
Faculty of Computer Science
Database Technology Group

Why-Query Support in Graph
Databases

DISSERTATION

ZUR ERLANGUNG DES AKADEMISCHEN GRADES DOKTORINGENIEUR (DR.-ING.)

vorgelegt an der
Technischen Universität Dresden

Fakultät Informatik

eingereicht von
MSc. Elena Vasilyeva

geboren am 10. April 1986 in Essoila

Gutachter: Prof. Dr.-Ing. Wolfgang Lehner
Technische Universität Dresden
Fakultät Informatik, Institut für Systemarchitektur
Lehrstuhl für Datenbanken
01062 Dresden, Deutschland

Associate Prof. Dr.-Ing. Katja Hose
Aalborg University
Department of Computer Science
9220 Aalborg, Dänemark

Tag der Verteidigung: 08. November 2016

Dresden, im August 2016

Abstract

In the last few decades, database management systems became powerful tools for sto-
ring large amount of data and executing complex queries over them. In addition to
extended functionality, novel types of databases appear like triple stores, distributed
databases, etc. Graph databases implementing the property-graph model belong to this
development branch and provide a new way for storing and processing data in the form
of a graph with nodes representing some entities and edges describing connections
between them. This consideration makes them suitable for keeping data without a rigid
schema for use cases like social-network processing or data integration. In addition to
a flexible storage, graph databases provide new querying possibilities in the form of
path queries, detection of connected components, pattern matching, etc.

However, the schema flexibility and graph queries come with additional costs. With
limited knowledge about data and little experience in constructing the complex queries,
users can create such ones, which deliver unexpected results. Forced to debug queries
manually and overwhelmed by the amount of query constraints, users can get frus-
trated by using graph databases. What is really needed, is to improve usability of graph
databases by providing debugging and explaining functionality for such situations. We
have to assist users in the discovery of what were the reasons of unexpected results and
what can be done in order to fix them.

The unexpectedness of result sets can be expressed in terms of their size or content.
In the first case, users have to solve the empty-answer, too-many-, or too-few-answers
problems. In the second case, users care about the result content and miss some ex-
pected answers or wonder about presence of some unexpected ones. Considering the
typical problems of receiving no or too many results by querying graph databases, in
this thesis we focus on investigating the problems of the first group, whose solutions
are usually represented by why-empty, why-so-few, and why-so-many queries.

Our objective is to extend graph databases with debugging functionality in the
form of why-queries for unexpected query results on the example of pattern match-
ing queries, which are one of general graph-query types. We present a comprehensive
analysis of existing debugging tools in the state-of-the-art research and identify their
common properties. From them, we formulate the following features of why-queries,
which we discuss in this thesis, namely: holistic support of different cardinality-based
problems, explanation of unexpected results and query reformulation, comprehen-
sive analysis of explanations, and non-intrusive user integration. To support differ-
ent cardinality-based problems, we develop methods for explaining no, too few, and
too many results. To cover different kinds of explanations, we present two types:
subgraph- and modification-based explanations. The first type identifies the reasons
of unexpectedness in terms of query subgraphs and delivers differential graphs as ans-
wers. The second one reformulates queries in such a way that they produce better
results. Considering graph queries to be complex structures with multiple constraints,

iii

we investigate different ways of generating explanations starting from the most general
one that considers only a query topology through coarse-grained rewriting up to fine-
grained modification that allows fine changes of predicates and topology. To provide a
comprehensive analysis of explanations, we propose to compare them on three levels
including a syntactic description, a content, and a size of a result set. In order to deliver
user-aware explanations, we discuss two models for non-intrusive user integration in
the generation process.

With the techniques proposed in this thesis, we are able to provide fundamentals for
debugging of pattern-matching queries, which deliver no, too few, or too many results,
in graph databases implementing the property-graph model.

iv

Acknowledgments

First of all, I would like to thank my advisor Professor Wolfgang Lehner for giving
me the opportunity to write my PhD thesis at Technische Universität Dresden in the
database technology group, for guiding and supporting me over the years. He also
gave me a chance to get to know the HANA Student Campus with its nice working
atmosphere and interesting people.

I would like to express my gratitude to Professor Katja Hose for taking over the role
as co-referee of this thesis and to all members of the examination committee.

I am also grateful to Gregor Hackenbroich for giving me an opportunity to start my
research at SAP Dresden. I owe my special thanks to Arne Schwarz, who gave me a
chance to finish my PhD work at SAP Walldorf in the HANA Student Campus.

Furthermore, I would like to thank Maik Thiele for co-advising my research, for
reading all my papers, and for supporting me during this time. I am also grateful to
Adrian Mocan, who helped me to establish a balance between research and project
work. During my research, I had a luck to work in three different teams including
SAP Research Dresden, the database technology group, and the SAP HANA Student
Campus. My first PhD years I spent at SAP Dresden, where I had a chance to be involved
in several projects and get interesting working experience. I had a nice time to work
at the database chair twice a week, where I could exchange my ideas with other PhD
students, participate in research seminars, and get some feeling of the university life. I
finalized my PhD work at SAP HANA Campus in Walldorf, in the very enthusiastic team
of PhD students, where I had a freedom of doing my research and luck to be involved
in the campus life. I am especially thankful to Marcus Paradies, who gave me a chance
to implement and test all the concepts of this thesis in the GRAPHITE prototype. I had
the opportunity to work in all these three groups and gain a lot of experience from my
colleagues. Thank you!

My special thanks go to Thomas, who supported me during the whole time of my
PhD thesis and motivated me in doing this work. Thank you for all our discussions, for
all your arguments, for your support, and for your belief in me.

I also would like to thank Maik, Thomas, Ulrike, Alina, Angela, and Katrin for
comments on early versions of this thesis. All this work would not be possible without
support of my family and friends. Thank you!

������ ���	�
������ � ������� ����� ����� �
������, ������ ��

��-

������ ���� ��� �� 	�
�, ������ � �����, ��������� � ���������� � �-

��, �� � ��� ����� ���� ����� � ������� ��

����������. ��� �� ��

��

����� � �� �� ����������. !������, ���� � ����!

v

Contents

1 Introduction 1
1.1 Contributions . 3
1.2 Outline . 5

2 Foundations of Why-Queries 7
2.1 Why-So Queries . 7

2.1.1 Eager Provenance . 8
2.1.2 Lazy Provenance . 9
2.1.3 Common Properties . 12

2.2 Why-Not Queries . 13
2.2.1 Reasons of Missing Answers . 13
2.2.2 Provenance-Based Explanations 15
2.2.3 Modification-Based Explanations 20
2.2.4 Query-Type Oriented and Model-Specific Why-Not Queries 21
2.2.5 Common Properties . 24

2.3 Why-Empty and Why-So-Few Queries . 25
2.3.1 Modification-Based Explanations 25
2.3.2 Prevention Methods . 29
2.3.3 Query-Type Oriented And Model-Specific Why-Empty Queries . . 29
2.3.4 Common Properties . 30

2.4 Why-So-Many-Queries . 31
2.4.1 Result-Based Explanations . 31
2.4.2 Modification-Based Explanations 36
2.4.3 Common Properties . 38

2.5 Summary . 39

3 Why-Queries in Graph Databases 43
3.1 Properties of Why-Queries in Graph Databases 43

3.1.1 General Graph Model . 43
3.1.2 Supported Types of Graph Queries 44
3.1.3 Holistic Support of Different Cardinality-Based Problems 44
3.1.4 Explanation of Unexpected Results and Query Reformulation . . 45
3.1.5 Comprehensive Comparison of Explanations 45
3.1.6 Non-Intrusive User Integration 46

3.2 Comprehensive Comparison of Explanations 46
3.2.1 Preliminaries . 47
3.2.2 Syntactic Level . 49
3.2.3 Cardinality Level . 54
3.2.4 Result Level . 55

vii

CONTENTS

3.2.5 Evaluation . 57
3.3 Summary . 63

4 Explaining Unexpected Results 65
4.1 Preliminaries . 65

4.1.1 Detection of Maximum Common Connected Subgraphs 67
4.1.2 Calculation of Differential Graphs 68

4.2 Generation of Subgraph-Based Explanations 68
4.2.1 The DISCOVERMCS Algorithm for Why-Empty Queries 69
4.2.2 The BOUNDEDMCS Algorithm for Why-So-Few and Why-So-Many

Queries . 70
4.2.3 Calculation of Differential Subgraphs 72

4.3 Optimization . 73
4.3.1 Processing of Weakly Connected Components 73
4.3.2 Selection of Single Traversal Path 75
4.3.3 Processing of Unconnected Components 76

4.4 User Integration . 77
4.4.1 Definition of User Preferences . 77
4.4.2 User-Centric Selection of Traversal Path 78
4.4.3 Rank Calculation . 82

4.5 Evaluation . 82
4.5.1 DISCOVERMCS Algorithm for Empty-Answer Problems 83
4.5.2 The BOUNDEDMCS Algorithm for the Too-Many-Answers Problem 88
4.5.3 Evaluation Summary . 92

4.6 Summary . 92

5 Coarse-Grained Why-Empty Query Modification 95
5.1 Predicate- and Topology-Aware Modification Process 95

5.1.1 System Architecture . 95
5.1.2 Query Relaxation . 96

5.2 Cardinality Estimation . 98
5.2.1 Query-Dependent Statistics . 98
5.2.2 Querying Statistics for Edges and Vertices 101
5.2.3 Querying Statistics for Paths(n) 102

5.3 Query-Candidate Selection . 104
5.3.1 Placement of New Query Candidates 104
5.3.2 Calculation of Induced Cardinality Changes 105

5.4 User Integration . 108
5.4.1 User-Preference Model . 109
5.4.2 Adaptation of Query Rewriting 110

5.5 Evaluation . 111
5.5.1 Priority Functions of Query-Candidate Selector 112
5.5.2 Runtime Convergence . 116
5.5.3 Priority Function with Average Path(1) Cardinality and Induced

Cardinality Changes . 118
5.5.4 User Integration . 121
5.5.5 Evaluation Summary . 122

5.6 Summary . 123

viii

CONTENTS

6 Fine-Grained Cardinality-Driven Query Modification 125
6.1 Predicate- and Topology-Aware Modification Process 125

6.1.1 General Modification Process . 126
6.1.2 Operational Graph-Query Representation 127
6.1.3 Modification Tree . 129

6.2 Generation of Modification-Based Explanations 131
6.2.1 TRAVERSESEARCHTREE Algorithm 133
6.2.2 Generation of New Query Candidates 134

6.3 Adaptation of Modification Tree . 137
6.3.1 Guaranteeing of Change Propagation 138
6.3.2 Discarding of Non-Contributing Changes and Search Branches . . 138

6.4 Evaluation . 140
6.4.1 Baseline Approaches . 140
6.4.2 Baseline Comparison . 142
6.4.3 Topology Consideration . 147
6.4.4 Evaluation Summary . 150

6.5 Summary . 150

7 Conclusion and Future Work 153

A Evaluation Setup 157
A.1 System Overview . 157
A.2 Data Sets . 157

A.2.1 LDBC Data Set and Its Queries 157
A.2.2 DBPEDIA Data Set and Its Queries 159

B Additional Evaluation Results 163
B.1 User Integration in Why-Empty Query Rewriting 163
B.2 Resource Consumption for Why-Empty Query Rewriting 164

Bibliography 167

List of Figures 181

List of Tables 185

ix

1
Introduction

In the last few decades, databases turned into powerful systems with a broad range
of functionality. While the race for new functionality and effective algorithms gains
momentum, the complexity of their querying becomes an issue reducing their usability.
This issue has been extensively studied by Jagadish et al. [77], who defined four classes
of what users expect from databases: sophisticated querying, precise and complete ans-
wers, structured results, and creation and update of the databases. Any contradiction
of these expectations with the system behavior can frustrate users and distract them
from querying. One of the usability issues discussed by Jagadish et al. is the presence
of unexpected pains especially in terms of query results. If results differ from expec-
tations, users have to conduct try-and-error rewriting for failed queries to figure out
what was wrong. To support them in such situations, the database systems should be
able to provide explanations for unexpected results.

A group of database researchers came to the same conclusion in the Beckman re-
port [1]: “Explanation, provenance . . . crop up in all steps of the raw-data-to-knowledge
pipeline. They will be critical to making analytic tools easy to use. . . . We must build tools
and infrastructures that make the data consumption process easier, including the notions
of trust, provenance, and explanation . . . ”

The problem of unexpected results can arise in multiple scenarios involving data-
bases from the keyword search over relational data to online form-based querying of
web databases. In all cases, users can wonder why results differ from their expecta-
tions. Is the query wrong? Is some data in the database missing? Or is the answer
correct? To assist users in such situations, queried systems should be able to give exp-
lanations about the reasons of unexpectedness and rewrite failed queries if necessary.
This functionality makes database systems more user-friendly and attractive especially
for inexperienced users.

In the related work, the problem of unexpected results is investigated in the form
of why-queries, which answer the question why retrieved result sets differ from user
expectations. Why-queries consider several types of unexpected results such as absence
of expected answers [32], presence of unexpected results [144], empty [108], too
few [119], or too many answers [106]. The corresponding why-queries are called
why-not, why-so, why-empty, why-so-few, and why-so-many queries.

This debugging functionality is useful in the following scenarios including but not
limited to:

• Debugging unexpected results is required in daily work of database users who
design queries for acquiring information, analyzing stored data, etc.

1

1 INTRODUCTION

• Data integration systems especially suffer from empty-answer and too-many-
answers problems, which are typical for use cases, where only limited knowledge
about the underlying data is available, data is extracted from multiple, poten-
tially unreliable data sources, or data-transformation steps are executed during
querying.

• Data generation testing executes data-consistency checks and can face the prob-
lem that queries, which have to deliver the same number of results, provide dif-
ferent answers. Therefore, such systems have to support why-empty, why-so-few,
and why-so-many queries.

• Selection of items with the same characteristics, whose information is stored
in the database, is typically required for a health study or a user survey.

In general, why-queries can be classified into content-based and cardinality-based
ones depending on the problems they solve. The first group investigates missing ex-
pected and presenting unexpected results and is performed by why-not and why-so
queries. The second group inspects why the result size differs from an expected car-
dinality and explores empty-answer, too-few- and too-many-answers problems in the
form of why-empty, why-so-few, and why-so-many queries.

Content-Based Why-Queries are extensively studied in relational database manage-
ment systems (RDBMS). Why-so queries typically target data integration and
transformation systems, which map, collect, and process data from different
sources. These are data-provenance systems, which track how data is trans-
formed in order to answer the query. The research of these systems focuses on
studying which information has to be tracked and how provenance has to be cal-
culated: eagerly [23, 43] or lazily [2, 89]. One of the first solutions for why-not
queries was introduced by Chapman et al. [32], who detects the reason of unex-
pectedness in terms of those manipulations which remove items of interest from
the result set. There is also multiple work for rewriting queries in order to ret-
rieve missing answers, e.g., in CONQUER [132]. Why-not queries are provided
not only for SPJUAG queries, but also for specific requests like for example skyline
and reverse skyline queries [39, 76].

Cardinality-Based Why-Queries including why-empty, why-so-few, and why-so-many
queries investigate an unexpected size of a result set. This unexpectedness is
typical in the systems, whose querying is complicated with the limited know-
ledge of underlying data or complex queries. In such scenarios, users may const-
ruct queries that are too general or too specific and receive too many or no re-
sults, respectively. These why-queries are represented by rewriting methods for
the empty-answer problem [108], cardinality-assurance approaches [119], and
ranking-based methods [69] for why-so-few and why-so-many queries. Solutions
for cardinality-based problems typically rewrite queries or improve the represen-
tation of results. Only in a few cases, they discover the reason of unexpect-
edness, which makes cardinality-based why-queries different from the content-
based ones. In addition, these methods also concern a cardinality constraint,
which impedes the problem investigation. Similar to content-based why-queries,
cardinality-based solutions are extensively studied for RDBMS.

The aforementioned why-queries provide explanations for unexpected results and
thus improve the usability of databases. However, most related work investigates this
problem in RDBMS and only limited attention is paid to other data models. For example,
why-so queries are studied in the object-relational setup [150], why-not pattern match-
ing is proposed for multiple labeled graphs [72], why-empty queries can be defined for

2

1.1. CONTRIBUTIONS

data in the RDF format (Resource Description Framework) [117], and why-so-many
queries consider richly attributed graphs [116].

Referring to the usability study by Jagadish et al. [77], also new database types arise
including triple stores, NOSQL, etc. Graph databases implementing the property-graph
model belong to this novel development branch. They allow to store heterogeneous
information in the form of a directed multi-graph, where entities are represented by
vertices and edges describe relationships between them. Both edges and vertices can
be annotated with multiple diverse attribute values. These databases become powerful
tools allowing to keep information without defining a rigid schema and process comp-
lex analytical queries based on graph algorithms. The property-graph data model is
implemented by modern graph databases such as NEO4J 1, SAP HANA 2, and ORACLE

BIG DATA SPATIAL AND GRAPH 3.
The usability issue described above becomes even more complicated in graph da-

tabases. On the one hand, there is no rigid schema, which would help to construct
queries. On the other hand, definition of correct queries becomes even more compli-
cated for graph queries consisting of multiple query constraints. Therefore, the usability
issue requiring explanations as described by Jagadisch et al. [77] for query results is of
a high priority for graph databases. Considering the lack of research for graph databa-
ses and the complexity of graph queries, we focus on providing debugging support for
graph queries over property graphs in the form of why-queries in this thesis.

Depending on the type of a query answer, two groups of graph queries can be distin-
guished: queries that deliver data subgraphs and queries that provide simple answers
consisting of a Boolean value or a number. The first group comprising community-
detection algorithms, pattern matching, and traversal queries represents the most ge-
neral query types which can suffer from all kinds of unexpected results investigated
by why-queries. The second group including shortest-path and reachability queries is
typically affected by content-based problems. In this thesis, we focus on the first group
of queries and consider as an example pattern-matching queries that return data sub-
graphs matching the query graph. These are high-constrained queries, where const-
raints are represented by predicates for attribute values and by the query topology.
For such queries, diverse explanations can be generated to resolve the same problem,
where some of them can be irrelevant to users and should be avoided. Therefore, gene-
ration of explanations has to be able to consider user interest in specific query elements
in order to deliver meaningful explanations. To summarize, in this thesis we investigate
how to generate explanations for no, too few, or too many answers of pattern-matching
queries in graph databases implementing the property-graph model and how to support
user-integration strategies in the explanation generation.

1.1 Contributions

In order to increase the usability of graph databases via result explanations, we propose
cardinality-based why-queries for pattern matching and do the following contributions
in this thesis:

1. Extensive study of state-of-the-art debugging approaches for why-queries.
We survey recent literature on methods for why-queries in different data models,
classify them based on the explanation types they provide, and extract typical

1https://neo4j.com/
2https://www.sap.com/product/technology-platform/hana.html
3https://www.oracle.com/database/spatial/index.html

3

1.1. CONTRIBUTIONS

features for each specific why-query type. These aspects are used to compile a
list of requirements that have to be fulfilled by the debugging tool for pattern
matching queries over property graphs.

2. Comparison metrics for explanations. Each debugging method can provide
several explanations. To support users with the most appropriate explanation,
we propose their comprehensive comparison on three levels: query, cardinality,
and result levels. On the query level, we use a syntactic distance which describes
how different two queries appear to users. On the cardinality level, we analyze
how the result size differs from an expected cardinality. On the result level, the
content of results for compared explanations is tested against the result set of
the failed query. This comprehensive analysis allows to fairly judge the proposed
methods.

3. Subgraph-based explanations. The first question that has to be answered du-
ring debugging is why the query failed to deliver the expected results. Referring to
the related work on why-not queries [32], we propose to generate a query-based
explanation called a subgraph-based explanation by traversing a query graph and
detecting a failed query part. For this purpose, we develop two algorithms DIS-
COVERMCS and BOUNDEDMCS for why-empty queries and why-so-few and why-
so-many queries, respectively. To reduce the amount of large intermediate results
and to improve the performance of these algorithms, we provide several opti-
mization techniques, which choose a traversal path along the query and reduce
the number of traversals.

4. Modification-based explanations for why-empty queries. Most approaches
from the related work try to remove the burden of query rewriting from the user
and produce refined non-failed queries. Following the same motivation, we pro-
pose a coarse-grained solution for rewriting why-empty pattern-matching queries
considering modifications of topology and predicates to derive non-empty results.
This approach does not consider the cardinality threshold and therefore is more
appropriate for solving why-empty queries. For efficiency reasons, we further in-
vestigate caching of already processed queries and their re-use. We also describe
several techniques to calculate and estimate cardinalities for parts of the original
query.

5. Modification-based explanations for why-so-few and why-so-many queries.
While why-empty queries can be rewritten by discarding some query parts, why-
so-few and why-so-many queries require a fine-grained model for query modi-
fication, because any change should deliver specific cardinality improvement,
which depends on a given cardinality threshold. Considering this fact, we pro-
pose the TRAVERSESEARCHTREE method for modifying queries delivering unex-
pected cardinality and allow fine-grained modifications on the predicate level.
This method constructs a modification tree at runtime, optimizes it by rejecting
and re-arranging its branches, and guarantees the propagation of changes along
the query.

6. User-integration models. To generate user-relevant explanations, we discuss
how user interest in specific query parts can be incorporated in the generation
process. We propose two user-integration models, namely: one for subgraph-
based and one for modification-based explanations. The first model derives the
most-relevant traversal path, which is adapted online during processing. This ap-
proach can also be re-used in modification-based explanations for why-so-few and
why-so-many queries as a strategy for re-arranging modification-tree branches.
The second model constructs a user-preference model during rewriting of why-
empty queries and adapts the modification process accordingly.

4

1.2. OUTLINE

Chapter 1

Introduction

Chapter 2

Foundations of Why-Queries

Chapter 3

Why-Queries in Graph Databases

Chapter 7

Conclusion and Future Work

Chapter 5

Coarse-Grained Why-Empty

Query Modification

Chapter 6

Fine-Grained Cardinality-Driven

Query Modification

Chapter 4

Explaining Unexpected Results

Figure 1.1: Thesis outline

1.2 Outline

Figure 1.1 illustrates the outline for this thesis, with the remaining chapters organized
as follows. In Chapter 2, we analyze the state-of-the-art approaches for debugging why-
queries and extract a set of general features from them. For each type of why-queries,
we provide an overview of used data models and generated types of explanations. The
chapter concludes with an overview of properties extracted from the related work,
which are common for why-queries and should be implemented in order to provide
explanations for pattern-matching queries in graph databases.

In Chapter 3, these properties are discussed in the specific context of the property-
graph model, which include, for example, generation of subgraph-based and modifica-
tion-based explanations and their comprehensive analysis. This chapter also describes
in detail and evaluates metrics for comparing explanations, which are used along all
subsequent chapters to judge the quality of produced explanations.

The description of core debugging functionality for why-queries starts in Chapter 4
with the generation of subgraph-based explanations that describe the reasons of fai-
lures in terms of query subgraphs. These explanations are derived by traversing the
graph query and providing the differential subgraphs. These subgraphs can be used
as an upper threshold for query rewriting investigated in the following chapters. To
generate subgraph-based explanations, we propose two algorithms DISCOVERMCS and
BOUNDEDMCS along with several optimization techniques and evaluate them on two
data sets. In addition, we describe a way to incorporate user interest in the traversal,
which is based on the detection of the most relevant traversal path along a query.

