smaha (1988), and Heberlein et al. (1990) were proposed and implemented in response to 

environmental pressures for accountability and increased security.  However, though a 

necessary response to the pressures prompting their development, classical methods were 

(and remain) insufficient. Of particular concern is the evolving nature of the work setting 

and the human resource investment required to ensure a system’s rules and definitions 

regarding both “bad” and acceptable behavior remain current, in addition to the ever 

changing flow of internet traffic (Papadogiannakis et al., 2010).  Changes in staff 

assignment, agency policy/procedure, and related regulations all impact parameters for 

appropriate and inappropriate use of network functionality.  At the very least, continual 

updating of the specification to reflect new and changed network conditions and hosts 

would create a significant management problem in ongoing use (Smaha, 1988). 

For example, a change in a user’s job responsibilities might require the use of new 

or different tools, and the change associated with that use would be flagged erroneously 

as a system security breach.  A manual review would ultimately resolve the situation. 
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However, the additional work required to complete that review could result in a delay in 

addressing other true breach attempts (Heberlein et al., 1990). 

Inherent in a system’s ability to accurately identify “bad” behavior are two issues. 

First, the definition of “bad” behavior requires a human expert for classification. 

Secondly, “bad” is defined based upon that which has previously been known, without a 

mechanism for recognizing novel threats -- those not previously encountered by a given 

system (Heberlein et al., 1990; Katipally et al., 2011). 

Relevant to both signature and anomaly-based IDSs is the challenge of system 

patterns which are either incomplete or only partially visible.  Signature-based IDSs 

typically rely on multiple conditions which must all be met to raise an alert.  In the event 

that a prerequisite condition existed but was not visible to the IDS, no alert would occur, 

resulting in a false negative.  Likewise, anomaly-based IDSs rely on the appearance of 

sufficient deviation from “normal” behavior to conclude an attack is in progress.  

However, if a deviation is subtle enough to avoid detection by sensors in place, the attack 

would not raise an alert, resulting in a false positive (S. H. Kim et al., 2012; Ning & Xu, 

2004). 

Evolution of the IDS field has included a response to the recognition of the 

challenges posed by classical methods (Chen & Kim, 2013; Cuong & Giang, 2012). 

Efforts to address the challenges and maximize performance have included those which 

minimize the role of on-going human expertise and input. Additionally, attempts have 

focused on enhancing the ability of systems to respond to information which is 

incomplete, or not fully visible. 
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Use of Machine Learning 

Overview of Machine Learning  

Machine learning is an area of computer science deriving from both 

computational learning and pattern recognition.  Within the field of machine learning, the 

field is further segmented into supervised learning, unsupervised learning, and 

reinforcement learning.  Generally though, all three approaches share a common core of 

classifiers which are relevant to the problem domain in question, objective functions that 

quantify the quality of the classifiers with respect to addressing the problem, and an 

optimization process which handles iteration of the various inputs to the classifiers in 

search of a sufficiently acceptable solution.  Classifiers also are generally further 

subcategorized into either multi-class classifiers that attempt to classify an observation 

into one of n known class types or one-class classifiers that attempt to answer the 

question of whether a particular observation belongs to a particular known class (Sommer 

& Paxson, 2010).   

Both classifiers types are used for intrusion detection purposes in different 

contexts.  One-class classifiers are typically applied to classify traffic as either “normal” 

or “malicious,” with many systems opting to document a model of normal and consider 

anomalous traffic to be malicious (Hai, Franke, & Petrovic, 2010).  The primary reason 

for this choice is in many systems it is easier to obtain a representative set of the traffic 

which should be seen for a particular application than it is to obtain a representative set of 

all the possible attacks which might be directed at that application.  By definition, “zero 

day” type attacks have never been see before, thus it will always be difficult to define a 

complete model of malicious behavior that includes all possible malicious patterns when 
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some of those patterns are by definition not yet known (Mahoney, 2003).  Multi-class 

classifiers generally tend to be applied in an intrusion detection context with a goal of 

identifying particular types of attacks with the reasoning that a particular type of attack 

will generally follow a particular structure for which a representative set can be created.  

In one such system, the researchers opted to create four separate classes to represent 

denial of service (DoS), probe, user-to-root (U2R), and remote to local (R2L) attacks 

respectively.   

Unsupervised machine learning focuses on learning a structure from an unlabeled 

dataset, and is generally well suited to low-dimensionality, discrete data, even in high 

volumes.  However, as the dimensionality of data increases or more data points become 

continuous, unsupervised approaches do not generally scale well in terms of the resource 

requirements and ability to create meaningful boundaries.  Indeed, even as dimensionality 

n approaches very moderate values, the performance can suffer seriously in a highly 

heterogeneous dataset.  Because network data flows contain many potential attributes for 

consideration and are highly variable in their contents, unsupervised approaches to 

intrusion detection generally do not perform well except in niche areas such as 

identifying DoS attacks (Jeong, Yoo, Yi, & Choi, 2014). 

Supervised and reinforcement learning approaches are fundamentally different in 

that they both aim to provide the system with real-time feedback in one way or another 

regarding the “correctness” of classifications being made.  Supervised learning systems 

aim to do this by actually training the system starting with a set of training data pairs that 

are generally an input vector of some sort coupled with an output value representing the 

classification or desired output from the system based on the input vector.  Reinforcement 
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learning is different in that specific input/output pairs are not presented to the algorithm 

(Wilson, Fern, & Tadepalli, 2010).  Instead, the system (typically termed an “agent”) has 

the ability to observe the environment in certain ways, knows that available set of actions, 

and can determine based on actions taken the resulting state of the system and the 

immediate reward received for the particular action selected.  Over a period of time, the 

agent is designed to attempt to maximize the total reward received, and as such, many 

such systems are built to deal with realities where sacrifices must be made in the short 

term in the form of lower immediate rewards in exchange for achieving a higher longer 

term total reward.   

Supervised learning methods also generally require that data be segmented into 

training and testing data sets, with optimally no overlap between them (R. Smith, 

Japkowicz, Dondo, & Mason, 2008).  These methods are very sensitive to the diversity 

and volume of data available for training as well, with much better results generally being 

achieved by training with data sets that provide more complete and thorough coverage of 

the problem domain.  The goal of minimizing overlap between the training and testing 

datasets is important due to the idea of “overfit,” or the idea that a model learns a 

particular dataset too precisely and becomes unable to generalize its capabilities on to 

other relevant datasets from the problem domain (Reiser, 2017).  Use of the appropriate 

material for training is a particularly important issue with respect to the research 

described in this work, as the depth and breadth of network traffic means that it is highly 

likely that intrusion detection systems will encounter never-before-seen traffic given the 

nature of computer networks (N. Sen, Sen, & Chattopadhyay, 2014). 
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Application of Machine Learning to Intrusion Detection 

To address the challenges in classical signature and anomaly-based approaches, a 

number of machine learning techniques have been introduced.  Among the earlier 

machine learning techniques were hidden Markov models (Ourston, Matzner, Stump, & 

Hopkins, 2003) and genetic algorithms (Pillai, Eloff, & Venter, 2004).  More recent 

machine learning techniques applied to intrusion detection have included neural networks 

(Choudhary & Swarup, 2009), Bayesian classifiers (Luo, 2010), support vector machines 

(Cuong & Giang, 2012), artificial immune systems (Akyaz & Uyar, 2010), and fuzzy 

logic-based data mining (Chapke & Deshmukh, 2015).  Of note, Bayesian classifiers 

(Luo, 2010) and support vector machines (Cuong & Giang, 2012) share a common core 

with HMMs in the idea of states, one of the key building blocks of Markov models, and 

good performance has been seen with several of these (Milenkoski, Vieira, Kounev, 

Avritzer, & Payne, 2015; Xiang, Westerlund, Sovilj, & Pulkkis, 2014).  A discussion of 

the application of Markov models will further illuminate their relevance to present-day 

IDSs and this research in particular. 

Background on Hidden Markov Models 

The seminal work on Hidden Markov Models (HMMs) was produced by Baum 

and Petrie (1966).  Their research documented the mathematical theory behind discrete 

Markov chains.  It was Baum and Petrie who documented for the first time an extension 

where some states were considered “hidden,” that is, states with relationships or 

probabilities not directly apparent to the creator of the chain.  Rather, relationships were 

defined by the use of a probabilistic function which allows the system to model and infer 

the value of unknowns given a set of known inputs and outputs.  Four years later, Baum 

et al. (1970) expanded on the 1966 work by providing additional documentation and 
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proof for a maximization technique intended to make sure that the probabilistic functions 

underlying the Markov chain relationship prediction were reaching the most accurate 

possible output value (Baum, Petrie, Soules, & Weiss, 1970). 

Key Components of HMMs for Implementation 

Subsequent papers on the application of HMMs documented the key components 

of HMMs from an implementation perspective (Rabiner, 1989; Rabiner & Juang, 1986).  

In a given HMM, the system must contain an N number of states, an M number of 

distinct possible observations per state, the A state transition probability distribution, the 

B observation symbol probability distribution, and the initial state distribution, 

represented by the π symbol.  These elements must be generally present in any system 

that is considered an HMM, but in some specific cases, the system may be used to solve 

for one particular input given the others, as the relationship between them is fixed.   

Additionally, Rabiner (1989) documented several known issues with the general 

application of HMMs that implementations must take into account.  These issues include 

appropriate scaling of values during state transition coefficient re-estimation, proper 

initial estimation of A state transition parameters, and the impact of insufficient training 

data on the results of the algorithm.  All of these factors must be considered if the 

resulting model is going to be viable; but, perhaps the most important contribution was 

the proposal of the Viterbi algorithm (Rabiner, 1989; Viterbi, 1967) as a solution to 

dealing with one of the three core problems with HMMs, the question of how to 

determine the likelihood that a given model could give rise to a particular observation 

sequence.  The Viterbi algorithm performs a recursive backtracking maximization of the 

state transitions until the maximum probability series of transition has been located.  This 
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probability can be correctly thought of as the “best case” likelihood that the series of 

events was generated from the model in question. 

HMMs and Pattern Recognition 

HMMs have been shown to be a valuable tool in associating data points and 

recognizing the presence of a pattern in several fields.  Success in fields with similar 

types of problems and complicating factors is relevant to the likely performance of 

HMMs within the field of intrusion detection. Fields in which HMMs have been useful 

include visual recognition (Stoll & Jun, 1995) and speech processing (Scherer, Glodek, 

Schwenker, Campbell, & Palm, 2012).  Additionally, HMMs have been deemed valuable 

in the field of intrusion detection (Corona, Ariu, & Giacinto, 2009; Xie, Zhang, Seifert, & 

Zhu, 2010).  

Visual Recognition 

An early application of HMMs to a pattern recognition problem was documented 

by Stoll and Jun (1995) in the area of visual recognition.  The researchers used HMMs to 

model human movement with the goal of classifying a particular movement as one of six 

defined sport activities.  The complexity of the particular problem is increased because of 

the fluid nature of human movements, variations with which different individuals 

perform similar motions, and the frequent self-occlusion inherent in visibility from a 

small number of fixed cameras.  The HMMs performed well, with accuracy between 

seventy five and one hundred percent depending on the level of noise in the input video 

data, substantially higher than other methods that were current at that time. 

Speech Processing 

Speech processing is another pattern recognition problem to which HMMs have 

been frequently applied.  Scherer et al. (2012) used HMMs as a recognition tool for 
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laughter in conversations.  The researchers compared HMMs to other models including 

support vector machines (SVMs), which are also frequently applied in the intrusion 

detection space.  Although SVMs performed well in offline testing, the HMM-based 

model far outperformed the SVM in online testing, and the researchers posit two potential 

reasons for that.  First, they highlight the fact that HMMs perform particularly well on 

un-segmented and unlabeled data.  This characteristic was also particularly useful in the 

application proposed in this work, as network traffic flows are also un-segmented and 

may be unstructured.  Second, the researchers noted that the HMMs were able to be 

trained more effectively than SVMs because the SVMs were far more sensitive to the 

ratio of laughter to speech in the training set.  Because the ratio of the target state 

(laughter) was particularly low, the SVMs did not perform well on the identification. This 

is also applicable to the proposed research, as malicious packets were generally far less 

common than benign packets in a general network environment. 

Intrusion Detection 

Of particular interest to this work, HMMs have also been frequently applied for 

pattern recognition in intrusion detection with substantial success.  Corona et al. (2009) 

applied HMMs for the identification of attacks against web applications.  The researchers 

used an ensemble of HMMs (between three and seven) trained independently on the same 

dataset but with varying initial parameters to classify web requests as either normal or 

malicious.  The dataset used was labeled using a semi-automated process, with just under 

one percent of the dataset representing malicious requests.  Even with relatively low 

occurrence of malicious requests, the ensemble HMM used was able to detect ninety-six 

percent of attacks with less than one percent false alarms, demonstrating that it was a 

viable choice for pattern recognition. 
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Another example of HMMs being applied for pattern recognition in intrusion 

detection focused on device-level malware detection for cellphones (Xie et al., 2010).  

The researchers used HMMs to model normal user behavior, including both keyboard and 

touch interactions as well as system calls being made to key functions in the operating 

system.  The HMM was built with states representing the various stages of user 

interaction and the resulting system call from each interaction.  At each stage, the current 

action was modeled against the “known good” interaction from the user’s normal 

behavior, and the system could block access to critical function calls if the percentage 

match with the “known good” interaction dropped below a defined threshold.  This work 

further demonstrated the ability of HMMs to model a particular behavior (in this case, 

valid behavior) and identify behavior that fell outside of the expected model.  This 

capability was foundational for the research proposed in this work, as the ability of 

HMMs to model a process and determine the likelihood a particular set of actions match 

the modeled process is precisely the application intended for use. 

Environmental Incentives for HMM Usage 

Research has also focused on the use of HMMs in chaotic, noisy environments 

similar to conditions frequently seen in large-scale networks (Myers, Singer, Shin, & 

Church, 1992).  This work proposed the use of a discrete space model with continuous 

observations, a design in which the states in the model did not directly relate to actual 

states seen in the modeled system.  Instead, only the final output states of the model were 

associated to actual output states in the modeled system, leaving the remainder of the 

system to adjust itself as needed to achieve noise reduction.  The researchers’ goal was to 

be able to implicitly isolate and remove noise without the need for explicit noise removal.  

This concept is particularly applicable in the context of the work proposed in this paper 
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as any attempts to remove noise in a network environment could result in the removal of 

important data that could be useful for prediction purposes.   

Another major contribution to the application of HMMs focused on the ability to 

remove the state independence assumption present in early iterations of HMMs (F. J. 

Smith, Ming, O'Boyle, & Irvine, 1995).  The independence assumption is particularly 

troublesome for applications to network intrusion detection, as it causes the loss of 

information about the temporal relationship between successive events.  Although a 

temporal relationship between packets does not necessarily mean the packet contents are 

related, research on attacker behavior has shown that they generally follow a defined flow 

of activities (Ning & Xu, 2004), and time relationships between packets proved to be 

important in the systems developed for this research.   

