751 research outputs found

    Multicast Mobility in Mobile IP Version 6 (MIPv6) : Problem Statement and Brief Survey

    Get PDF
    Publisher PD

    Progressive introduction of network softwarization in operational telecom networks: advances at architectural, service and transport levels

    Get PDF
    Technological paradigms such as Software Defined Networking, Network Function Virtualization and Network Slicing are altogether offering new ways of providing services. This process is widely known as Network Softwarization, where traditional operational networks adopt capabilities and mechanisms inherit form the computing world, such as programmability, virtualization and multi-tenancy. This adoption brings a number of challenges, both from the technological and operational perspectives. On the other hand, they provide an unprecedented flexibility opening opportunities to developing new services and new ways of exploiting and consuming telecom networks. This Thesis first overviews the implications of the progressive introduction of network softwarization in operational networks for later on detail some advances at different levels, namely architectural, service and transport levels. It is done through specific exemplary use cases and evolution scenarios, with the goal of illustrating both new possibilities and existing gaps for the ongoing transition towards an advanced future mode of operation. This is performed from the perspective of a telecom operator, paying special attention on how to integrate all these paradigms into operational networks for assisting on their evolution targeting new, more sophisticated service demands.Programa de Doctorado en Ingeniería Telemática por la Universidad Carlos III de MadridPresidente: Eduardo Juan Jacob Taquet.- Secretario: Francisco Valera Pintor.- Vocal: Jorge López Vizcaín

    A data-oriented network architecture

    Get PDF
    In the 25 years since becoming commercially available, the Internet has grown into a global communication infrastructure connecting a significant part of mankind and has become an important part of modern society. Its impressive growth has been fostered by innovative applications, many of which were completely unforeseen by the Internet's inventors. While fully acknowledging ingenuity and creativity of application designers, it is equally impressive how little the core architecture of the Internet has evolved during this time. However, the ever evolving applications and growing importance of the Internet have resulted in increasing discordance between the Internet's current use and its original design. In this thesis, we focus on four sources of discomfort caused by this divergence. First, the Internet was developed around host-to-host applications, such as telnet and ftp, but the vast majority of its current usage is service access and data retrieval. Second, while the freedom to connect from any host to any other host was a major factor behind the success of the Internet, it provides little protection for connected hosts today. As a result, distributed denial of service attacks against Internet services have become a common nuisance, and are difficult to resolve within the current architecture. Third, Internet connectivity is becoming nearly ubiquitous and reaches increasingly often mobile devices. Moreover, connectivity is expected to extend its reach to even most extreme places. Hence, applications' view to network has changed radically; it's commonplace that they are offered intermittent connectivity at best and required to be smart enough to use heterogeneous network technologies. Finally, modern networks deploy so-called middleboxes both to improve performance and provide protection. However, when doing so, the middleboxes have to impose themselves between the communication end-points, which is against the design principles of the original Internet and a source of complications both for the management of networks and design of application protocols. In this thesis, we design a clean-slate network architecture that is a better fit with the current use of the Internet. We present a name resolution system based on name-based routing. It matches with the service access and data retrieval oriented usage of the Internet, and takes the network imposed middleboxes properly into account. We then propose modest addressing-related changes to the network layer as a remedy for the denial of service attacks. Finally, we take steps towards a data-oriented communications API that provides better decoupling for applications from the network stack than the original Sockets API does. The improved decoupling both simplifies applications and allows them to be unaffected by evolving network technologies: in this architecture, coping with intermittent connectivity and heterogenous network technologies is a burden of the network stack

    Segment Routing: a Comprehensive Survey of Research Activities, Standardization Efforts and Implementation Results

    Full text link
    Fixed and mobile telecom operators, enterprise network operators and cloud providers strive to face the challenging demands coming from the evolution of IP networks (e.g. huge bandwidth requirements, integration of billions of devices and millions of services in the cloud). Proposed in the early 2010s, Segment Routing (SR) architecture helps face these challenging demands, and it is currently being adopted and deployed. SR architecture is based on the concept of source routing and has interesting scalability properties, as it dramatically reduces the amount of state information to be configured in the core nodes to support complex services. SR architecture was first implemented with the MPLS dataplane and then, quite recently, with the IPv6 dataplane (SRv6). IPv6 SR architecture (SRv6) has been extended from the simple steering of packets across nodes to a general network programming approach, making it very suitable for use cases such as Service Function Chaining and Network Function Virtualization. In this paper we present a tutorial and a comprehensive survey on SR technology, analyzing standardization efforts, patents, research activities and implementation results. We start with an introduction on the motivations for Segment Routing and an overview of its evolution and standardization. Then, we provide a tutorial on Segment Routing technology, with a focus on the novel SRv6 solution. We discuss the standardization efforts and the patents providing details on the most important documents and mentioning other ongoing activities. We then thoroughly analyze research activities according to a taxonomy. We have identified 8 main categories during our analysis of the current state of play: Monitoring, Traffic Engineering, Failure Recovery, Centrally Controlled Architectures, Path Encoding, Network Programming, Performance Evaluation and Miscellaneous...Comment: SUBMITTED TO IEEE COMMUNICATIONS SURVEYS & TUTORIAL