In Chapter 5, we continue describing core debugging functionality with genera-
tion of coarse-grained modification-based explanations for why-empty queries that
are derived by discarding query constraints until a rewritten query delivers at least
some results. Similar to subgraph-based explanations, we propose a method for non-
intrusive user integration in the generation process, which automatically extracts a

5

1.2. OUTLINE

user-preference model from user ratings of already discovered solutions. This modifi-
cation-based approach is also evaluated on two data sets.

The fine-grained modification-based explanations are discussed afterwards in Chap-
ter 6, where the rewriting process adjusts both topology and predicates (on the value
level) such that a generated explanation delivers results with a smaller cardinality dis-
tance than the failed query. Finally, in Chapter 7 we summarize thesis contributions
and findings and discuss open research challenges.

6

2
Foundations of Why-Queries

In this chapter, existing types of explanations for unexpected query results in the state-
of-the-art systems are presented and their applicability to graph databases implemen-
ting the property-graph model is discussed. Unexpectedness of a query result can be
expressed in terms of its content or size and can be explained by content-based or
cardinality-based why-queries presented in Figure 2.1.

Content-based why-queries study why some specific answers are existing or missing
from a result set and are represented by why-so and why-not queries, correspondingly.
Cardinality-based why-queries focus on the size of a result set and explain why a result
is empty or consists of too many or too few answers. The corresponding why-query
types are implemented by why-empty, why-so-many, and why-so-few queries, respec-
tively.

In this chapter, we will first give an overview on existing solutions for content-based
why-queries in Sections 2.1 – 2.2. Although this class of why-queries has no direct
connection to cardinality problems, which are tackled in this thesis, the analysis of its
related work helps to derive features, which are necessary to implement in a debugging
tool for an unexpected number of query results. Afterwards, we discuss solutions for
cardinality-based why-queries in Sections 2.3 – 2.4. Finally, we introduce debugging
features, which are derived from the related work.

2.1 Why-So Queries

Receiving query results, a user may wonder why a specific item exists in the result
set, where it comes from, and who else uses this data [144]. These questions aim at
studying the origin of a result set and affect its correctness and trust.

Consider a general data flow, in which a system extracts some data, applies a set
of operations to it, and maybe visualizes the final result. The origin of results can be
described by its processing history called lineage or pedigree [150]. It allows to trace
the impact of each processing step or faulty data source on the final result. Explaining
the result provenance is especially critical for example by querying web data, where
databases can keep transformed data, which is possibly retrieved from data sources
with different levels of trust. In addition to trust, a temporal aspect for evolving source
databases should be considered. In this case, a provenance report has to include a
correct version of the studied data and its location in other versions if required [144].

Generally speaking, all methods for tracing data provenance can be classified as
eager or lazy methods, which will be described as follows.

7

2.1. WHY-SO QUERIES

Why-Queries

Chapter 2

Content-Based Why-Queries Cardinality-Based Why-Queries

Why So?

Chapter 2.1

Why No(t)?

Chapter 2.2

Why Empty, Why So Few?

Chapter 2.3

Why So Many?

Chapter 2.4

Eager Lazy

Query

Instance

ModificationOntology

Modification

Modification

Ranking

Categorization

Hybrid

Figure 2.1: Overview of why-queries

2.1.1 Eager Provenance

Eager-provenance methods compute and keep provenance as long as data is trans-
formed. The data is always annotated and querying provenance is exact and fast: the
pre-calculated provenance only needs to be retrieved. Clearly, this creates a storage
overhead and increases transformation and computation costs. This approach of main-
taining provenance is also known as annotations, metadata support, source tagging,
and the attribution approach [144].

Lee et al. [89] propose a mediator framework SAQSD for querying semi-structured
data on the web. In this framework, each cell of a result is accompanied by its at-
tribution, which is a “list of URLs for each Web document that was accessed during
the processing of the query and from which the corresponding cell value was extrac-
ted” [89]. This system-generated attribute describes the location of a source. In this
framework, a Polygon model [147] is used, which aims at resolving data source tag-
ging and intermediate source tagging. According to this model, a user query is split
in multiple local queries, which are redirected to particular sources. Each answer to a
local query is annotated by its source.

Bernstein et al. [13] implement metadata support (MSDT) in Microsoft Server SQL

7.0 warehousing as a data transformation service with database models and data trans-
formation models. For tracing lineage, a data transformation model is of interest that
captures information about data transformations. A data transformation service stores
the execution of each package in a repository and marks each generated row in a ware-
house by the identifier of the package, which produced it. This metadata information is
required for lineage tracing and extracting all necessary provenance information from
the repository.

Bhagwat et al. [14] propose to keep data provenance as an annotation system with
an SQL extension PSQL. Under annotations, Bhagwat et al. assume provenance, com-
ments, or other types of metadata. PSQL supports three schemes for propagating an-
notations [14]: default, default-all, and custom schemes. While the default scheme
distributes annotations about a data origin, the default-all scheme propagates also an-

8

2.1. WHY-SO QUERIES

notations for all-equivalent formulations of a given query. The proposed schemes are
implemented in DBNOTES [40], which attaches a note to a value and transmits both
during query evaluation. It also can derive lineage by request: in this case a reverse
query is generated and the provenance is calculated lazily.

Buneman et al. [24] provide a formal study for an annotation placement problem
(PDAV): which annotations in a database can cause an annotation to appear in a view
with a minimal effect on other attributes. The formalization is provided for selection,
projection, join, union, and renaming. Tan [128] studies the query containment prob-
lem for queries with annotations and proves that the annotation placement problem,
which is known to be NP-hard [24], is DP-hard.

TRIO Conventional RDBMS usually store exact data, are based on the closed-world
assumption, and do not support lineage. However, the TRIO project [2, 148] combines
data, accuracy, and lineage in a single database, each of them can be queried separately
and in conjunction. Lineage is implemented on a tuple level and is enabled by a specific
handling of deleted data. No data is removed or overwritten in a database, any deletion
and overwriting means a deactivation of a piece of data. Information about deactivated
data can be used for querying lineage. The authors propose an SQL extension called
TRIQL to query lineage and inexact data. In general, TRIO supports three types of li-
neage: historical lineage, phantom lineage, and versioning. Lineage for a tuple consists
of three components: when and how a tuple was derived and what data was used for
it. Five derivation types are supported in TRIO: query-based, program-based, update-
based, load-based, and import-based. They describe the general ways how a data tuple
can be derived. For example, import-based derivation describes tuples imported from
external data sources by source descriptors.

Summary All discussed eager-provenance systems provide a model for storing li-
neage and generate different kinds of explanations. Only in the TRIO system [2, 148],
lineage is considered as a first-class citizen allowing its direct querying and traversing
and the type of a generated explanation depends on a used query type. Two systems,
the TRIO system and annotations on views [24], consider a relational data model.
Metadata support [13] uses an object-oriented data model, attributions [89] are in-
vestigated for semi-structural data. Eager-provenance systems constantly create and
maintain data lineage for all data and therefore do not require user integration. Only
in DBNOTES a user can define a custom scheme for storing lineage and such the storage
overhead can be directly controlled by a user.

2.1.2 Lazy Provenance

Lazy-provenance methods compute provenance by request. While a naïve complete
storage of lineage is infeasible with an increasing number of processing steps and data
sources, Woodruff et al. [150] limit the stored information and propose lazy-lineage
computation SFDL for object-relational DBMS. The authors [150] introduce the notion
of weak inversion, which is used for calculating lineage with a wide range of weak
inverse functions. Woodruff et al. propose also a verification process with a set of
guarantees for the quality of generated lineage. To calculate lineage on the fly, a user
needs to register used inverse and verification functions in a database system.

WHY-WHERE Provenance In addition to why-provenance, Buneman et al. [23] intro-
duce a new aspect for relational and XML databases: where-provenance (WHY-WHERE).
While why-provenance answers the question of existence of contributing data, where-
provenance describes the location from which the data was extracted and is used to de-

9

2.1. WHY-SO QUERIES

�[X]

�[X]

Trio[X]

Why(X)

Lin(X)

PosBool(X)

�

Informativeness

Figure 2.2: Provenance hierarchy (Source: Green et al. [55])

tect the source of failures in a query answering process [150]. The authors prove why-
provenance to be invariant under query rewriting for SPJU-queries, while for where-
provenance it can differ. The proposed provenance model [22] is deterministic and
describes a location of each piece of data with a unique XML path that can be used as
its identifier. Based on its nature, a path also stores structural information and therefore
can be used to calculate lineage.

The problem of lineage tracing [43, 44] is common for data warehouses that in-
tegrate and transform information from different sources: these transformations are
combined into an extract-transform-load process (ETL) and include algebraic opera-
tions, unit transformations, summarizations, and data cleansing. To query provenance,
Cui et al. [43] construct a transformation graph (LTGDWT) from operations applied to
a data item and its traversal. All transformations are classified according to how they
map input and output, namely [43]: a dispatcher with a subclass filter, an aggregation
with context-free and key-preserving aggregators, and a black box. Aggregations and
dispatchers have known lineage tracing functions. For a black box, the entire input
data set represents its lineage. For dispatchers and aggregations, schema information
reduces the number of input items in lineage. Using properties of these transforma-
tions [43], lineage tracing can be optimized. Cui et al. [43] study fine-grained (or
instance-level) lineage tracing, where original-source data items are returned as a li-
neage for a given warehouse data item.

EXDB EXDB [26] supports both eager- and lazy-provenance calculations for querying
of web text and provides where-, why-, and how-provenance. It explains query answers
on two levels: the query lineage like in TRIO [2, 148] and the extraction lineage like
proposed by Cui et al. [43] and Buneman et al. [23].

Semiring Provenance (SEMIRINGS) The theoretical study of why-provenance [55]
shows that annotated relations like uncertain or provenance-annotated data can be
defined as commutative semirings. Following this proposal, Karvounarakis et al. [83]
define commutative semirings as “algebraic structures (K,+, ·, 0, 1) such that (K,+, 0)
and (K, ·, 1) are commutative monoids, · is distributive over +, and for all a, we have
0 ∗ a = a ∗ 0 = 0”, where K-relation is a commutative semiring, which can be for
example Boolean or natural numbers. A semiring can be represented by polynomials,
which are used for calculating provenance for why-so queries.

Semirings of different K-relations create the semiring hierarchy illustrated in Fi-
gure 2.2 and introduced by Green [54]. Green defines six kinds of provenance over
variable X with semiring semantic. The most general representation, polynomial
provenance N[X] [55], also captures how-provenance, which shows how each input
tuple affects calculation of an output tuple (for example, trusted or untrusted data
source). By removing coefficients, it derives Boolean provenance polynomial B[X].
Polynomial provenance N[X] contains also TRIO [2, 148] semiring TRIO [X]. Both of

10

2.1. WHY-SO QUERIES

from to annotation
a a p
a b q
b a r
b c s

(a) Data with annotations

a b c
q

r

s
p

(b) Graphical representation
from to Lin(X) Why(X) TRIO [X] B[X] N[X]

a a pqr p+ pqr p+ 2pqr p3 + pqr p3 + 2pqr
a b pqr pq + qr pq + qr p2q + q2r p2q + q2r
a c pqs pqs pqs pqs pqs
b a pqr pr + qr pr + qr p2r + qr2 p2r + qr2

b b pqr pqr pqr pqr pqr
b c qrs qrs qrs qrs qrs

(c) Result for provenance queries

Figure 2.3: Example of provenance calculation (Source: Karvounarakis et al. [83])

them contain why-provenance Why(X) [23], which is more informative than a positive
Boolean expression used in incomplete databases PosBool(X) [70] and lineage semiring
Lin(X) [44].

Assume the example provided by Karvounarakis et al. [83] in Figure 2.3. The
example database consists of the table in Figure 2.3a, which describes links between
nodes in a network. Its graphical representation is provided in Figure 2.3b. The 3hop
query derives such pairs of nodes (x, y) that node y can be reached from node x in
three hops. There are six combinations of source and target nodes, which are on a
3hop distance. They are comprised in the result table in Figure 2.3c. In this result
table, provenance reports of five previously introduced provenance models are pre-
sented. We can conclude that the polynomial representation N[X] [55] consists of all
possible paths between two nodes and derives the complete provenance in contrast to
other models. For instance, node b is reachable from node a via two paths: qrq and
ppq. For further examples of semiring applications, interested readers are referred to
the survey [83].

HOW-PROVENANCE While a polynomial representation of provenance is one of the
most general models, Meliou et al. [95, 96] open a discussion on applying lineage cal-
culation and its improvement for the use in database systems. The authors emphasize
the abundance of how-provenance. What a user really needs is the cause of an ans-
wer (and non-answer), which is typically only a part of lineage. Therefore, Meliou et
al. [95, 96] give a formal notion of causality that detects why a tuple is (is not) in the
result set based on user-defined criteria. A user can distinguish which information is
more crucial for him and can influence an answer generation. Meliou et al. also define
a responsibility of a cause that describes how strongly it contributed to an answer. As
a result, the causes of query results are returned, which are ranked by their degree of
responsibility [96]. The authors show a high algorithmic complexity for causality and
responsibility: it varies from PTIME and NP-complete for conjunctive queries with and
without self-joins.

Summary In Table 2.1, the comparison of why-so methods is presented according
to types of generated explanations and used data models. Lazy algorithms consider
various data models and therefore they provide different explanations. Most of the

11

2.1. WHY-SO QUERIES

Explanation

Model Lazy Provenance Eager Provenance

Object-oriented – MSDT [13]

Relational WHY-WHERE [23, 22],
SEMIRINGS [55, 83],
HOW-PROVENANCE [95, 96],
DBNOTES [14, 40]

PDAV [24], TRIO [2, 148],
DBNOTES [14, 40]

Semi-structured – SAQSD [89]

Object-relational SFDL [150] –

XML WHY-WHERE [23, 22],
SEMIRINGS [55, 83]

–

ETL LTGDWT [43] –

Web EXDB [26] EXDB [26]

Table 2.1: Overview of why-so methods

related work focuses on the relational data model. Lazy lineage calculation is also pro-
posed for the object-relational model, ETL processes, and the XML model. Graph data
models are rarely represented by the XML data model. One of the important aspects,
user integration, is investigated in two cases. In the fine-granular lineage calculation
proposed by Woodruff et al. [150], a user is required to define weak inverse and veri-
fication functions. By considering HOW-PROVENANCE [95], a user is required to define
items of interest, which have to be inspected. Table 2.1 comprises also information
about two systems which support eager- as well as lazy-provenance calculations. DB-
NOTES [40] derives annotations and provides custom annotation schemes for relational
data allowing to configure which information has to be considered for lineage. In con-
trast, EXDB [26] does not investigate user integration and generates unique paths to a
data source as an explanation for extracted web data.

2.1.3 Common Properties

In this section, an overview of related work for why-so queries have been presented,
which comprises various domains like data warehousing, explaining data anomalies,
access control, etc. Typically, these systems base on the open-world assumption, include
imprecise data, or transform and integrate data from multiple sources. Therefore, such
systems require explanations for the existence of some query results. The most used
application for provenance querying is data warehousing. The second most used one
is information extraction from the web, where the extracted and transformed data is
stored with unique paths to original data sources. Only in a few cases, the user is
integrated in the debugging process. Although a lot of work is done for querying data
provenance, only a limited set of data models has been considered. To conclude, all
presented solutions expose the following common properties:

1. Efficient generation of explanations is investigated in two forms: eager and lazy
provenance. While eager provenance provides fast explanations, it requires ad-
ditional storage overhead. Therefore, lazy methods are preferred, which do not

12

2.2. WHY-NOT QUERIES

keep the provenance of the result in advance, but calculate it by request. For
debugging purposes, lazy generation is more appropriate, because it considers
provenance only for items of interest.

2. User integration is purely presented by why-so queries. A user can specify which
explanation is required for which answer or which method should generate an
explanation.

3. Different kinds of explanations are provided on different lineage levels and include
complete and partial explanations, tuple-based and query-based explanations,
etc.

4. The problem discovery why some elements exist in the result is done by studying
the provenance of the data items. The corresponding explanation provides an
evaluation path describing from which sources the items of interest are received.

To conclude, the field of why-so queries for relational data is intensively studied. How-
ever, the provenance of graph data is poorly investigated and could be the focus of the
next generation of research on data provenance.

2.2 Why-Not Queries

While why-so queries explain why particular items are present in the result set, why-
not queries investigate the problem of missing answers, which can be done on different
levels starting from examining a query tree and data up to modifying the query. In
this section, we first discuss possible causes of missing answers and then consider some
solutions proposed in the state-of-the-art research projects.

2.2.1 Reasons of Missing Answers

There can be multiple reasons of missing answers such as (1) processing failures, (2)
missing or uncertain data, or (3) an incorrect query definition.

Processing Failures

Incomplete answers can be returned because of processing failures like technical issues,
schema mismatching in a distributed environment, or failures during data extraction
and integration processes.

Technical issues like network delays, link failures, or source unavailability [6] can
cause delays in query processing. For short delays, authors [6] propose query
scrambling that adapts query execution on-the-fly in such a way that during query
delays other query parts are processed. For long delays, a user is supported by
partial results. These methods aim rather at hiding delays than at debugging
missing answers.

Schema (Ontology) Mismatching can be a reason of imprecise answers in a distribu-
ted environment [98]. Mena et al. [98] estimate how much information can be
lost by translating queries across multiple ontologies and annotate answers with
a level of confidence, which is calculated based on a user-defined upper thres-
hold. If a user is not satisfied with the answer, the tool [98] relaxes a query along
multiple ontologies by using synonym, hyponym, and hypernym relationships.
Specifically in data integration systems providing a unique access to data via a
global-as-view schema [27], queries are automatically reformulated according
to local schemas. This reformulation can cause conflicts on integrity constraints
(perhaps, local data does not satisfy integrity constraints on a global schema)

13

2.2. WHY-NOT QUERIES

and as a consequence a system can provide an incomplete answer. To prevent
incompleteness, the system detects such conflicts and performs a minimal repair
of data [27], which is implemented as minimal removal of tuples violating const-
raints.

Data Integration Failures can be caused by confusing questions in a data gathering
process or a sensor malfunction. If an a priori known summary of raw data is
available, then missing values can be potentially reconstructed in three differ-
ent ways [151]: ideal-constrained, under-constrained, and over-constrained. In
an ideal case, only one exact solution exists, the aggregated values are accurate
and can be directly used to derive missing values. In an under-constrained case,
aggregated values are not sufficient to infer all exact missing values. Multiple
solutions can be found and an optimal one can be chosen by a user. In an over-
constrained case, the aggregation values are not accurate or they are estimated.
Therefore, no assignment of values to variables satisfies all constraints. The solu-
tion for this case is the best compromise.

Missing or Uncertain Data

Missing or uncertain data is a subject of incomplete or probabilistic databases. An in-
complete database can have some partial relations, where only a part of each relation
is known to be complete [90]. By querying such relations, a result set can be incomp-
lete. Therefore, the research focuses mainly on the answer-completeness problem and
determines whether an answer is complete even if a database is incomplete.

SELECT LIBRARY.title , LIBRARY.author

FROM LIBRARY , AUTHORS

WHERE LIBRARY.title=AUTHORS.title

Listing 2.1: Example query for incomplete databases

Levy [90] considers this problem as query independence from updates. Assume an
example database with a set of books, where the table LIBRARY is complete only star-
ting from 1950, the relation AUTHORS is complete. For the query in Listing 2.1, the
answer can be incomplete because if we update the database with information about
books published before 1950 the answer changes. An answer is surely complete for
a refined query with additional constraints on a year. The identification of answer-
completeness can improve query performance by reducing redundant querying of mul-
tiple data sources. For this purpose, Levy [90] compares the equivalence of query
results before and after updates.

Incompletenesses in data on an attribute level can be produced by an inaccurate
extraction of information, a heterogeneous or user-defined schema, or incomplete ent-
ries provided by a user and are modeled by null values. QPIAD [149] detects such
missing attribute values and rewrites queries appropriately [149]. Two standard so-
lutions include the ALLReturned algorithm [149], which in addition to exact answers
delivers all tuples with missing values and the ALLRanked algorithm [149], which re-
quests all tuples with missing values, predicts them, and generates answers based on
this extended database. QPIAD [149] creates multiple rewritten queries for attributes
with null values, selects rewritten queries, and orders them according to the number of
relevant answers to an original query. Afterwards, the rewritten queries are executed
according to their orders and their answers are provided as extensions to the result set
of an original query.

14

2.2. WHY-NOT QUERIES

Surname Children

Smith 3

Thompson 4

Clarke 3

Mayer 2

Surname Flat

Smith 3

Thompson 1

Clarke 5

Mayer 2

Family

Apartment

I{Smith,

Thompson,

Clarke,

Mayer}

O{Smith,Clarke}

I{Smith,

Thompson,

Clarke,

Mayer}

O{Smith,Thompson,Mayer}

O{Smith}

I{Smith,

Clarke}

I{Smith,

Thompson,

Mayer}

Family F Apartment A

�Children=3 �Flat <5

F.Surname = A.Surname

Picky Manipulation

Frontier

Picky Manipulation

Figure 2.4: Query-based solution for why-not query: Why is family Clarke not in result set? Ori-
ginal query: SELECT Surname FROM Family AS F INNER JOIN Apartments AS A ON
F.Surname=A.Surname WHERE F.Children = 3 AND A.Flat < 5

Query Incorrectness

The above presented systems dealing with incomplete or uncertain answers aim at pre-
venting incomplete answers or at hiding side-effects like delays. For these systems,
incomplete answers are natural and therefore do not require strong debugging capa-
bilities. If the incomplete and missing answers are unexpected then the reasons of
unexpectedness have to be detected and failed assumptions have to be fixed in a query.
In this case, a user has formulated a query in such a way that some operations applied
for selecting answers discard the items of interest.

Query incorrectnesses belong to failures done by users and should be supported by
a debugging tool. Therefore, in this thesis we will focus mostly on this reason. To sup-
port users in such scenarios, two kinds of explanations can be generated: provenance-
based and modification-based explanations. In the first group, the original query is not
changed and the provenance of the missing answer is studied on query or data levels.
In the second group, the original query is refined in such way that missing answers are
delivered to a user.

In the following, we will discuss provenance-based explanations in Section 2.2.2
and modification-based explanations in Section 2.2.3. Then, several examples for spe-
cific query types and models will be presented in Section 2.2.4. Finally, common pro-
perties of methods for generating why-not explanations are discussed in Section 2.2.5.

2.2.2 Provenance-Based Explanations

To detect the reasons of missing answers, provenance-based why-not queries study re-
sult provenance on query or data levels or consider both of them at the same time.
Depending on the used explanation level, query-based, instance-based, or hybrid re-
ports can be generated.

Query-Based Explanations

Query-based explanations describe the reason of a missing item in terms of query pro-
cessing operations responsible for its elimination from a result set.

WHY-NOT In original why-not queries [32], a user is interested in debugging non-
answers. It is assumed here that a user cannot process the data manually because of
its large volume and complexity. Chapman et al. [32] propose a solution WHY-NOT for
answering why-not questions based on a query tree. An answer includes operators of a

15

2.2. WHY-NOT QUERIES

aid name dob

a1 Homer 800BC

a2 Sophocles 400BC

a3 Euripides 400BC

aid bid

a1 b2

a1 b1

a2 b3

A

AB

A AB

�A.dob >800BC

aid bid title price

b1 Odyssey 15

b2 Illiad 45

b3 Antigone 49

B

bid

B

�A.name, AVG(B.price) � ap

Figure 2.5: Example for database and query tree (Source: Bidoit et.al [17])

query tree, which are responsible for eliminating tuples of interest from a result set and
are called picky manipulations. The highest operator along a tree, which removes inter-
esting tuples from the consideration is called a frontier picky manipulation and is res-
ponsible for missing interesting tuples. To detect picky manipulations, each operator is
characterized by its lineage, which consists of input tuples contributed to output tuples.
Assume an example query, its query tree, and an example database in Figure 2.4. Each
operator is annotated with its input I and output sets O. The interesting item Clarke
is discarded by two picky manipulations σFlat<5 and join (F.Surname = A.Surname),
where the second one is a frontier picky manipulation. This approach works for SPJU-
queries.