Suitability Issues with Other Machine Learning Approaches 

 As has been previously mentioned, a variety of machine learning 

approaches have been applied in Intrusion Detection.  Some of the other methods have 

included genetic algorithms (Pillai et al., 2004), neural networks (Choudhary & Swarup, 

2009), Bayesian classifiers (Luo, 2010), and support vector machines (Cuong & Giang, 

2012).  Although some of these methods have been shown to be successful in certain 

approaches (R. Sen, Chattopadhyay, & Sen, 2015), there are challenges with each for 

particular aspects of this research. 

Genetic algorithms, while well suited for feature selection, have proven to be 

relatively ineffective in actually classifying events and identifying intrusions.  Indeed, the 

more successful attempts at applying genetic algorithms have generally done so in the 

context of another method (Ahmad, Hussain, Alghamdi, & Alelaiwi, 2014; Sujatha, 
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Priya, & Kannan, 2012).  Additionally, the structural composition of genetic algorithms 

does not lend itself to the probability estimation that this research is focused on. 

Even recent application of advanced neural network structures such as Back 

Propagation Neural Networks (R. Sen et al., 2015) have shown issues with application in 

real-world environments.  Although the researchers were able to achieve very high 

accuracy rates with respect to the synthetic KDD data set, their system was suitable only 

for batch processing, and they admitted that substantial additional effort and modification 

would have been required to make the system ready for online operation and learning.  

Computational capability of their model was also limited by both the dimensionality of 

the feature space as well as the more advanced algorithm in use, and they were quick to 

admit that their method was not yet suitable for online use from a performance 

perspective in a production-scale network. 

Bayesian classifiers (Luo, 2010) and support vector machines (Cuong & Giang, 

2012) both share some characteristics with HMMs in terms of function and operation.  

Most notably, all three approaches use the idea of discrete states with data mapping into a 

particular state based on its characteristics.  However, in terms of practical application, 

both have some design differences which make them less applicable to this research.  

Naïve Bayesian classifiers are, by their nature, unable to learn interactions between 

features, a key shortcoming in intrusion detection as varying combinations of features 

will often indicate different results, and a fact noted in changing datasets seen by 

Swarnkar and Hubballi (2016).  Additionally, both Bayesian classifiers and support 

vector machines lack the concept of probabilistic transitions between states, instead, 

opting to represent states as chains of conditional probability or in N-dimensional 
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hyperplanes, respectively.  While both approaches are viable and useful in particular 

concepts, the probabilistic transition matrix inherent in an HMM more directly lends 

itself to feeding a confidence-level calculation, which is critical to the success of this 

work. 

HMMs and Multi-Stage Attack Detection 

One of the early attempts to apply machine learning to detect multi-stage attacks 

using HMMs was documented by Ourston et al. (2003).  They proposed the design and 

application of an HMM to make determinations about potential attacks in progress, 

defending the selection of an HMM over various other available models.  Specifically, 

they suggested design of an HMM implies that each step’s probability is independent of 

the previous step that led to it.  This independence of each step allows a rather accurate 

modeling of a scenario common in the intrusion detection space whereby a particular 

resultant state could be reached by several different paths, and the path which led to the 

current state may not be directly relevant to the prediction being made.   

Another approach for correlating multi-stage attacks was the attack graph 

approach addressed in research by Wang, Liu, and Jajodia (2006).  This research 

attempted to address the problem that many correlation methods use which relies on an 

in-memory index of known recent alerts.  Because of the problem of finite memory, the 

index was typically based on a sliding window, resulting in particular difficulty 

performing a match when an attacker either by chance or intentionally spread their attack 

phases over a period of time.  The method proposed used an attack queue graph approach 

to selectively search for and retrieve only the most recent relevant alert when attempting 

correlation, an optimization that the researchers noted provided significant improvements 
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in ability to process alerts in real time as well as the ability to match alerts in a live 

system.  However, the limitation of the processing to those alerts that are both “recent” 

and “relevant” could mean that alerts which were relevant for correlation are not 

included. 

An extension of the attack graph applications called causal event graphs was the 

focus of research by Pan, Morris, Adhikari, and Madani (2013).  In their work, they 

applied the concept of attack graphs linked via Bayesian network-styled relationships.  

This extension gave them the capability of modeling cause-and-effect probabilities on top 

of standard attack graphs, enabling the system to learn more complex relationships and 

expose that expertise in its attack classification.  However, the attack graph and causal 

event graph methods were both generally used for producing appropriate signatures for 

diagnosis of attacks, and neither approach provides the confidence level capabilities 

sought by the current research. 

HMMs and “Silent” Attacks 

Khanna and Liu (2006) proposed a system for dealing with attacks which are 

considered “silent,” that is, that they operate under the configured thresholds for detection 

of deviant behavior either because of extremely conservative attack configuration or 

insider knowledge of the values that would raise an alarm.  These silent attacks are a 

frequent cause of false negative error in intrusion detection systems.  The system 

proposed by the researchers included a Gaussian model used to describe observations on 

likely attacks which then fed an HMM engine with a hidden state used to predict whether 

an attack is in progress.   
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Although the specific application proposed was in mobile ad hoc networks, the 

work was significant because it described an intrusion engine which includes both a 

standard HMM engine as well as a feedback component.  The inclusion of a feedback 

mechanism allowed the system to adjust in real-time to behavior changes which are part 

of normal network operation.  Nonetheless, the researchers also pointed out that the 

proposed use of the HMM model contains a serious limitation in its design: the nature of 

the model means intrusion state cannot be inferred from reviewing specific inputs or with 

regards to certain targets, thus an attack in progress is quantified through only a statistical 

probability with no supporting information that would be useful to responders. 

HMMs and Attack Prediction    

Research by D. Ariu et al. (2011) also investigated the use of Hidden Markov 

Models in attack prediction, specifically as applied to HTTP traffic.  They found the 

HMM algorithm was able to demonstrate better performance than previous attempts by 

specifically including packet payload in the modeling rather than just trying to make a 

determination based on packet metadata.  Further, the system also demonstrated an 

enhanced level of accuracy obtained using multiple classifier functions within the system. 

Finally, the researchers proposed an algorithm for composition of results from multiple 

classifiers. This approach led to a net decrease in the computational cost of the algorithm, 

because efficiencies were gained by selectively excluding certain classifiers based on 

values obtained for others that had already been executed. 

HMMs and Attacker Behavior Analysis 

Katipally et al. (2011) sought to build on successes with previous models of 

attacker behavior by outlining a generic system using Hidden Markov Models to analyze 

and predict attacker behavior based on alerts generated by a Snort IDS system.  One of 
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the inputs for their HMM was a human expert opinion of the attacker type and intention 

based on analysis of the full attack stream.  Based on the results described in their 

research, this input value appears to be very meaningful in predicting the behavior of an 

attacker while an attack is in progress.  Specifically, attacker types were broken into one 

of eight groups.  The groups generally also fell into two categories. The first was 

attackers who were generally in pursuit of money or other resources, which included 

criminal groups seeking to attack a system for direct monetary gain, phishers seeking to 

steal identities or information, spyware/malware authors intending to produce and 

distribute harmful code, and bot-net operators compromising and controlling networks of 

systems for the purposes of executing attacks that require a critical mass of resources to 

be effective (phishing, denial of service, etc.).  The second category was those who were 

focused on power or notoriety, including insiders representing disgruntled employees, 

terrorists aiming to incapacitate or manipulate critical infrastructure in order to cause 

casualties or damage public confidence, hackers breaking into networks for the challenge, 

and nations acting on information-gathering or espionage grounds. 

In the work by Katipally et al. (2011), each attack stream was reviewed by the 

human expert and associated with the actions likely to be taken by each type of attacker 

in an attack situation.  The researchers acknowledged that the use of a human expert 

represented a weak point in their approach, as the model relied on human input for 

classification in a key parameter.  Although this is certainly feasible in back-testing 

scenarios, it would be impossible to do accurately and completely in real-time, thus 

depriving the HMM of a key input variable.   
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HMMs and Botnet Traffic 

Another use of HMMs in intrusion detection was attempted by Lu and Brooks 

(2011).  Their work focused on the application of HMMs to detect and distinguish botnet 

traffic in a network.  Specifically, the HMM produced as part of their research focused on 

the relationships between packet timings in botnet command and control traffic to 

identify traffic that was related to a common botnet, Zeus.  Packet timings were selected 

for the focus of the work because they are readily identified and quantified without 

reverse engineering malware or decrypting traffic.  A typical HMM relies on a priori 

knowledge of the structure of the model in order to make predictions, that is, the 

relationships between the states must be fully known, and the probabilities of transition 

between states is then inferred.  The work by Lu and Brooks (2011) used a modified 

version of an HMM which created both the states and transition structure from a set of 

sample data with no prior knowledge of the states and relationships (Shalizi & 

Crutchfield, 2001; Shalizi & Shalizi, 2004).  The ability to build an HMM based on the 

dataset with no prior knowledge was critical for the system described in this report, as the 

necessary states and relationships between the visibility of one or more fragments and the 

presence of a larger attack are not well understood and may even be different for different 

classes of attacks.  Another key contribution made by Lu and Brooks (2011) was the 

application of confidence intervals based on receiver operating characteristic (ROC) 

curves such as those described by Brooks, Schwier, and Griffin (2009) to determine 

which of a series of generated HMM models represents the best trade-off between true 

positives and false positives.  A version of this model was used for comparison in the 

research described in this work, as it helped address a number of the classical HMM 

problems documented by Rabiner (1989) and referenced above. 
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Exploration of Enhancements to HMMs 

In addition to the above-referenced applications of HMM technology to intrusion 

detection, some non-HMM work related to multi-stage attack detection has offered key 

insight into potential improvements to standard HMM models.  One such significant 

contribution in the area of multi-stage attack detection was made by Alserhani et al. 

(2010), who identified a number of issues facing modern approaches to detecting multi-

stage attacks.  Consistent with Ning and Xu (2004), they observed most existing methods 

relied on either rule-based methods, likely to miss new attacks because of the lack of 

defined rules, or statistical methods that related stages based on probability without a 

cause and effect component.  Their research described a statistical model which added an 

explicit cause and effect relationship model, allowing for the viewing of attack stages as a 

“waterfall” of sorts where the visibility of early stages contribute to the expectation of 

and correlation with later stages of the attack.   

Ultimately, the proposed model of Alserhani et al. (2010) achieved detection rates 

marginally higher than existing methods, but it substantially reduced the number of false 

positives that were present in the alert stream.  Although their work still relied on 

visibility of a substantial portion of the attack for alerting, the addition of cause-and-

effect relationships represents an important idea for the research documented in this 

work.  The idea of causality would likely be a major factor in predicting the likelihood 

that a given fragment of traffic is part of a larger attack, and the approach they 

documented appears to be viable for use with HMMs. 

Other attempts have been made to leverage the research on multi-stage attacks 

and the relationships between the various stages to provide general predictions about 
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attacks which may be seen in the environment.  One such approach used general history 

to build a graph of related attacks and leveraged that graph to make forward predictions 

on the upcoming attacks based directly on previous attacks (Cipriano, Zand, 

Houmansadr, Kruegel, & Vigna, 2011).  Their approach used a two phase approach.  

Phase one focused on building a table based on a series of Snort (Roesch, 1999) alerts 

based on four attributes within the alert, the attack type, the source address, the 

destination address, and the time the alert was received.  The system would then traverse 

the alert list with a sliding time window to match alerts into a set of attack sessions, 

defined as attacks that met one of three criteria: same destination address, same source 

address, or source address for the alert is the same as the destination address for an alert 

already received within the window. 

After performing the data extraction process, the Nexat system created a hash 

table which was then fed to an HMM for training.  The algorithm had the advantage of 

pre-associating the alerts before they were provided to the HMM, which substantially 

reduced the training time needed since the HMM’s only focus was to learn the 

relationship between a small subset of alerts rather than the entirety of the traffic set.  The 

HMM is effectively being taught in this case not to recognize an attack, that task was left 

to Snort, but just to learn the pattern of attacks that have actually occurred so that they 

can be recognized in the future.  This approach was able to achieve a high prediction 

accuracy for an attack coming, but had a relatively low rate of accuracy on predicting the 

specific attack which was to occur, which limits its utility for security personnel 

responding to an attack.  Additionally, because it was built on Snort as an alert provider, it 
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was not able to locate or predict never-before-seen attacks in a stream (Cipriano et al., 

2011). 

Neural Networks and Confidence Levels 

Neural networks have been used with some success to perform attack 

identification and classification (Elfeshawy & Faragallah, 2013; Staudemeyer & Omlin, 

2013).  While they have been very successful with certain classes of attacks, Staudemeyer 

and Omlin (2013) do point out specific shortcomings with accurately identifying remote-

to-local and user-to-root attacks.  Specifically, neural networks are well suited to events 

which exist in a single view of the data, in this case, a specific packet.  Attacks which 

occur over a range of packets and which cannot be reassembled directly based on the 

protocol in use are much harder to locate as neural networks do not maintain state 

effectively.  However, this research did apply neural networks in byte occurrences within 

a particular HTTP stream very effectively, with the end result being very high relative 

classification rates as part of the overall meta-analyzer in certain types of attacks.  Even 

more important for this research, neural networks also excel at consolidating different 

input sources and determining proper weighting, and a neural network was ultimately 

selected for the meta-analyzer layer described below due to both its effectiveness and its 

portability. 

Feature Selection  

A discussion of IDS and machine learning technologies would be incomplete 

without addressing feature selection algorithms, as the features selected for system 

learning are integral to a system’s ability to accurately predict an outcome (Azzouzi & 

Kadiri, 2015).  Specifically, Sommer and Paxson (2010) observed that the features 



  39 
 

 
 

selected for a given type of event would even likely differ based on an understanding of 

the machine learning algorithm in use.  Below, this work outlines specific research on the 

evaluation of the suitability of feature selection methods for IDS, as well as specific 

feature selection methods which have been used in the context of IDS and observations 

from their use.  

Suitability of Feature Selection Methods for IDS Application 

There are several well-documented ideas on the suitability of a given feature for 

use in intrusion detection technology.  Wressnegger, Schwenk, Arp, and Rieck (2013) 

presented three such ideas in the context of the use of n-grams in anomaly-based 

intrusion detection, but the suitability criteria they developed are relevant to other models 

as well.  The first idea put forth by Wressnegger et al. (2013) was that of perturbation, or 

the expected percentage of benign packets which were not part of the data available for 

training.  A high perturbation value implies that many new values are being seen which 

should be identified as benign but were not seen or classified during training.  The 

presence of new values is virtually a given in a network environment, and so the feature 

method must be capable of adapting the feature space in real time and adjusting the 

system training appropriately. 

