3,620 research outputs found

    CAMMD: Context Aware Mobile Medical Devices

    Get PDF
    Telemedicine applications on a medical practitioners mobile device should be context-aware. This can vastly improve the effectiveness of mobile applications and is a step towards realising the vision of a ubiquitous telemedicine environment. The nomadic nature of a medical practitioner emphasises location, activity and time as key context-aware elements. An intelligent middleware is needed to effectively interpret and exploit these contextual elements. This paper proposes an agent-based architectural solution called Context-Aware Mobile Medical Devices (CAMMD). This framework can proactively communicate patient records to a portable device based upon the active context of its medical practitioner. An expert system is utilised to cross-reference the context-aware data of location and time against a practitioners work schedule. This proactive distribution of medical data enhances the usability and portability of mobile medical devices. The proposed methodology alleviates constraints on memory storage and enhances user interaction with the handheld device. The framework also improves utilisation of network bandwidth resources. An experimental prototype is presented highlighting the potential of this approach

    Reporting an Experience on Design and Implementation of e-Health Systems on Azure Cloud

    Full text link
    Electronic Health (e-Health) technology has brought the world with significant transformation from traditional paper-based medical practice to Information and Communication Technologies (ICT)-based systems for automatic management (storage, processing, and archiving) of information. Traditionally e-Health systems have been designed to operate within stovepipes on dedicated networks, physical computers, and locally managed software platforms that make it susceptible to many serious limitations including: 1) lack of on-demand scalability during critical situations; 2) high administrative overheads and costs; and 3) in-efficient resource utilization and energy consumption due to lack of automation. In this paper, we present an approach to migrate the ICT systems in the e-Health sector from traditional in-house Client/Server (C/S) architecture to the virtualised cloud computing environment. To this end, we developed two cloud-based e-Health applications (Medical Practice Management System and Telemedicine Practice System) for demonstrating how cloud services can be leveraged for developing and deploying such applications. The Windows Azure cloud computing platform is selected as an example public cloud platform for our study. We conducted several performance evaluation experiments to understand the Quality Service (QoS) tradeoffs of our applications under variable workload on Azure.Comment: Submitted to third IEEE International Conference on Cloud and Green Computing (CGC 2013

    A feasibility study for the provision of electronic healthcare tools and services in areas of Greece, Cyprus and Italy

    Get PDF
    Background: Through this paper, we present the initial steps for the creation of an integrated platform for the provision of a series of eHealth tools and services to both citizens and travelers in isolated areas of thesoutheast Mediterranean, and on board ships travelling across it. The platform was created through an INTERREG IIIB ARCHIMED project called INTERMED. Methods: The support of primary healthcare, home care and the continuous education of physicians are the three major issues that the proposed platform is trying to facilitate. The proposed system is based on state-of-the-art telemedicine systems and is able to provide the following healthcare services: i) Telecollaboration and teleconsultation services between remotely located healthcare providers, ii) telemedicine services in emergencies, iii) home telecare services for "at risk" citizens such as the elderly and patients with chronic diseases, and iv) eLearning services for the continuous training through seminars of both healthcare personnel (physicians, nurses etc) and persons supporting "at risk" citizens. These systems support data transmission over simple phone lines, internet connections, integrated services digital network/digital subscriber lines, satellite links, mobile networks (GPRS/3G), and wireless local area networks. The data corresponds, among others, to voice, vital biosignals, still medical images, video, and data used by eLearning applications. The proposed platform comprises several systems, each supporting different services. These were integrated using a common data storage and exchange scheme in order to achieve system interoperability in terms of software, language and national characteristics. Results: The platform has been installed and evaluated in different rural and urban sites in Greece, Cyprus and Italy. The evaluation was mainly related to technical issues and user satisfaction. The selected sites are, among others, rural health centers, ambulances, homes of "at-risk" citizens, and a ferry. Conclusions: The results proved the functionality and utilization of the platform in various rural places in Greece, Cyprus and Italy. However, further actions are needed to enable the local healthcare systems and the different population groups to be familiarized with, and use in their everyday lives, mature technological solutions for the provision of healthcare services

    How Continuous Monitoring Changes the Interaction of Patients with a Mobile Telemedicine System

    Get PDF
    The use of continuous glucose monitor changes the way patients manage their diabetes, as observed in the increased number of daily insulin bolus, the increased number of daily BG measurements, and the differences in the distribution of BG measurements throughout the day. Continuous monitoring also increases the interaction of patients with the information system and modifies their patterns of use

    MammoApplet: an interactive Java applet tool for manual annotation in medical imaging

    Get PDF
    Web-based applications in computational medicine have become increasingly important during the last years. The rapid growth of the World Wide Web supposes a new paradigm in the telemedicine and eHealth areas in order to assist and enhance the prevention, diagnosis and treatment of patients. Furthermore, training of radiologists and management of medical databases are also becoming increasingly important issues in the field. In this paper, we present MammoApplet , an interactive Java applet interface designed as a web-based tool. It aims to facilitate the diagnosis of new mammographic cases by providing a set of image processing tools that allow a better visualization of the images, and a set of drawing tools, used to annotate the suspicious regions. Each annotation allows including the attributes considered by the experts when issuing the final diagnosis. The overall set of overlays is stored in a database as XML files associated with the original images. The final goal is to obtain a database of already diagnosed cases for training and enhancing the performance of novice radiologistsPeer ReviewedPostprint (author's final draft

    Properties of concrete containing coal bottom ash and fine coconut shell as partial sand replacement

    Get PDF
    The consumption of natural sand in concrete production is very high around the worldwide and it caused the shortage of natural fine aggregate which is suitable for construction in many countries [1]. This problem gives the chance for reuse by-products materials as a source of fine aggregate by partial or full replacement in construction activities. Hence, it can reduce the demand for extraction of natural raw materials and save landfill space other than reduce the consumption of natural resources [1]. Moreover, all over the world aimed at increasing the reuse and recycling suitable material for effective replacement of cement and fine aggregate in construction sector due to lack of natural resources.

    Interval type-2 fuzzy automata and Interval type-2 fuzzy grammar

    Get PDF
    The purpose of the present work is to introduce and study the concept of interval type-2 (IT2) fuzzy grammar which recognizes the given IT2 fuzzy languages. The relationship between IT2 fuzzy automata and IT2 fuzzy (weak) regular grammars is discussed. Specifically, the results we obtained here are (i ) IT2 fuzzy weak regular grammar and IT2 fuzzy regular grammar generate the same classes of IT2 fuzzy languages (ii ) for a given IT2 fuzzy regular grammars, there exists an IT2 fuzzy automata such that they accept the same IT2 fuzzy languages, and vice versa. In addition, we define some operations on IT2 fuzzy languages and it is shown that IT2 fuzzy languages recognized by IT2 fuzzy automata are closed under the operations of union, intersection, concatenation and Kleene closure, but are not closed under complement
    • 

    corecore