NEDEXPLAIN Bidoit et al. [17] discover several shortcomings in the WHY-NOT ap-
proach [32], which lead to inaccurate or even wrong results, namely: (1) An inaccurate
selection of unpicked data, which becomes feasible if a query has self-joins. (2) An in-
sufficient definition of successors, which results in independent tracing of data sources.
(3) A restriction to frontier picky manipulation, which strongly depends on the query
tree representation. (4) Insufficient answer details, which complicates understanding
how each returned manipulation contributed to the rejection of interesting answers.

SELECT A.name , AVG(B.price) AS ap

FROM A, AB, B

WHERE A.dob > 800 BC AND A.aid = AB.aid AND B.bid = AB.bid

Listing 2.2: Example SQL query [17] to highlight shortcomings of traditional why-not definition [32]

To highlight some of the shortcomings of the WHY-NOT approach [32], Bidoit et al.
provide the following example. Assume the database of books in Figure 2.5 with three
tables: table A declares authors, table B presents books with prices, and table AB
describes a foreign key relation between tables A and B. A user is interested in au-
thors living before 800 BC and average prices of their books (the corresponding query
tree is illustrated in Figure 2.5, the SQL query is in Listing 2.2). The query engine
delivers only a single answer (Sophocles, 49). The absence of the tuple Homer with a
price value 49 can be explained with its rejection by the second join, because there is no
book with price 49 for Homer. Still, the WHY-NOT approach [32] generates no explana-
tion, because of the used incomplete definition of unpicked data. Referring back to this

16

2.2. WHY-NOT QUERIES

example, the output set for the second join includes (Homer, 800 BC, Illiad, 45),(Homer,
800 BC, Odyssey, 15), and (Sophocles, 400 BC, Antigone, 49). All input tuples with 49
and Homer are picked, therefore, everything is fine, the algorithm traverses up the tree
and misses the correct answer. This incorrect behavior is caused by the assumption
that data sources are independent. To overcome shortcomings of the WHY-NOT ap-
proach [32], Bidoit et al. [17] formalize the process of answering why-not questions
and provide the algorithm NEDEXPLAIN for generating why-not answers. This approach
makes use of conditional tuples (c-tuples) to formalize why-not questions, which allows
to check whether input-output tuples satisfy conditions in a why-not query. Moreover,
they restrict the notion of a successor to valid successors with respect to a set of tuples
which allows to detect the cases similar to the one provided in the example above.

Polynomials with TED and TED++ The above presented approaches strongly de-
pend on the query tree representation and can therefore miss some explanations. Con-
sidering this drawback, Bidoit et al. [15, 16, 18, 19] propose to model why-provenance
via polynomials, which is similar to why-so provenance, considered in Section 2.1. A
why-not question is represented as a conjunction of conditions for a missing answer. In
the previous example, a why-not query “Why is an item Homer with a price 49 not in
the result set?” can be modeled as name = Homer ∧ price = 49. The authors propose
two algorithms: TED [16] and TED++ [15] to generate why-not explanations. Bidoit
et al. introduce compatible tuples that are generated from the data tuples according
to why-not questions. Referring to the previous example, first compatible tuples are
extracted, which satisfy name = Homer ∧ price = 49. Second, the algorithm enumer-
ates them and checks which of them do not satisfy the original query conditions. In
such a way, the algorithm generates explanations based on violated query conditions.
Afterwards, all of them are put together into a single explanation via disjunctions. If dif-
ferent compatible tuples have the same explanations the polynomial representation can
be improved by assigning coefficients to unique explanations, which show the number
of tuples having a specific explanation.

The main drawbacks of the TED algorithm [16] are the enumeration of compatible
tuples and the iteration over them. To prevent them, the TED++ algorithm [15] per-
forms the following optimizations: (1) Instead of iterating over all compatible tuples, it
iterates over possible explanations. This space is assumed to be smaller. (2) It derives
partial sets for passing compatible tuples. (3) It calculates how many compatible tuples
were eliminated for each explanation. For further details, we recommend the research
work of Bidoit et al. [15, 19] to the interested reader.

Declarative Debugging Caballero et al. [25] propose a declarative debugging tool
(DDWMA) of missing or unexpected answers for SQL views, which constructs a compu-
tational tree for failed views. Its nodes represent tables (relations) on leaves or they
can also be computational trees of subviews. The tool [25] navigates the search along
this tree by asking a user, whether a particular node is valid. Each invalid (buggy) node
corresponds to an erroneous relation. The debugger collects buggy nodes and provides
them as an explanation for an unexpected answer.

Instance-Based Explanations

Explaining a reason of a missing answer can also be done on a data level, which is
typical for data extracted from external data sources with imperfect extractors that can
fail or derive data with mistakes. To debug and fix data, databases have to support li-
neage [12], which describes a data item’s derivation (inside the database of an external

17

2.2. WHY-NOT QUERIES

source of information) and is used to generate instance-based explanations. They show
how a data source has to be modified in order to deliver missing answers. Like in the
previous section, these approaches are relation-oriented and do not consider specifics
of a graph.

Missing-Answers (MA) In general, all query results can be classified in two groups:
potential answers (they can become answers, if data updates are allowed) and never-
answers (there are no updates that could turn a non-answer into an answer) [67].
To distinguish between them, Huang et al. [67] consider two types of sources and
attributes: untrusted (their data can be fixed) and trusted. This consideration allows
to limit rewriting decisions by the notion of trust such that modifications of less trusted
sources are preferred. By varying (un)trust in specific tables and attributes, a user can
explore the provenance space of non-answers. To answer a why-not query, the system
requires a query, a list of trusted tables and attributes, and a non-answer. First, a
user query is completed with implicit predicates and transitivity rules. Then, returned
attributes are calculated for a user query (they can be potentially changed to create
an answer from a non-answer). Afterwards, predicates on trusted tables and attributes
are selected and non-corresponding tuples are filtered out. Finally, trusted predicates
are joined with corresponding data sources if they are available. Untrusted tables are
populated with null proxy tuples and the constructed provenance query is evaluated. As
an explanation for a missing answer, the MA system [67] generates a provenance report
that consists of a set of update tuples from which an answer can be potentially derived.
If a tuple is a never-answer then its provenance query reports an empty provenance for
it. In the example in Figure 2.4, a tuple Clarke can become an answer, if we change the
apartment number from 5 to 4 in the table Apartment, which was probably extracted
incorrectly.

ARTEMIS Herschel et al. [65] propose the tool ARTEMIS for debugging and validating
SQL queries using data. In addition to the MA approach [67] described above, ARTEMIS

supports result ranking based on the number of tuples to be inserted in a database in
order to make a non-answer an answer. It also supports user-defined constraints like
immutable views. In further work [64], ARTEMIS was extended by handling aggrega-
tions and grouping in queries. In ARTEMIS, explanations are calculated by modeling a
missing-answer problem as a set of constraints which are passed to a constraint solver.
The solver [64] returns only such explanations which satisfy all constraints also if exp-
lanations require nulls, inequalities, or unique constraints. For modeling a constrained
problem, conditional tuples (c-tuples [70]) are used. Herschel et al. [64] define a c-
tuple as “a tuple c − tuple =< a1, a2, . . . , an, cond > such that every value ai is either
a constant or a labeled null. The attribute cond is a Boolean expression”. C-tuples
describe missing values which need an explanation. An explanation itself represents a
finite set of c-tuples that is sufficient to receive all missing tuples. Still, a user has to
decide which subset of explanations should be used to aggregate a final value. An origi-
nal query is split in SPJ-operators which are pushed down and processed by the original
algorithm for creating explanations [67]. Afterwards, their grouping and aggregation
takes place. ARTEMIS supports also the generation of explanations for several tuples at
the same time.

Provenance Games (PROVGAMES) Considering why-provenance on semirings, i.e.,
semiring-provenance, introduced in Section 2.1, we can also answer a question, why
some tuples exist in the result set. While semiring-provenance is the most general

18

2.2. WHY-NOT QUERIES

-3hop(c,a)3hop(c,a)

r1(c,a,a,a) r1(c,a,a,c) r1(c,a,c,a)r1(c,a,a,b) r1(c,a,b,b)r1(c,a,b,a)r1(c,a,c,b)r1(c,a,c,c)r1(c,a,b,c)

g1
1(c,a) g1

1(c,b)g1
2(a,c) g1

2(c,a) g1
3(c,a) g1

1(c,c) g1
2(c,c) g1

2(c,b) g1
2(b,b)

-hop(a,c) -hop(c,b) -hop(b,b)-hop(c,a) -hop(c,c)

hop(a,c) hop(c,b) hop(b,b)hop(c,a) hop(c,c)

Figure 2.6: Why-not provenance for 3hop(c,a) using provenance games (Source: Riddle et al. [121])

and suits why-provenance, it cannot model a negation, which is necessary for why-not
provenance. Considering this fact, Köhler et al. [85] propose provenance games for
modeling why- and why-not provenance. Assume the example in Figure 2.3. A user
is interested in a 3hop connection between nodes c and a, namely 3hop(c,a). This
situation can be modeled as a game with two players, which can be represented as
a graph G = (V,M) with V positions and M ⊆ V × V edges. Both players move
along edges of the graph [85]. The first player asks whether a particular connection
exists, the second player has to prove this with instance data. A game is modeled as
an iterative process, which terminates when one of the players cannot move anymore
and therefore loses the game. The graph is colored according to the movements of
the players. If a player position is correct it is filled with white color, otherwise, with
gray color. For why-provenance, to show that a path between two data nodes exists
(for example, 3hop(c,a) exists), at least one of the leaves of a provenance graph has to
evaluate to true (which would be then highlighted by the white color). To model why-
not provenance, the first player starts with a negation of a tuple. An example of why-not
provenance for 3hop(c, a) queries is taken from the research of Riddle et al. [121] and
represented in Figure 2.6. To prove that 3hop(c,a) is not correct, it is necessary to show
that all leaves of a why-not provenance tree fail. For further examples, we recommend
the research work of Riddle et al. [121] to the interested reader. Later Glavic et al. [52]
revise this approach and propose summarizations for generating explanations. Namely,
explanations with the same partial answers can be summarized and represented by
an intermediate node in a graph. In other words, instead of traversing all possible
connections, they can be generalized to an upper level with the use of inclusion rules
and ontologies.

Hybrid Explanations

In some scenarios, above discussed algorithms do not find any solution, for example,
if there are multiple inconsistencies, and the change of a table (for example) for a
join predicate has to be tested. In this case, a system has to introduce a new tuple
into a table, which is impossible if changing the data is not considered. Therefore,
sometimes it is advantageous to combine different approaches, which is done in the
CONSEIL system [60, 61] that generates hybrid explanations of missing answers.

The presented types of provenance-based explanations, which include query-based,
instance-based, and hybrid reports, require user knowledge about underlying data and

19

2.2. WHY-NOT QUERIES

schema. Based on them, a user can understand, which query part has to be modified in
order to receive missing answers. Still, this can be a difficult task for an inexperienced
user. Therefore, in such cases it can be more appropriate to refine a query automatically,
where a user does not care about changing a query or data by himself with the help of
an explanation. Indeed, a system improves it automatically.

2.2.3 Modification-Based Explanations

Methods of this group provide explanations in the form of modified queries, which
deliver missing results. They can be classified mainly according to used integration
strategies: automatic and navigational solutions. In the first case, no user is directly
integrated, while in the second case, on each modification step a user feedback is re-
quested. In navigational solutions, the search is steered by a user who can prefer some
rewriting decisions or reject inappropriate query candidates.

Constraint-Based Query Refinement (CONQUER) Tran et al. [132] change a failed
query in such a way that missing tuples are in the result set together with original ans-
wers. This automatic modification-based approach for SPJUA-queries is implemented
in the CONQUER system, which generates a set of refined queries and modifies them
further to produce skyline queries by applying additional predicates. First, the system
modifies a query minimally on the level of selection predicates. If refined queries do
not deliver missing answers the schema of a query is changed. The generation of mul-
tiple candidates may result in a performance bottleneck. Therefore, an optimization
approach enabling simultaneous changes of multiple conditions is proposed. This is a
similarity-driven approach, i.e., refined queries are compared based on the following
metrics:

• A dissimilarity metric that describes how semantically different a refined query is
from the input one. It is calculated as an edit distance by transforming an original
query into a transformed one.

• An imprecision metric that compares the results of both queries. Ideally, a refined
query should include only original results with why-not tuples. All other tuples
are considered to be irrelevant and should be minimized.

• Skyline refined queries. The authors are interested in a set of skylined queries to
propose them to a user. Assume two refined queries Q1 and Q2. First refined
query Q1 dominates over Q2 if both its dissimilarity and imprecision metrics are
the same or lower of the metrics of Q2, and at least one of these metrics is much
lower than the same metric for Q2. The dominating refined queries are preferred.

As a reference model, Tran et al. [132] use the TALOS [133] system, which generates a
query for a given set of output tuples. Given a database, a set of originally received and
missing answers, TALOS generates a set of instance-equivalent queries that deliver the
same result, but look semantically different. Therefore, instead of changing an original
query, the system can try to generate a new one. Although this is technically a valid
solution, a user can be confused by receiving a semantically different query.

FLEXIQ Islam et al. consider user feedback during interactive query refinement in the
FLEXIQ framework [73, 74, 75]. A user feedback provides information of two kinds:
expected answers that do not exist in a result set and unexpected results presented in
a result set. At each iteration, the framework automatically refines a query in such a
way that expected results appear and unexpected results disappear from a result set.
For this purpose, the framework exploits a skyline operator for minimizing unexpected

20

2.2. WHY-NOT QUERIES

ext(City, I) = {Amsterdam, Berlin, Rome, New York,

San Francisco, Santa Cruz, Tokyo, Kyoto}

ext(European-City, I) = {Amsterdam, Berlin, Rome}

ext(Dutch-City, I) = {Amsterdam}

ext(US-City, I) = {New York, San Francisco, Santa Cruz}

ext(East-Coast-City, I) = {New York}

ext(West-Coast-City, I) = {San Francisco, Santa Cruz}

City

European-City US-City

Dutch-City East-Coast-City West-Coast-City

Source Destination

Amsterdam Berlin

Berlin Rome

Berlin Amsterdam

New York San Francisco

San Francisco Santa Cruz

Tokyo Kyoto

Train-Connections

Figure 2.7: Example of database table with train connections and ontology (Source: ten Cate et al. [131])

and maximizing expected answers. It collects feedback, calculates boundaries between
expected and unexpected results, and refines a query inside new query bounds. Islam
et al. also provide a pre-processing step making a refined query as semantically similar
to the original query as possible.

Language-Level Debugging A language-level debugging is also proposed in HABI-
TAT [56], which implements the basics of observational debugging. According to this
paradigm, a user observes whether basic assumptions are valid and evaluated as ex-
pected. In HABITAT [56], a user marks any subquery to observe. The marked subqueries
are executed by the query engine and their results are exposed to a user, who catego-
rizes them as (in)valid. A user can further narrow the search to localize a reason of
an error. At the end of a debugging session, an algebraic compiler generates a refined
query based on collected debugging information.

To conclude, we considered provenance-based and modification-based explana-
tions. All of them are complementary and can be used in a debugging or testing
framework like for example in NAUTILUS Analyzer [62, 63], which relies on why- and
why-not provenance and provides instance-based, query-based, and modification-based
explanations. The NAUTILUS Analyzer is able to consider a user feedback for explana-
tions, which can be annotated by a user as (ir)relevant. In addition, it also supports a
simple ranking schema to prioritize explanations, which considers the number of data
tuples involved into explanations, their similarity, and diversity.

2.2.4 Query-Type Oriented and Model-Specific Why-Not Queries

Until now, we considered general why-not queries in RDBMS for SPJUAG queries. Why-
not queries can also appear in other use cases such as explaining failed queries in
knowledge bases [31] or missing items of SPARQL queries [153]. In this section, we will
have a look at several scenarios and give a short overview for why-not queries which
consider characteristics of particular data models and query types like for example top-
k and reverse top-k queries [51, 58, 59].

Ontology-Based Explanations (HLWN) Missing query answers can also be explained
by high-level and meaningful explanations (HLWN) with the help of ontologies [131].
The main challenge taken here is to compute the most general explanation. Ten Cate et
al. [131] provide the following example to make a reader familiar with the ontology-
based explanations: Assume a database table with train connections between cities
and the ontology presented in Figure 2.7. The database is described by the schema
S={Train-Connections (source, destination), Cities (name, population, country, conti-
nent)}. A user is interested in all pairs of cities connected via a city, namely: Train-
Connections (source, destination) ∧ Train-Connections (source, destination). A user may

21

2.2. WHY-NOT QUERIES

wonder why the connection (Amsterdam,NewY ork) is not in the result set. The ge-
nerated ontology-based explanations are presented in Listing 2.3.

E1=(Dutch -City ,East -Cost -City)

E2=(Dutch -City ,US -City)

E3=(European -City ,East -Cost -City)

E4=(European -City ,US -City)

Listing 2.3: Generated ontology-based explanations

According to generality, they can be sorted as follows: E4 >o E2 >o E1 and E4 >o

E3 >o E1. E4 is the most general explanation to be retrieved by the system. Such
general explanations reduce the number of explanations and can be understood easier
by a user. Ten Cate et al. [131] study the theoretical foundations of this problem and
show that it is NP-complete. In some special cases, it can be solved in polynomial
time. The question of missing answers (MA-DL) has been studied for querying over
ontologies [28, 29]. The used techniques consider reasoning and are less relevant for
relational and graph databases.

Answering Why-Not QuestioNs for SpArql (ANNA) The Resource Description Frame-
work (RDF) [100] is a general data model originating from the semantic web commu-
nity. It represents data as a graph expressed by a set of triples (subject,predicate,object)
called RDF statements, where the subject and the object are nodes of a data graph
connected by predicates introducing edges. This data is usually stored in triple stores
implementing SPARQL [57] endpoints for its querying. Triple stores with open data are
typically connected in the linked open data cloud and provide functionality for federa-
ted querying. This model is very general and allows to store and process different data,
which complicates its querying. The problem of missing answers is very common by
querying RDF data from triple stores with a SPARQL query interface. To explain them,
the ANNA system [153] uses a divide-and-conquer principle and considers two levels of
query processing: a basic graph pattern level and an operator level. The basic pattern
level represents only the topology of pattern matching queries expressed by a set of RDF

triples. The operator level includes SPARQL operators like FILTER, DISTINCT, LIMIT,
etc. The reason of a missing answer can be a too restrictive basic graph pattern at the
basic pattern level or questionable query operators on the operator level [153]. To ge-
nerate an explanation, the ANNA system first checks whether a basic graph pattern with
a missing item exists. If the pattern is not available, it is refined. Otherwise, the system
identifies questionable query operators which are responsible for discarding items of
interest from a result set.

Failed Queries in Knowledge Bases (WHYNOT) Chalupsky et al. [31] describe se-
veral reasons of failed queries, which are specific for knowledge bases: missing know-
ledge, limitations of used reasoners to derive knowledge, user misconceptions, or in-
correct facts and rules, whose detection is complicated when the size of knowledge
bases is large. In such settings, it is infeasible to derive an exact, correct proof. There-
fore, Chalupsky et al. [31] propose to generate plausible partial proofs, which only
approximate correct proofs and describe what could be a reason for a missing item.
If a query fails and delivers unknown status, the proposed WHYNOT tool [31] checks
which information is known to a knowledge base and which is unknown. Afterwards,
it assumes what happens if a failed condition would be true or false, and provides a
corresponding answer to a user. Although the proposed strategy delivers only partial
proofs, they give sufficient information about missing parts of data or what could be a

22

2.2. WHY-NOT QUERIES

reason of a failure. To avoid overloading a user with explanations, partial proofs are
ranked according to their plausibility.

Top-K Queries (WHY-K) If some answers are missing for a top-k query, a user can
ask [58, 59]: What has been chosen inappropriately? The number K, the weighting
function, or both? To answer these questions, He et al. [58, 59] propose a modification-
based approach, where an explanation represents a refined query which is character-
ized by two numbers showing how much K and a weighted function were changed.
From two possible explanations, a dominating one is derived for a user. A refined query
dominates over another refined query if both its refinements on K and a weighted
function are smaller than that of the second candidate. Considering inefficiency of an
exact search, He at al. [58, 59] propose a sampling-based method to find the best ap-
proximate answer. For this purpose, a randomly-sampled list of weighted vectors is
generated from a weighting space. For each vector, a corresponding query is created,
which is processed by a progressive top-k algorithm until an item of interest appears
in the result set with a calculated rank. The mappings between discovered ranks and
weighted vectors are collected. After all queries are executed, the best candidate with
the lowest difference to the original query and weighting function is delivered to a user.

While top-k queries deliver K ranking results according to a user-defined weight-
ing function, reverse top-k queries with respect to an item q return those preference
functions from a given set of functions, which rate item q in first K items [51]. This
type of queries is specifically useful in marketing research and recommendations. Si-
milar to top-k queries, an explanation can be calculated mathematically over the space
of preference functions. In addition, to a set of weighting functions and a number K,
item q can be changed [51]. Why-not explanations are also proposed for keyword spa-
tial top-k queries [36] that search for K best ranked geo-tagged objects on the web.
Chen et al. [36] model the problem of missing geo-tagged objects as a two-dimensional
problem, which allows to derive a geometrical model for ranking objects and is used
for query refinement.

Sky-Not Queries (SKY-NOT) Why-not queries are also studied for skyline queries,
called SKY-NOT queries [39]. By definition, a skyline query returns those data items,
over which no other data items dominate across all attributes. This is a query for
multidimensional analysis considering particular multidimensional space and returning
extremes of this space. By receiving an answer, a user may wonder why particular
items (points) are dominated. Therefore, a sky-not explanation changes the bounds
of the query such that items of interest appear in the skyline [39]. To generate a sky-
not explanation, Chester et al. [39] propose a bounded rectangle algorithm, which
calculates a reduced set of candidates which puts an item of interest in the skyline and
chooses the closest one to the original bounds.

The reverse skyline queries deliver those data points to a user, which skylines inc-
lude a query point [71, 76]. Typically, these queries are used in marketing research and
discover for example customers who have a given set of products in their skylines. If a
user wonders why a product is not in the result set and therefore it is not well-located
on the market, he can request a why-not reverse skyline query. A generated explana-
tion includes minimal changes to a query point (a queried product) and a why-not point
(a customer) which can include a why-not point in the result set of a reverse skyline
query by preserving original answers [76]. Similar to why-not explanations for top-
k and reverse top-k queries, sky-not and reverse sky-not explanations can be derived
mathematically. This fact makes them different from the relational SPJUAG-queries.