The second idea described by the researchers was density, or the ratio of unique 

packet contents to the total number of possible contents available in the underlying 

alphabet which defines the packet structure.  Higher density implies that the feature space 

is more crowded, and can lead to difficulty correctly classifying items (Torrano-Gimenez, 

Nguyen, Alvarez, & Franke, 2015).  In some cases, it may be necessary to arbitrarily 

stretch the feature space in order to reduce density.  In these cases, logarithmic functions 
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may be useful in the comparison process as they can allow scaling of values over a 

stretched space.  In general, a discretization function should take into account density, 

and optimally, features which represent benign behavior should be distanced from those 

representing malicious behavior as far as possible to optimize training time.   

The third criterion for suitability as a defining feature is variability, or the overall 

entropy of the data set compared to the maximum possible entropy of the underlying 

alphabet.  Higher variability implies higher randomness in packet contents, and portends 

difficulty in classification due to the inherent variability of the feature.  Additionally, it 

has been observed in several cases that the growing prevalence of “dev ops,” where 

developers are able to make key operational decisions around selecting and deploying the 

application stack, has led to substantial growth in the variability of common protocols 

(Ahmadi, Biggio, Arzt, Ariu, & Giacinto, 2016; Mehetrey, Shahriari, & Moh, 2016).  

Optimally for the purposes of the research described in this work, all three criteria should 

be minimized by the discretization methods in use for each feature. 

Clustering Approaches to Feature Selection 

One approach to feature selection layered fuzzy C-means clustering with neural 

networks and support vector machines to select optimal features at each layer for 

classification of network traffic (Chandrashekar & Raghuveer, 2012).  Fuzzy C-means 

clustering was used because the method generally achieves better results than other 

clustering methods because of its inherent ability to allow data to be assigned to more 

than one cluster.  Specific research on clustering techniques and their use in feature 

selection for intrusion detection has evaluated fuzzy c-means, k-means, and hierarchical 

clustering.  The ability of the fuzzy c-means approach to allow a single feature to be 
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selected for more than one cluster enables much more flexibility and better modeling of 

complex relationships between different network packets (Nadiammai & Hemalatha, 

2012).  Specifically, clustering algorithms are generally considered a good fit for feature 

selection as they are specifically designed for learning and quantifying the relationships 

between different data values.  Once the clusters were formed, neural networks are 

trained based on each of the clusters, with each cluster being assigned its own network 

(Chandrashekar & Raghuveer, 2012).  This process allows each network to learn the 

specific subset of relevant data, and the results are then fed into a support vector machine 

for ultimate classification of packets.  Although the research used a support vector 

machine rather than an HMM, the two approaches are similar in their requirements, and 

thus, the approach to feature selection and pruning is likely viable for HMM based 

approaches as well as long as the HMM model is capable of self-generation of states and 

transitions (Shalizi & Shalizi, 2004).   

Bayesian Probability in Feature Selection 

Another, rather different, approach to feature selection was documented by 

Sharma and Mukherjee (2012) in their work on naïve Bayes classifiers used for intrusion 

detection.  The researchers’ total population of possible features included 41 different 

data points, but they created a separate classifier for each of the types of attacks their 

system was intended to detect.  The classifiers’ categories included denial-of-service, 

probe attacks, user-to-root, and remote-to-local.  For each of the distinct category 

classifiers, the researchers applied domain knowledge coupled with a sequential search of 

the feature set, removing one feature at a time until the accuracy dropped below a given 

required minimum threshold.   
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Once the subset of features was determined for each category, the classifier for 

that category was trained to specifically detect attacks of that kind using the features that 

were determined to be relevant (Sharma & Mukherjee, 2012).  This split-model approach 

where the classifiers were separated by category allowed each category’s model to be 

tuned more specifically than a classical single model approach would typically allow.  

Ultimately, this led to better recall than non-split layered models achieved using the same 

dataset and criteria.   

Two particular contributions of note were made in the work by Sharma and 

Mukherjee (2012).  First, the researchers documented the observation that there are 

drastic differences in the frequency of different classes of attacks and their hypothesis 

that those differences contribute to the difficulty with precision and recall typically faced 

by intrusion detection systems.  Second, the approach of using different classifiers for 

different types of attacks appears to offer some viable improvements, and since the naïve 

Bayes approach is closely related to HMMs in structure and functionality, a similar 

approach may prove to be useful for the research proposed in this work. 

Evolutionary Algorithms and Feature Selection 

Evolutionary algorithms have also been evaluated for their use in optimizing 

feature selection.  Zaman et al. (2013) tested several evolutionary algorithms including 

binary particle swarm optimization and different evolution to determine which algorithms 

yielded the best trade-off between number of features (which directly drives state space) 

and accuracy of the results.  Each of the evolutionary algorithms were then applied using 

both a neural network and a support vector machine to see which algorithm consistently 

produced the best and most concise set of features.  Using different evolution, the total 
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number of features selected was cut by 68% on average across their experiments, 

providing a substantial reduction in the overall state space which must be maintained by 

the machine learning algorithm used for classification. 

Another proposed approach to feature selection for intrusion detection applied 

genetic algorithms to select a subset of a population of 41 features in the KDD Cup ’99 

dataset as relevant for training a support vector machine (SVM) to perform intrusion 

detection (Saha, Sairam, Yadav, & Ekbal, 2012).  For each generation created, the fitness 

of each combination of classifiers was calculated based on the error rate of the SVM run 

against the test data set.  The best performers were more likely to be maintained in each 

generation, crossovers and mutations were performed, and the next generation was 

formed and evaluated.  The process iterates for a defined number of generations, at which 

point the best found combination is used going forward to train the SVM for continued 

operation.  Use of the genetic algorithm iteration for feature selection reduced the error 

rate from 22% to 13%, once again showing that iterative machine learning models were 

capable of improving the feature selection process and achieving a good combination of 

features for performing intrusion detection. 

Y. Zhang and Rockett (2009) demonstrated an approach to feature selection based 

on multi-objective genetic programming (MMOGP) which included a mechanism for 

evolving both a feature extraction and feature selection that represents a good fit for the 

problem at hand.  The work on MMOGP compared it with a variety of other classifier 

algorithms including several that are frequently used in intrusion detection.  In many 

cases, MMOGP demonstrated an improvement over the other algorithms on common 

classification problems, and in no case was it worse than any of the other options.  The 
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algorithm performed at least as well as every other algorithm it was compared to 

primarily because it essentially evolves a good method specifically for the problem to 

which it is being applied.  This makes it extremely powerful, as it can be used to re-

evolve the relevant feature set as the threat landscape changes.  Additionally, the multi-

objective design allows the introduction of arbitrary objectives beyond simple fitness 

relevant to the specific application such as reducing complexity in systems where 

computational resources are a primary limitation, which is often the case in IDS 

applications. 

Approaches to Prioritizing Intrusion Detection Output 

On the Accuracy of Intrusion Detection Output 

Before one can focus on prioritizing output of an IDS, one must first be concerned 

about the overall accuracy of the alerts the system is producing.  One of the most 

significant problems in intrusion detection is determining an objective method of 

measuring the ability of a given system to correctly classify events as either normal 

traffic or attack traffic.  Although various methods have been proposed and used, it is 

difficult for any one approach to fully capture all relevant information with respect to the 

accuracy of an alert stream.  Largely this problem is structural within the field of 

intrusion detection – the volume of traffic in most production systems and the ever 

changing nature of network traffic both contribute to the complexity of accurately 

classifying traffic.  To combat this issue, various specialized metrics have been 

introduced with the goal of quantifying the accuracy of alerts generated by a given 

system.   
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One such specialized metric was described by Gu, Fogla, Dagon, Lee, and Skoric 

(2006) in their work on the Intrusion Detection Capability (“CID”) metric.  The CID 

metric is described as an application of information theory that applies a joint probability 

mass function to quantify mutual information and compare that to overall entropy in the 

dataset.  The result is a metric which is capable of capturing all of the primary metrics 

generally used in the measurement of an IDS: true positive rate, false positive rate, 

positive predictive value, negative predictive value, and base intrusion rate.  However, 

the CID metric is useful only at the level of measuring the overall quality of IDS output.   

As such, it can answer the question of whether a particular IDS performs better 

generally (though not necessarily for a given environment) than another, but it offers an 

analyst tasked with reviewing output from the IDS no additional information in terms of 

prioritization of alerts for response.  Although such a metric may be suitable for IDS 

comparison and tuning, the aggregate approach necessarily falls short in addressing the 

goals of the research proposed in this work.  The major limitation is that the results of the 

metric are only available in retrospect, that is, the results of the classification can be 

compared against the known classifications to determine to what extent the algorithm 

produced the correct classifications, but the metric offers no indication of how accurate a 

forthcoming prediction is expected to be.   

Recent work on summarizing the common methods of evaluating intrusion 

detection output has indeed underscored the myopic nature of reviewing intrusion 

detection performance.  In their summary work on the evaluation of intrusion detection 

systems, Milenkoski et al. (2015) are able to summarize the aspects of the metrics that are 

reported in to two categories, those related to security and those related to performance.  
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According to the researchers, the security metrics used to evaluate intrusion detection 

systems can essentially be summarized in to three categories: attack detection accuracy, 

attack coverage, and resistance to evasion techniques.   

Amongst that group, research from Sommer and Paxson (2010) shows that the 

general focus is on detection accuracy and coverage, as practical applications in most 

environments are not concerned with specific efforts to exploit IDS edge cases for 

evasion.  Although all three of those metrics are important to some extent, there is a clear 

lack of metrics related to the ability of an IDS to predict the accuracy of its own output.  

Review of the metrics they classified as performance-related metrics shows that nothing 

in that space would indicate the general use of predicted-accuracy metrics either 

(Milenkoski et al., 2015). 

Rather than a system or metric that is only calculable and relevant in retrospect, it 

seems desirable to be able to include as an explicit output a value which represents the 

level of confidence that should be place in the prediction being made.  The ability to 

make a skill estimate with respect to a prediction would be useful for analysts who are 

tasked with following up on alerts which are the result of a prediction.  A similar situation 

regarding retrospective accuracy calculations existed in the field of weather modeling and 

forecasting approximately thirty years ago, and the inability to make skill predictions in 

that field led to significant work in the field of uncertainty modeling. 

Uncertainty Modeling 

The specific exercise of quantifying and characterizing uncertainties arising from 

the imprecise modeling of systems is known as uncertainty modeling.  One of the 

primary use cases of uncertainty modeling is seen in weather forecasting.  Although 
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forecast uncertainty output is not directly reported, the presence and degree of uncertainty 

is certainly represented through the percentages generally associated with particular 

events (i.e. a 70% chance of rain on a given day or within a given time window), and thus 

the creation of systems which can quantify the uncertainty effectively is important within 

the domain.  Uncertainty related to predictability of forecasts primarily arises out of two 

specific components of the forecast: the initial conditions and the model formulation 

(Palmer, 2000).   

Uncertainty with respect to the initial conditions generally does not arise out of an 

inability to know absolutely what the conditions are, but instead, it generally arises out of 

scarcity of resources necessary to fully determine the initial conditions (Z. Zhang & 

Krishnamurti, 1997).  Take for example, a forecast with respect to the continental United 

States.  Although the initial conditions are generally known from a variety of weather 

reporting stations and technologies, knowledge of the specific conditions at a given 

location are generally a function of the location’s distance from the nearest active 

reporting station and may also be affected by the quality of the equipment at the reporting 

station (Palmer, 2000; Rabier, Klinker, Courtier, & Hollingsworth, 1996).   

Uncertainty with respect to the model formulation is another significant issue.  

Since models are generally built based on historical data (Z. Zhang & Krishnamurti, 

1997), they are, by definition, limited in design only to the best available information 

with respect to prior events.  In recent years, the quality of measurement has been 

generally high, allowing models to be very tightly fit to actual events.  However, weather 

patterns generally follow a much longer horizon than a few years, and the ability to 

obtain accurate data about weather system movement and activity for time periods is 
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generally lower as a model attempts to work backwards in time (Palmer, 2000).  

Additionally, weather models are also limited to basis in previously seen events, and may 

not be able to reflect weather patterns which are new to an area or which are the result of 

new or expanded outside forces impacting the climate.  An extreme example of such an 

impact is discussed in work by Lelieveld, Kunkel, and Lawrence (2012) where there is an 

attempt to quantify some of the potential impacts of a nuclear reactor accident on weather 

patterns and the overall climate.  Ultimately, they reach the conclusion that while some 

impact may be determinable, largely the full impact is beyond the scope of any 

reasonable ability to model. 

The issues with precise determination of initial conditions are also present in the 

field of intrusion detection.  As an example, consider a network which has existed prior to 

the introduction of an intrusion detection system.  It is certainly possible that even at the 

outset of the IDS operation, the network already contains one or more systems infected 

by a malicious agent.  Even if the resources were committed to perform an exhaustive 

scan of the environment, there exists the possibility that an undetectable piece of malware 

exists that is operating and is not located by a scan.  Additionally, it is common for 

production networks to have remote portions which are not covered by the same volume 

or quality of traffic sensors as the “core” network.  In these areas, like in outlying rural 

areas in the weather analogy, it is difficult to determine precise details of the nature of the 

traffic. 

Similarly, the issues with model formulation also have striking similarities with 

challenges within the field of intrusion detection.  Although intrusion detection benefits 

from being able to capture a much higher percentage of the history of internet traffic in its 
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models (due primarily to the relative youth of the Internet), there are still significant 

resource limitations to being able to process that volume of traffic.  Indeed, the amount of 

concern around performance of IDS systems in research (Ahmad et al., 2014; Sekar et al., 

1999; Staudemeyer & Omlin, 2013) implies that it is unlikely that a given IDS could 

benefit from a complete history of internet traffic even if it were available, as the 

resources required to process that traffic meaningfully would be the limiting factor.  

Additionally, there are significant additional challenges within intrusion detection around 

never before seen traffic.  While weather patterns generally repeat and tend to change 

over longer periods of time, the introduction of a new service or protocol can change the 

landscape of a particular network rapidly.  Indeed G. Kim, Lee, and Kim (2014) observed 

that in active environments such changes might occur several times per year.  While 

significant weather-impacting events such as nuclear reactor accidents are a rarity, 

significant network impacting events are a rather common occurrence in the information 

age.  Furthermore, as is the case in weather modeling, the dimensionality of the inputs 

tends to be very high, further complicating the creation of meaningful models that are 

capable of outputting accurate and precise predictions. 