    Architectural and mobility management designs in internet-based infrastructure wireless mesh networks

    Get PDF
    Wireless mesh networks (WMNs) have recently emerged to be a cost-effective solution to support large-scale wireless Internet access. They have numerous ap- plications, such as broadband Internet access, building automation, and intelligent transportation systems. One research challenge for Internet-based WMNs is to design efficient mobility management techniques for mobile users to achieve seamless roam- ing. Mobility management includes handoff management and location management. The objective of this research is to design new handoff and location management techniques for Internet-based infrastructure WMNs. Handoff management enables a wireless network to maintain active connections as mobile users move into new service areas. Previous solutions on handoff manage- ment in infrastructure WMNs mainly focus on intra-gateway mobility. New handoff issues involved in inter-gateway mobility in WMNs have not been properly addressed. Hence, a new architectural design is proposed to facilitate inter-gateway handoff man- agement in infrastructure WMNs. The proposed architecture is designed to specifi- cally address the special handoff design challenges in Internet-based WMNs. It can facilitate parallel executions of handoffs from multiple layers, in conjunction with a data caching mechanism which guarantees minimum packet loss during handoffs. Based on the proposed architecture, a Quality of Service (QoS) handoff mechanism is also proposed to achieve QoS requirements for both handoff and existing traffic before and after handoffs in the inter-gateway WMN environment. Location management in wireless networks serves the purpose of tracking mobile users and locating them prior to establishing new communications. Existing location management solutions proposed for single-hop wireless networks cannot be directly applied to Internet-based WMNs. Hence, a dynamic location management framework in Internet-based WMNs is proposed that can guarantee the location management performance and also minimize the protocol overhead. In addition, a novel resilient location area design in Internet-based WMNs is also proposed. The formation of the location areas can adapt to the changes of both paging load and service load so that the tradeoff between paging overhead and mobile device power consumption can be balanced, and at the same time, the required QoS performance of existing traffic is maintained. Therefore, together with the proposed handoff management design, efficient mobility management can be realized in Internet-based infrastructure WMNs