23

2.2. WHY-NOT QUERIES

Explanation

Model Query Instance Modification Hybrid Ontology

Relational WHY-NOT

[32],
NEDEXPLAIN

[17],
TED [16],
TED++
[15, 18, 19],
DDWMA [25]

MA [67],
ARTEMIS

[64, 65],
PROVGAMES

[52, 85,
121]

CONQUER
[132],
FLEXIQ
[73, 74, 75],
WHY-K [36,
51, 58, 59],
SKY-NOT

[39, 71, 76],
HABITAT [56]

CONSEIL

[60, 61],
NAU-
TILUS

[62, 63]

–

RDF ANNA [153] – – – –

Graphs WHYNOT [31] – PM [72] – –

Annotated
data

– – – – HLWN

[131],
MA-DL
[28, 29]

Table 2.2: Overview of why-not methods

Pattern Matching Queries (PM) The problem of missing answers has also been stu-
died for pattern matching queries in graph databases, which maintain multiple data
graphs. In this setup, an item of interest represents a data graph, which is missing from
a result set [72]. Islam et al. [72] provide an approximate solution (PM) for generating
why-not explanations for labeled graphs. To calculate a bounded search space, Islam
et al. compute an approximate maximum common subgraph between a query graph
and missing graphs. For this purpose, a query and missing graphs are decomposed in
a set of stars, which then are mutually mapped. Afterwards, individual vertices can
be mapped between each pair (a query star, a data graph star) and a maximum com-
mon subgraph is derived for each pair. Finally, the system composes a global maximum
common subgraph from maximum common subgraphs for pairs (query, data graph),
which represents the worst query refinement. Afterwards, an explanation is produced
in two steps [72]: First, a system generates candidate edges, which can be added to
or removed from a query graph. These edges are derived from the comparison of a
query graph, data graphs, and a discovered maximum common subgraph. Second,
from the generated set those edges are selected which minimize the distance to the
original query based on a distance function.

2.2.5 Common Properties

In this section, we consider content-based why-not queries in RDBMS. A comparison
of different methods is presented in Table 2.2, where discussed research projects are
classified in five groups according to the type of generated explanations such as query-,
instance-, modification-, ontology-based, and hybrid methods. In all these cases, users
provide the items of interest, which are missing in the results. In addition, in some
systems trust sources or buggy relations can also be defined. Most approaches consider
the relational data model and specifics of a debugged query type. There is some initial

24

2.3. WHY-EMPTY AND WHY-SO-FEW QUERIES

work done for graph data models. Still, it considers only RDF and multiple labeled
graphs.

Referring to the state-of-the-art systems for processing why-not queries, the follow-
ing common features can be extracted:

1. Efficient generation of explanations is investigated in different forms, for example:
bottom-up and top-down approaches for processing relational queries, or rewri-
ting methods focusing on minimal refinements.

2. User integration is presented in two general ways: a user provides the tuples of in-
terest to be investigated or decides on refinement steps by generating modification-
based explanations.

3. Different kinds of explanations investigated by why-not queries depend on a query
type and include for example: provenance- and modification-based explanations.
Some systems consider user proficiency and generate multiple explanations.

4. The problem discovery, why some elements are missing from the result, is done
by studying the query tree and determining those query operators, which discard
items of interest from the result.

5. Query refinement changes a query in such a way that it delivers items of interest
to a user. This is a more advanced explanation than just providing manipulations,
which are responsible for discarding items of interest.

To conclude, why-not queries aim at efficient discovery of reasons for missing answers
and query refinement, which can be further improved by user integration. Modern
debugging tools also try to provide various kinds of explanations in order to satisfy
different user groups. While why-not debugging technologies are extensively studied
for RDBMS, why-not research for graph databases is still in its early phase.

2.3 Why-Empty and Why-So-Few Queries

The problem of over-constrained queries was extensively considered in RDBMS as well
as in graph database management systems (GDBMS). Such queries deliver too few
or even empty results. A reason for this behavior can be a too strongly constrained
query or missing data. This problem becomes a difficult challenge especially for an
inexperienced user. As a consequence, solutions presented in the related work aim to
discover a cause of an empty answer and to rewrite an input query to deliver any or
more results (modification-based explanations) or to prevent the occurrence of such
situations (prevention methods).

Relaxation of relational queries can be classified in two groups according to a user-
integration strategy: automatic and navigational approaches. The first group comprises
automatic methods to generate refined queries. It typically suffers from a large number
of candidates that complicates the selection of the best one. Therefore, optimization
techniques require the definition of flexible constraints or conflict resolution. The se-
cond group integrates a user directly in a relaxation process by asking whether a specific
change is allowed, i.e., a user navigates a refinement process.

2.3.1 Modification-Based Explanations

CO-OP The problem of receiving empty answers was first tackled in the CO-OP sys-
tem [80, 81], which executes queries expressed in a natural language. Let us assume
the following query session presented in Listing 2.4.

25

2.3. WHY-EMPTY AND WHY-SO-FEW QUERIES

�������� �	
� ����
��� ��
�
���� �� ��

���������

Figure 2.8: Example of query representation in Meta Query Language

Request: Who passed an exam in geography in WS 2014/2015?

System Answer: Empty answer.

Modified Request: How many students failed?

System Answer: 0.

Modified Request: How many students passed this exam?

System Answer: 0.

Listing 2.4: Stonewalling behavior

All these empty answers are contradictory and may mislead a user. This type of
database behavior is called stonewalling. To deal with this issue, a system has to be
able to detect it, to discover its reasons, and to provide meaningful answers to a user
or an explanation. There can be two types of empty answers: ‘genuine’ or ‘fake’ ans-
wers [104]. In the first case, the empty answer is correct and there is no data cor-
responding to the query. In the second case, some of the query presuppositions failed;
therefore, the query failed as well. To detect the correct reason of an empty answer, CO-
OP evaluates all query presuppositions. In our example, the following pre-suppositions
can be derived as presented in Listing 2.5.

There are some students.

An exam in geography took place in WS 2014/2015.

Listing 2.5: Pre-suppositions for example queries in Listing 2.4

The proposed query failed because of the second erroneous presupposition: no
exam in geography took place in WS 2014/2015. This explanation can be given to
a user instead of a misleading empty answer. CO-OP [80] supports an intermediate
representation in the Meta Query Language (MQL). The query is expressed in MQL as
a graph where each subject represents a node and a relationship is a connection bet-
ween nodes. The example query is illustrated in Figure 2.8. Unsuccessful evaluation
of any of its subgraphs leads to the failure of a query. An answer to a fake query in-
cludes an explanation constructed from failed presuppositions. A reply to a genuine
query incorporates alternative answers of its presuppositions and hereby represents a
straightforward query generalization approach, namely: removing failed presupposi-
tions from a query.

SEAVE In addition to the discovery of erroneous presuppositions, SEAVE [103, 104,
105] proposes query generalizations that are query presuppositions on a logical level
and are derived by relaxing some of the query constraints. All generalizations are
stored in a relaxation lattice, where the less relaxed presuppositions are located on
higher levels. The most general presupposition (extreme generalization) is placed on
the bottom of the lattice and has all constraints relaxed. The upper part of a relaxa-
tion lattice for the example query is provided in Figure 2.9 where relaxed conditions
are underlined. For the categorical constraints ∗ represents a relaxed categorical at-
tribute. Its exact value depends on a relaxation strategy, a similarity measure, and
a relaxation step. To detect, whether an empty result is genuine or fake and to pro-
vide a corresponding answer, three kinds of database knowledge are involved: facts,
integrity constraints, and completeness assertions. Facts describe the data (entities

26

2.3. WHY-EMPTY AND WHY-SO-FEW QUERIES

����������������	
��	
���

����������������	
��	
��� ����������������	
��	
��� ��������������������������

����������������	
��	
���

� �

Figure 2.9: Query relaxation lattice

and their attributes stored in a database). Integrity constraints consider the relations
between entities in a query. There should be no contradictions inside the query. The
completeness concerns the closed-world assumption (the database keeps all the data
about requested entities). The query presuppositions are tested against all these three
constraints and corresponding explanations are derived to a user. The authors [104]
propose an intermediate table representation including all the constraints and allowing
their parallel evaluation. To conclude, SEAVE reports the maximally generalized failed
queries that are assumed to be more informative answers for a user than just presen-
ting a minimal failed subquery. Chaudhuri [33] defines extended generalized queries
(GFQM) for solving the empty-answer problem, which provide additional conditions for
the result set and examine some query constraints as flexible ones.

In general, CO-OP and SEAVE consider all the possible query generalizations to dis-
cover minimal failed and maximal succeeding queries. These problems are proved to
be NP-hard [53], which leads to the necessity of using heuristics to reduce the search
space of presuppositions and its complexity.

COBASE This system [41] relaxes a query with the assistance of a Type Abstraction
Hierarchy (TAH) which is “a representation for the abstraction of individual types at
instance level” [41]. An individual type can represent an atomic type or a tuple expres-
sing multiple attributes at once. For example, an abstraction of a numerical type is an
interval. On the bottom, primitive intervals consisting of individual values are placed,
which are aggregated on upper levels. Each node of a hierarchy is annotated by a
nearness value characterizing values below a node. An abstraction of a non-numerical
type is a type of conceptual names like “North America” for values “USA” and “Canada”.
COBASE creates TAH in advance by calculating a relaxation error between the requested
values and the returned values. To induce the best correlation between bottom non-
numerical values, Pattern-Based Knowledge Induction (PKI) [99] can be used which
derives clustering rules from the data. A tree is constructed in a bottom-up manner:
First, atomic patterns are generated and their entities are placed on the bottom. Then
rules are induced for each pair of attributes, where each rule is characterized by its pop-
ularity (frequency of its usage) and confidence (how well it fits the database). Those
rules with the biggest clustering correlations (products of their confidences) are chosen
from the generated ones and corresponding entities are clustered. To control the depth
of a tree, an expert needs to assign a threshold for a clustering coefficient. In addition,
weights for different attributes can be assigned in order to vary impact of different
attributes on clustering.

LOQR and TOQR The above presented solutions focus on relaxing attributes without
considering any dependency between them. In later research, relaxation strategies
overcome this drawback. The LOQR algorithm [109] takes the advantages of machine

27

2.3. WHY-EMPTY AND WHY-SO-FEW QUERIES

learning to discover hidden dependencies between attributes for query relaxation. This
algorithm consists of three steps: (1) Decision rules describing implicit dependencies
between attributes are learned online on a small randomly-chosen subset. (2) A rule
that has the most similarities to a failed query is chosen from these detected decision
rules. (3) The attribute values of a chosen rule are used to relax a failed query. LOQR

works on queries in a normal disjunctive form with discrete and continuous attributes.
This algorithm leads to short queries consisting only of a few constraints from a failed
query. Considering this drawback, Muslea et al. provide an extended version called
TOQR [110] which creates a new query starting from an empty one and adding new
constraints from a failed query. The order of considering new constraints is determined
by a domain’s causal structure which is derived from a data sample.

Mining Functional Dependencies (MAFD) Considering dependencies between at-
tributes of a query to deliver a larger result set is also studied for imprecise queries
over web databases [111]. An answer to an imprecise query includes answers to its
precise base query and an extended set, which represents results of similar queries. To
decide which relaxations have to be used to meet a similarity threshold, approximate
functional dependencies are calculated which describe how a change in a value of an
attribute affects other attributes. The relaxation approach [111] assumes that tuples
which are similar to precise answers have differences in the least important attributes.
Therefore, such attributes can be relaxed first. The least important attribute is de-
fined by Nambiar et al. [111] as “the attribute whose binding value, when changed,
has minimal effect on values binding other attributes” and is detected by approximate
functional dependency analysis [68].

Relaxation of Numerical SPJ-Queries (RNQ) Koudas et al. [87] relax SPJ-queries to
solve an empty-answer problem, where selection conditions are defined over numerical
attributes (this allows to calculate mathematically a relaxation cost induced by a rela-
xation). For each data tuple, we can calculate how a query has to be relaxed in order
to be included in the result set and how high its relaxation cost is. Relaxation costs are
calculated as a difference between existing and relaxed query conditions. A relaxation
with equal or smaller costs along all conditions and with a smaller cost at least for one
condition dominates over a compared relaxation. To guarantee that at least one tuple
appears in the result after a relaxation, a relaxation skyline is calculated whose tuples
are not dominated by any other tuple pair. Still, it can lead to many useless results.
To prevent strong relaxations, Koudas et al. [87] construct a relaxation lattice, whose
nodes describe how specific query conditions are relaxed, and calculate a skyline over
a subset of conditions. Koudas et al. [87] discover a minimal relaxation and therefore
propose methods to traverse the constructed lattice with a minimum relaxation and to
calculate skylines for a subset of conditions.

To overcome the problem of too many query candidates, user interest can be in-
volved in the relaxation [107, 108]. For example, Jannach et al. [78] calculate user-
optimal query relaxations (RR) by evaluating subqueries and detecting conflicts for fast
relaxation of preferred conflicts on demand. Junker [79] considers user preferences
between constraints in the QUICKXPLAIN framework and evaluates preferred relaxa-
tions first. The main challenge taken in this research is to detect conflicts rather than a
relaxation process itself. This algorithm starts with the most preferred constraints and
adds new ones until the query fails.

28

2.3. WHY-EMPTY AND WHY-SO-FEW QUERIES

IQR If a query delivers an empty result, the system generates several query pro-
posals [107, 108] where only the user-defined flexible predicates are relaxed. The
proposed relaxation framework builds a query relaxation tree by keeping non-flexible
constraints and discarding others. A node of a tree represents a query proposal and is
annotated by a probability to be accepted by a user. At each iteration, a user has to se-
lect one proposal to be checked on the delivery of a non-empty result. In such systems,
a user navigates the search. A further improvement is to integrate user interest into the
generation of proposals. In this case, the effectiveness of the proposal with respect to
an objective goal and likelihood of its acceptance is considered.

2.3.2 Prevention Methods

This group of methods focuses on preventing the appearance of empty results instead
of debugging a query after a problem occurred. To prevent the delivery of empty ans-
wers in an information retrieval system, Yom-Tov et al. [154] estimate the difficulty of a
query for document retrieval, which describes the overlap of top results between differ-
ent query terms. For this purpose, the contribution of each query term to a final result
is calculated, where each term is expressed by a keyword. Based on the query quality, it
can be estimated whether a query requests the missing query content. Therefore, such
a query does not have to be evaluated.

To prevent a user from constructing queries delivering empty answers, flexible
query answering on graph-modeled data [92] is proposed where approximate queries
remove the burden in constructing correct queries from a user. The proposed approxi-
mate queries include approximation for both topology and vocabularies. In this frame-
work, notational relatedness between vertices is calculated to control whether a con-
nection between them is meaningful. Afterwards, incorrect annotations are fixed.

Schemaless and structureless graph querying [152] can prevent the problem of
too few answers by automatically connecting user-provided keywords in a meaningful
graph query. The transformation rules are similar to the ones used in approximate
queries [92].

Another approach for flexible query answering is realized by a keyword search ap-
proach. Originally, a keyword search does not provide a way to specify the topology for
subgraph isomorphism queries, but the structure is derived by the search of substruc-
tures matching the provided keywords. For example, Tran et al. [134] compute query
proposals from the keywords. Afterwards, a user chooses a candidate to be processed
by a query processor. These methods help a user to create a meaningful query and
prevent him from defining a query delivering an empty answer.

2.3.3 Query-Type Oriented And Model-Specific Why-Empty Queries

In this section, we will give a short overview for relaxing a query in RDF stores and in a
keyword search over RDBMS.

Query Relaxation in RDF (RELAXRDF) Query rewriting for empty-answer and too-
few-answers problems over RDF data [49, 66, 117] focuses mainly on providing SPARQL

language functionality for relaxed and approximate querying. SPARQL supports the
RELAX clause defining flexible constraints for relaxation or removal, which is a part
of the language standard. The APPROX clause, which is not standardized yet, changes
constraints and facilitates the discovery of approximate results. Both clauses are used
in path queries [117], where the rewriting is based on the RDFS inference rules and is
introduced in a query language for semantic relaxation [49]. In both cases, a user can

29

2.3. WHY-EMPTY AND WHY-SO-FEW QUERIES

Explanation

Model Modification

Relational CO-OP [80, 81], GFQM [33], RNQ [87], SEAVE [103, 104, 105],
COBASE [41], LOQR [109], TOQR [110], QUICKXPLAIN [79], IQR [107,
108], DNKSS [8], RR [78]

Web MAFD [111]

RDF RELAXRDF [49, 66, 117]

Table 2.3: Overview of why-empty methods

get additional answers to his query. These approaches require domain knowledge for
approximations.

Keyword Search The problem of empty answers in keyword search can be caused by
the data itself like missing keywords or synonyms, by the schema, or by joining several
results [8]. To deliver at least some results, Baid et al. [8] search for the maximal par-
tial matches and deliver them as partially correct results to a user. Before going into the
detail of the solution proposed by Baid et al., first, we will recall the basic principles of
keyword search. In RDBMS, a user poses a query consisting of at least one keyword. The
system maps these keywords to relational tables and extracts corresponding informa-
tion. Also if all keywords can be found in the tables, joining their corresponding tuples
can lead to an empty answer. To provide a user at least with some results, authors
propose a method to deliver to him those maximal subqueries, which deliver at least
one item (DNKSS). To efficiently explain non-answers, Baid et al. propose a four-step
approach. During the first online-phase a lattice is generated, whose nodes represent
uninstantiated SQL queries. Next, the lattice is pruned by a given keyword query and
the left nodes are instantiated according to provided keywords. At the third stage, the
lattice is further optimized by keeping only answer and non-answer queries and their
descendants. Finally, the lattice is traversed to collect non-answer queries.

2.3.4 Common Properties

As an explanation to the empty-answer problem, a user typically receives a refined
query, which delivers at least some results. Therefore, this section mainly focuses on
differentiation between automatic and navigational solutions for query modification.
In addition, we also had a short look at prevention methods, which help a user to
define a query. Still, these methods do not have a direct connection to debugging and
therefore are not further considered in this thesis. As in the previous sections, we
compare why-empty algorithms according to common properties:

1. Efficient generation of explanations is investigated as a reduction of relaxation
space by considering some heuristics or integrating a user.

2. User integration is used in multiple methods. A user can navigate relaxation or
relaxation decisions are taken automatically from the estimation of user intention
and investigation of constraint flexibility in a query.

3. Different kinds of explanations include minimal failed queries and refined queries.
4. The problem discovery, why some elements are missing from the result, is done in

cooperative systems, which can deduce a minimal failed query.
5. Query refinement changes a query in such a way that it delivers some results.

30

2.4. WHY-SO-MANY-QUERIES

6. Relaxation lattice is a typical structure used for query relaxation, which represents
the search space of query candidates. Its nodes correspond to refined queries
describing minimal changes.

In addition to debugging properties we have seen for previously described why-queries,
the why-empty queries are also characterized by a problem-specific feature—a relaxa-
tion lattice, which has to be efficiently traversed with optional consideration of user
interest. However, this specific property is difficult to apply to graph queries, which
consist of multiple dependent properties.

2.4 Why-So-Many-Queries

The too-many-answers problem can be solved by two kinds of methods: result-based
and modification-based methods. The first group of techniques, result-based methods,
improves representation of results without changing the number of answers with the
help of ranking or categorization. The second group of techniques, modification-based
methods, modifies (restricts) a query in such a way that the size of a result set is
reduced and/or approximately corresponds to a cardinality threshold, if provided.

2.4.1 Result-Based Explanations

Result-based methods change the result representation for its better perception by a
user. These approaches can be further classified according to used techniques such as
ranking and categorization. In the first case, the results are ranked based on a scoring
function, which treats different properties of the results differently: some properties
can get higher weights than others. In the second case, the results are distributed
across multiple buckets according to some properties, which can be explored by a user
on his own.

Result Ranking

In this section, we will discuss the related work only for ranking the results of exact
queries. Ranking of approximate queries usually considers how much information ex-
ists in the result set by comparing it with a query and therefore is not appropriate for
solving the problem of too many answers.

Top-k queries are extensively used in areas which potentially face the problem of
too many answers. According to the survey of top-k ranking techniques in RDBMS [69],
they can be classified according to five criteria such as a query model, an implemen-
tation level, data and query uncertainty, query access, and a ranking function (see Fi-
gure 2.10). For more detailed information about this classification and corresponding
related work, we recommend the survey [69] to the interested reader. In this section,
we consider several examples of ranking-based explanations for different data models.

Attribute-Based Ranking Query results can be sorted according to user preferences,
which describe how important different predicates are for a user. A preference model
and a preference algebra are proposed by Kissling [86]. The preferences can be defined
directly in a query using the PREFERRING clause proposed as an SQL-extension or can
be derived indirectly from a partial order of predicate definitions in a query.

Agrawal et al. [4] propose an automatic ranking of query results (ARDQR) with IDF
Similarity function, which is inspired by a term frequency-inverse document frequency
(TF-IDF) from information retrieval: more frequent attribute values are ranked higher.

31

2.4. WHY-SO-MANY-QUERIES

����������	

����	������	

��������	�
 ������	���������������� ���������������
���������
���
 ���������������

������

���	

������

������	

������

��������� ������	�����

�����������

������	�����

������������������

�	�����	�����

�����
�������	����	���

����������	�������

��	���������

�����	���

� ��!��	��	�

�	
���"�

#	���$

%��������&���'��(

)������*�
����

%�	���	�

+�	������������	���'��

Figure 2.10: Classification of top-k solutions for querying RDBMS (Source: Ilyas et al. [69])

Agrawal et al. also suggest to use a workload for deriving automatic ranking of query
results and the corresponding scoring function QF Similarity.

Su et al. [127] consider ranking query results for e-commerce web-databases with
a ranking schema QRRE (Query Result Ranking over E-commerce). It considers user
intention automatically by speculating the relevance of each attribute to a user. To al-
low ranking, the attribute values for all result tuples are quantified by their relevance
to a user called desirableness. As a scoring function, the sum of relevancies of attribute
values multiplied by the attribute scores is used. The main challenge of this proposal is
to speculate relevance for attributes. Without a user feedback, all the relevant informa-
tion can be derived from the data and the query. QRRE assigns higher weights to those
attributes which correlate higher with attributes mentioned in a query. To assign rele-
vancies to attribute values, Su et al. [127] make two assumptions, which are specific
to e-commerce web databases: (1) a product with a lower price is more desirable and
(2) a non-price higher relevant attribute has a higher price.

STAR [82] (System for Tuple and Attribute Ranking) explores a two-level result
ranking scheme: on tuple and attribute levels, i.e., only top-k results are returned
and only top-m most relevant attributes are presented to a user. As ranking methods,
STAR explores a similarity-based ranking as an aggregated weighted similarity score
and probabilistic ranking [35].

A ranking algorithm can consider not only the relevance of an item to a user and
query, but it also can incorporate diversity of a result set in the scoring function [145].
A diversified result improves perception and understanding of the data and helps to
formulate better queries. Relevance and diversity are opposite properties. To gain both
of them, a trade-off has to be achieved, which can be modeled as a bi-optimization
problem. Vieira et al. [145] give an overview on existing techniques for creating a
diversified ranking result. As their own solution QRD, Vieira et al. [145] use a maximum
marginal relevance to compute a maximum contribution of an answer to a result set.

Probabilistic Ranking (PIR) Chaudhuri et al. [34, 35] adapt probabilistic ranking
models from information retrieval to rank database query results by automatically ext-
racting user preferences and a scoring function from unspecified attributes. Here, a
ranking function is considered in relation to global and conditional scores. While a
global score describes a relevance of unspecified attribute values, a conditional score
represents dependencies between specified and unspecified attributes. To estimate
these scores, the authors adapt probabilistic information retrieval (PIR) ranking models.