In the field of weather forecasting, it is generally agreed that the ability to 

generate predictions is of very little use without the ability to supply some information 

with respect to the accuracy of those forecasts (Tennekes, 1992).  Indeed, this agreement 

was formalized into the slogan “No forecast is complete without a forecast of forecast 

skill” by Tennekes, Baede, and Opsteegh (1986).  To that end, Tennekes et al. (1986) 

proposed that “predictability”, in this case referring to the ability to quantify the likely 

accuracy of the prediction being made, should be treated as a variable that is calculated in 
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similar fashion and with the same level of rigor and support as the forecast itself.  For the 

purposes of this work, the term used to capture this same meaning will be “defined 

predictability.” Prior to agreement on this point within the field of forecasting, forecast 

error was tracked in terms of global error and the error statistics were compiled only after 

the fact to determine how accurate a given model had been.  The researchers contended 

that, though the historical error data on accuracy of a model was useful, calculating error 

only in retrospect failed to provide useful and important data for those responsible with 

using the forecast.  Indeed, a similar situation exists in intrusion detection, where the vast 

majority of systems have generally focused on the grading of performance merely on 

statistics regarding the determined accuracy of alerts that were previously made. 

Forecasting and Defined Predictability 

In order to better understand the case for the importance of predictability in 

intrusion detection, it is helpful to explore the precursors to the case for defined 

predictability within the field of weather forecasting.  First, and perhaps most significant, 

Tennekes et al. (1986) posited that the lack of defined predictability from weather 

forecasts was a question of credibility.  With such significant investments in technology 

and expertise for the time, the frequency at which a predicted weather forecast was 

incorrect presented a challenge to forecasters’ professional reputations and credibility.  

The spirit of concern over this was captured in the question: “Do we really want the 

public to become as cynical about weather forecasts as many of us are about economic 

forecasts?” (Tennekes et al., 1986)   Indeed, a similar situation could be said to exist with 

respect to intrusion detection capabilities today.  Existing intrusion detection technologies 

do not typically quantify confidence levels for their alerts, leaving practitioners to decide 

based on their own experience and expertise whether a particular alert deserves to be 
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pursued (Milenkoski et al., 2015).  Furthermore, because so many commercial systems 

operate in this way, it has essentially become the de-facto normal course of operation for 

intrusion detection technology, and little more is typically expected of intrusion detection 

systems.  This focus has also resulted in a “limit approaching zero” situation where 

fractional increases in the percentage of accuracy of predictions is considered a success, 

regardless of whether those changes practically improve the ability of an operator to 

respond to the alerts in question. 

In addition to the general problem of credibility and confidence, Tennekes et al. 

(1986) also made the case that, though defined predictability metrics were not commonly 

reported, many forecasters were willing to privately share their assessment of the 

accuracy of a given forecast based on the specific weather conditions and their own 

experiences.  In a number of situations where organizations needed to make decisions 

based on the forecasts, assessments on the accuracy of the forecasts would be solicited, 

and at least in terms of common experiences shared by the researchers, the estimates 

made by knowledgeable individuals seemed to generally be correct.   Although the 

researchers admitted this was certainly not scientific evidence that skill predictions could 

be made accurately, the subjective assessments and the reasoning behind those 

assessments pointed to the existence of a theoretical foundation on which defined 

predictability could be reasonably based and studied.  The estimated produced by defined 

predictability, they asserted, were intrinsically valuable to the users of the forecasts, and 

thus further research and study was both justified and needed to codify and hold 

accountable the process by which those statistics were created (Tennekes, 1992). 
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Their work went on to present the first of a number of methodologies designed to 

specifically quantify the “skill” of a given forecast, essentially a measure of how accurate 

the forecast was expected to be.  The model presented was built on a rather simple core 

idea which they believed to be the basis of most of the informal assessments that 

researchers gave, namely, that the accuracy of the output of a model produced on a given 

day, was a function of how significant that model differed from the one produced by the 

same system in the previous time period (in their case, the one from the previous day).  

Essentially, a model which made a prediction for a day which was largely consistent with 

the previous day’s prediction was believed to be more accurate, while one that diverged 

from the previous prediction was suspect to some extent, with the extent of suspicion 

directly related to the extent of the divergence (Tennekes et al., 1986).   

Of particular importance to this method is the need for the models to be 

forecasting in the same or a comparable output space.  Comparing the differences in the 

output is only relevant if the output can be made to be comparable.  As an example, a 

model which primarily predicted the presence of precipitation would not be directly 

comparable to a model that primarily predicted temperature, though the two are most 

certainly related.  This comparability was guaranteed in the initial implementation 

because the same model was being compared across two different time periods, but this 

must be taken into account in any comparisons where different models are being used to 

accomplish a similar prediction (Tennekes et al., 1986). 

One particular caveat related to predictability came in the form of the assertion 

that predictability is not a global concern, but rather should be considered a local 

variable, where the locality is defined as the area of interest.  The primary reason for this 
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is that the accuracy of a forecast for an area is the function of a number of variables that 

are themselves local in nature such as specific blocking situations such as high pressure 

air masses.  This caveat has proven important to the field of intrusion detection as well, 

since it is analogous to conditions which may be specific to a given network but may not 

exist on the internet as a whole (Mitchell & Chen, 2014).  Indeed, in virtually all cases a 

specific network may have contributing or blocking factors with respect to a particular 

attack vector.  Although it may be difficult to enumerate all of those factors individually, 

a recognition of the existence of those factors must be considered if an accurate skill 

prediction is going to be made.  In the context of intrusion detection, this means that the 

level of difference considered between the models must be tunable by the system to 

ensure an appropriate level of sensitivity given the number of hosts and services as well 

as other network conditions. 

Although the application of this idea is somewhat relevant in the field of intrusion 

detection, two primary issues must be dealt with to apply the idea directly.  First, network 

environments generally change very quickly as compared to the changes seen in weather 

patterns, and thus any comparisons between one time period and the next must 

necessarily be much shorter than the twenty-four hour period which is commonly used in 

weather forecasting.  In addition to the challenge presented by the speed of change, the 

scale of change is also a significant problem.  While individual instantaneous events that 

impact weather models significantly by introducing new facts or information are 

generally very few and far between (Lelieveld et al., 2012; Z. Zhang & Krishnamurti, 

1997), the network environment has ports, protocols, and systems coming and going from 

a particular environment almost constantly.  It could be said that though the scope of the 
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entire universe of networking changes may not shift quickly, the scope that is relevant to 

a particular network may shift multiple times per day (S. Sen, 2014).  As such, while a 

twenty-four hour window was a good initial value with respect to the ensemble 

comparisons that (Tennekes et al., 1986) attempted, a much lower value is likely needed 

in intrusion detection.  In networks with a high volume of changes, it may be better to 

exclude time based comparisons completely and instead focus on comparisons between 

various models. 

Another aspect of defined predictability that should be visited is the problem of 

infinite regression with respect to the predictability model.  Popper (1988) claims that if 

an event is predictable, it must, by definition, be predictable to any arbitrary degree of 

precision provided that the predictive model is sufficiently detailed and the initial 

conditions are precisely known.  Any failure to make a correct prediction, therefore, 

should be quantifiable in advance based on known and demonstrable gaps in either the 

quality of the model or the precision of the initial condition data.  However, out of this 

principle, and issue arises.  If a researcher must be able to quantify the extent to which 

the prediction is suspect, he or she must have a model for that quantification.  This model 

must take into account not only the quality of the model itself, but the uncertainty 

contributed by imprecision in the initial conditions.  Thus the model that determines the 

skill prediction is unlikely to be any better than the original predicting model, and in all 

but the best case, will likely be worse (Tennekes, 1992).  Popper (1988) posits that this 

requirement for accountability within the model will then continually call for levels of 

regression which quickly become unreasonable when faced with a complex system.  The 

resulting conclusion of Tennekes (1992) is that our expectations of the precision of the 
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skill forecast (that is, the second-order prediction made regarding the accuracy of the 

first-order prediction) should be tempered in light of the complexity of the system being 

modeled. 

It is also worth noting that one need look no further than any modern forecast to 

see the ideas around the relevance and importance of defined predictability presented by 

Tennekes et al. (1986) are now a foregone conclusion in the field of weather forecasting.  

Indeed, there is significant recent work which is built upon the supposition that the ability 

to forecast the skill of a given forecast is important (Fortnow & Vohra, 2008; Grover, 

Kapoor, & Horvitz, 2015; Leutbecher & Palmer, 2008 ; Zarnani & Musilek, 2013).  Later 

work has extended on the comparison between forecasts over a time period primarily 

through the introduction of same-period ensemble forecasts.  In the ensemble forecast 

approach, a number of models are used to generate predictions regarding the forecasts, 

and the predictability metric is then calculated based on the level of divergence seen 

amongst the different models in both the current time period and the previous time 

periods, a value known as the ensemble mean (Roulston, 2005).  The use of ensemble 

models has not been limited to weather forecasting, and the specific application of 

ensemble models to machine learning has been used within intrusion detection in a 

number of cases that are discussed below. 

Ensemble Modeling in Intrusion Detection 

The concept of “ensemble” methods is not new in applications within the field of 

intrusion detection.  The earliest application of ensemble methods was demonstrated by 

Mukkamala, Janoski, and Sung (2002) in their work on the use of an ensemble IDS using 

both neural networks and support vector machines for classification.  Their work applied 
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their proposed ensemble method to the 1998 DARPA dataset.  They combined the output 

from three different types of neural networks (backpropagation, scale conjugate gradient, 

and one-step secant) with the output from a support vector machine using a formula 

which calculated the lowest absolute difference in the outputs with respect to any given 

classification.  They focused on a 5-class approach using the major categories within the 

DARPA dataset that had been previously tagged.  The ensemble method achieved higher 

classification accuracy than any of the individual classification methods because it was 

able to leverage the strengths of each method in performing the classification.  Of note, 

the improvement in some classes appeared significant, while the improvement seen in 

areas which were already strong in terms of prediction ability was substantially lower.  

The range in improvement is shown below in Table 1. 

Class 
Best Performing 

Independent Method 
Ensemble Method 

Accuracy 
Increase (Decline) 

in Accuracy 

Normal Neural - OSS - 99.64% 99.71% 0.07% 

Probe SVM - 98.57% 99.86% 1.29% 

DoS SVM - 99.11% 99.95% 0.84% 

User-to-Root 
(U2R) 

SVM - 64% 76% 12.0% 

Remote-to-
Local (R2L) 

Neural – SCG - 98.22% 99.64% 1.42% 

Table 1 – Comparison of detection rates in early ensemble approach 

The researchers did note that it was not clear if the improvement in accuracy was 

statistically significant in all cases, but they maintained that the improvements showed 

the ensemble method held promise within the intrusion detection field (Mukkamala et al., 

2002). 
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Additional use of ensemble methods were demonstrated within the sub-area of 

feature selection and reduction (Chebrolu, Abraham, & Thomas, 2004).  In their work, 

they applied both Bayesian networks as well as classification and regression trees to a 

reduced set of features within the KDD Cup ’99 data set and were able to achieve better 

results with the reduced data set than either method operating independently given a 

particular set of features.  The same group of researchers also demonstrated an end-to-end 

ensemble IDS a year later which used an ensemble approach for all aspects of the IDS 

functionality.  The more mature version of their system actually selected a specific 

classifier or the ensemble meta classifier on a per-class basis, allowing the system to 

optimize the results based on the classifiers which performed best when applied to a 

given data set (Chebrolu, Abraham, & Thomas, 2005).  Similarly, (Folino & Sabatino, 

2016) also allowed flexibility for their classification mechanism to prefer the more 

accurate classifiers on a per-protocol basis. 

The use of ensemble methods has continually grown, and with that growth, IDS 

systems have generally become more and more accurate as different machine learning 

methodologies may be better suited to addressing different classes of attacks.  Another 

variation on the concept of ensemble models has appeared in the use of distributed IDS 

systems such as the one proposed by Abraham, Jain, Thomas, and Han (2007).  Their 

work used fuzzy rule-based classifiers placed on agents across the network.  Each agent 

independently developed its own rule set in collaboration with the others, and the results 

were aggregated on a central server which assigned relevant weights to the agent output, 

provided feedback to the agent, and ultimately made classification decisions based on the 

various output values.   
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Similar concepts have been applied as well across logical layers in the creation of 

IDS systems which have visibility at the network, host, platform, and software levels and 

have support systems which reconcile and react from the data being received from all of 

the layers (Zargar et al., 2011).  Although their work was originally oriented to usage in a 

cloud computing environment, similar concepts are certainly applicable in a locally 

hosted network environment.  Of particular interest is the explicit creation of both local 

and global data sets within their proposed system.  Rather than allowing each sensor to 

collect and correlate data and then sending the output to a central server for the master 

correlation to occur only there, the central coordinator also sends back to each agent a 

current copy of the global data set to use in its local processing.  These are events which 

have been seen by other agents but which the coordinator believes are likely to be 

relevant for other agents as they make decisions about events in progress.  The controller-

agent approach was also used by Mehetrey et al. (2016), but they noted issues with 

visibility around certain attacks in the system where the data could not be consolidated in 

time to make an appropriate decision. 

However, in all of the applications of ensemble approaches for various 

components of IDS functionality, there have not been attempts to apply the ensemble 

approach explicitly to making an estimation of the skill of a given prediction related to a 

network event.  Indeed, the picture within the intrusion detection space seems to be much 

more similar to the one that existed in weather forecasting that was discussed by 

Tennekes et al. (1986).  Like weather prediction of that time, predictions in intrusion 

detection are made constantly, but the accuracy of the predictions are only generally 

reviewed and quantified in retrospect.   
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This has resulted in a similar credibility problem that modern IDS systems are 

facing today, with the result being that analysts are frequently unable to follow up on all 

the alerts being generated and have difficulty prioritizing response to the alerts being 

generated appropriately (Mitchell & Chen, 2014).  Perhaps even more problematic is that 

the credibility problem has become “baked in” to some extent in terms of the way that 

operators handle alerts being raised.  Rather than explicitly considering the likely 

accuracy of each alert based on the rules or track record of the system that generated it, 

analysts in practice tend to focus first on the alerts that would represent the most 

significant risk were they actually realized.  While this is likely to be a good approach in 

the current environment, it certainly represents an opportunity in terms the ability to 

provide more accurate estimations of how likely an alert is to be correct.  Not only would 

this help the analyst better respond, but in the long term, it would likely drive better 

intrusion detection technologies since the presence of alerts which are frequently low 

likelihood but high risk will help drive advances that will allow the likelihood to be better 

and more accurately quantified.  In the interest of addressing these challenges, this work 

below explores some approaches which have been applied to making skill predictions in 

various areas.  Although some of these are not directly relevant to intrusion detection, 

they form the foundation of a set of ideas that this work built upon for development of the 

system. 

