3,490 research outputs found

    Robust improper maximum likelihood: tuning, computation, and a comparison with other methods for robust Gaussian clustering

    Get PDF
    The two main topics of this paper are the introduction of the "optimally tuned improper maximum likelihood estimator" (OTRIMLE) for robust clustering based on the multivariate Gaussian model for clusters, and a comprehensive simulation study comparing the OTRIMLE to Maximum Likelihood in Gaussian mixtures with and without noise component, mixtures of t-distributions, and the TCLUST approach for trimmed clustering. The OTRIMLE uses an improper constant density for modelling outliers and noise. This can be chosen optimally so that the non-noise part of the data looks as close to a Gaussian mixture as possible. Some deviation from Gaussianity can be traded in for lowering the estimated noise proportion. Covariance matrix constraints and computation of the OTRIMLE are also treated. In the simulation study, all methods are confronted with setups in which their model assumptions are not exactly fulfilled, and in order to evaluate the experiments in a standardized way by misclassification rates, a new model-based definition of "true clusters" is introduced that deviates from the usual identification of mixture components with clusters. In the study, every method turns out to be superior for one or more setups, but the OTRIMLE achieves the most satisfactory overall performance. The methods are also applied to two real datasets, one without and one with known "true" clusters

    A robust approach to model-based classification based on trimming and constraints

    Full text link
    In a standard classification framework a set of trustworthy learning data are employed to build a decision rule, with the final aim of classifying unlabelled units belonging to the test set. Therefore, unreliable labelled observations, namely outliers and data with incorrect labels, can strongly undermine the classifier performance, especially if the training size is small. The present work introduces a robust modification to the Model-Based Classification framework, employing impartial trimming and constraints on the ratio between the maximum and the minimum eigenvalue of the group scatter matrices. The proposed method effectively handles noise presence in both response and exploratory variables, providing reliable classification even when dealing with contaminated datasets. A robust information criterion is proposed for model selection. Experiments on real and simulated data, artificially adulterated, are provided to underline the benefits of the proposed method

    A data driven equivariant approach to constrained Gaussian mixture modeling

    Full text link
    Maximum likelihood estimation of Gaussian mixture models with different class-specific covariance matrices is known to be problematic. This is due to the unboundedness of the likelihood, together with the presence of spurious maximizers. Existing methods to bypass this obstacle are based on the fact that unboundedness is avoided if the eigenvalues of the covariance matrices are bounded away from zero. This can be done imposing some constraints on the covariance matrices, i.e. by incorporating a priori information on the covariance structure of the mixture components. The present work introduces a constrained equivariant approach, where the class conditional covariance matrices are shrunk towards a pre-specified matrix Psi. Data-driven choices of the matrix Psi, when a priori information is not available, and the optimal amount of shrinkage are investigated. The effectiveness of the proposal is evaluated on the basis of a simulation study and an empirical example

    A fast and recursive algorithm for clustering large datasets with kk-medians

    Get PDF
    Clustering with fast algorithms large samples of high dimensional data is an important challenge in computational statistics. Borrowing ideas from MacQueen (1967) who introduced a sequential version of the kk-means algorithm, a new class of recursive stochastic gradient algorithms designed for the kk-medians loss criterion is proposed. By their recursive nature, these algorithms are very fast and are well adapted to deal with large samples of data that are allowed to arrive sequentially. It is proved that the stochastic gradient algorithm converges almost surely to the set of stationary points of the underlying loss criterion. A particular attention is paid to the averaged versions, which are known to have better performances, and a data-driven procedure that allows automatic selection of the value of the descent step is proposed. The performance of the averaged sequential estimator is compared on a simulation study, both in terms of computation speed and accuracy of the estimations, with more classical partitioning techniques such as kk-means, trimmed kk-means and PAM (partitioning around medoids). Finally, this new online clustering technique is illustrated on determining television audience profiles with a sample of more than 5000 individual television audiences measured every minute over a period of 24 hours.Comment: Under revision for Computational Statistics and Data Analysi
    • 

    corecore