32

2.4. WHY-SO-MANY-QUERIES

In information retrieval, a ranking problem can be described as follows. Assuming a
set of documents D, an answer for a query C consists of R relevant documents. There-

fore,
−
R= D − R documents are irrelevant. Ranking any document d ∈ D according to

a feature f is represented via conditional probabilities as follows

score(d) =
p(R|f))

p(
−
R |f)

(2.1)

In RDBMS, a tuple is treated as a document from a result set d ∈ D and score compu-
tation considers correlation scores and global scores derived from a workload and data
analysis. The ranking is derived from two processing parts [35]: pre-processing and
query runtime. At the pre-processing step, atomic conditional probabilities on data and
workload are calculated for all distinct values similar to Equation 2.1 and stored in the
intermediate representation layer. Afterwards, all ranked lists are pre-computed for all
possible atomic queries (an atomic query specifies a query with a single value). At query
runtime, all atomic ranked queries are merged in a threshold-algorithm fashion [35].

Best-K Queries (BEST-K) Tao et al. [129] propose a general framework for processing
BEST-K queries that are a special kind of top-k queries, which consider result tuples as
dependent and aim at minimizing redundancy and increasing diversity of answers.
While a naïve approach supposed to be NP-hard, Tao et al. [129] propose two methods
based on breadth-first and depth-first search with a branch-cutting pruning strategy
for the discovery of exact answers and an approximate solution based on a depth-first
search. To consider multiple constraints, Tao et al. [129] optimize a primary preference
function under constraint functions, i.e. a constrained optimization problem. This
approach reduces the search space and allows to terminate search earlier.

Context-Aware Ranking User preferences can evolve over time and be high-depen-
dent on a context. Therefore, considering context information in a ranking function
can be advantageous.

Agrawal et al. [3] integrate context preferences in a query answering process. A
context preference describes in which context which subset of tuples is preferred to
other specified tuples. A context can be modeled for example as a value of an attribute
in a database. Different preferences belong to the same preference class, if they are
defined in the same context. Agrawal et al. [3] propose a two-phase process (CSR)
to calculate ranking. During an offline pre-processing step, for each context class an
ordered list of tuples is produced. To reduce a storage overhead, the pairs of a context
and an order are classified in several groups, where each group represents a disjunction
of contexts and orders which are assumed to be a good representation of an order for
each context in a group. The goodness of an order is defined in terms of a similarity with
an original order for a specific context. During an online step, prepared orders have to
be combined to provide appropriate ordering based on a query context. A context can
also be integrated in database systems via special-purpose attributes called context pa-
rameters [126] (CAP), whose initialization with some values describes a context state.
A user assigns basic context preferences to attributes in a database. At query runtime,
several context parameters can be aggregated into a single preference score. Prefer-
ence parameters are stored into data cubes and can be queried by OLAP techniques.
Aggregated scores are stored in a context tree only for already executed queries, they
are used to improve performance of new queries.

33

2.4. WHY-SO-MANY-QUERIES

To derive user preferences, the context model can also consider uncertainty [136].
Therefore, van Bunningen et al. [136] define a probabilistic model of a context for do-
cument retrieval from a history of user choices and preliminary evaluated it on database
views. Telang et al. [130] consider the problem of query result ranking in web data-
bases, which store a large amount of information and ranking query results cannot be
done by manual setting attribute relevance weights. The authors propose a solution
(OSDNFA) which integrates both aspects into the ranking: user and query awareness.
For this purpose, the system automatically learns user preferences from a browsing
history of query results based on probabilistic data distribution difference, defines a si-
milarity model from user and query similarities, and calculates rankings for new users
and new queries based on this model.

Ranking RDF Graphs Querying of RDF graphs typically suffers from the too-many-
answers problem, which especially concerns federated querying of the linked open
data cloud with multiple data sources.

Ramakrishnan et al. [120] investigate a problem of most relevant paths between
two entities in an RDF graph, which is modeled as a data subgraph, whose relevance
depends on the amount of useful information it provides to a user [120]. The main
contribution of this research (RELPATHS) concerns a ranking schema which includes
(1) a class and property specificity, whose relevance is derived from its position in a
type hierarchy (more specific resources are on the lower levels of a tree and they con-
tain more information), (2) an instance participation selectivity, which depends on a
number of type instances (rare facts are more informative), and (3) a span heuris-
tic [120], which considers the involvement of multiple schemas to be more informative
than the use of less schemas. After an RDF graph is annotated by these weights, the
system calculates more informative paths between two given resources.

Aleman et al. [5] also investigate the problem of the most relevant paths between
two resources by using the following metrics: a context, a subsumption (which is simi-
lar to a class and property specificity), a trust, a rarity (which is similar to an instance
participation selectivity), and a popularity. The overall ranking (RCRSW) is considered
to be a weighted sum of these metrics.

Anyanwu et al. [7] propose a SEMRANK algorithm for ranking complex semantic
associations, which exposes two main features with a user integration: customizability
(a user can choose a ranking schema) and flexibility (a user can compare results of
different schemes).

Ning et al. [112] describe RSS framework for ranking queries over semantic web
which consider a semantic web graph as a weighted directed graph, where a weight
describes the strength of a property relationship. A ranking method considers a global
resource importance which is derived from edge weights and a resource’s relationships.
For this purpose, RSS conducts a spreading process to determine the importance of
nodes in a data graph. As starting nodes, those nodes are chosen which have the
highest activation values computed from their global importances and query relevance
of data nodes. These selected nodes are stored in an activation pool and extracted
during a spreading process. After a query was processed, its final results are ordered
according to activation values derived during spreading.

Ranking Subgraphs in a Large Attributed Data Graph Zou et al. [155] investigate
pattern matching queries on a large labeled graph. A scoring function is defined as a
sum of pairwise similarity between each vertex of a query graph and its matched data
vertex. Zou et al. do not evaluate a similarity function, which is assumed to be provided

34

2.4. WHY-SO-MANY-QUERIES

by a use case, and focus on efficiency of the ranked matching algorithm [155]. For this
purpose, a G-TREE index is proposed, which is a height-balanced tree, consisting of
node areas (sets of data vertices). Node areas of the same level belong to the same
partition of a data graph. The tree-based index is constructed offline; it is used to
prune node areas with low similarity scores from the search.

Pienta et al. [116] eliminate the index construction for a large data graph and pro-
pose the MAGE subgraph matching system, which supports multiple attributes on edges
and vertices and provides a scalable multicore matching algorithm. In MAGE, edges are
modeled by edge nodes describing their properties. The search routine first discovers
matching initial nodes and performs a local search around them to detect neighbor-
ing nodes matching query criteria. Afterwards, edges are approximated between them.
The ranking is a critical point of MAGE [116]. It is based on the proximity scores de-
rived by the random restart algorithm. MAGE [116] focuses on approximate matching
and does not consider ranking of the subgraphs exactly matching to a query.

Fan et al. [48] introduce a notion of an output node (OUTPUTNODE), which reveals
the most important vertex in a query graph. An answer to a top-k pattern matching
query represents a set of K vertices best matching to a query node by considering a
query graph. For ranking results, two scoring functions are proposed [48]: a relevance
function to measure the relevance of matches and a distance function to characterize
the diversity of matches. Considering top-k diversified matching to be NP-complete, Fan
et al. [48] propose an approximate solution with early termination conditions based on
a diversification function, which aims at maximizing relevance and diversity of a result.
In general, first discovered matches are located in a heap and a diversification function
is calculated. If new matches appear, the function is recalculated. If it has a higher
value, then matches are substituted by new matches.

Summary In contrast to why-empty queries, methods to solve too-many-answers
problems have also been investigated for graph-structured data and represent labeled,
attributed, and RDF graphs. In these methods, user interest is typically derived from a
query or its context automatically and is typically incorporated in the scoring function.
In several cases, a user is directly asked to provide feedback.

Categorization of Results

Information overload or the too-many-answers problem can be solved by categorization
of query results and navigation of a user through them.

Chakrabarti et al. [30] propose an automatic navigation scheme (ACQR), which
represents a tree of categories constructed from result tuples based on data attributes
and their values. Each category (attribute) appears only at one level of a hierarchy. To
create this tree on the fly, first the categorization space is estimated and an analytical
cost model is defined that describes how well a particular categorization can satisfy
a user. A cost, i.e., information overload cost, describes how many items (category
labels and data tuples) will be exploited by a user and is estimated probabilistically.
For this purpose, typical user behavior is extracted from a historical workload. A user
can choose the most relevant category for him and traverse down the tree along the
most relevant categories.

To improve a categorization, preferences of a particular user can be taken into con-
sideration [37]. This observation faces two challenges: (1) how to summarize diverse
user preferences from a workload for all users (2) and how to extract preferences for a
specific user. To tackle these challenges, Chen et al. [37] split a query history in non-
overlapping clusters offline, where each of them represents a specific preference. All
clusters in PREFCLUS [37] are annotated with the probabilities of relevance for particu-

35

2.4. WHY-SO-MANY-QUERIES

lar users. At runtime, by querying the system, a navigational tree is constructed, based
on the queried attributes and in order of a cluster relevance to a user.

In further work [38], Chen et al. combine ranking and categorization techniques in
PREFSKY. First, the results of a query are split into several groups. After a user has cho-
sen one of them, its results are ranked. Ranking of SQL results is learned from training
examples and includes the following information: skyline operators derive common
preferences and navigational patterns exhibit dynamic and diverse preferences [38].

Clustering MUSIQLENS framework [91] takes three challenges in order to solve the
too-many-answers problem: representation modeling (which and how many examples
have to be shown to a user), a representative finding challenge (for the discovery of
the best representatives for a model), and a query-refinement challenge. As a query
result, the framework provides a list of best representatives selected from a result set,
which exhibits its diversity. A user can navigate any of the provided items down and
explore similar items. The main idea implemented in MUSIQLENS is to produce several
clusters from a sample of a query result with the help of a cover tree data structure.
As a result, on the first page a user receives a list of medoids. If a user chooses one of
them to explore its results, a cover tree is consulted, which stores a set of neighboring
results. As a final step, a query can be improved according to a chosen medoid and its
neighbors. For this purpose, the system refines selection conditions and projections of
a query.

Benchi [11] focuses on solving the too-many-answers problem based on cluster-
ing results for queries over distributed RDBMS. While a distributed query processing
is not in the core focus, we will discuss a clustering algorithm (CAAQR) proposed by
Benchi [11] in a single-machine environment. Clusters of result data are derived from
the data summaries, which keep information about similar tuples and are organized in
a hierarchical structure. If a user asks a query, relevant summaries of tuple clusters are
extracted by a depth-first search along a hierarchy and derived to a user.

Faceted Navigation Navigation through query results can also be implemented as
a faceted search like in DYNACET [10, 123]. This middleware between a user and a
database navigates a user during a query answering process by asking questions about
user interest. DYNACET aims at asking a minimal set of questions and builds a decision
tree for this case, which exhibits an order, in which facets have to be proposed to a
user. Each question corresponds to a facet and is represented by an attribute and its
value. After a user has chosen a facet, the search continues inside this facet. A cost-
driven faceted navigation approach is also proposed by Kashyap et al. [84] in FACETOR

framework, where a user chooses value conditions for rejection of particular facets in
order to reduce the number of answers.

Summary The discussed methods focus mainly on relational data and intensively
incorporate a user in the categorization process. Typically, this integration is done at
runtime: A user has to judge the proposed categorization, which is further refined by
the system. As an explanation, these why-so-many methods provide result categoriza-
tion, implemented according to the user interest.

2.4.2 Modification-Based Explanations

As a second type of explanations for the too-many-answers problem, a user can receive
a modified query, which delivers an approximately required number of results.

36

2.4. WHY-SO-MANY-QUERIES

Query Refinement in SQL (QRS) Ortega-Binderberger et al. [113] refine SQL simi-
larity queries based on user feedback: a user can judge result quality and mark some
tuples (or attributes) as good, neutral, or bad examples, which are stored in a feed-
back temporal table. This feedback is integrated in a query refinement process and
a new query is generated by modifying a scoring rule and similarity predicates. Af-
terwards, answers to a newly refined query are proposed to a user. In general, the
system supports two types of modifications [113]: inter-predicate and intra-predicate
refinements. In the first case, scoring functions are modified by removing and adding
new predicates and changing their weights. Inter-predicate refinement [113] means to
re-calculate weights of each predicate in a scoring rule according to a user feedback in
order to converge them to optimal weights. If no tuples were judged, no re-calculation
takes place. If the same attribute has been differently judged for different tuples, then
adding a new predicate can be important. A new predicate can be retrieved by study-
ing judgments of ranked tuples. A deletion of a predicate is conducted if its weight
in a scoring rule becomes lower than a threshold. In the second case, domain-specific
similarity predicate functions are revised. Therefore, intra-predicate changes [113] are
domain-specific, for example: query expansion or a query point movement for geo-
spatial querying.

Keyword Search (MDKQE) Sarkas et al. [125] propose a solution for refining keyword
queries over a set of documents. According to this proposal, a user is supplied with top-
k expansions, i.e., word-sets, each of them contains additional search terms, which can
be interesting to a user. To generate expansions, the notion of surprise is used as a
measure of interestingness, which shows how a re-occurrence of specific terms differs
from their independent re-occurrence. To rank expansions, Sarkas et al. [125] suggest
three scoring functions considering a word co-occurrence pattern, an available extreme,
and consistent user ratings.

Diversified Query Refinement Over Multiple Data Graphs (GQRD) Query reformu-
lation can also be used for exploration of graph data: instead of overwhelming a user
with too many results, he is supported with a set of query specializations [106]. A
query specification in this case represents a modified input query, which includes one
or two new aspects, which make it more special. By calculating specializations, two
aspects are considered [106]: the result coverage for an input query and diversification
of specializations. They are combined via a linear combination in an optimization func-
tion, which has to be maximized during the query reformulation. Mottin et al. [106]
prove this optimization problem to be NP-hard, and propose a greedy algorithm with 1

2
approximation guarantee.

Queries with Cardinality Assurance The problems of too few or too many results
can be also seen as the problems of cardinality assurance, where a user is interested
in a specific number of results. This user requirement is commonly used in two use
cases: query testing and candidate selection, which are shortly discussed in Section 1.
Cardinality assurance is tightly-coupled with the research about cardinality estimation,
which estimates the size of an intermediate result to adapt a query plan execution in
DBMS.

QRELX [137] aims at refining queries to meet cardinality constraints by considering
closeness of a refined query to an original query in RDBMS. The framework consists of
two key components: a transformer and an explorer. QRELX iteratively transforms a
search space for SPJ-queries and explores this to discover refined queries, which meet

37

2.4. WHY-SO-MANY-QUERIES

closeness and cardinality constraints. Discovered queries are reported to a user. If
queries are not found, a new iteration begins with increasing a query search space. To
enable efficient search for refined queries, cardinality is estimated incrementally and
only for newly added data tuples.

Qarabaqi et al. [119] consider user queries as imprecise ones and propose a proba-
bilistic-based framework (UDRIQ) to explicitly model constraint uncertainty. For each
constraint in a query, a user can specify how confident he is about it in terms of a
probability distribution. In addition to the probability distribution, a constraint can be
characterized by its sensitivity and benefit. A sensitivity shows how strongly a result
of a query can change if a constraint was modified only slightly. Inclusion of such
conditions in a query should be avoided. A benefit of a constraint shows how a query
result would benefit from its inclusion in a query. Based on these three properties, an
exploratory search is realized as an interactive procedure with the following steps: (1)
For each entity, its probability to be liked by a user is calculated. As a result, at this step
a user receives a list of top-k entities ordered by their probabilities. (2) Sensitivities of
all attributes are calculated and proposed to a user. (3) Benefits of all attributes, which
are not included in a query, are calculated. After a user received this information, he
decides how a query is further refined.

The satisfaction of cardinality constraints for conjunctive SPJ-queries [101, 102]
incorporates a user feedback to capture user preferences in the STRETCH 'N' SHRINK

framework, which enables stretching and shrinking the range of selection predicates to
meet a cardinality constraint. For this purpose, a framework estimates maximum query
transformations for each predicate and collects the necessary information for cardina-
lity estimation. Afterwards, a query is refined such that all its constraints are maximally
refined and the cardinality of its result is estimated with the help of a sampling tech-
nique. Finally, a user can choose relaxations of specific conditions and refine a query in
such a way that it meets cardinality constraints. The process terminates when a wished
query is constructed.

Summary Most of the discussed methods for generating modification-based exp-
lanations integrate a user in the refinement process. This integration allows to re-
duce the refinement space and to deliver tolerable modifications. Most of the work is
done for relational data, which highlights the necessity of extensive investigation of
modification-based explanations also for graph data.

2.4.3 Common Properties

All discussed solutions for why-so-many queries are analyzed in Table 2.4, according to
the used data model and types of generated explanations. In general, five data models
and three types of explanations are used. Why-so-many queries provide an additional
type of explanations, result-based explanations, which is specific only for this query
type and represented by ranking- and categorization-based reports. They focus on op-
timal representation of results for their better perception by a user. Modification-based
explanations are also generated to solve the too-many-answers problem and repre-
sented for three out of five considered data models.

Why-so-many queries are intensively studied for the relational data model, where
all kinds of explanations are provided. The solutions for graph models cover approxi-
mate matching for attributed graphs, diversified matching with output nodes, and rew-
riting labeled graphs. The area of rewriting of exact patterns for graphs with multiple
attributes is not represented in the related work.

To conclude, why-so-many queries generate result-based and modification-based
explanations and exhibit the following common features:

38

2.5. SUMMARY

Explanation

Model Ranking Categorization Modification

Relational PREFERRING [86],
ARDQR [4], QRRE

[127], STAR [82], QRD

[145], PIR [34, 35],
BEST-K [129], CSR [3],
CAP [126]

ACQR [30], PREFCLUS

[37], PREFSKY [38],
MUSIQLENS [91],
CAAQR [11], DYNACET

[10, 123], FACETOR

[84]

QRS [113],
UDRIQ [119],
STRETCH

'N' SHRINK

[101, 102],
QRELX [137]

Web OSDNFA [130] – –

RDF RCRSW [5], RELPATHS

[120], RSS [112], SEM-
RANK [7]

– –

Documents RQR [136] – MDKQE [125]

Graph G-TREE [155], OUT-
PUTNODE [48], MAGE

[116]

– GQRD [106]

Table 2.4: Overview of why-so-many methods

1. Efficient generation of explanations is achieved by limiting the search space for
example with user-defined flexible constraints or thresholds (like in ranking met-
hods).

2. User integration is an important component of why-so-many queries, which is
extensively studied. It facilitates generation of explanations and incorporates user
interest in why-so-many queries. Ideally, user interest is automatically derived
based on a use case or extracted from the context.

3. Different kinds of explanations include result-based and modification-based met-
hods.

4. Query refinement changes a query in such a way that it delivers less results or a
required number of results.

5. Diversification of a result set is a unique property of why-so-many queries, which
is used by result-based methods, where the best diverse answers are delivered
to a user to give him a deep overview on a result heterogeneity and to reduce
redundancy in the results.

From already studied debugging properties in the previous sections, the user-integration
feature is of utmost interest for why-so-many queries, which is mostly used to reduce
the search space. In addition, why-so-many queries also focus on their unique property,
the result diversity, which is not represented in other types of why-queries.

2.5 Summary

In this chapter, we had a deep look at debugging methods for unexpected answers in
the state-of-the-art systems and extract the common features from them as presented
in Table 2.5. In general, five out of seven features are provided by most of the systems,
two last features are unique for some why-queries. While construction of a relaxation
lattice is typical for why-empty queries, improvement of result representation is specific

39

2.5. SUMMARY

Property Why So? Why Not? Why Empty?
Why So Few?

Why So Many?

Efficient generation of
explanations

+ + + +

User integration + + + +

Different kinds of
explanations

+ + + +

Problem discovery + + + –

Query refinement – + + +

Relaxation lattice – – + –

Result representation – – – +

Table 2.5: Common properties of why-queries

for why-so-many queries. This thesis proposes a general framework for solving three
types of why-queries, therefore, we aim at providing only that functionality which is
common among most of them. Therefore, only the first five commonly-used features
are investigated in this thesis, namely efficient generation of explanations, user inte-
gration, different kinds of explanations, problem discovery, and query refinement.

According to the comparison in Table 2.5, most of the why-queries discover reasons
of unexpectedness and/or refine the original query. In the first case, such an expla-
nation is generated which describes an operation responsible for an unexpected result
like query-based explanations produced by why-not queries or generates a responsible
polynomial in why-so queries. In the second case, a failed query is modified to de-
rive an expected result like in modification-based methods for why-not, why-empty,
and why-so-many queries. In total, this thesis focuses on producing two kinds of exp-
lanations: query- and modification-based explanations, which discover the reasons of
unexpectedness and refine the query, respectively.

We will also shortly discuss possible user-integration techniques, which are used to
reduce the amount of modified query versions and thus improve the performance of
generating explanations, and to provide user-relevant refinements.

In this chapter, we also considered data models, for which why-not queries have
been investigated. Most of the research efforts intensively investigates debugging of
unexpected answers for the relational data model. The recent work focuses also on
graph models, which are mainly represented by RDF data and labeled graphs. Graph
databases, especially those which model property graphs, are a new trend in database
research. They allow storing and processing complex relationships, which are easy
to represent in the form of a graph. However, only a few research groups inspect
cardinality problems on a large graph with multiple attributes on edges and vertices,
which is a novel data model used in modern graph processing systems for processing
for example social networks.

To process such graphs is a challenging task which involves investigation of mul-
tiple constraints. Therefore, it is very likely for a user to construct a query delivering
unexpectedly empty, too few, or too many results in this setup. Considering missing re-
search about debugging queries for property graphs and difficulty of their processing,
in this thesis we focus on investigating the basic debugging functionality extracted from

40

2.5. SUMMARY

the related work on the example of property graphs. Specifically, we study cardinality-
based why-queries for failed pattern matching queries, which are a fundamental type
of graph queries.

In the next chapter, we will provide a definition for the property-graph model and
propose similarity measures for judging explanations for why-queries in graph databa-
ses, which are later used in this thesis. Afterwards, we will cover the debugging fea-
tures derived in this chapter, namely: the discovery of reasons for a failure and query
refinement, which produce query- and modification-based explanations with the focus
on their efficient generation and possible ways of integrating a user in the generation
process by considering his feedback.

41

3
Why-Queries in Graph Databases

In the previous chapter, we gave an overview of the existing related work for explai-
ning unexpected results retrieved by querying databases. To generate explanations,
five types of why-queries exist such as why-so, why-not, why-empty, why-so-few, and
why-so-many queries. Why-so and why-not queries investigate the presence of unex-
pected results and absence of expected ones and belong to content-based why-queries.
Why-empty, why-so-few, and why-so-many queries focus on an unexpected size of the
retrieved result set and are called cardinality-based why-queries.

For each type of why-queries, we presented existing solutions considering different
data models and described which explanations they deliver to users. We also compared
specific approaches for why-queries and extracted a set of debugging features they
propose. While some of the features are common among all why-queries, others are
unique for individual query types. In detail, most of the existing approaches focus
on efficient generation of explanations and user integration, provide multiple kinds
of explanations, discover reasons of unexpectedness, and rewrite a query such that it
delivers better results.

To provide basic functionality for cardinality-based why-queries in graph databases,
all these features have to be considered. In this chapter, we will describe their meanings
for graph databases and give some basic definitions including the used property-graph
model in Section 3.1. Then in Section 3.2, one of the presented debugging features,
comprehensive comparison of explanations, is discussed in detail and evaluated.

3.1 Properties of Why-Queries in Graph Databases

In this section, we will describe four main debugging features, which correspond to
the list of extracted debugging functionality from the related work and have to be
realized in order to provide support for cardinality-based why-queries in graph data-
bases, namely: holistic support of different cardinality-based problems, explanation of
unexpected results and query reformulation, comprehensive comparison of explana-
tions, and non-intrusive user integration. Before going into detail, we first define the
property-graph model as well as the supported graph queries in Sections 3.1.1 – 3.1.2.