Confidence Levels and Bayesian Probability 

Bayesian approaches to probability prediction have proven to be valuable in the 

context of intrusion detection and prioritization in a number of instances (Chen & Kim, 

2013; Sharma & Mukherjee, 2012).  Similar methods have also been used to address the 

general problem of estimating probability of a given event using a number of inputs.  
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Classic Bayesian networks are defined by a series of nodes and edges which together 

comprise a directed acyclic graphical model of a particular system (Geiger & Heckerman, 

2002).  While these models can be excellent at predicting probability in the optimal cases, 

they rely heavily on a priori knowledge of the possible states and the relationships 

between those states.  If the system lacks the appropriate knowledge or if the 

relationships change over time, Bayesian approaches can suffer significantly in their 

accuracy.  However, in the context of an ensemble system design, Bayesian approaches 

have substantial advantages as support comparisons for the defined probability since they 

are generally very efficient to calculate in real time and can scale well to high throughput 

systems (Gao, Mei, Chen, & Chen, 2014).  Additionally, Bayesian networks could be 

used as a simplifying structure for models with high output complexity to allow the 

model comparison algorithm to focus in on specific aspects of the output that are judged 

to be the most advantageous during training while still incorporating the entire output in 

the decision making process. 

Evolutions of the Bayesian network have also added the concept of dynamic 

Bayesian models, with the major advantage being that the relationships can be redefined 

over time to better model the problem (Darwiche, 2003; Wiggers, Mertens, & Rothkrantz, 

2011).  However, these still suffer from substantial learning time and the network 

structures may not change quickly enough to produce accurate results.  Additionally, use 

of these dynamic models in IDS scenarios must take care in application to ensure that a 

malicious attacker cannot intentionally create “drift” within the system by introducing 

changes over a sufficiently long time window to allow the model to adapt and avoid 

triggering an alert. 
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Another improvement on the Bayesian network is the concept of the naïve Bayes 

model.  Naïve Bayes classifiers are a special case of the Bayesian network, one that 

includes the assumption that all features are independent of each other.  Although this is a 

simplifying assumption that can reduce accuracy, a naïve Bayes classifier may even 

outperform other approaches if the available training data is sufficient.  Lowd and 

Domingos (2005) demonstrated that the naïve Bayes model was capable of achieving 

accuracy comparable with the classic Bayesian network, but that those results were 

achieved in a fraction of the time, making the naïve Bayes model a better fit for real-time 

uses such as intrusion detection.  Naïve Bayes classifiers have also been improved in 

recent years by semi-naïve models, models that remove the assumption of independence 

and allow features to be conditionally related in some cases.  These relationships are 

typically limited to one or two per feature to limit complexity to less than that of the full 

Bayesian network, but they still allow some improvement to prediction accuracy while 

maintaining a significant time advantage over traditional models (Taheri, Mammadov, & 

Bagirov, 2011). 

Another relevant proposed improvement to naïve Bayes was presented by S. Sen 

(2014).  His work focused on the idea of “concept drift,” or the natural change in 

expected behavior over time.  He proposes the use of instance weighted naïve Bayes, an 

approach which has been demonstrated to significantly improve performance in instances 

where the available unlabeled data far exceeds the available labeled data (Jiang, 2012).  

In the instance weighted approach, the originally labeled data is used to classify and the 

unlabeled data, and the classifications are then used to label and weight the originally 
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unlabeled data based on the relative confidence that the new label is correct based on the 

naïve Bayes model.   

S. Sen (2014) applied this idea to the challenge of concept drift by applying lesser 

weights to newly seen behaviors but increasing those weights over time as the behavior 

becomes more frequent.  This idea holds much promise in the area of intrusion detection, 

as network traffic and applications are constantly changing and the ability to adapt to 

these changes in real time significantly increased the ability of the developed system to 

remain relevant in different traffic patterns.  Furthermore, the existence of concept drift 

underscores the need for the ability of a model to output a confidence value that reflects 

how well it believes it reflects the reality of the situation occurring within the network.  

At the very least, a network which has drifted from the assumptions made in the 

development and training of a given model should result in the model being able to 

estimate the extent of the drift and the likely impact on the reliability of the prediction.  In 

the ensemble approach, the concept of drift estimation would also be useful to baseline 

the expected amount of change versus the change actually seen and further improve the 

accuracy of the skill prediction made regarding the alert output. 

Fuzzy Set Theory and Applications in Intrusion Detection 

Fuzzy set theory has also been applied to the issue of determining the relevance 

and quality of alerts being generated from an IDS in several cases.  Fuzzy sets were first 

introduced by Zadeh (1965), and they were defined in that work as a “class of objects 

without a precisely defined criterion of membership.”  Rather than using precise criteria, 

fuzzy sets instead define a membership function which then assigns a value within a 

specified range, generally between zero and one.  The resulting output values are often 
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useful in domains in which the input information is incomplete or imprecise, as the 

output allows the determination of a degree to which an input matches rather than simply 

a binary output in which all additional data about the degree to which the match occurred 

is lost.   

In the original work, Zadeh (1965) specified that the range between zero and one, 

inclusive, with the defined function bearing responsibility for the distribution values as 

expected within the range by the particular use case.  Although there are an unlimited 

number of membership functions that could possibly be applied, generally membership 

functions are specified in terms of triangular, step, trapezoidal, or Gaussian functions.  

Use of these function types generally allow the function to be defined more concisely and 

computed more directly than more complex definitions, and they have been shown to be 

effective in handling most relevant cases that fuzzy sets are a good fit for (Zimmermann, 

2001).   

Zadeh (1965) also defined common set operations with respect to fuzzy sets, with 

the definitions of union and intersection being particularly relevant for this work.  With 

respect to union, the union U of two fuzzy sets, A and B, can be concisely defined as the 

smallest fuzzy set that contains both A and B.  The membership function of the union 

fuzzy set U can thus be defined as: 

fU (x) = Max (fA, fB) 

The intersection I of fuzzy sets A and B is defined in similar terms as the largest 

fuzzy set which is contained within both A and B.  The membership function of the 

intersecting set I is: 
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fI (x) = Min (fA, fB) 

 Many anomaly-based IDS applications implicitly apply fuzzy set theory 

towards the classification of incoming events as either normal or intrusive.  Rarely would 

a given event definitively fall into a class with no uncertainty, instead, generally an event 

is determined to be intrusive or not based on how close it is to one classification or the 

other.  As an example, in a classic DNS amplification UDP flood DoS attack, DNS 

responses coming to the targeted system are the result of spoofed requests and generally 

represent traffic that should be classified as intrusive.  However, a user actively using a 

system being attacked (or behind a network address translating-device which is the target 

of the attack) might be making DNS requests as part of the normal course of using the 

system, and the responses to those requests may be classified as intrusive because the 

anomaly system is flagging all DNS response traffic once the volume crossed a certain 

reasonable number of responses per second.   

In this case, the valid DNS response should be classified as normal, but it could 

be classified as intrusive by an over-aggressive IDS because it would match the criteria of 

the fuzzy set which defined the intrusive behavior.  However, most modern IDS systems 

would still ultimately reduce the output to a binary output, the request is either “normal” 

or “intrusive.”  The research proposed in this work would not seek to do away with that 

classification, but to more fully embrace the opportunity provided by the concept of fuzzy 

sets to output the degree to which the event is either normal or intrusive, providing the 

operator of the IDS with additional information upon which a decision can be made. 

Another such example is detection of brute force attempts amidst failed logins to 

a system (Javed & Paxson, 2013).  A single such failed login would likely not be 
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classified as intrusive, but systems generally define a fuzzy set that increases the 

likelihood of raising a brute force alert as the number of failed logins increase.  In this 

case, the use of a fuzzy membership function allowed the researchers to identify 

distributed brute force attempts by measuring the number of failed attempts against a 

specific system (or related group of systems) over a sliding window of time and defining 

the membership function in such a way that it was able to correctly classify outliers.  In 

their specific case, the researchers also parameterized the function to allow the detection 

sensitivity to be tuned to generate a volume of alerts that takes into account the amount of 

available analyst time to follow up on the events.  Although this particular capability is 

not included in the scope of the research defined here, further development of the ability 

to allow a system to flex its output to match the available time and resources of operators 

to follow up on the alerts being produced should be considered a potential area of 

improvement for future work. 

Another application of fuzzy set theory was demonstrated in work by Yu, Tsai, 

and Weigert (2008). They proposed an adaptive and automatically tuning intrusion 

system that they termed “ADAT.”  ADAT applied the SLIPPER rule learning algorithm 

(Cohen & Singer, 1999) to the KDD Cup 1999 dataset with a modification to utilize 

fuzzy set theory rather than simple rule classification.  The SLIPPER algorithm generates 

a set of rules which are then combined into a smaller set of binary classifiers, with each 

rule contributing a score to the classifier based on whether the rule matches the input 

record. 

In the case of the ADAT system, there were five binary classifiers created based 

on each of the five classes of traffic present in the KDD Cup 1999 dataset.  Each of the 
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binary classifiers were designed to output not just a binary response, but to output a 

magnitude that reflected the number of rules within the classifier that were considered a 

“match” by the event in question.  Additionally, the ADAT system was designed to be 

able to determine if an event raising the same sequence of alerts had been previously 

seen, and if it had, the resulting classification also took into account feedback on the 

accuracy of the previous predictions that had been made.  Fuzzy set theory was applied to 

determine when to keep an alert based on the current backlog of alerts and the relevance 

of the incoming alert as compared to the existing ones.  As the backlog became longer or 

the analyst processing alerts grew slower at responding, a low priority alert was less 

likely to be retained.  This ability of the alert queue to flex in real time enabled better 

response capabilities for the individuals who were tasked with following up on the alerts 

(Yu et al., 2008).  However, certain risks must be addressed in that any system built with 

such a design should be careful not to remove high-risk alerts from the stream just 

because a backlog of alerts exists. 
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Chapter 3 

Methodology 

Overview 

For the purposes of this research, the problem of creating an approach to provide 

a confidence value for a prediction was handled as a combination of both a pattern 

classification problem as well as a statistical analysis problem.  This project leveraged 

several well-known constructs, including hidden Markov models and neural networks, to 

create a system capable of producing a prediction about whether a given packet is part of 

an attack or not as well as a confidence level related to the prediction.  The system 

proposed in this research used existing state-of-the-art intrusion detection systems as a 

point of comparison where relevant, but it also proposed the confidence level extension to 

current state of the art work that presented challenges in terms of making direct 

comparison with other works in the field.  The goal of this work was not to maximize 

solely the accuracy or precision of the predictions being made; in addition to being 

correct, the system had a second goal of maximization of the accuracy of the skill 

prediction (that is, the prediction regarding the likelihood of the alert being correct). 

The researcher created a system called the Confidence Layer Introduction 

Prototype, or CLIP, as the implementation of the ideas developed in this research, then 

proceeded to test it against network traffic, including both normal traffic as well as attack 

traffic.  This approach of testing is typical in the intrusion detection space, and allows 
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ready comparison between the system produced for the current project and other state-of-

the-art systems.  For the purpose of testing accuracy, multiple datasets were utilized. 

Among those used were a dataset that has been widely used in the literature for 

comparability, along with an additional dataset used in prior research specifically in the 

area of web application intrusion detection.  One additional dataset developed by the 

author specifically for the purposes of this work was also included in the testing.   

System Architecture 

The design of the CLIP system are outlined more fully below, including the 

following: 

1. Data Input and Normalization 

2. Feature Selection 

3. Packet Processing Modules 

4. Meta-Analysis Output Module 

The system developed for this work utilizes an ensemble approach that couples 

various state-of-the-art IDSs with a purpose-built HMM-based IDS created specifically 

for this work.  The core of the system used several state-of-the-art IDS systems (termed 

“modules” for this work) described in prior research or developed for this work to 

evaluate packets as they entered the system (either in real-time or via replay).  The 

modules used by the system fell into two categories. The first category, a wrapped 

intrusion module (“WIM”), represented a state-of-the-art IDS system with classifications 

that had been converted into results that the CLIP system could use. The second category 

of modules, a native intrusion module (“NIM”), produced pipelined results in flow for 
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each packet presented.  Each module’s output was then combined in a neural network 

layer, producing both a final classification and a confidence level reflecting the predicted 

accuracy of the classification being made.  The predicted accuracy values were then 

compared with actual classifications and the system was graded on how closely the 

predicted accuracy matched the actual classification.  The system was also designed with 

feed-back improvement capability using the back-propagation capabilities of a neural 

network to tune the weightings and relevance of the input data based on the ongoing 

performance.  The basic architecture of the system is shown below in Figure 1. 

Data Input and Normalization 

The first phase of the CLIP system encompassed data input and normalization.  In 

this phase, the system read incoming packet data either from a PCap or PCapNG 

formatted capture file or directly from a network interface using the LibPcap library 

(Group, 2009).  LibPcap was selected because it was available across all relevant 

platforms and provided low level access to incoming packets on the network interface 

while maintaining good performance and binding support from higher level languages.  

Figure 1 - Basic System Design 
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The incoming packets were then parsed and relevant features were ingested into the 

system.  As designed, the system included a modular repository-based feature storage 

mechanism which enabled the system to reduce duplicate data storage.  This mechanism 

checked the value of a given feature of an incoming packet (such as the source IP 

address) and then stored only a reference to the repository-stored full IP address rather 

than storing multiple copies of all such data.  Additionally, the repository was 

implemented as a generic interface, and thus it could be backed against a high-

performance in-memory database such as Redis if required.  However, for the purposes of 

the experiments documented in this dissertation, no remote data storage was used; only 

local memory on the system processing the packets was utilized. 

Feature Selection 

In the second phase of operation, packets are parsed and a feature set is presented 

to each module of the CLIP system.  Wrapped modules always received full packet data 

for every packet that entered the system, while native modules were free to select 

relevant features from among the set available within the incoming packets.  This 

functionality was closely coupled with the previously-described input and repository 

capabilities as the system could be configured to maintain in memory only features 

relevant to the registered modules, while writing the full packet data to a file for later 

further review and/or long term storage.  The relevant features, as had been determined 

via the training process for each module, were then passed into the loaded modules, 

which were responsible for further processing.   
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The current features that are available for subscription and use by native modules 

included the raw binary representation of the packet, as well as the following pre-parsed 

elements: 

Packet / Data-
Link Layer 

Network Layer (IP) Transport Layer 
(TCP & UDP) 

Application Layer 
(HTTP) 

Packet Time IP Version TCP Source Port HTTP Host 
Packet Length IP Header TCP Destination Port HTTP Request 
 IP Flags UDP Source Port HTTP User Agent 
 IP TTL UDP Destination Port HTTP Referer 
 IP Protocol Sequence # HTTP Cookies 
 IP Checksum Acknowledgement # HTTP All Other 

Headers 
 IP Source TCP Flags HTTP Payload 
 IP Destination UDP Flags  

Table 2  - Available Packet Elements 

The NIMs produced for use in this research leveraged a large percentage of the listed 

elements, but the system is designed such that if elements are available which are not 

used, the system operator can opt for them not to be stored to reduce necessary storage 

and memory overhead.  Specific details on the features used by each module are included 

below in each module’s respective descriptions. 

Packet Processing Modules 

The third phase of the CLIP system’s operation included the execution of various 

packet processing modules responsible for producing an analysis result (“AR”) for each 

received packet or stream, depending on the configuration.  An AR was made up 

minimally of a packet number or other identifier, an analysis source defining the module 

that produced it, and a simple binary classification of either normal or attack.  

