8 research outputs found

    Similarity Based Ranking of Query Results from Real Web Databases

    Get PDF
    The information available in the World Wide Web is stored using many real Web databases (e.g. vehicle database). Accessing the information from these real Web databases has become increasingly important for the users to find the desired information. Web users search for the desired information by querying these Web databases, when the number of query results generated is large, it is very difficult for the Web user to select the most relevant information from the large result set generated. Users today, have become more and more demanding in terms of the quality of information that is provided to them while searching the Web databases. The most common solution to solve the problem involves ranking the query results returned by the Web databases. Earlier approaches have used query logs, user profiles and frequencies of database values. The problem in all of these techniques is that ranking is performed in a user and query independent manner. This paper, proposes an automated ranking of query results returned by Web databases by analyzing user, query and workload similarity. The effectiveness of this approach is discussed considering a vehicle Web database as an example

    SODA: Generating SQL for Business Users

    Full text link
    The purpose of data warehouses is to enable business analysts to make better decisions. Over the years the technology has matured and data warehouses have become extremely successful. As a consequence, more and more data has been added to the data warehouses and their schemas have become increasingly complex. These systems still work great in order to generate pre-canned reports. However, with their current complexity, they tend to be a poor match for non tech-savvy business analysts who need answers to ad-hoc queries that were not anticipated. This paper describes the design, implementation, and experience of the SODA system (Search over DAta Warehouse). SODA bridges the gap between the business needs of analysts and the technical complexity of current data warehouses. SODA enables a Google-like search experience for data warehouses by taking keyword queries of business users and automatically generating executable SQL. The key idea is to use a graph pattern matching algorithm that uses the metadata model of the data warehouse. Our results with real data from a global player in the financial services industry show that SODA produces queries with high precision and recall, and makes it much easier for business users to interactively explore highly-complex data warehouses.Comment: VLDB201

    Relevance Feedback in XML Retrieval

    Full text link

    Semantic Similarity of Spatial Scenes

    Get PDF
    The formalization of similarity in spatial information systems can unleash their functionality and contribute technology not only useful, but also desirable by broad groups of users. As a paradigm for information retrieval, similarity supersedes tedious querying techniques and unveils novel ways for user-system interaction by naturally supporting modalities such as speech and sketching. As a tool within the scope of a broader objective, it can facilitate such diverse tasks as data integration, landmark determination, and prediction making. This potential motivated the development of several similarity models within the geospatial and computer science communities. Despite the merit of these studies, their cognitive plausibility can be limited due to neglect of well-established psychological principles about properties and behaviors of similarity. Moreover, such approaches are typically guided by experience, intuition, and observation, thereby often relying on more narrow perspectives or restrictive assumptions that produce inflexible and incompatible measures. This thesis consolidates such fragmentary efforts and integrates them along with novel formalisms into a scalable, comprehensive, and cognitively-sensitive framework for similarity queries in spatial information systems. Three conceptually different similarity queries at the levels of attributes, objects, and scenes are distinguished. An analysis of the relationship between similarity and change provides a unifying basis for the approach and a theoretical foundation for measures satisfying important similarity properties such as asymmetry and context dependence. The classification of attributes into categories with common structural and cognitive characteristics drives the implementation of a small core of generic functions, able to perform any type of attribute value assessment. Appropriate techniques combine such atomic assessments to compute similarities at the object level and to handle more complex inquiries with multiple constraints. These techniques, along with a solid graph-theoretical methodology adapted to the particularities of the geospatial domain, provide the foundation for reasoning about scene similarity queries. Provisions are made so that all methods comply with major psychological findings about people’s perceptions of similarity. An experimental evaluation supplies the main result of this thesis, which separates psychological findings with a major impact on the results from those that can be safely incorporated into the framework through computationally simpler alternatives

    Why-Query Support in Graph Databases

    Get PDF
    In the last few decades, database management systems became powerful tools for storing large amount of data and executing complex queries over them. In addition to extended functionality, novel types of databases appear like triple stores, distributed databases, etc. Graph databases implementing the property-graph model belong to this development branch and provide a new way for storing and processing data in the form of a graph with nodes representing some entities and edges describing connections between them. This consideration makes them suitable for keeping data without a rigid schema for use cases like social-network processing or data integration. In addition to a flexible storage, graph databases provide new querying possibilities in the form of path queries, detection of connected components, pattern matching, etc. However, the schema flexibility and graph queries come with additional costs. With limited knowledge about data and little experience in constructing the complex queries, users can create such ones, which deliver unexpected results. Forced to debug queries manually and overwhelmed by the amount of query constraints, users can get frustrated by using graph databases. What is really needed, is to improve usability of graph databases by providing debugging and explaining functionality for such situations. We have to assist users in the discovery of what were the reasons of unexpected results and what can be done in order to fix them. The unexpectedness of result sets can be expressed in terms of their size or content. In the first case, users have to solve the empty-answer, too-many-, or too-few-answers problems. In the second case, users care about the result content and miss some expected answers or wonder about presence of some unexpected ones. Considering the typical problems of receiving no or too many results by querying graph databases, in this thesis we focus on investigating the problems of the first group, whose solutions are usually represented by why-empty, why-so-few, and why-so-many queries. Our objective is to extend graph databases with debugging functionality in the form of why-queries for unexpected query results on the example of pattern matching queries, which are one of general graph-query types. We present a comprehensive analysis of existing debugging tools in the state-of-the-art research and identify their common properties. From them, we formulate the following features of why-queries, which we discuss in this thesis, namely: holistic support of different cardinality-based problems, explanation of unexpected results and query reformulation, comprehensive analysis of explanations, and non-intrusive user integration. To support different cardinality-based problems, we develop methods for explaining no, too few, and too many results. To cover different kinds of explanations, we present two types: subgraph- and modification-based explanations. The first type identifies the reasons of unexpectedness in terms of query subgraphs and delivers differential graphs as answers. The second one reformulates queries in such a way that they produce better results. Considering graph queries to be complex structures with multiple constraints, we investigate different ways of generating explanations starting from the most general one that considers only a query topology through coarse-grained rewriting up to fine-grained modification that allows fine changes of predicates and topology. To provide a comprehensive analysis of explanations, we propose to compare them on three levels including a syntactic description, a content, and a size of a result set. In order to deliver user-aware explanations, we discuss two models for non-intrusive user integration in the generation process. With the techniques proposed in this thesis, we are able to provide fundamentals for debugging of pattern-matching queries, which deliver no, too few, or too many results, in graph databases implementing the property-graph model

    An Approach to Integrating Query Refinement in SQL

    No full text
    With the emergence of applications that require contentbased similarity retrieval, techniques to support such a retrieval paradigm over database systems have emerged as a critical area of research. User subjectivity is an important aspect of such queries, i.e., which objects are relevant to the user and which are not depends on the perception of the user. Query refinement is used to handle user subjectivity in similarity search systems. This paper explores how to enhance database systems with query refinement for content-based (similarity) searches in object-relational databases. Query refinement is achieved through relevance feedback where the user judges individual result tuples and the system adapts and restructures the query to better reflect the users information need. We present a query refinement framework and an array of strategies for refinement that address different aspects of the problem

    Ontology-based information retrieval: methods and tools for cooperative query answering

    Get PDF
    corecore