3.1.1 General Graph Model

As an underlying graph model, we use a property-graph model [122] as one of the most
general graph models, which is commonly used in modern graph databases like NEO4J,
SAP HANA, SPARKSEE, and ORACLE BIG DATA SPATIAL AND GRAPH. On the one hand, it

43

3.1. PROPERTIES OF WHY-QUERIES IN GRAPH DATABASES

allows storing and processing complex graph relationships with multiple diverse pro-
perties without a rigid schema. On the other hand, it provides us with the opportunity
to conduct complex graph queries over data. A property graph is a general graph model
representing data in a form of a directed graph, where vertices are entities and edges
are relationships between them. Multiple edges can exist between the same vertices.
Each vertex and edge can be annotated with properties, which are represented by key-
value pairs.

Definition 1 (Property Graph). We define a property graph as a directed graph G =
(V,E, u, f, g, AV , AE) over attribute space A = AV ∪̇AE , where: (1) V,E are finite sets
of vertices and edges; (2) u : E → V 2 is a mapping between edges and vertices; (3)
f : V → AV and g : E → AE are attribute functions for vertices and edges; and (4) AV

and AE are their attribute spaces.

In the following, we denote a data graph as Gd with Md edges and Nd vertices.

3.1.2 Supported Types of Graph Queries

In addition to queries which are typical for RDBMS, graph databases support complex
graph queries which implement graph algorithms like reachability queries, detection of
a shortest path between two vertices, etc. Each of these queries can potentially derive
some unexpected results. In general, graph queries can be classified in two groups
according to the type of their results.

The first group delivers only a Boolean answer or a number like reachability and
shortest-path queries. Therefore, the unexpected results can be described in terms of
the result content. For example, two vertices are unreachable, although a user is sure
that a path between two queried vertices exists. A shortest path can deliver a distance
that is unexpectedly too short or too long. This thesis focuses only on cardinality-based
why-queries, therefore, the graph queries of the first group are not considered.

The graph queries of the second group deliver a set of data subgraphs as results
and include the community detection algorithms, pattern matching, or graph traver-
sal queries. These queries represent property graphs whose properties are described
by predicates for attribute values. They provide the most naïve and abstract repre-
sentation of graph queries, which we extensively use in this thesis. For these queries,
both content-based and cardinality-based why-queries can be defined and therefore
this group of graph queries is in the focus of this research.

Specifically, we consider a pattern-matching query that is a fundamental graph
query of the second group. It describes a pattern to be discovered in a large data
graph and retrieves data subgraphs matching the pattern. A pattern itself represents a
property graph, where edges and vertices are defined with predicates for their proper-
ties. In the following, we denote a query graph as Gq with Mq edges and Nq vertices.
An answer to a pattern-matching query represents a set of data subgraphs matching a
query graph, which is characterized by its cardinality.

3.1.3 Holistic Support of Different Cardinality-Based Problems

To provide explanation functionality for an unexpected size of the result for a specific
query, we first specify cardinality problems, which are investigated in this thesis and
their relations to the result cardinality.

Definition 2 (Result Cardinality). We define result cardinality C(Gq) of query Gq as the
number of data subgraphs it matches.

44

3.1. PROPERTIES OF WHY-QUERIES IN GRAPH DATABASES

Cthr

C

Query candidatesQ0 Q1 Q2 Q3 Q4

Why So Many?

Why Empty?

Why So Many?

Why So Few?

Figure 3.1: Holistic support of different cardinality-based problems

If a result set is empty, its cardinality is C(Gq) = 0. If too many results were
delivered to a user, the result cardinality exceeds the threshold C(Gq) > Cthr(Gq) (for
too few results, C(Gq) < Cthr(Gq)). In general, a cardinality threshold can represent a
cardinality interval with lower and upper cardinality bounds.

During the debugging and query rewriting, the size of the result can oscillate around
the cardinality threshold as presented in Figure 3.1, where the original query delivers
too many results. Its first refinement Q1 delivers no result, the second one Q2 retrieves
too many, and the third one Q3 results in too few answers. In this case, the system has
to be able to automatically adapt the direction of the search and to provide holistic sup-
port for different cardinalities as illustrated in this figure such that finally Q4 delivers
expected answers. For dealing with too few or too many results, a cardinality threshold
Cthr is required. Based on the result size and a given cardinality threshold, a debug-
ging tool should automatically decide which query has to be executed: a why-empty,
why-so-few, or why-so-many query.

3.1.4 Explanation of Unexpected Results and Query Reformulation

One of the core functionalities extracted from the state-of-the-art systems summarized
in Table 2.5 describes the discovery of the reasons of unexpectedness and query refine-
ment. This feature is represented by two kinds of explanations such as query-based and
modification-based explanations. The first one describes why the query fails to deliver
expected results in terms of a part of the processed (query) graph which violates a car-
dinality constraint. Referring to the fact that a query in a graph database implementing
the property-graph model represents a property graph itself, a query-based solution
is a subgraph-based solution that describes which part of a query graph in terms of
its topology is responsible for an unexpected result. The second type of explanations,
modification-based explanations, produces a refined query that was generated from an
original query in such a way that it delivers results closer to the cardinality threshold
compared with the results of an original query. By modifying a query, its predicates
and topology can be changed. This is the most important functional property, which
the debugging tool should provide. We describe approaches for efficient generation
of subgraph-based explanations in Chapter 4 and modification-based explanations in
Chapters 5 – 6.

3.1.5 Comprehensive Comparison of Explanations

Deriving an explanation for a query delivering unexpected results depends on how
a query is traversed and modified. Multiple explanations can be generated for the
same query. To choose the best one, a similarity function has to be proposed, which
would consider specifics of the property-graph model and integrate two aspects into

45

3.2. COMPREHENSIVE COMPARISON OF EXPLANATIONS

the same function such as topology and predicates. Moreover, explanations can be
compared according to three characteristics: the content and the size of the results and
the syntactic difference between explanations.

The comparison of the result content should show how the results of a compared
explanation differ from the results of an original query, which can be derived from
their overlapping parts. The cardinality distance should describe which explanation is
closer to the cardinality threshold. The syntactic comparison should show how familiar
an explanation appears to a user. This comprehensive comparison of explanations is
used throughout the thesis to analyze the quality of explanations derived by different
approaches. Therefore, it is described in advance in Section 3.2.

3.1.6 Non-Intrusive User Integration

One additional aspect, which has to be considered during the development of a debug-
ging tool, is user intention. Without its consideration, a user can potentially receive a
non-interesting explanation. Therefore, a debugging tool should be able to integrate
user interest into a debugging process, which can be realized for example as importance
of some query subgraphs. Considering a graph query as a highly constrained problem,
it is necessary to not overwhelm a user with decisions on how to process a query. User
interest in a particular query subgraph has to be derived and configured based only on
a feedback, showing how important, (ir)relevant some aspects of a query are to the
user. In this thesis, we present two models for user integration, which are described in
Section 4.4 for subgraph-based explanations and in Section 5.4 for modification-based
solutions.

In this section, we defined the property-graph model and described considered
query types. We also gave a short overview on debugging features, which are stu-
died in this thesis. In the following section, we will describe in detail one of them,
comprehensive comparison of explanations, which compares two explanations based
on three characteristics including syntactic, result, and cardinality distances.

3.2 Comprehensive Comparison of Explanations

In this section, we will discuss in detail one of the debugging properties presented
above, comprehensive comparison of explanations, which is used across subsequent
chapters for evaluating the quality of generated explanations. In general, any expla-
nation for cardinality-based why-queries is a query graph, which describes a subgraph
of an original query in subgraph-based algorithms or a refined query in modification-
based methods. A subgraph-based explanation represents a query part that satisfies a
given cardinality constraint. A modification-based explanation describes a query that
delivers a required number of results and is generated from an originally failed query.
In this thesis, we call a query, for which an explanation has to be generated, an original
query.

Comprehensive comparison of explanations should consider three important as-
pects such as syntactic, result, and cardinality difference. The syntactic difference
should describe how familiar an explanation appears to a user in respect to an original
query. The cardinality difference should explain how the result size of an explanation
differs from an expected cardinality and therefore it should show how well the goal of a
receiving a specific cardinality is achieved. The result difference should focus on which
part of original results is delivered to a user with an explanation. By considering this
metric, we aim at producing not a completely new query, but at refining an existing one

46

3.2. COMPREHENSIVE COMPARISON OF EXPLANATIONS

and re-using some of its answers. In total, we will present three similarity measures for
comparing explanations on these three levels and propose syntactic, cardinality, and
result distances.

Before going into detail, a general graph edit distance approach for calculating
dissimilarity between two graphs and its adaptation to the property-graph model are
presented in Section 3.2.1. Then, we propose how to calculate syntactic, cardinality,
and result distances for comparing pattern-matching queries in Sections 3.2.2 – 3.2.4.

3.2.1 Preliminaries

Modeling an explanation as a graph gives us a possibility to compare explanations
based on the graph edit distance to an original query that shows how syntactically
different they are.

A graph edit distance (shortly, GED) represents costs of transforming one graph
into another one. Transformation operations usually include addition, removal, and
substitution of edges and vertices and are characterized by transformation costs. One
graph can be transformed into another one in multiple ways. Each transformation
sequence is characterized by its own edit distance, which is derived by summing costs
of executed transformations. The least expensive transformation sequence is used as
GED between two graphs. The research on GED focuses mainly on learning costs of
transformation operations and discovering the cheapest transformation sequence.

In the survey on GED [50], algorithms for calculating GED are classified according
to used graph models: non-attributed and attributed graphs. Non-attributed graphs
exhibit only the connectivity structure of a graph and can be encoded as strings. There-
fore, a GED between two non-attributed graphs can be calculated as a string distance. In
attributed graphs, GED is computed as an attribute distance retrieved from multidimen-
sional label space. Gao et al. [50] emphasize the fact that GED is application-dependent
and there is no general measure, which can be used across all applications.

In comparison to these data models, a property graph has both characteristics topo-
logy and predicates, which have to be considered during calculating GED. Therefore, in
the following, we revise existing graph edit operations in order to use GED for property
graphs.

Graph Edit Operations for Property Graphs A property graph has a twofold na-
ture: both topology and predicates are important for the description of a graph. In
addition to standard graph edit operations for a vertex and an edge, for a property
graph it is necessary to consider several new operations for edge direction, types, and
predicates. Any substitution can be modeled as subsequently executed deletion and
insertion, therefore, this transformation is not considered in a further discussion.

A graph can be transformed by basic or complex operations. Each of them can be-
long to one of two classes: concretization and extension. If a transformation introduces
new elements in the description of a graph, it is a concretization operation. Such op-
erations are represented by insertions. If an edit operation reduces the description by
deleting some graph content, it is a relaxation operation. Each relaxation operation has
an inverse concretization operation. In Table 3.1, basic edit operations are classified
according to how they change the description of a graph, where a target describes a
modified graph element. The basic operations describe minimal modifications that can
be applied to a graph query. The total number of applied basic operations can be used
as a distance between an original query graph and an explanation.

Several basic modifications can be used together as a complex operation, which
represents a more sophisticated modification and executes several changes at once.

47

3.2. COMPREHENSIVE COMPARISON OF EXPLANATIONS

Type Target Relaxation Operation Concretization Operation

Topological
modification

Edge Edge deletion Edge insertion

Vertex Vertex deletion Vertex insertion

Edge Direction deletion Direction insertion

Predicate
modification

Edge, vertex Predicate deletion Predicate insertion

Edge Type deletion Type insertion

Table 3.1: Basic modification operations

Complex

Operations

Vertex-Oriented

• Vertex exclusion

• Predicate extension

• Vertex cleaving

Edge-Oriented

• Edge exclusion

• Predicate extension

• Type substitution

• Path cleaving
Subgraph-Oriented

• Subgraph densification

• Subgraph extension

• Subgraph relaxation

Figure 3.2: Classification of complex modification operations

Complex operations can be classified according to their targets as vertex-oriented, edge-
oriented, and subgraph-oriented operations. Several examples of complex operations
are provided in Figure 3.2. For instance, a subquery can be transformed by subgraph
densification or subgraph extension operations. The first one increases the density of a
subgraph: the number of vertices does not change, while the amount of edges increa-
ses. A subgraph extension increases both numbers of vertices and edges. Changing a
predicate interval belongs to complex operations, because it includes two actions: a
predicate deletion and an insertion of a new one.

The extended set of graph edit operations, which is suitable for property graphs,
can be used for comparing explanations syntactically and calculating GED as a simila-
rity metric. However, such a comparison would be coarse-grained because it is based
only on the number of applied changes and does not consider fine-granular predicate
modifications, which are an important aspect of the property-graph model. Therefore,
a finer approach is required, which would consider predicate modifications by keep-
ing the graph representation. Considering this fact, we propose to model a query and
an explanation as a set of vertices and edges, which are subsets on their own. This
proposal, which we present in Section 3.2.2, allows to keep a graph representation,
consider fine-granular changes of predicates, and use well-known set distances from
the related work.

The GED approach can be used only on a syntactic level, because it studies only a
query graph and does not qualify how well an explanation achieves a cardinality thres-
hold and which part of original results it delivers. However, for a comprehensive anal-
ysis of explanations all three aspects are important. Therefore, in this section, we also
discuss these missing aspects and compare explanations according to the size and con-
tent of their result sets. We first consider the syntactic distance between explanations in
Section 3.2.2 and then move to cardinality and result distances in Section 3.2.3 – 3.2.4.

48

3.2. COMPREHENSIVE COMPARISON OF EXPLANATIONS

OR

Query Q

Vertex set V

Vertex v

Incoming in # Outgoing out Predicate interval pi

Incoming set IN Outgoing set OUT Set of predicate

intervals PI

UNIONUNION

UNION

UNION

UNION

UNION

Edge set E

Predicate value pv

Edge e

UNION

UNION

OR

Predicate interval pi

Set of predicate

intervals PI

UNION

Predicate value pv

OR

Set of types T

Type t

Source

vertex vs

Target

vertex vt

Set of

directions D

OR

Direction d

Figure 3.3: Set-based query model, where ovals define operations such as union and disjunctions of va-
lues and rectangles describe graph elements and their properties. For reasons of simplicity,
all elements are drawn only once and dashed lines represent multiplicity of relations, for
example: vertex set can consist of multiple vertices

3.2.2 Syntactic Level

As we discussed in Section 3.2.1, GED derives only a coarse-grained comparison, which
does not consider fine-granular changes on predicates. Therefore, in this section, we
provide a way for syntactic comparison of explanations, which overcomes this draw-
back. We study how different the explanations appear to a user in respect to an original
query. For this purpose, we model an explanation and an original query as sets, which
gives us an advantage to use well-known set distances as a syntactic similarity metric.

Set-Based Graph Representation

To support a fine-grained query comparison, in this thesis we define query Q as a set
of vertices Vq and edges Eq (see Figure 3.3), where all vertices and edges are sets on
their own:

Q = Vq ∪ Eq , where Vq =

n⋃
i=1

viq and Eq =

m⋃
j=1

ejq (3.1)

A vertex as well as an edge can be annotated with predicate intervals for attribute
values. For example, a query vertex representing a person, can be characterized by
predicates for attributes like age, a name, or a profession. A predicate interval describes
a set of values with upper and lower bounds, which an attribute can have. These
attribute values pv are combined by their disjunction, because a data vertex can take
only one value from this set:

pi = pv1 ∨ pv2 ∨ · · · ∨ pvn (3.2)

49

3.2. COMPREHENSIVE COMPARISON OF EXPLANATIONS

For instance, a query vertex is annotated with predicate 1 < age < 4, which can be
represented by predicate interval age ∈ (1; 4). This interval comprises two values,
which age can have: 2 and 3.

By modeling a vertex as a set, in addition to predicate intervals PI(viq), we also
consider sets of identifiers for its incoming IN(viq) and outgoing OUT (viq) edges. The
union of these three sets fully describes a vertex:

viq = PI(viq) ∪ IN(viq) ∪OUT (viq) , where (3.3)

PI(viq) =

|PI|⋃
k=1

pik(viq) , IN(viq) =

|IN |⋃
t=1

int(v
i
q), and OUT (viq) =

|OUT |⋃
l=1

outl(v
i
q) (3.4)

Edge ejq is defined by the identifiers of its source vsq and target vertices vtq, a set of
directions D(ejq), a set of its types T (ejq), and a set of its predicate intervals PI(ejq):

ejq = T (ejq) ∪ vsq ∪ vtq ∪ PI(ejq) ∪D(ejq) , where (3.5)

PI(ejq) =

|PI|⋃
k=1

pik(ejq) , D(ejq) =

|D|⋃
h=1

dh(ejq) (3.6)

Each query vertex and edge has a numerical identifier ∈ N which is uniquely defined
in an original query. In this thesis, we use these identifiers as indices i, j on query
vertices and edges, respectively. For example, v1q defines the query vertex with identifier
i = 1. Vertex identifiers are used to specify source vsq(ejq) and target vertices vtq(e

j
q) for

edge ejq. Edge identifiers are used to define incoming in(viq) and outgoing out(viq) edges
for vertex viq.

Similar to predicate intervals, a direction of an edge can be represented as a set,
which can contain at most two values: backward or forward direction.

A type represents a special kind of an attribute, whose predicate can take only one
value or a disjunction of values. Similar to predicate values, a data edge can have only
one edge type, therefore, type values are combined by their disjunctions:

T (ejq) = t1(e
j
q) ∨ t2(ejq) ∨ · · · ∨ tz(ejq) (3.7)

Usually the number of types existing in a data graph is much smaller than the total
number of data edges (|Td| � |Ed|).

In general, the presented set-based definition of a graph query is illustrated in Fi-
gure 3.3. To define a query, its vertices and edges are represented as sets as well,
which can be iterated down the tree to values of predicate intervals, types, etc. The
proposed representation facilitates flexible modification of a query by easily removing
or inserting disjunctions.

The set-based representation of a graph query has the advantage of expressing the
syntactic dissimilarity of two graph queries by a set-based distance and using well-
studied set-based measures from related work [45].

In general, a set represents a collection of data points. Therefore, to calculate the
distance between two sets A and B, distances between their points ∀a ∈ A and ∀b ∈ B
have to be derived, which are called point-point distances. They can be expressed
by any similarity measure from the related work, for example: a string or synonym
distance between categorical attributes, a numerical distance between two numerical
values, or a Boolean distance:

d(a, b) =

{
0, if a == b

1, otherwise
(3.8)

50

3.2. COMPREHENSIVE COMPARISON OF EXPLANATIONS

Set ASet B

a1

b1

b3

b2

d(a1, b1)

Figure 3.4: Point-set distance d(ai, B)

where a ∈ A and b ∈ B.
In this thesis, a point is presented by a small letter, a corresponding set is denoted

by a capital letter. In Figure 3.4, two data sets A and B are presented, where d(a1, b1)
is a point-point distance between a1 ∈ A and b1 ∈ B.

In order to calculate a distance between two sets, we also need to introduce the
notion of a point-set distance.

Definition 3 (Point-Set Distance). We define a point-set distance d(a,B) between point
a ∈ A and set B as a minimal point-point distance d(a, b) between a and any point b ∈ B.

To calculate a point-set distance d(a1, B) between point a1 and set B, all point-
point distances between point a1 and points ∀b ∈ B have to be derived. Follow-
ing the example in Figure 3.4, distance d(a1, b1) is the minimal one among distances
{d(a1, b1), d(a1, b2), d(a1, b3)} and is considered to be a point-set distance d(a1, B).

If a point-point distance is modeled as the Boolean function as described in Equa-
tion 3.8, then a point-set distance based on it can be calculated as following:

d(a,B) =

{
0, if a ∈ B
1, otherwise

(3.9)

After all point-set distances are calculated, the set-set dissimilarity d(A,B) can be
derived as the commonly used modified Hausdorff distance [45]. The evaluation con-
ducted by Dubuisson et al. [45] shows that the value of this distance function “increases
monotonically as the amount of difference between two sets increases, and it is robust
to outlier points”.

Definition 4 (Set Distance). Given two sets A = {a1, a2, . . . , am} and B = {b1, b2, . . . ,
bn}, where m,n ∈ N, set distance d(A,B) is calculated as a modified Hausdorff distance:

d(A,B) = MHD(A,B) = max(
1

|A|
∑
ai∈A

d(ai, B),
1

|B|
∑
bj∈B

d(bj , A)) (3.10)

The modified Hausdorff distance [45] is an asymmetric measure and hereby it is
evaluated for both directions: A→ B and B → A.

Syntactic Query Comparison

To syntactically compare two explanations, we calculate their set distances to an origi-
nal query. For this purpose, the set distances of their subsets such as predicate intervals
PI, in-sets IN , out-sets OUT , types T , and directions D are derived as distances bet-
ween two sets. Then, they are aggregated in the distances of their vertices and edges.
Afterwards, the distance between an explanation and its original query can be deter-
mined. An explanation with a lower syntactic distance to its original query is better
than an explanation with a larger syntactic distance.

51

3.2. COMPREHENSIVE COMPARISON OF EXPLANATIONS

To calculate vertex and edge set dissimilarities, we propose to apply the well-known
modified Hausdorff distance [45] to above mentioned subsets, which are then aggre-
gated into the distances of individual vertices and edges. A distance between two ver-
tices viq1 , v

j
q2 is an average set-set distance for predicate intervals and sets of identifiers

for incoming and outgoing edges:

d(viq1 , v
j
q2) =

∑|PI(viq1)∪PI(viq2)|
pi d(pi(viq1), pi(viq2))

+ d(IN(viq1), IN(viq2)) + d(OUT (viq1), OUT (viq2))

|PI(viq1) ∪ PI(viq2)|+ 2
(3.11)

A distance between two edges is derived as an average set-set distance for predicate
intervals, types, directions, and source and target vertices:

d(eiq1 , e
j
q2) =

∑|PI(eiq1)∪PI(ejq2)

pi |d(pi(eiq1), pi(ejq2))+

d(T (eiq1), T (ejq2))+

d(D(eiq1), D(ejq2))+

d(vs(e
i
q1), vs(e

j
q2)) + d(vt(e

i
q1), vt(e

j
q2))

|PI(eiq1) ∪ PI(ejq2)|+ 4
(3.12)

After calculating distances for all vertices and edges, they can be aggregated into a
set dissimilarity for sets of vertices and edges and dissimilarity of two queries.

d(Q1, Q2) =

∑|Vq1∪Vq2 |
i=1 d(viq1 , v

i
q2) +

∑|Eq1∪Eq2 |
j=1 d(ejq1 , e

j
q2)

|Vq1 ∪ Vq2 |+ |Eq1 ∪ Eq2 |
(3.13)

To summarize, the syntactic distance between an original query and its explanation
is derived according to Algorithm 1. First, modified Hausdorff distances are calculated
for each subset of properties for vertices and aggregated in distances for individual
vertices at lines 3 – 16. In a similar way, distances for edges are derived at lines 17 –
38. Finally, the syntactic distance between an original query and its explanation is
calculated from all pre-computed distances at line 39.

This calculation model can be further generalized by assigning weights to specific
edges, vertices, and their properties. These weights could express their relevance for
a user. Since a property graph is an underlying data model considering the equal
importance of topology and attribute descriptions, all subsets are considered as equally
important.