    On the scalability of LISP and advanced overlaid services

    Get PDF
    In just four decades the Internet has gone from a lab experiment to a worldwide, business critical infrastructure that caters to the communication needs of almost a half of the Earth's population. With these figures on its side, arguing against the Internet's scalability would seem rather unwise. However, the Internet's organic growth is far from finished and, as billions of new devices are expected to be joined in the not so distant future, scalability, or lack thereof, is commonly believed to be the Internet's biggest problem. While consensus on the exact form of the solution is yet to be found, the need for a semantic decoupling of a node's location and identity, often called a location/identity separation, is generally accepted as a promising way forward. Typically, this requires the introduction of new network elements that provide the binding of the two names-paces and caches that avoid hampering router packet forwarding speeds. But due to this increased complexity the solution's scalability is itself questioned. This dissertation evaluates the suitability of using the Locator/ID Separation Protocol (LISP), one of the most successful proposals to follow the location/identity separation guideline, as a solution to the Internet's scalability problem. However, because the deployment of any new architecture depends not only on solving the incumbent's technical problems but also on the added value that it brings, our approach follows two lines. In the first part of the thesis, we develop the analytical tools to evaluate LISP's control plane scalability while in the second we show that the required control/data plane separation provides important benefits that could drive LISP's adoption. As a first step to evaluating LISP's scalability, we propose a methodology for an analytical analysis of cache performance that relies on the working-set theory to estimate traffic locality of reference. One of our main contribution is that we identify the conditions network traffic must comply with for the theory to be applicable and then use the result to develop a model that predicts average cache miss rates. Furthermore, we study the model's suitability for long term cache provisioning and assess the cache's vulnerability in front of malicious users through an extension that accounts for cache polluting traffic. As a last step, we investigate the main sources of locality and their impact on the asymptotic scalability of the LISP cache. An important finding here is that destination popularity distribution can accurately describe cache performance, independent of the much harder to model short term correlations. Under a small set of assumptions, this result finally enables us to characterize asymptotic scalability with respect to the amount of prefixes (Internet growth) and users (growth of the LISP site). We validate the models and discuss the accuracy of our assumptions using several one-day-long packet traces collected at the egress points of a campus and an academic network. To show the added benefits that could drive LISP's adoption, in the second part of the thesis we investigate the possibilities of performing inter-domain multicast and improving intra-domain routing. Although the idea of using overlaid services to improve underlay performance is not new, this dissertation argues that LISP offers the right tools to reliably and easily implement such services due to its reliance on network instead of application layer support. In particular, we present and extensively evaluate Lcast, a network-layer single-source multicast framework designed to merge the robustness and efficiency of IP multicast with the configurability and low deployment cost of application-layer overlays. Additionally, we describe and evaluate LISP-MPS, an architecture capable of exploiting LISP to minimize intra-domain routing tables and ensure, among other, support for multi protocol switching and virtual networks.En menos de cuatro décadas Internet ha evolucionado desde un experimento de laboratorio hasta una infraestructura de alcance mundial, de importancia crítica para negocios y que atiende a las necesidades de casi un tercio de los habitantes del planeta. Con estos números, es difícil tratar de negar la necesidad de escalabilidad de Internet. Sin embargo, el crecimiento orgánico de Internet está aún lejos de finalizar ya que se espera que mil millones de dispositivos nuevos se conecten en el futuro cercano. Así pues, la falta de escalabilidad es el mayor problema al que se enfrenta Internet hoy en día. Aunque la solución definitiva al problema está aún por definir, la necesidad de desacoplar semánticamente la localización e identidad de un nodo, a menudo llamada locator/identifier separation, es generalmente aceptada como un camino prometedor a seguir. Sin embargo, esto requiere la introducción de nuevos dispositivos en la red que unan los dos espacios de nombres disjuntos resultantes y de cachés que almacenen los enlaces temporales entre ellos con el fin de aumentar la velocidad de transmisión de los enrutadores. A raíz de esta complejidad añadida, la escalabilidad de la solución en si misma es también cuestionada. Este trabajo evalúa la idoneidad de utilizar Locator/ID Separation Protocol (LISP), una de las propuestas más exitosas que siguen la pauta locator/identity separation, como una solución para la escalabilidad de la Internet. Con tal fin, desarrollamos las herramientas analíticas para evaluar la escalabilidad del plano de control de LISP pero también para mostrar que la separación de los planos de control y datos proporciona un importante valor añadido que podría impulsar la adopción de LISP. Como primer paso para evaluar la escalabilidad de LISP, proponemos una metodología para un estudio analítico del rendimiento de la caché que se basa en la teoría del working-set para estimar la localidad de referencias. Identificamos las condiciones que el tráfico de red debe cumplir para que la teoría sea aplicable y luego desarrollamos un modelo que predice las tasas medias de fallos de caché con respecto a parámetros de tráfico fácilmente medibles. Por otra parte, para demostrar su versatilidad y para evaluar la vulnerabilidad de la caché frente a usuarios malintencionados, extendemos el modelo para considerar el rendimiento frente a tráfico generado por usuarios maliciosos. Como último paso, investigamos como usar la popularidad de los destinos para estimar el rendimiento de la caché, independientemente de las correlaciones a corto plazo. Bajo un pequeño conjunto de hipótesis conseguimos caracterizar la escalabilidad con respecto a la cantidad de prefijos (el crecimiento de Internet) y los usuarios (crecimiento del sitio LISP). Validamos los modelos y discutimos la exactitud de nuestras suposiciones utilizando varias trazas de paquetes reales. Para mostrar los beneficios adicionales que podrían impulsar la adopción de LISP, también investigamos las posibilidades de realizar multidifusión inter-dominio y la mejora del enrutamiento dentro del dominio. Aunque la idea de utilizar servicios superpuestos para mejorar el rendimiento de la capa subyacente no es nueva, esta tesis sostiene que LISP ofrece las herramientas adecuadas para poner en práctica de forma fiable y fácilmente este tipo de servicios debido a que LISP actúa en la capa de red y no en la capa de aplicación. En particular, presentamos y evaluamos extensamente Lcast, un marco de multidifusión con una sola fuente diseñado para combinar la robustez y eficiencia de la multidifusión IP con la capacidad de configuración y bajo coste de implementación de una capa superpuesta a nivel de aplicación. Además, describimos y evaluamos LISP-MPS, una arquitectura capaz de explotar LISP para minimizar las tablas de enrutamiento intra-dominio y garantizar, entre otras, soporte para conmutación multi-protocolo y redes virtuales
    corecore