Additionally, the AR could contain a confidence value as well as a detailed classification 

of the packet in question (i.e. “injection attack” or “buffer overflow”).   
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Wrapped Intrusion Modules 

Wrapped Intrusion Modules made up a significant part of the input for the CLIP 

system.  Part of the novel contribution of this work was the creation of a wrapper capable 

of ingesting the results produced by other state-of-the-art IDS systems.  For the purposes 

of this work, the researcher used both HMMPayl (Davide Ariu, Roberto Tronci, & 

Giorgio Giacinto, 2011) and the Layered HMM Payload Anomaly Detection System 

(LHMMP) (Taub, 2013) as input systems, designing ingestion wrappers for each.   

Because neither of the aforementioned systems were designed to output a 

confidence measure, the ingestion wrapper assumed a base confidence for each prediction 

made of 100%, or 1.0.  This assumption was based on the belief that the designers of each 

of the utilized systems designed their systems to output alerts only for packets/streams 

which they believed were sufficiently likely to be attacks that a security analyst should 

act on them.  Ultimately, though, the choice of 1.0 was arbitrary, and it did not make a 

difference in the final results produced by the system as long as it was held constant for a 

given system (i.e. all alerts produced by a given system were considered to have the same 

base confidence value from the reporting system’s perspective).  Additionally, neither of 

the wrapped modules have been equipped with conversion logic necessary to produce 

detailed classification on specific attack type; thus, the ARs produced by the wrappers 

only populated the binary normal/attack classification. 

Native Intrusion Modules 

In addition to the wrapped modules, the CLIP system was designed with the 

ability to host native intrusion modules which conformed to the interface defined by the 

Meta Analysis System.  The interface contract required the module register to receive 

particular data related to the packet (up to and including full packet or reassembled 
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stream data), accept callbacks with the requested details, and return an analysis result for 

each function call.  Although the CLIP system was run on a single host, it could be 

readily decomposed and split across multiple systems if required for throughput or fault 

tolerance reasons.  For the purposes of the experiments described in this work, the 

researcher produced two NIMs.  The first was a NIM called “StreamSeq” that applied 

Hidden Markov Models as anomaly detectors to patterns within an HTTP Stream to 

locate attacks, while the second was a NIM that used Neural Networks to detect 

previously unknown HTTP-based attacks within an HTTP stream, known as 

“StreamFreq”.  Both NIMs provided good exercise of the data processing layer as they 

registered for fully reassembled HTTP streams rather than individual packets, and thus 

they were more able to identify fragmented attacks than most of the systems against 

which either was compared.  

StreamFreq NIM was specifically designed to address shortcomings noted in the 

pre-existing WIMs; it focused on the byte frequency and weighted location within the 

payload of a given packet.  Generally speaking, a number of the most critical attacks such 

as buffer overflows rely on the use (and often repetition) of special, often non-ASCII 

printable bytes for functions such as NOP sleds and handling of control flow in a 

successful attack.  Because the StreamFreq NIM was concerned about byte frequency, it 

leveraged the raw unparsed HTTP stream to directly produce its results.  Using the 

unparsed results had the added advantage of allowing the system to “see” attacks that 

were not part of a section of the packet that was being formally processed and named.  

The StreamFreq module generally operated by noting and flagging those instances as 

attacks with a high degree of confidence.  The confidence level of the prediction was 
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based on the similarity of the packets to previously-seen and correctly-flagged packets. 

Thus, lower confidence predictions (sub-50%) were produced for packets similar to 

others previously predicted incorrectly. 

After collecting the total counts for each character, the character counts are then 

fed into a vector containing 256 values (one for each possible character), and the vector is 

supplied to the neural network to use for execution.  Neural networks were selected for 

the core of the StreamFreq NIM for several reasons.  First, they have been well 

documented to perform better than most machine learning approaches in the presence of 

very high numbers of inputs, which was a requirement given the potential size of the 

input space (maximum of 256 possible inputs in ISO-8859-1 mode, or 65,536 possible 

Unicode characters per plane in Unicode mode).  Second, the multi-layer nature of neural 

networks allow the network to form conditional-like relationships between neurons 

allowing high counts of certain characters to trigger greater interest in the counts of other 

characters, a capability more linear models such as SVMs and Bayes point machines 

lack.  Furthermore, the StreamFreq implementation and the offline training capability of 

the overall system meant that the relatively longer training times of a neural network 

were not a problem for the performance of the system. 

The StreamSeq NIM was designed to identify specific patterns or sequences 

within an HTTP request that were indicative of attack traffic.  The module operated based 

on sliding windows similar to those used by HMMPayl and LHMMP.  However, unlike 

prior systems which simply used the base, StreamSeq’s expanded approach included the 

entirety of the HTTP stream, consisting of both parameter and post data, and focused on 

the unique sections of known-bad packets rather than attempting to model an entire 
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packet.  More specifically, the StreamSeq NIM operated on all the available named HTTP 

fields at the application layer, as well as iterating through the unknown header collection 

and including the full payload in the analysis.  The StreamSeq NIM works by 

reassembling the TCP stream if it is not already complete, and iterating through the 

characters of the stream in sequences of length N.  During the training process, the 

complete list of sequences is built and then de-duplicated in streams unique to the attack 

sequence.  For this reason, the StreamSeq module benefits from the largest corpus of 

unique captures in terms of requests for both the attack data and the known clean data.  

Thus, it could reasonably be expected to suffer significantly in a case where data is 

mislabeled since it would eliminate potentially valid attack patterns.  The deduplication 

process is significant because it substantially reduces the total number of sequences that 

must be included in training, making the process both faster and more accurate.   

After de-duplication, HMMs representing each attack sequence are built with 

length N matching the selected sequence length.  The Hidden Markov model was selected 

as the modeling and recognition engine because the HMM approach is well suited to 

arbitrary pattern recognition within a given range as has been demonstrated previously 

(Yolacan, Dy, & Kaeli, 2014).  Because StreamSeq’s focus is specifically on identifying 

known attack characteristics based on specific known bad sequences of input, HMMs are 

particularly well suited for the recognition process.   

The possibilities of NIMs are particularly interesting in practice because it is 

possible to leverage the confidence level to produce a tightly scoped module aimed at 

detecting a specific class of attack.  As long as the NIM reports an appropriately low 

confidence level for packets it is not designed to handle well, the meta-analysis layer will 
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adjust in order to not place any weight on those predictions.  Just as in other ensemble-

based method fields such as forecasting, the design of a particular system can be readily 

aimed at addressing a recognized shortcoming of existing models.  Indeed, the researcher 

designed the StreamFreq module after reviewing the most prevalent false positives and 

false negatives produced by the systems that were already incorporated into the CLIP 

system and noting their areas of greatest weakness. 

Meta-Analysis System 

The fourth and final phase of the CLIP system was the meta-analyzer layer.  The 

meta-analyzer accepted as input a series of analysis results from any number of systems, 

with the goal of distilling those into a single AR which could form the basis of a final 

determination.  Additionally, the meta-analyzer had access to the packet repository, 

allowing it to factor into its decision-making process the specific type of packet being 

received.  The current version of the meta-analyzer was built using a neural network that 

took up to three inputs per AR and used those to produce a final analysis result.  A neural 

network was selected for this portion of the system because of the high potential number 

of inputs and the ability of the system to utilize multiple layers to model relationships 

between the analysis results that are useful for improving the prediction. 

The neural network was designed to with an input layer, two hidden layers, and an 

output layer.  The first hidden layer was built with four neurons per input module, plus an 

additional four.  For each source reporting on a given packet, there were three input 

nodes: binary classification, confidence level, and the detailed classification if present, 

leaving one node per input module for future use.  For the purposes of the experiments 

detailed below, four input systems were used, meaning the first layer had a total of twenty 
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neurons.  The second hidden layer was built with two neurons per input system plus an 

additional two extra, for a total of ten neurons in the training system.  The output layer 

provided two outputs, the first being the classification and the second is the confidence 

level in the prediction in the range [0...1].  Each layer used a bipolar sigmoid activation 

function, and the overall network was trained using resilient backpropagation learning 

(Naoum, Abid, & Al-sultani, 2013).  The meta-analysis module did not require a given 

module to produce output for every packet, as any sources that were part of training but 

missing in operation were input as zeroes.   

Anatomy of a Detection 

In order to better understand the detection process, an example of a potential 

detection follows.  Consider an HTTP request flowing through the system that looks like 

the following: 

This request is normal in all respects, with the exception of the text “’or 3382=3382--” 

included in the referrer field, which is actually a test for a SQL injection vulnerability.  

When the request is captured by the CLIP system, the full packet data for the request is 

forwarded to the wrapped intrusion modules in PCAP format for processing and 

determination.  Each module is allowed to return a result which is then translated into a 

per-module AR for input into the meta-analysis layer.  The loaded native intrusion 

GET /WebGoat/start.mvc HTTP/1.1 
User-Agent: Mozilla/5.0 (Windows NT 10.0; WOW64; rv:53.0) 
Gecko/20100101 Firefox/53.0 
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8 
Accept-Language: en-US,en;q=0.5 
Referer: http://www.google.com/search?hl=en&q=12918193' or 
3382=3382--  
Cookie: JSESSIONID=76B2A14515F0632AF86EDFC986722976 
DNT: 1 
Connection: close  
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modules are also forwarded the packet details, but in their case, they receive only the 

details that are relevant for the information they are reviewing.  In the case of StreamFreq 

only a full raw binary representation of the HTTP portion of the packet is provided, and 

in the case of StreamSeq the various parsed HTTP data fields of the packet is provided.   

StreamFreq reviews the occurrence of the characters within the packet, and 

ultimately determines that this packet doesn’t appear abnormal, so it returns a “normal” 

classification.  However, since StreamFreq is designed to recognize a specific kind of 

abnormality (high counts of unusual, non-printable characters that frequently occur in 

byte-code), and that abnormality does not exist, it also returns a low confidence value 

since it is aware that this is not a type of packet it has been built to accurately classify.  

This low confidence value is ultimately useful to the meta-analysis system when all the 

results are available and final classification is made. 

StreamSeq receives the parsed packet information, and analyzes the various fields 

within the packet.  Based on previously provided training, it has learned that the sequence 

of a single quote, followed by a SQL Boolean operator, followed by a SQL comment 

operator generally is indicative of SQL injection, and so it classifies this packet as an 

attack with a relatively high confidence level, in this case, approximately 90%.  If the 

attack would have also included SQL keywords such as select, update, or delete or other 

SQL operators or comments, the confidence level could have increased even more, 

leading to even more weight being placed on the classification. 

Once the distinct analysis results have been received, the meta-analysis later 

inputs each of the values into its neural network for a final classification and confidence.  

Through prior training in this case, the network has learned that low confidence 
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observations from StreamFreq are generally not reliable since StreamFreq is “good” at 

reporting on packets it believes it can classify well according to its intended purpose.  

The attack classification received from the StreamSeq NIM is given significantly more 

weight since it was produced with high confidence, and one of the wrapped intrusion 

modules made a similar attack classification as well with respect to this packet.  In this 

case too, the system has also learned that these particular two modules agreeing results in 

very high classification accuracy, so a final classification of “attack” is produced with 

approximately 98% confidence.   

In the event no modules would have produced high-confidence classifications for 

the packet, the meta-analysis system would have still produced a classification, but would 

have done so at much lower confidence than it did in this case.  The meta-analysis layer 

can also learn to ignore the confidence levels produced by a given module, and does in 

the case of the wrapped modules where all confidence levels are produced at a 1, but the 

production of good confidence levels improves the overall output of the system 

significantly.  This is the basis of a recommendation for future work below. 

As an example of the specific improvement shown in this work, consider the 

example of a similar packet that is not an attack. 

GET /search?hl=en&q=union+select+syntax HTTP/1.1 
User-Agent: Mozilla/5.0 (Windows NT 10.0; WOW64; rv:53.0) 
Gecko/20100101 Firefox/53.0 
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8 
Accept-Language: en-US,en;q=0.5 
Cookie: JSESSIONID=76B2A14515F0632AF86EDFC986722976 
DNT: 1 
Connection: close  
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In this case, the StreamFreq analyzes the packet contents with similar results as in the 

first, essentially it doesn’t know how to classify the packet, and so the module makes its 

best guess but with low confidence.  When StreamSeq receives the packet, it recognizes 

via its models the presence of several operators that are keywords for SQL, but 

presumably due to the lack of various significant punctuation (single quotes, double-

dashes), it classifies as an attack but with only a 40% confidence level.  Once again, the 

classification matches the result from another module, and the system ultimately outputs 

a 48% confidence level for the packet.  Ultimately, the system produced the wrong result, 

but the confidence level provided explicit insight into the fact that the prediction was 

suspect.  Were both of these alerts received simultaneously, an analyst would have clear 

indication of the one which should be prioritized, the primary goal of this research. 

Data Sets 

The CLIP system described above was employed with data sets similar to those 

used in previous research on intrusion detection systems, with experiments conducted 

using three distinct data sets.  First, the publicly available DARPA 1999 dataset provided 

a baseline for initial system design and testing.  Although the complaints against this 

dataset are both many and generally valid, the researcher’s inclusion of it was intentional 

and dual-purposed.  First, a large majority of intrusion detection research still utilizes it, 

which results in it representing a common set to compare against for reference.  Second, 

though the dataset is problematic, the problems and shortcomings of it are well 

documented (Elfeshawy & Faragallah, 2013; Lippmann et al., 2000) and thus the bias 

introduced is a known quantity. 
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In addition to the DARPA dataset, the researcher also utilized the McPAD dataset, 

used previously for comparison purposes by several proposed anomaly-based IDSs.  The 

McPAD data set is composed of a set of generic attacks originally made available by 

Ingham and Inoue (2007) that contained 66 generic HTTP attacks and 11 shellcode-based 

HTTP attacks.  Additionally, the McPAD researchers used the shellcode attacks in the 

base data set to produce 96 additional polymorphic versions of the original attacks, for a 

total of 173 unique attacks. 

The third dataset used for comparison was a custom dataset produced by the 

researcher, using a combination of open source, purpose-built vulnerable web 

applications including WebGoat 7.1 and DVWA 1.9.  Both of these applications are 

intentionally vulnerable applications designed for teaching web application penetration 

testing. As such, they made possible the efficient simulation of a wide variety of attacks 

in a known-vulnerable environment.  For the purposes of the testing, the researcher 

produced three sets of data, a normal set, an attack training set, and an attack testing set.  

The normal set of data contained normal traffic to both applications as well as several 

other applications and public websites.  The normal data set was produced by browsing 

the applications using standard web browsers as well as spider tools designed to crawl the 

available functions of the site.   