Example Assume original query Q1 in Figure 3.5a and its refined version Q2 sketc-
hed in Figure 3.5b. Here, we present the detailed distance calculation only for vertex
v2 and edge e1 in order to derive the syntactic distance between original query Q1 and
its explanation Q2. Since the original predicate interval pi(type, (university)) of size
1 was relaxed to pi(type, (university, college)), it has an effect on the distance. Accor-
ding to Equation 3.10, predicate interval distance for vertex v2 is derived as follows:

d(pitype(v
2
q1), pitype(v

2
q2)) = max

(
0 + 1

2
,
0

1

)
=

1

2
(3.14)

Similar, the set of incoming edges has also been changed by removing edge e3,
which gives us

d(IN(v2q1), IN(v2q2)) = max

(
0

1
,
1 + 0

2

)
=

1

2
(3.15)

52

3.2. COMPREHENSIVE COMPARISON OF EXPLANATIONS

The distance d(OUT (v2q1), OUT (v2q2)) = 0 because the set of outgoing edges remains
the same. Having calculated all the subcomponents of v2, its aggregated dissimilarity
is derived according to Equation 3.11: d(v2q1 , v

2
q2) = 1

3 (3.16).

Algorithm 1 Syntactic-distance calculation between original query and its explanation

Input: original failed query Q1, explanation Q2

Output: syntactic distance between original query and explanation d(Q1, Q2)
1: V ← create vertex union
2: E ← create edge union
3: for all v ∈ V do
4: PI ← create union of vertex predicate intervals
5: if v /∈ Q1 then
6: d(vq1 , vq2)← 1
7: else if v /∈ Q2 then
8: d(vq1 , vq2)← 1
9: else

10: for all pi ∈ PI do
11: d(piq1 , piq2)←calculate MHD . Equation 3.10
12: d(PIq1 , P Iq2)← d(PIq1 , P Iq2) + d(piq1 , piq2)

13: d(INq1 , INq2)←calculate MHD . Equation 3.10
14: d(OUTq1 , OUTq2)←calculate MHD . Equation 3.10
15: d(vq1 , vq2)←calculate distance between two vertices

from d(PIq1 , P Iq2), d(INq1 , INq2), d(OUTq1 , OUTq2) . Equation 3.11

16: vertices[]← insert d(vq1 , vq2)

17: for all e ∈ E do
18: PI ← create union of edge predicate intervals
19: if e /∈ Q1 then
20: d(eq1 , eq2)← 1
21: else if e /∈ Q2 then
22: d(eq1 , eq2)← 1
23: else
24: for all pi ∈ PI do
25: d(piq1 , piq2)←calculate MHD . Equation 3.10
26: d(PIq1 , P Iq2)← d(PIq1 , P Iq2) + d(piq1 , piq2)

27: if vs(eq1) == vs(eq2) then
28: d(vs(eq1), vs(eq2))← 0
29: else
30: d(vs(eq1), vs(eq2))← 1

31: if vt(eq1) == vt(eq2) then
32: d(vt(eq1), vt(eq2))← 0
33: else
34: d(vt(eq1), vt(eq2))← 1

35: d(Tq1 , Tq2)←calculate MHD . Equation 3.10
36: d(Dq1 , Dq2)←calculate MHD . Equation 3.10
37: d(eq1 , eq2) ←calculate distance between edges from d(PIq1 , P Iq2),

d(Dq1 , Dq2), d(Tq1 , Tq2), d(vs(eq1),vs(eq2), d(vt(eq1), vt(eq2)) . Equation 3.12

38: edges[]← insert d(eq1 , eq2)

39: d(Q1, Q2)←calculate average for vertices[], edges[] . Equation 3.13 .
40: return d(Q1, Q2)

53

3.2. COMPREHENSIVE COMPARISON OF EXPLANATIONS

v2: type = university

v4: type = person

gender = male

nationality = Chinese

v3: type = city

name = Berlin

e1: workAt

sinceYear = 2003 e2: locatedIn

e3: studyAt

v1: type = person

name = Anna

(a) Original query Q1

v1: type = person

name = Anna OR Alice OR Sandra

v2: type = university OR college

v3: type = city

name = Madrid OR Rom

e
1
: workAt

sinceYear = 2003 OR 2004
e

2
: locatedIn

(b) Modified query Q2

Figure 3.5: Example query and its modification-based explanation

In a similar way, the distances for the remaining vertices are calculated: d(v1q1 , v
1
q2) =

0.16, d(v3q1 , v
3
q2) = 0.33, and d(v4q1 , v

4
q2) = 1 (because vertex v4 does not exist in Q2).

Since edges e1q1 and e1q2 have the same type, source, and target nodes, their distances
equal 0. Only the predicate interval for the attribute sinceYear has been changed:

d(pisinceY ear(e
1
q1), pisinceY ear(e

1
q2)) = max

(
1 + 0

2
,
0

1

)
=

1

2
(3.17)

The aggregated distance for edge e1 is d(e1q1 , e
1
q2) = 0+0+0.5+0+0

5 = 0.1. In the same way,
the distances for the remaining edges are derived d(e2q1 , e

2
q2) = 0 and d(e3q1 , e

3
q2) = 1

(edge e3 does not exist in Q2).
The final distance between Q1 and Q2 is derived according to Equation 3.13 as

D(Q1, Q2) =
0.16 + 0.33 + 0.33 + 1 + 0.1 + 0 + 1

4 + 3
= 0.42 (3.18)

In this section, we considered the syntactic distance between an original query and
its explanation, which shows how different they look like for users and quantify this
difference. The proposed metric provides a fine-granular comparison in contrast to the
graph edit distance. This is the first metric to qualify explanations. However, it does not
describe how good explanations are in order to deliver a required cardinality. There-
fore, in the following section, we describe a second comparison criterion, cardinality
distance.

3.2.3 Cardinality Level

The main objective of this thesis is to explain to a user why a query delivered an un-
expected result in terms of its cardinality and how to refine a query to deliver results
of a required size. Therefore, the second level of comparing two explanations is to
consider the sizes of their results. For too-many- and too-few-answers problems, this
investigation can be easily done by calculating the deviation of the result size from the
cardinality threshold.

Definition 5 (Cardinality Distance). Given a cardinality threshold Cthr, we define a car-
dinality distance ∆c(Q1, Q2) between two explanations Q1 and Q2 as an absolute differ-
ence between their result sizes C1 and C2 and cardinality threshold Cthr as follows:

∆c(Q1, Q2) = ||Cthr − C(Q1)| − |Cthr − C(Q2)|| (3.19)

For the empty-answer problem, the cardinality threshold is not given. The only
known fact is that the result should include at least some answers. Therefore, the
queries with smaller results are preferred. A query with an empty result has an un-
defined cardinality distance. Therefore, we compare only the queries delivering non-
empty results and calculate the cardinality distance between them as

∆c(Q1, Q2) = |C(Q1)− C(Q2)| (3.20)

54

3.2. COMPREHENSIVE COMPARISON OF EXPLANATIONS

vq
1

vq
3

vq
2

person.1 person.2

city.5

e1:friend.1

e2:locatedIn.10

(a) Result r1 for graph query Q1

vq
1 vq

2 vq
4

person.1 person.2

e4:locatedIn.15

city.15

e1:friend.1

(b) Result r2 for graph query Q2

Figure 3.6: Example of two result subgraphs for calculating result distance

3.2.4 Result Level

In addition to syntactic and cardinality-based comparisons, the content of both result
sets can be evaluated on removal and inclusion of new results during query refinement.
This measure allows to compare how many new results are introduced or how many
answers are removed from the original result. For a fair judgment, the results of an
explanation and original query results are compared. Therefore, this measure can be
defined only for problems, where an original query delivers at least some answers.

Definition 6 (Result Graph). Given a result set R, a result graph r ∈ R describes data
subgraph Gd as a mapping between query vertices Vq ∈ Gq and data vertices Vd ∈ Gd,
query edges Eq ∈ Vq and data edges Ed ∈ Gd such that vd ∈ Vd and ed ∈ Ed are data
vertex and edge unique identifiers.

A result set R represents a collection of result graphs. To compare two results sets,
a distance for each pair of their result graphs has to be derived.

Definition 7 (Distance between Two Result Graphs). We define a distance between two
result graphs d(r1, r2) as a graph edit distance (GED) normalized to a total number of
elements in both query graphs, which considers equally-weighted vertex and edge deletion,
insertion, and relabeling:

d(r1, r2) =
GED(r1 → r2)

|EQ1 ∪ EQ2 |+ |VQ1 ∪ VQ2 |

This measure can compare graphs of different sizes. The distance calculation bet-
ween two result graphs depends only on result sizes and therefore its complexity is
O(k), where k = |EQ1 ∪ EQ2 | + |VQ1 ∪ VQ2 |. To calculate a distance between these
two results r1 and r2, each data edge and vertex with the identical query identifiers
are compared. If vertices or edges with the same query identifiers have different data
identifiers, they have to be relabeled. Single relabeling has the cost of 1. If a vertex or
an edge is missing, it has to be inserted in a result. A single insertion increments the
total transformation cost.

Example Consider two results r1 and r2 for two explanations in Figure 3.6. Each
vertex and edge has a query identifier in the form of viq and ejq, respectively, and a data
identifier from a data graph like for example person.1, etc. Both result graphs have
the same data identifiers for the following common vertices and edge: v1q , e

1
q , and v2q ,

therefore, the distances between these vertices and edge equal 0. Vertex v3q and edge e2q
exist only in r1. Therefore, their deletion during the transformation r1 → r2 increases
the cost by 2. In other words, to transform r1 into r2, v3q and e2q have to be removed. In

55

3.2. COMPREHENSIVE COMPARISON OF EXPLANATIONS

Algorithm 2 Hungarian Assignment Algorithm

Input: matrix of result-result distances for two result sets D of m× n elements
Output: assignment costs costs

1: if m > n then
2: Step 0. D ← add m− n columns Dnew, where di,j = 1

3: Step 1. Subtract row minima from each row ∈ D
4: Step 2. Subtract column minima from each column ∈ D
5: Step 3. Count minimal number of columns and rows k, ∀di,j = 0 ∈ k
6: if k < m then
7: Step 4. s← find minimal (di,j ∈ D) ∧ (di,j /∈ k)
8: Step 4. Subtract min(di,j ∈ k)∀di,j ∈ k
9: Step 4. Increase all di,j ∈ k twice by min(di,j ∈ k)

10: Go to Step 3.
11: Step 5. Calculate assignment
12: Step 6. Calculate assignment costs costs
13: return costs

addition, e4q and v4q have to be inserted, which increases the cost by 2. To conclude, the
graph edit distance is

d(r1, r2) =
V D(v3q1) + ED(e2q1) + V I(v4q2) + EI(e4q2)

|Nr1 ∪Nr2 |+ |Mr1 ∪Mr2 |
=

4

7
,

where V D is a vertex deletion, ED is an edge deletion, V I is a vertex insertion, EI is
an edge insertion, N is a number of vertices, and M is a number of edges.

After calculating the distance for each pair of result graphs (ri1, r
j
2), r

i
1 ∈ R1, r

j
2 ∈ R2,

a total distance between two result sets can be derived. We model the comparison of
two result sets as the maximum generalized assignment problem [93], where workers
are the result graphs of the first result set and tasks are the result graphs of the second
result set. Any worker can be assigned to any task, this assignment is characterized by
its costs, which are modeled as a distance between two result graphs. The assignment
of all workers to tasks aims at maximizing the profit and therefore at minimizing the
costs of assignments, which means that the workers have to be assigned in such a way
that overall assignment costs (total dissimilarity) are minimal.

Definition 8 (Generalized Assignment Problem). Given two result setsR1 withN graphs
and R2 with M graphs, assign each result graph ri ∈ R1 to exactly one result graph
rj ∈ R2 with distance d(ri, rj) so as to minimize the total distance of the assignment, i.e.

mimimize z =

N∑
i=1

M∑
j=1

d(ri, rj) ∗ ri,j , (3.21)

subject to
M∑
j=1

ri,j = 1, i ∈ R1,

N∑
i=1

ri,j = 1, j ∈ R2, (3.22)

where ri,j =

{
1 if result item ri is assigned to result item rj

0, otherwise
(3.23)

The assignment of result graphs can be modeled by the Hungarian-based algo-
rithm [88], which is sketched in Algorithm 2. As an input, the algorithm requires a

56

3.2. COMPREHENSIVE COMPARISON OF EXPLANATIONS

matrix D of size m∗n with m tasks and n workers. To guarantee that each worker exe-
cutes only a single task, n ≥ m. For m > n, additional m−n columns with d(ri, rj) = 1
have to be inserted. Each matrix element di,j ∈ D represents the costs of executing
a task ti by a worker wj . In our setup, these costs are a result distance d(ri, rj) bet-
ween two compared results. The algorithm produces an assignment, which describes
the mapping between result graphs of an original query and answers to an explana-
tion, which has the minimal total costs. To be able to compare different explanations,
we normalize costs to the number of answers to an original query R1 (this step is not
illustrated in Algorithm 2).

Initial Matrix
0.15 0.21 0.18 0.16

0.10 0.17 0.60 0.48

0.12 0.29 0.10 0.15

0.23 0.44 0.13 0.25

Step 1
0.00 0.06 0.03 0.01

0.00 0.07 0.50 0.38

0.02 0.19 0.00 0.05

0.10 0.31 0.00 0.12

Step 2
0.00 0.00 0.03 0.00

0.00 0.01 0.50 0.37

0.02 0.13 0.00 0.04

0.10 0.25 0.00 0.11

Step 3

0.00 0.00 0.03 0.00

0.00 0.01 0.50 0.37

0.02 0.13 0.00 0.04

0.10 0.25 0.00 0.11

Step 4
0.00 0.00 0.05 0.00

0.00 0.01 0.52 0.37

0.00 0.11 0.00 0.02

0.08 0.23 0.00 0.09

Final Assignment
0.01 0.00 0.06 0.00

0.00 0.00 0.52 0.36

0.00 0.10 0.00 0.01

0.08 0.22 0.00 0.08

Example We explain the algorithm based on the following matrix of distances D.

The number of rows correspond to the number of result graphs |R1| of the original
query. The number of columns equals to the number of result graphs |R2| of the exp-
lanation. Each element di,j of this matrix describes the distance between result graphs
ri ∈ R1 and rj ∈ R2. At Step 1 and Step 2, the minimal row values and column
numbers are subtracted from the corresponding rows and columns. The derived ze-
ros show the minimal assignments between R1 and R2, i.e., the most similar result
graphs between two sets. At Step 3, we check zero coverage for the matrix generated
at Step 2, which shows whether we uniquely assigned all result graphs ∈ R1 to graphs
∈ R2. Only three lines are covered, namely: row 1, row 2, and column 3. This is
not enough to cover the matrix D with four rows, therefore, additional zeros (minimal
assignments) have to be introduced. The smallest uncovered number (not highlighted
numbers) is 0.02. It is substituted from all uncovered numbers and added to those
elements, which are covered twice at Step 4. Zeros in this matrix are covered only by
three lines, therefore not all result graphs can be assigned and additional zeros have to
be introduced again. The minimal uncovered number is 0.01. It is substituted from all
uncovered numbers and added to those elements, which are covered twice. In the final
matrix, all zeros are covered and the optimal assignment can be derived. Elements
di,j with zero values describe the mapping between R1 and R2 with the minimal total
assignment costs. The derived optimal assignment includes the following distances:
d3,1, d2,2, d4,3, and d1,4. The corresponding minimal costs are costs = 0.58 derived at
Step 6. The result distance between two result sets is d = costs

|R1| = 0.58
4 = 0.145.

3.2.5 Evaluation

In the previous sections, we discussed three similarity metrics for comparing explana-
tions: syntactic, cardinality, and result distances, which consider their syntactic descrip-

57

3.2. COMPREHENSIVE COMPARISON OF EXPLANATIONS

tions, sizes, and contents of their result sets. In this evaluation, we will characterize
their behavior and reveal dependencies between them.

Evaluation Setup

In order to discover dependencies between the proposed similarity metrics, we should
compare such explanations and original queries, which deliver some results. Other-
wise, a result distance cannot be calculated. Therefore, in this evaluation we compare
randomly generated modification-based explanations for the too-few- and too-many-
answers problems and multiple cardinality thresholds.

As original queries, we refine four LDBC queries on the LDBC SF1 data set, which
are described in detail in Appendix A.1 and include LDBC QUERY 1 – 4 with original
cardinalities defined as C1 in Table A.1. LDBC is the Linked Data Benchmark Council,
a non-profit organization dedicated to establishing benchmarks, benchmark practices,
and benchmark results for graph data management software. For each query, we con-
sider four cardinality factors C = {0.2, 0.5, 2, 5}, which are used to derive the cardina-
lity thresholds in respect to the original cardinalities. For example, cardinality factor
C = 0.2 means that the cardinality threshold equals to the 20% of the original result
size. Cardinality factor C = 2 means that the cardinality threshold is twice so big as
the original cardinality. The use of cardinality factors allows us to compare similarity
metrics among different queries. The cardinality factors less than 1 model the too-
many-answers problem. Otherwise, the too-few-answers problem is evaluated. In all
charts, evaluation results are presented according to the used cardinality factors, which
annotate subfigures on the top.

The generation of query variants is implemented as an iterative procedure. First,
we execute an original query and store its result for further comparisons. Then, we
randomly choose modification operators and query elements from an original query to
be modified. Based on them, we generate multiple modified queries as explanations. At
each iteration, we pick up one query from this set, execute it, and compare it against the
original query, original result set, and cardinality threshold. We terminate the process,
after no candidates exist in the pool or 5% of candidates for a three-level modification
are processed. For all candidates, we calculate all three similarity measures.

This evaluation is executed on a single server machine equipped with SUSE Linux
Enterprise Server 11 (64 bit) with an Intel Xeon Processor E5-2643 (24 CPUs and 96 GB
RAM). This setup is used in all experiments described in this thesis and fully explained
in Appendix A. In the following sections, the evaluation results are presented according
to the distance measure used.

Syntactic Distance

First, we consider the syntactic distance of generated explanations, which describes the
y axis in Figure 3.7. The generated explanations are ordered according to their syntactic
distances in a descending order and correspond to the x axis. From this evaluation,
we can conclude that the proposed syntactic distance is a monotonic function, which
increases if a new change was introduced in an explanation. A few explanations are
characterized by the same syntactic distance, which means that these queries have
the same amount of changes. For example, two explanations have been generated by
extending the same predicate intervals. The behavior of the syntactic distance is similar
among different queries. Larger magnitudes correspond to strong query changes, which
are typically caused by topological changes.

58

3.2. COMPREHENSIVE COMPARISON OF EXPLANATIONS

0.2 0.5 2 5

0.00

0.25

0.50

0.75

0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
Query Candidates

S
yn

ta
ct

ic
 D

is
ta

n
ce

(a) LDBC QUERY 1, C1 = 21
0.2 0.5 2 5

0.0

0.2

0.4

0.6

0.8

0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300
Query Candidates

S
yn

ta
ct

ic
 D

is
ta

n
ce

(b) LDBC QUERY 2, C1 = 39
0.2 0.5 2 5

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000
Query Candidates

S
yn

ta
ct

ic
 D

is
ta

n
ce

(c) LDBC QUERY 3, C1 = 188
0.2 0.5 2 5

0.00

0.25

0.50

0.75

0 200 400 600 800 0 200 400 600 800 0 200 400 600 800 0 200 400 600 800
Query Candidates

S
yn

ta
ct

ic
 D

is
ta

n
ce

(d) LDBC QUERY 4, C1 = 195

Figure 3.7: Ordered syntactic distances for randomly generated explanations

Result Distance

Second, we consider the result distances for generated explanations that show how
the data subgraphs delivered by an explanation differ from the data subgraphs of an
original query. This metric equals 1 if a result is completely different from an original
result or the rewritten query produces an empty answer. The evaluation charts for
the result distributions are constructed similarly to the syntactic-distance charts and
presented in Figure 3.8.

The evaluation shows that the result distance distribution is graduated. The can-
didates exhibiting the same result distance can have different syntactic distances and
probably similar cardinality distances. This behavior is dependent on an original query
and shows how strong query elements are interconnected with each other. Stronger
connections require simultaneous modifications of multiple query elements in order to
change a result set. From explanations delivering the same result distance, those have
to be preferred, which are less syntactically different from the original query.

Considering charts for the too-many-answers problem (C < 1) in Figure 3.8, in
most cases the result distance approaches 1, because only a few original results are

59

3.2. COMPREHENSIVE COMPARISON OF EXPLANATIONS

0.2 0.5 2 5

0.00

0.25

0.50

0.75

1.00

0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
Query Candidates

R
es

u
lt

 D
is

ta
n

ce

(a) LDBC QUERY 1, C1 = 21
0.2 0.5 2 5

0.00

0.25

0.50

0.75

1.00

0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300
Query Candidates

R
es

u
lt

 D
is

ta
n

ce

(b) LDBC QUERY 2, C1 = 39
0.2 0.5 2 5

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000
Query Candidates

R
es

u
lt

 D
is

ta
n

ce

(c) LDBC QUERY 3, C1 = 188
0.2 0.5 2 5

0.00

0.25

0.50

0.75

1.00

0 200 400 600 800 0 200 400 600 800 0 200 400 600 800 0 200 400 600 800
Query Candidates

R
es

u
lt

 D
is

ta
n

ce

(d) LDBC QUERY 4, C1 = 195

Figure 3.8: Ordered result distances for randomly generated explanations

included in the result set of an explanation. In addition, each answer can contain less
information than before the modification.

In contrast, for the too-few-answers problem, we extend predicates with new va-
lues, which introduce additional answers without removing original ones and result in
a low result distance. However, we also allow to change the topology by removing ver-
tices and edges, which increases the result distance. In addition, those queries, which
deliver no results, lead to the maximal result distance = 1. This effect can happen if
the transformed query was created by several relaxations and concretizations with dif-
ferent values for predicates. Considering Figures 3.8c – 3.8d, LDBC QUERY 3 and LDBC

QUERY 4 are difficult to modify, because in most cases they have result distances with
the maximum value, where some of them are induced by empty result sets. The most
easy-to-judge result distances can be calculated in scenarios, where the cardinality of
an original query is close to a cardinality threshold.

60

3.2. COMPREHENSIVE COMPARISON OF EXPLANATIONS

0.2 0.5 2 5

0

2500

5000

7500

10000

0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
Query CandidatesC

ar
d

in
al

it
y

D
is

ta
n

ce

(a) LDBC QUERY 1, C1 = 21
0.2 0.5 2 5

0

2500

5000

7500

10000

0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300
Query CandidatesC

ar
d

in
al

it
y

D
is

ta
n

ce

(b) LDBC QUERY 2, C1 = 39
0.2 0.5 2 5

0

2500

5000

7500

10000

0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000
Query CandidatesC

ar
d

in
al

it
y

D
is

ta
n

ce

(c) LDBC QUERY 3, C1 = 188
0.2 0.5 2 5

0

2500

5000

7500

10000

0 200 400 600 800 0 200 400 600 800 0 200 400 600 800 0 200 400 600 800
Query CandidatesC

ar
d

in
al

it
y

D
is

ta
n

ce

(d) LDBC QUERY 4, C1 = 195

Figure 3.9: Ordered cardinality distances for randomly generated explanations

Cardinality Distance

Third, we evaluate cardinality distances for generated explanations, which are illus-
trated in Figure 3.9. In this evaluation, we express a cardinality distance as the differ-
ence between a cardinality threshold and a cardinality of a generated explanation. As
in the previous figures, generated explanations are sorted by their cardinality distances
in a descending order. Similar to the result-distance charts, multiple explanations can
have the same cardinality distance, which is explained by existing query dependen-
cies and necessity to simultaneously execute multiple changes in order to modify the
result cardinality. If not all required dependent elements are modified in the query,
an executed modification will not result in a cardinality change. This behavior can be
observed for explanations with the same cardinality distances in Figure 3.9.