The attack sets were then produced by following a similar process, but with attack 

inputs rather than normal inputs.  Additionally, several open source and commercial web 

application penetration testing tools were also directed at the applications to provide a 

varied baseline of what represents an actual web application attack.  The attack training 

set was prepared by targeting both applications, but with a subset of the attacks that were 
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included in the attack testing set, a total of 5,830 attacks.  For attack types that were 

going to be present in both data sets, care was taken to ensure that each recorded attack 

would accomplish the same goal as the attack but using slightly different variations where 

possible.  This created additional diversity of attacks, and ensured that the system was not 

simply able to memorize known bad attack sequences and recognize them directly. 

The total attack dataset was created by targeting the WebGoat application only, 

and it contained 7,017 discrete attacks representing a variety at attack types and 

encodings.  The data was captured using the CLIP system’s PCAP functionality limited to 

web application traffic only.  This dataset aimed to capture a variety of modern web-

based attacks such as OS command/SQL injection, cross-site scripting, insecure object 

references, and issues with authentication and session management.  The specific attack 

types that are part of the custom dataset are outlined below in Table 3. 

Attack Type In Training Set? In Testing Set? 
SQL Injection – MS SQL Yes Yes 
SQL Injection – MySql  Yes Yes 
SQL Injection – Oracle No Yes 
Reflected Cross-Site Scripting  Yes Yes 
Stored Cross-Site Scripting No Yes 
File Path Traversal – Linux/Unix Yes Yes 
File Path Traversal – Windows No Yes 
OS Injection – Linux/Unix Yes Yes 
OS Injection – Windows Yes Yes 
Buffer Overflow – Linux/Unix Yes Yes 
Buffer Overflow – Windows Yes Yes 
Insecure direct object references Yes Yes 
Session Management Attacks – IIS No Yes 
Session Management Attacks – Apache Yes Yes 
Authentication Manipulation No Yes 
Reflected DOM Issues Yes Yes 
Stored DOM Issues No Yes 
XML Injection Yes Yes 
XXE Attack No Yes 
Cross-Site Request Forgery No Yes 
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Server-side Template Injection No Yes 

Table 3 – Attack Types 

Experiment 

The test approach for this research intentionally mimicked previous research in 

intrusion detection, with a specific focus on HTTP-based detection since the modules 

implemented for the purposes of this research were both HTTP-focused.  The researcher 

used several HTTP-capable intrusion detection systems for comparison including 

HMMPayl and LHMMP.  Both systems were executed on the datasets described above, 

and the results were then prepared for comparison against the system described in this 

research.   

The results for HMMPayl, and LHMMP were both originally evaluated in their 

respective research using the receiver operating characteristic (ROC), a metric primarily 

focused on the sensitivity of a receiver and most useful when the goal is focused 

minimization of false positives.  However, the use of ROC for comparison was not 

meaningful for this research, as the inclusion of multiple classifiers make reduction to a 

ROC very difficult in practice.  Additionally, ROC curves are sensitive to the relative size 

of the data sets being used for “normal” versus “abnormal” comparison, so a high ratio of 

normal to attack packets will generally skew the calculation.  Because of the sensitivity to 

the characteristics of the dataset, ROC curves may not fully capture the efficacy of one 

system compared to another.  Specifically, the ratio of normal to attack traffic in the 

DARPA/McPAD combined data set is very high, leading the ROC comparison to be 

somewhat misleading. 
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Instead, this research utilized the Matthews correlation coefficient (MCC) 

(Matthews, 1975), a measure that generally performs well across a wide range of 

scenarios including very unbalanced data class sizes, as well as the Bookmaker 

Informedness (BM) and the Markedness (MK) measures (Powers, 2011).  An MCC of 0 

reflects random prediction, while +1 represents a perfect classifier and -1 represents total 

disagreement between the expected results and the actual results.  The formula for the 

MCC is shown below in Figure 2.  

 

Figure 2 – Matthews correlation coefficient formula 

In addition to its ability to handle a range of input sizes, MCC also proved to be 

an excellent choice for a comparison metric because it allowed correct representation and 

adjustment for the confidence level idea within the calculation.  For a classic IDS that 

does not report confidence levels, each instance of a particular type of input (true 

positive, true negative, false positive, or false negative) increments the count by 1.  

However, the MCC was readily adapted to the concept of confidence levels by 

incrementing by the percentage confidence in a given result rather than by the value 1.  In 

the simplest case where a system reports 100% confidence, the value would increment by 

1, but in the case where the system reports 90% confidence instead in a prediction, the 

relevant input would increase by only 0.9.  A system which outputted all equal confidence 

levels (for instance a confidence of 50%) would find that its MCC was completely 

unaffected by the confidence level calculation, but if the confidence levels prove to be 

meaningful, they should raise the MCC by weighting the results for towards the correct 
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high-confidence predictions and losing less credit for incorrect low-confidence 

predictions. 

Similarly, Bookmaker Informedness and Markedness represent complimentary 

measures of the usefulness of a given prediction (Powers, 2011).  The two calculations 

are inverses, that is, BM can be driven towards 1 while MK moves towards 0, and vice-

versa.  Bookmaker Informedness is the expected return per bet made with a fair and 

reasonable Bookmaker, thus the return of the bet increases as the chance of winning 

drops.  Markedness is calculated as precision less the inverse precision minus one, and it 

quantifies how marked a condition is for a specific predictor, also represented as the 

probability that a condition in terms of the predictor exceeds chance.  Both work in 

concert to additionally quantify the extent to which a prediction is valuable. 

Because none of the comparison systems reported a BM, MK, or MCC statistics 

as part of their original experiments, the researcher first had to obtain working models of 

each system and prepare them for execution for comparison purposes.  HMMPayl is 

freely available online for download, and Lawrence Taub graciously provided a copy of 

his LHMMP system for use in the comparisons.  Some modifications were required for 

each of the systems to produce interim detailed output sufficient for calculating the MCC, 

but the effort was ultimately completed for both systems without substantial issues.  The 

confidence level assigned to the outputs of any system that was unaware of the concept of 

confidence were assumed to be 100%, or 1.0 for the purposes of calculating the BM, MK, 

and MCC.  After creation of the needed outputs from the comparison systems, the outputs 

were also prepared for ingestion into the meta-analysis system as wrapped intrusion 

modules using the procedures described previously.   
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After WIM preparation was completed, the system was then executed with the 

WIM module output, the NIM modules running actively against the various input sets, 

and the meta-analyzer ingesting all of the classification output.  The DARPA dataset was 

used as a pure “clean” data set, while the McPAD data was used as pure “attack” data.  

The custom vulnerable data produced by the researcher was subdivided into both a 

normal and an attack data set.  The data was then split into training and test portions, with 

80% being used for training and 20% being used for testing.  Additionally, a portion of 

the vulnerable attack data was reserved and was used purely for testing with no prior 

specific subset included in training to better approximate conditions with which systems 

frequently deal in operation around new and unseen attack vectors.   

Resources 

A number of resources were necessary to complete this research.  In addition to 

the data sets described above, the system described in this research required a computer 

system with sufficient resources to process the data in near real-time.  The researcher 

used a custom-built PC running Windows 10 with an Intel Core I7-6700K 4GHz CPU 

and 32GB of RAM.  The system described was implemented using .Net 4.5 and .Net 

Core in the Visual Studio development environment along with the LibPCap network 

protocol capture and processing library.  Additionally, some of the systems used for 

comparison would only operate on Linux, and a VMWare virtual machine running on the 

same hardware as described above was used for executing those.   
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Chapter 4 

Results 

Introduction 

This dissertation introduces a novel concept in intrusion detection, the reporting 

of explicit confidence levels in predictions made by a system, as well as the use of those 

levels to provide both an overall meta-prediction and a meaningful confidence level in 

the meta-prediction (that is, the prediction about the predictions).  The meta-analysis 

from the CLIP system created by the researcher for this project includes the output of 

both WIMs and NIMs.  However, for the purposes of this chapter, the outlined 

comparisons focus specifically on the relative performance of the comparison WIM 

systems as they contributed to the meta-analysis produced by CLIP as well as the overall 

performance of CLIP.  Of particular note is the proposed variation on the Matthews 

Correlation Coefficient described previously, and its impact on the overall reported 

performance. 

System Operation Observations 

NIM – StreamSeq 

The design of the StreamSeq NIM focused on certain patterns within a packet 

representing attacks of various kinds.  Within a given web request, there are a relatively 

finite number of keywords and related syntax required to trigger certain types of attacks.  

For example, an SQL injection attack must include certain characters or keywords in 
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order to be successful, and the SQL language is relatively limited in terms of the 

keywords that are sufficient to cause actual damage through data leakage or changes.  

Similarly, OS command injection attacks include a relatively limited subset of 

applications which are frequently leveraged by attackers to either test the efficacy of a 

suspected injection vector or actually execute code on the host.   

Once trained, the module evaluates an incoming TCP streams to determine how 

closely they resemble known attack fragments.  Hidden Markov models generally use a 

cutoff value to determine the point at which the prediction changes over from one 

classification to the other.  The more positive a hidden Markov model reads, the higher 

the likelihood the pattern matches training data.  The StreamSeq also repurposes the 

cutoff value and defines thresholds based on percentage of false positives at certain 

intervals above the cutoff within the training data; those percentages are used to 

approximate the confidence level output of the model in addition to the actual prediction 

being made.  The second tier processing provided by the confidence level is significant in 

that it allows the model to self-advise the meta-analyzer on predictions in which it does 

not have high confidence, allowing the overall system to react accordingly.  

 Although this module is not particularly robust in its ability to detect a wide range 

of different attacks, it is very good at detecting the particular types of attacks on which it 

is trained.  In cases of command injection attacks where the corpus of relevant effective 

commands for an attacker is rather small, this module actually proved very effective even 

in cases with commands structured differently from those seen in the training data.  While 

the module was significantly less effective at locating and identifying attacks not 

previously seen by the system, it properly considered its predictions regarding those 
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attacks to be very low confidence, prompting the meta-analysis layer to discount its 

feedback in those cases. 

NIM – StreamFreq 

The second NIM that was part of the confidence-reporting portion of the CLIP 

system was StreamFreq, a module aimed at identifying unusual patterns and frequencies 

of characters within a given TCP stream.  StreamFreq operates on the HTTP request and 

works by collecting a total count of each of the characters within the request.  The 

original HTTP 1.1 specification RFC (Fielding, 1999) calls for a character set of ISO-

8859-1 unless some other character set is specified, although HTML5 has generally 

switched to Unicode/UTF-8 as the default specified in the request.  Although StreamFreq 

is capable of operating on any either ISO-8859-1 or Unicode, all of the training data was 

encoded using ISO-8859-1.  This simplified the system for the purpose of execution in 

this research to assume the ISO-8859-1 character set which requires one byte per 

character.   

Early experiments also tested the use of a weighting factor that attempted to 

capture the relative location of the characters with respect to other characters, but the 

weighting factor added significant computational complexity without any meaningful 

increase in performance, so it was disabled in the testing process used to produce the data 

in this report.  Generally, the design of StreamFreq makes it excellent at recognizing 

attacks that leverage non-printable characters as those do not typically show up in 

significant quantities in normal HTTP traffic.  In fact, the module was near perfect in its 

identification of shellcode and buffer-overflow based attacks. 
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The confidence value for this module was based on an amplified delta between 

the “normal” and “attack” outputs to the network.  Thus, output values situated very close 

together generally lead to rather low confidence, while values that were further apart 

slowly increased the confidence value up to a maximum of 1.0 in the case where one 

output was maximized to 1 while the other was minimized to 0.  Although perhaps less 

accurate than the explicit confidence value supplied by the previously-described 

StreamSeq NIM, this implicit confidence value still proved effective at providing 

meaningful feedback to the meta-analysis layer that allowed the meta-analyzer to 

improve performance with the metric as compared to performance without it.  

Comparisons both with and without the confidence output are shown below in the results.   

Meta-Analysis Layer 

The meta-analysis layer is responsible for consolidating the results produced by 

the various modules and reporting the final classification back to the controller.  The 

meta-analysis functionality is provided by a neural network configured with three inputs 

per module.  The first input for a given module inputs the module’s prediction with 

respect to the TCP packet or stream.  The second input is the confidence interval value 

from the module in the range of [0…1], and a one is used if no value is supplied.  As 

previously explained, the purpose of the confidence value is to allow an analyst working 

with the system to prioritize alerts based on not only the severity of the alleged event, but 

the confidence the system has that the event actually occurred.  The design is such that a 

module which frequently reports false positives with a high confidence level will, given 

sufficient data, have its weighting and relevance dropped, resulting in a lower overall 

confidence level.  The classic confusion matrix which consists of true positives (“TP”), 
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true negatives (“TN”), false positives (“FP”), and false negatives (“FN”) is shown below 

in Figure 3. 

 

Figure 3 – Classic confusion matrix 

In contrast, the continuous layered confusion matrix (“CLCM”) proposed and 

produced by this system described in this work, is more faithfully represented as a three-

dimensional object which would be more accurately represented by Figure 4.  Although 

the CLCM is shown below as a two layer object, it could be thought of better as a cube, 

with the two layers shown representing the front and rear sides, and the actual values 

being continuous all the way through.  
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Figure 4 – Visualized continuous layered confusion matrix 

The results of the meta-analysis layer are scored using a combination of the 

accuracy of the prediction made multiplied by the confidence level in the prediction 

itself.  Thus, a prediction with 100% confidence would be a 1.0, while a prediction with 

an 80% confidence level would be scored a 0.80.  The weighted values are then used to 

total to the TP, TN, FP, and FN values, which are then used as inputs to calculate 

Bookmaker Informedness, Markedness, and the Matthews Correlation Coefficient.  The 

output of the MCC in some simplistic cases are shown below in Table 4. 

Description TP TN FP FN BM MK MCC 
Random guessing, No weighting 1 1 1 1 0.00 0.00 0.00 
Perfect prediction, No weighting 2 2 0 0 1.00 1.00 1.00 
Random guessing, but incorrect 

predictions are supplied at only 50% 
confidence 

1 1 0.50 0.50 0.33 0.33 0.33 

One incorrect guess, incorrect 
supplied at 50% confidence 

2 1 0 0.50 0.80 0.67 0.73 

Random guessing, All predictions at 
50% confidence 

0.50 0.50 0.50 0.50 0.00 0.00 0.00 

Table 4 – Matthews correlation coefficient examples 
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Analysis of the table above shows that in the case where two systems are equally 

good at making predictions, the one able to supply better confidence data about the 

predictions it is making will ultimately have improved BM, MK, and MCC values.  

Demonstrating the ability to separate good predictions from poor predictions in a 

quantifiable way is one of the stated goals of this dissertation, and it aligns intellectually 

with the expected value and usability of reliable versus unreliable predictions. 

Comparison of Results – DARPA & McPAD Dataset 

Research for the current project began the comparison process by consolidating 

the DARPA and McPAD datasets into a single runnable test set.  The testing dataset was 

composed of the DARPA test set (604,055 packets, all clean) as well as the McPAD 

dataset (1,035 packets, all representing attacks).  In the case of the comparison systems 

HMMPayl, LHMMP, and SnortIDS, the datasets were run separately through the 

processor because the systems were not capable of processing more than a single PCap at 

a time.  In the case of the CLIP system, both PCaps were fed into the test harness 

simultaneously which consolidated and processed them in a single pass.  SnortIDS was 

configured to ignore all non-HTTP traffic and attacks for comparison purposes, and all of 

the other systems in question were designed to extract the relevant HTTP data as part of 

their execution processes.  In total, there were 84,448 HTTP packets in the consolidated 

input dataset.  Each of the comparison systems was executed individually, and then their 

outputs were made available to CLIP for inclusion in its meta-analysis in addition to the 

NIMs described previously.  The results of the execution are shown below in Table 5. 
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System TP TN FP FN BM MK MCC 
HMMPayl 62 84342 0 44 0.5849 0.9995 .7645 
LHMMP 70 83617 725 36 0.6518 0.0876 .2390 
CLIP, no confidence 
values used 

71 84342 0 35 0.6698 0.9996 .8183 

CLIP, weighted with 
confidence values 

64.83 84324.88 0 24.83 0.7231 0.9997 .8502 

Table 5 – Performance Comparison on DARPA/McPAD data set pair 

As the data contained in Table 5 above shows, the CLIP system gains a substantial 

improvement over the MCC values achieved in the comparison systems.  Of particular 

note is the improvement with the inclusion of confidence values, which raises 

performance of CLIP by approximately 4% over the naïve approach.  This difference is 

attributed to the fact that the average confidence across all correct predictions was 99.9%, 

while the confidence across the incorrect predictions averaged only 70.9%.  A subset of 

specific false negatives from the CLIP system with confidence values included are shown 

below in Table 6. 

Packet Number Type Confidence Level 
484 FN 0.430 
416 FN 0.487 
…   
657 FN 0.961 
21 FN 0.9998 

Table 6 – Sample Confidence Levels reported by CLIP 

The difference in confidence between the correct and incorrect predictions 

accounts for the positive change in the MCC between the systems with and without the 

confidence values included in the calculation.  The gap in confidence levels also shows a 

clear “tier-ing” of predictions that would be very useful for an analyst tasked with 

prioritizing and responding to alert.  Also of note, all of the WIM (non-native) input 

systems were treated as having a confidence level of 100%, and the design of CLIP was 
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clearly resilient to the meaningless input values in those cases as it is outperformed those 

systems by a substantial amount. 

Comparison of Results – Custom Web Application Intrusion Dataset 

 Since the DARPA and McPAD datasets are both rather dated, this research 

also produced a custom web application intrusion dataset for the purposes of testing the 

proposed system performance against other state-of-the-art systems using current tools 

and techniques.  The HMMPayl, LHMMP, and CLIP systems were all run with the 

custom web application intrusion dataset, first with a known clean dataset then with a 

second set that contained attacks injected by the researcher.  The results of the execution 

are shown below in Table 7.  Of note, the older HMMPayl system had several issues with 

connecting some of the HTTP streams and, thus, reported them as separate streams, but 

the CLIP system’s results were extrapolated by the researcher from per-stream to per-

packet level results to allow direct comparison.  Additionally, the LHMMP system’s 

output was not reported because the design of its layers (specifically, the request/response 

layer) make it unable to operate meaningfully if the training data does not include traffic 

from the site that the attack data is from. 

System TP TN FP FN BM MK MCC 
HMMPayl 6834 6509 3595 183 0.6181 0.6279 .6230 
CLIP, no confidence 
values included 

6390 9681 423 627 0.8688 0.8771 .8729 

CLIP, with 
confidence values 
included 

6212.65 9310.25 295.23 308.32 0.9220 0.9226 .9223 

Table 7 – Custom Dataset Results 

Once again, the CLIP system gains meaningful improvement over the MCC 

values achieved in the comparison system, especially with the consideration of the 
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confidence values in the output of the system.  Additionally, both the naïve and the 

confidence-value aware versions of CLIP far outperformed the comparison HMMPayl 

system.   

The performance of CLIP was slightly worse than HMMPayl in terms of true 

positives, largely due to the fact that HMMPayl excels at matching very specific patterns 

and thus was better able to identify some attacks that CLIP did not.  However, the trade 

off in terms of additional true positives for HMMPayl came at a cost of more than eight 

times the number of false positives, an extremely high count.  Specific investigation of 

the packets where CLIP performed worse than HMMPayl indicates that many of them are 

cases where one of the subclassifiers provided a very high confidence, but incorrect, “not 

attack” result.  The majority of them were attacks that were very small changes from 

other non-attack data, such as the insertion of single additional characters attempting to 

test delimiter processing at the server.  In the scope of HTTP vulnerabilities, these likely 

represent a lower risk, because they are designed to be focused more on detecting 

weakness than achieving compromise.  In the event one of these caused an error 

condition on the server, a would-be attacker would then follow it up with a request that 

included some sort of command to inject or other indicator that the system would be 

more likely to catch.  This also demonstrates the value that factoring in risk in a 

calculation regarding response priority would have to the overall process, and is the basis 

of a recommendation on future research below. 

Limitations 

The focus of this research, production of useful confidence measurements for 

predictions being made, is a new area within intrusion detection research.  During the 
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course of the experiments outlined in this research, a number of limitations arose that 

need to be considered for understanding the current effort.  Addressing these limitations 

is also used below as the basis for recommendations on further research. 

As is generally the case in anomaly-based research, the performance of the system 

is dependent on the quality of the data used for training and the similarity of the training 

data and the data that will ultimately be used for testing.  The CLIP system is uniquely 

positioned to deal with this challenge though because of its ability to signal the reliability 

of its prediction output.  Optimally, CLIP would recognize that a particular set of input 

(whether attack or normal packet) is unlike anything which had been previously seen, and 

the system should output a lower confidence value because of that.  This capability has 

been demonstrated in the current research by the improvement of the statistics when the 

predictions are weighted based on the confidence values, but there are likely more 

explicit ways to handle this would could yield even better results than those demonstrated 

here. 

The current implementation of CLIP is also designed such that the neural network 

is trained with a maximum number of possible input modules in mind.  This was 

sufficient for demonstrating the viability of the approach described in this research, but it 

also makes the implementation rather limited in terms of production use.  A production-

ready version of this system would need to be able to accept output from an arbitrary 

number of modules and produce both a classification as well as a confidence level 

prediction.  The ability to include an arbitrary number of inputs would increase the 

usefulness of the system by allowing good predictions to be made about a range of 

possible attacks. 
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Summary of Results 

This chapter provided details and analysis of the research using several data 

sources to test the ability of the CLIP system to output a meaningful and relevant 

confidence level value for predictions being made.  The work performed included the 

design of two native intrusion modules capable of outputting individual confidence level 

values for their predictions along with the creation of the CLIP system, the meta-analyzer 

that determines how to translate the intrusion module-produced confidence values into 

meaningful output.   

The research documented results using a total of three datasets, two chosen 

specifically for comparability with prior systems and one designed to test the viability of 

the approach on modern web-based attacks.  The system employed neural networks and 

hidden Markov models for the inner native intrusion modules.  The meta-analyzer was 

built using a neural network capable of ingesting output from external sources with either 

explicit confidence levels or no confidence level specified.  Most importantly, this 

chapter provided evidence that clearly demonstrates the ability to improve the overall 

prediction ability of the system by including the confidence level values within the 

system, which provides evidence that the improvement is not simply due to the improved 

functionality of the NIMs built for this work.  Additionally, the ability to ingest and 

utilize systems that have no concept of confidence level as part of the process is 

meaningful, because it opens the door to significant expansion of capabilities by 

expanded collaboration with tools that specialize in particular attack types.  
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Chapter 5 

Conclusions, Implications, Recommendations, and Summary 

Conclusions 

Intrusion detection continues to face a number of significant problems in real 

world environments including the volume of data being processed, increased ability and 

knowledge of attackers, and the finite resources available to respond to alerts.  The work 

conducted in this research demonstrates that confidence levels, when applied correctly, 

can increase the relative value of predictions being made by the system by providing 

additional metadata that is useful for prioritization of alerts being generated by the 

system.  Both neural networks and hidden Markov models have been applied effectively 

for generating meaningful confidence levels. 

This research was divided into three major phases.  First, two previously proposed 

intrusion detection systems were obtained and modified to allow the necessary 

intermediate outputs for inclusion into the CLIP system.  The original versions of these 

systems were then used as points of comparison for the current research, with 

performance measured using Bookmaker Informedness, Markedness, and Matthews 

Correlation Coefficient (Powers, 2011).  Second, this research created two modules that 

explicitly output confidence values in the predictions to demonstrate the value of the 

confidence level data.  Third, the meta-analyzer was built to ingest the output produced 
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by the other four systems and translate it to a final determination of both type of packet 

and confidence level in the prediction. 

Implications 

This research expands on the state-of-the-art in intrusion detection with the advent 

of an explicit confidence level that provides useful information about the predictions 

being made.  While most research in intrusion detection to date has focused on 

optimizing for a single metric such as false positive rate, precision, accuracy, etc., this 

work presents a case for a more holistic approach to intrusion detection, one that includes 

explicitly in its goals the need to provide useful information to a responder beyond a 

binary “attack”/”no attack” classification.  The additional data provided by the 

confidence level could be the difference between an analyst wasting resources on a false 

positive and successfully stopping an attack in progress. 

Also of note, while some recent work in intrusion detection has been done on 

ensemble systems, prior efforts have used either naïve combinations of predictions or a 

second layer of machine learning informed by nothing other than the core predictions.  

This research demonstrated that the use of confidence levels also improves the results 

over basic methods of ensemble prediction consolidation, as it can take into account the 

input confidence levels from the systems that supply them.  Although this is not helpful in 

the case of wrapped (non-native) modules, any module that supplies even a semi-accurate 

confidence level is providing meaningful additional data that may be used in the 

combination process.  Also of importance, the meta-analyzer layer is able to determine 

via its own training process which classifiers produce useful confidence levels and the 
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extent to which the supplied confidence values should be included in the decision making 

process.   

Recommendations 

There are a number of opportunities to improve on the results being produced by 

the CLIP system in future research.  This list of recommendations is not intended to be 

comprehensive, but is meant to provide guidance based on information gleaned during 

the creation of testing of the system. 

Although the confidence level prediction is the core value of the CLIP system, the 

system as it currently exists makes no explicit recommendation to the user based on a 

given confidence level, it merely provides the confidence level information.  Although 

some of the confidence levels produced by the system are so low that it is clear the 

related alerts are suspect, more work could be done around determining the relative 

meaning of different confidence levels and assigning a text-based tag to them based on a 

scale.  As an example of this, one of the confidence levels produced on a false positive in 

testing was 0.24, while the other false positive in that test had a confidence level of 0.91.  

Clearly, there is a significant difference in that case in how strongly the system believed 

in its prediction, but in the case of a narrower gap, 0.85 to 0.91 for instance, there would 

be value in providing the analyst with more guidance on what the relative difference 

represents.  It is also feasible that there would be value to discarding all alerts with a 

confidence level lower than X, but again, further work would be needed to understand the 

thresholds where data is meaningful. 

Another significant opportunity for improvement in the system would be the 

inclusion of relative risk as a component of the calculation process.  For instance, if the 
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CLIP system was 99% confident that a ping sweep is in progress and only 60% confident 

that a SQL injection attack was in progress, naïve ordering by confidence level would 

indicate that the ping sweep should be reviewed first, while in reality, the SQL injection 

attack is far more likely to yield near-term negative results.  The inclusion of risk would 

require substantial additional effort to define and rank attacks in terms of severity, but 

would be a meaningful and useful input into the process.   

Although the native intrusion modules built for this study and the wrapped 

intrusion modules selected for inclusion in this work proved relatively effective for the 

comparison done in this research, there are numerous other approaches that could prove 

useful and valuable additions to the process.  Ultimately, any system for which one can 

devise a method of calculating a useful confidence level would be worth considering for 

addition.  Since the core of the system, the meta-analyzer, is a controller designed to 

operate and aggregate any number of available models, the system could be readily 

expanded to include models tuned specifically to different types of attacks.  The addition 

of extremely targeted native modules that self-report low confidence on all packets they 

are not designed to identify but report high confidence in the very small subset of events 

that they are built to target could also prove to be a valuable addition to the system’s 

capabilities.    In a production implementation, it would also be desirable for the system 

to be able to bring new models online as needed to address and train on new attack types 

and train these using online training approaches as the system continues operation (Chis 

& Harrison, 2015), and the choice of the neural network for the meta analyzer would lend 

itself to that readily.  That capability would also operate most efficiently if the system 
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were able to load and unload modules in real-time, unloading ones that prove to be 

consistently ineffective and loading alternatives in their place. 

Another significant challenge for this research was the gathering and creation of 

appropriate data for testing.  Although live network data clearly represents the best 

picture of “actual” real world data, it also is the most difficult to use in practice because 

of issues with privacy, confidentiality, and even the ability to label the dataset with surety.  

While artificially generated data is generally more available, virtually every significant 

simulated data set produced to date has had problems identified that make it questionable 

for use in comparison purposes.  The production of robust data sets would be a very 

useful area for future research that would have positive impacts on the research that is 

being done in the field of intrusion detection. 

Summary 

Intrusion detection continues to improve both in the research and in commercial 

applications, but there are still significant shortcomings to current approaches.  The focus 

on driving improvement in one dimensional metrics continues to yield small incremental 

improvements, but real-world experiences have shown that it does not scale well.  A 

0.00001 false positive rate would still yield 10,000 false positives per day in a 1 billion 

packets per day hyper-scale environment such as Amazon’s AWS (Mueller, 2016), and 

the amount of data flowing across networks is only expected to increase as more and 

more devices and people join the internet.   

This research was conceived based on the thought process of an analyst who is 

tasked with responding to alerts being produced by intrusion detection systems.  In most 

environments, the system produces more alerts than can be reasonably triaged by the 
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available staff.  To address that, this research has endeavored to propose a way to provide 

additional data to an analyst that allows them more context in prioritizing their response 

procedures when resources become scarce.  The confidence level measurements proposed 

and implemented in this research are a step in that direction, a successful attempt to 

provide additional meta-data that is useful in the response process.   

The CLIP system was tested against multiple datasets including both classic 

comparison sets as well as a custom dataset designed to highlight a number of modern 

HTTP attacks including command injection and cross-site scripting.  In all cases, the 

CLIP system was shown to outperform the comparison systems both with and without the 

confidence level being included in the process.  Just as important, CLIP with the 

confidence level improved over the naïve version without access to the confidence level, 

demonstrating that the confidence values being produced were meaningful in terms of 

distinguishing a good prediction from a suspect one.  The CLIP system has expanded on 

the state-of-the-art, and has demonstrated the potential value of explicit confidence levels 

in intrusion detection.
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