Average Result Distance vs. Syntactic-Interval Distance

Until now, we have considered all three similarity measures independently. In this
set of experiments, we would like to test whether some dependencies exist between
similarity metrics.

61

3.2. COMPREHENSIVE COMPARISON OF EXPLANATIONS

0.2 0.5 2 5

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75
Syntactic Distance

R
es

u
lt

 D
is

ta
n

ce

(a) LDBC QUERY 1, C1 = 21
0.2 0.5 2 5

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
Syntactic Distance

R
es

u
lt

 D
is

ta
n

ce

(b) LDBC QUERY 2, C1 = 39
0.2 0.5 2 5

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00
Syntactic Distance

R
es

u
lt

 D
is

ta
n

ce

(c) LDBC QUERY 3, C1 = 188
0.2 0.5 2 5

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75
Syntactic Distance

R
es

u
lt

 D
is

ta
n

ce

(d) LDBC QUERY 4, C1 = 195

Figure 3.10: Distribution of average result distances for randomly generated explanations

The most interesting dependency can be revealed between result and syntactic dis-
tances, because the result distance considers the size of an explanation. In this expe-
riment, we group generated query candidates according to their syntactic distances in
several groups with step 0.05 from interval [0.0, 1.0]. For each group, we calculate the
average result distance, which is illustrated in Figure 3.10.

In all charts in Figure 3.10, we can see the trend that with an increasing syntactic
distance the result distance increases as well. Small syntactic distances usually con-
sider only predicate changes, which lead to smaller cardinality improvements, and as a
consequence, smaller result distances than in scenarios with topological changes.

If we compare the results between too-many- and too-few-answers problems which
are described by cardinality factors C < 1 and C > 1, respectively, we can observe that
the higher result distances are derived for the too-many-answers problems, because in
these scenarios we need to reduce the amount of data subgraphs and therefore some
information is removed from the result, which leads to higher result distances.

62

3.3. SUMMARY

Evaluation Summary

In this section, we evaluate three similarity measures to compare explanations inclu-
ding syntactic, result, and cardinality differences. From the experimental results, we
can conclude that the syntactic distance represents a monotonic feature, which inc-
reases by introducing new modifications. Larger syntactic distances are derived if the
topology of a query is changed. The evaluation of result distances shows that for the
too-many-answers problem the result distance is higher than for the too-few-answers
problem, because the modification process aims at reducing the number of answers and
therefore not all of them are included in the result set of an explanation. Cardinality
and result distances exhibit dependencies between multiple changes via graduated dis-
tributions, which show that multiple changes have to be applied to an original query in
order to deliver a different cardinality. We also observe a dependency between result
and syntactic distances. In most cases, an increasing syntactic distance leads to a higher
result distance and can even approach to one.

3.3 Summary

In this chapter, we discussed the core functionality that has to be considered in order to
support cardinality-based why-queries in graph databases, namely holistic support of
different cardinality-based problems, explanation of unexpected results and query re-
formulation, comprehensive comparison of explanations, and non-intrusive user inte-
gration. Before describing these features, we introduced the property-graph model and
supported graph-query types. We also discussed in detail one of these properties, com-
prehensive comparison of explanations, and proposed three similarity metrics, which
consider three important aspects, namely: a syntactic difference between an original
query and an explanation, size and content of result sets in reference to a cardinality
threshold and a result set of an original query. The evaluation revealed that the result
distance slightly depends on the syntactic one such that stronger differences in a query
description lead to larger result distances. The result distance is also influenced by the
number of results of an original query. By relaxing a query, the result information will
be reduced, which leads to higher result distances. By extending the query, the original
information is still presented in the result of the modified query, and therefore, the re-
sult distance is small. These measures are used in this thesis for quantifying the quality
of generated explanations.

In the following chapters, we will consider core debugging features: how to dis-
cover the reasons of a query failure and how to rewrite a query in order to deliver
better results. In Chapter 4, we start this description with proposing a way to gene-
rate subgraph-based explanations, which reveals why a query delivered an unexpected
result.

63

4
Explaining Unexpected Results

In the previous chapter, we introduced the definition of the property-graph model
and discussed a set of general debugging features for why-queries, which was derived
from the state-of-the-art systems in Chapter 2 and includes holistic support of different
cardinality-based problems, explanation of unexpected results and query reformula-
tion, comprehensive comparison of explanations, and non-intrusive user integration in
the generation of explanations. In addition, we had a deep look at one of the pro-
perties, comprehensive comparison of explanations, which allows to qualify generated
explanations. For this purpose, we proposed and evaluated three similarity measures
including syntactic, cardinality, and result distances.

One of the important properties from this set refers to the core debugging func-
tionality, explanation of unexpected results and query reformulation. In this chapter,
we start description of this property and reveal its first requirement, explanation of
unexpected result. By dealing with graph queries, the reason of unexpectedness can
be described in terms of a query subgraph, which is responsible for violation of a car-
dinality constraint. Therefore, we call this type of explanations subgraph-based expla-
nations. For why-empty queries, a responsible subgraph is not represented in a data
graph. For why-so-few or why-so-many queries, this subgraph forces a result cardina-
lity to drop below or to exceed a cardinality threshold. To generate subgraph-based
explanations, we propose two algorithms, DISCOVERMCS and BOUNDEDMCS, and dis-
cuss several optimization techniques, which allow to increase quality of explanations
and their performance. We also consider a model for integrating user preferences
in generation of explanations, which allows to derive preference-aware explanations.
Parts of the subgraph-based approach presented in this chapter have been published
in [138, 139, 140, 141, 142].

Before introducing our concept of discovering a query subgraph, which is respon-
sible for an unexpected result, some basic definitions are provided in Section 4.1.
Afterwards, two solutions are introduced for empty-answer, too-few-, and too-many-
answers problems in Section 4.2, whose optimizations are provided in Section 4.3. In
Section 4.4, a strategy to consider user interest during generation of subgraph-based
explanations is discussed. Finally, the proposed solutions are evaluated in Section 4.5.

4.1 Preliminaries

As presented in Chapter 3, a query to a graph database can be represented by a graph
itself, which is annotated with the attribute predicates on vertices and edges. Therefore,
if a query delivers an unexpected result, a reason of unexpectedness can be expressed

65

4.1. PRELIMINARIES

club club

nationalitynationality

(a) Query graph Gq

work at

club
friend

nationality
WalesGareth Bale

Real Madrid

Andreas

Germany

nationality

Tony Kroos

nationality

live in

located in
Spain

capital of

Alice

Madrid

(b) Data graph Gd

club

nationality
WalesGareth Bale

Real Madrid
Andreas

Germany

Tony Kroos

nationality

Alice

Germany

nationality

(c) Partial data subgraphs

Figure 4.1: Example of why-empty query, data graph, and corresponding partial answers

as a part of the query graph, which violates a given cardinality constraint. In the
state-of-the-art systems (see Section 2.3), this part of the query is called a minimal
failed query. The remaining part of a query, which satisfies the cardinality constraint,
can be described in terms of a maximum common subgraph and therefore, it can be
discovered by existing state-of-the-art maximum common subgraph algorithms. Before
introducing these algorithms, we illustrate the principle of generating subgraph-based
explanations on the example in Figure 4.1.

Example Assuming the example database in Figure 4.1b, a user is interested in data
subgraphs, which consist of four vertices and four edges of types club and nationality
like presented in Figure 4.1a. The discovery of this pattern in the data graph in Fi-
gure 4.1b delivers an empty result, because there is no data subgraph, which would
match the entire queried graph. However, there are multiple partial results in the data
graph, which vary from the subgraph containing a single vertex like Alice to a subgraph
consisting of up to three vertices (some partial results are illustrated in Figure 4.1c).
The number of such partial answers can be very large and therefore to explain why
each of them does not become an answer can be a non-feasible task. Based on this ob-
servation, an explanation should be generated only for the largest discovered subgraph
like the right one in Figure 4.1c. This answer holds the maximum available informa-
tion in the data graph matching the query. The same holds for debugging of too many
and too few results, but instead of an empty result we have to consider the number of
discovered data subgraphs.

To understand, which part of query Gq, which satisfies a cardinality constraint, can
be found in data graph Gd and which part violates it, the maximum common connected
subgraphs between data and query graphs must be found and their differential graphs
must be calculated.

Definition 9 (Maximum Common Connected Subgraph (MCS)). Let Gd = (Vd, Ed, ud,
fd, gd, AVd

, AEd
) be a data graph and Gq = (Vq, Eq, uq, fq, gq, AVq , AEq) be a query graph.

66

4.1. PRELIMINARIES

vq
1

vq
2

vq
3 vq

4

vq
5 vq

6

eq
1

eq
2

eq
3 eq

4

eq
5

eq
6

(a) All edges processed

vq
1

vq
2

vq
3 vq

4

vq
5 vq

6

eq
3 eq

4

eq
5

(b) A few edges processed

Figure 4.2: Depth-first search

A maximum common connected subgraph G′d = (V ′d, E
′
d, u
′
d, f
′
d, g
′
d, AV ′

d
, AE′

d
) for Gd

and Gq is a common connected subgraph of Gd and Gq such that there is no common
connected subgraph G′′d = (V ′′d , E

′′
d , u
′′
d, f
′′
d , g
′′
d , AV ′′

d
, AE′′

d
) with V ′ (V ′′ or E′ (E′′.

For too-many- and too-few-answers problems, a maximum common connected sub-
graph is represented by a cardinality-bounded MCS, which shows that part of a query
graph, whose number of data instances does not violate a cardinality threshold. It is
defined as follows.

Definition 10 (Cardinality-Bounded Maximum Common Connected Subgraph (BMCS)).
Let Gd be a data graph, Gq be a query graph, and Cthr be a cardinality threshold of a re-
sult set. A cardinality-bounded maximum common connected subgraph Gbnd

d for Gd,
Gq, and Cthr is a common connected subgraph of Gd and Gq such that ∀ common con-
nected subgraph G′′d for Gd, Gq such as G′′d is isomorphic to Gbnd

d and a total number of
such data subgraphs

∑
G′′d ≤ Cthr for the too-many-answers problem or

∑
G′′d ≥ Cthr for

the too-few-answers problem.

Cardinality-bounded maximum common connected subgraphs (BMCSS) show dis-
covered partial results, before the resulting cardinality has exceeded or dropped below
the cardinality threshold.

4.1.1 Detection of Maximum Common Connected Subgraphs

The MCSS between a graph query and a data graph can be discovered by maximum
common connected subgraph algorithms [94, 135]. The computation depends on how
a data graph is stored and processed.

A common way to represent a data graph is an adjacency matrix or adjacency
list [42]. For example, a matrix A consists of n × n elements, where n is the num-
ber of vertices in a graph. Each element of a matrix aij with a value 1 represents an
edge between vertices i and j. The MCS is calculated by linear algebra operations. If a
graph is a property graph, then its attributes can be stored in separated structures and
can be used during prefiltering.

To discover MCSS, Ullmann’s [135] and McGregor’s [94] algorithms can be used as
a base for traversal operations in graph databases. Both methods are backtracking algo-
rithms: While the Ullmann’s algorithm is a tree-enumeration procedure, the McGregor’s
method implements a depth-first search that begins at the root and traverses the graph
as far as possible along each branch before backtracking.

Assume that the depth-first procedure starts from vertex v1q in the example shown
in Figure 4.2a, and explores all edges of the query as follows: e1q , e

2
q , e

3
q , e

4
q , e

5
q , e

6
q . If

it would start from vertex v3q like in Figure 4.2b only edges e3q , e
4
q , e

5
q would be tra-

versed. To ensure the discovery of all MCSS, the depth-first search is conducted for
each vertex of a query, and the data graph is treated as undirected. Ullmann’s [135]

67

4.2. GENERATION OF SUBGRAPH-BASED EXPLANATIONS

and McGregor’s [94] algorithms work on matrices and provide extension points for
pruning techniques and prefiltering options to reduce the search space. They rely on
labeled graphs, which differ from the property-graph model [122]. To be used for pro-
perty graphs, these algorithms have to be adapted to work with properties on edges
and vertices. Additionally, only those edges and vertices have to be considered whose
descriptions match the predicates and types given in a query graph. The discovery of an
MCS can also be modeled as search of a maximum clique like in the Durand-Pasari [46]
and in the Balas Yu [9] algorithms, which are also tree-search algorithms. All these
methods show diverse performance results among different graphs.

Most of the above presented algorithms implement the depth-first search with so-
phisticated heuristics for discarding some search branches, which are suitable for la-
beled graphs. This thesis considers the property-graph model. For this model, a most
promising optimization technique differs from the used heuristics in the state-of-the-
art methods and implements filtering of data subgraphs based on query predicates.
Therefore, before executing a depth-first search, the data graph is filtered such that
only those vertices and edges are considered by the search, which match the query
predicates.

4.1.2 Calculation of Differential Graphs

The MCS algorithms introduced above can be applied to detect those query parts in a
data graph, which satisfy a cardinality constraint. To determine which structural part
fails, differential graphs have to be derived, which are calculated as the differences
between the discovered MCSS (BMCS) and the query graph.

A differential graph includes those query vertices and edges, which were not visited
during the discovery of MCSS (BMCSS), and the instances of query vertices adjacent
to an MCS.

Definition 11 (Differential Graph). Let Gd = (Vd, Ed, ud, fd, gd, AVd
, AEd

) be a data
graph, Gq = (Vq, Eq, uq, fq, gq, AVq , AEq) be a query graph, and G′d = (V ′d, E

′
d, u
′
d, f
′
d, g
′
d,

AV ′
d
, AE′

d
) is the maximum common connected graph or cardinality-bounded maximum

common connected subgraph for Gd and Gq. A graph G′q = (V ′q , E
′
q, u
′
q, f
′
q, g
′
q, AV ′

q
, AE′

q
)

is a differential graph for Gd, Gq, G
′
d such that E′q ⊂ Eq, E

′
q 6⊂ E′d and V ′q = V ′sd ∪ V s

q ,
where V ′sd ⊂ V ′d, V s

q 6⊂ V ′d and ∀v′d ∈ V ′sd , vq ∈ Vq, v′d = vq : degree(v′d) < degree(vq).

The complexity of computing a differential graph is O(k), where k = m+ n+ l+ s,
m is the number of edges, n is the number of vertices, l is the number of attributes, and
s is the number of types in a query.

4.2 Generation of Subgraph-Based Explanations

In the previous section, we gave general definitions of MCS and BMCS and shortly
discussed the state-of-the-art methods for their discovery. The presented algorithms
mostly implement a depth-first search with optimizations, which are specific for la-
beled graphs. In this section, we propose two algorithm for the discovery of MCSS and
BMCSS for property graphs and reveal several model- and algorithm-specific optimiza-
tions.

In general, the generation of the subgraph-based explanations consists of two steps:
(1) The detection of maximum common connected subgraphs (MCSS – BMCSS), which
correspond to the cardinality constraint, by a maximum common subgraph algorithm.
(2) The calculation of differential graphs from MCSS (BMCSS) and the query graph,
which show why discovered data subgraphs fail to deliver a complete answer.

68

4.2. GENERATION OF SUBGRAPH-BASED EXPLANATIONS

Algorithm 3 DISCOVERMCS: Traversal-based discovery of MCSS

Input: query graph Gq = (Vq, Eq), data graph Gd = (Vd, Ed)
Output: set mcs of discovered data MCSS

1: ∀viq ∈ Vq : vid ← extract data vertices from data graph Gd

2: ∀eiq ∈ Eq : eid ← extract data edges from data graph Gd

3: ∀e ∈ ed : filter out edges with non-matching vertices from ed and vd
4: for all startVq ∈ Vq do
5: startVd ← extract start data vertices for startVq
6: subgraphs← initialize data subgraphs with (startVq, startVd)
7: while subgraphs 6= ∅ do
8: ∀graph ∈ subgraphs : extend data subgraph graph with edge from ed
9: mcs← insert completed MCS from subgraphs

10: return mcs

This process slightly differs between why-empty, why-so-few, and why-so-many
queries. While why-empty queries have to search for a missing query subgraph from the
data graph, why-so-few and why-so-many queries have to consider the number of disco-
vered data subgraphs by preventing the violation of a cardinality threshold. Therefore,
as follows, two algorithms are proposed, which discover MCSS for the empty-answer
problem and BMCSS for too-few- and too-many-answers problems in Section 4.2.1
and 4.2.2, correspondingly.

4.2.1 The DISCOVERMCS Algorithm for Why-Empty Queries

To discover the reason of an empty answer, it is necessary to determine maximum exis-
ting and minimum failing query parts. The first part, a maximum common subgraph,
represents that part of the graph query, which exists in the data graph. The second
part, a minimum failing query, describes the missing query part. To determine them,
we conduct the depth-first search along the query like presented in Algorithm 3.

To leverage an MCS algorithm for property graphs, only those data edges and ver-
tices have to be considered, which match the query predicates. For this purpose, such
vertices and edges are indexed at lines 1 and 3, correspondingly. To ensure that the
algorithm finds all MCSS, it should be launched from all query vertices as multiple star-
ting points and traverse all possible edge sequences. In Algorithm 3, the first starting
vertex is chosen at line 4 and the initial set of solutions is produced at line 6, which con-
sists only of pairs (start query vertex, data vertex). All these initial data subgraphs are
stored in vector subgraphs that maintains all incomplete solutions. The core of Algo-
rithm 3 consists of two function calls at lines 7 – 9. First, for each incomplete subgraph,
a next query edge is derived by the depth-first search algorithm, which is then used to
extend the subgraph with new data edges at line 8 extracted from the indexed data.
New subgraphs created at this step substitute their predecessors in this vector. Second,
those discovered MCSS are marked as complete and stored in the result vector, which
cannot be further extended at line 9. The procedure continues until all subgraphs are
moved to result vector mcs. After all data subgraphs are marked as complete and the
search is terminated, differential graphs can be calculated for them.

Example Assuming we search for two soccer players originating from the same
country and playing in the same club as illustrated in Figure 4.3a. A possible answer to
this why-empty query would consist of MCS G′d as shown in Figure 4.3b, and differential
graph G′q as in Figure 4.3c, which is the missing part of the query with constraints. The
first part includes all discovered instances of edges and vertices like Gareth Bale, Real

69

4.2. GENERATION OF SUBGRAPH-BASED EXPLANATIONS

club club

nationalitynationality

(a) Original query

Gareth Bale

Wales

Real Madrid

club

nationality

(b) Discovered MCS

club

nationality

Real Madrid

!Wales

!Gareth Bale

!Real Madrid

Wales

(c) Differential graph

Figure 4.3: Original query delivering empty result and its subgraph-based explanation: which two ver-
tices are from same country and play in same club?

Madrid, and Wales. The second part consists of instances of discovered adjacent vertices
Real Madrid and Wales, missing query vertices and edges (gray), and constraints for
vertices (gray).

The proposed algorithm searches for all MCSS in the data graph and therefore is
executed multiple times for each start vertex. As a consequence, the same MCSS may
be discovered multiple times and the result may include duplicated MCSS, which also
increases the search time. Therefore, we optimize this algorithm with several heuristics
as described in Section 4.3.

To conclude, this algorithm considers discovered data subgraphs individually and
traverses them differently from each other. As a result, discovered data subgraphs can
vary in size and the algorithm outputs only the largest one. This property does not
allow to re-use it for why-so-few and why-so-many queries, which have to consider the
number of output data subgraphs isomorphic to the same query subgraph. Therefore,
in the following section we present a join-based algorithm, which overcomes these
drawbacks and delivers BMCS with respect to the given cardinality threshold.

4.2.2 The BOUNDEDMCS Algorithm for Why-So-Few and Why-So-Many
Queries

To discover the reasons of too few or too many answers, it is necessary to determine
maximum cardinality-compliant and minimum cardinality-violating query parts. The
first part, a maximum cardinality-compliant subgraph, describes that query part called
BMCS (see Definition 10) which delivers less or more data subgraphs in reference
to a cardinality threshold for the too-many- and too-few-answers problems. The se-
cond part, a minimum cardinality-violating subgraph, represents that query part which
makes the number of data subgraphs violate the cardinality threshold.

As we have already mentioned above, DISCOVERMCS presented in Algorithm 3 can
potentially be used to discover BMCSS and to generate subgraph-based explanations
for why-so-few and why-so-many queries. However, it does not consider a cardinality
threshold and does not track the size of a result set. To account for them, all discovered
data subgraphs have to be extended at the same time with the same query edge. To ge-
nerate subgraph-based explanations for the too-few- and too-many-answers problems,
we propose the BOUNDEDMCS algorithm described in Algorithm 4 that considers these
observations and discovers BMCSS.

To detect which part of a query matches the cardinality threshold Cthr, such BMCSS

have to be found in data graph Gd for query graph Gq, which total number is lower or
higher than cardinality threshold Cthr for the too-many- or too-few-answers problem.
Similar to DISCOVERMCS, data vertices and edges are indexed at lines 1 and 2. To

70

4.2. GENERATION OF SUBGRAPH-BASED EXPLANATIONS

Algorithm 4 BOUNDEDMCS: Join-based discovery of BMCSS

Input: query graph Gq = (Vq, Eq), data graph Gd = (Vd, Ed), cardinality threshold
Cthr

Output: set bmcs of discovered BMCSS

1: ∀viq ∈ Vq : vid ← extract data vertices from data graph Gd

2: ∀eiq ∈ Eq : eid ← extract data edges from data graph Gd

3: ∀e ∈ ed : filter out edges with non-matching vertices from ed and vd
4: for all eiq ∈ Eq do
5: if eiq satisfy Cthr then
6: subgraphs← initialize data subgraphs with (eiq, e

i
d)

7: accepted← insert eiq
8: extendSubgraphs(Gq, ed, rejected, accepted, subgraphs, Cthr)
9: if syntactic distance(subgraphs) ≤ syntactic distance(bmcs) then

10: bmcs← subgraphs

11: return bmcs

Algorithm 5 EXTENDSUBGRAPHS: Extension of data subgraphs with new edge

Input: query graph Gq = (Vq, Eq), extracted data edges ed, rejected query edges
rejected, accepted data edges accepted, discovered data subgraphs subgraphs, car-
dinality threshold Cthr

Output: set subgraphs of discovered data subgraphs
1: while e← get new edge for (Gq, accepted, rejected) do
2: ∀graph ∈ subgraphs : extend with e from ed
3: if subgraphs satisfy Cthr then
4: accepted← insert e
5: subgraphs = EXTENDSUBGRAPHS (Gq, ed, rejected, accepted, subgraphs, Cthr)
6: else
7: ∀graph ∈ subgraphs : remove e
8: rejected← insert e
9: return subgraphs

ensure that the algorithm finds BMCSS, it should be launched from all query edges
and traverse all possible edge sequences at lines 4 – 10. The core of the algorithm EX-
TENDSUBGRAPHS described in Algorithm 5 extends each discovered data subgraph with
a new edge at lines 1 – 2. If the size of extended set subgraphs satisfies the cardinality
constraint, then the edge is accepted and the traversal process continues at lines 3 – 5.
Otherwise, we can assume that the subgraph cardinality changes monotonically and
any further traversal step will not make the subgraph satisfy the cardinality threshold.
Therefore, the edge can be rejected and the last extension of data subgraphs can be
undone at lines 6 – 8. After conducting the search for each start vertex in Algorithm 4,
the largest BMCSS are stored and delivered to a user at lines 9 – 11.

Example Assume a modified version of our running example in Figure 4.4a, where
two soccer players from the same country have to be discovered who play in different
clubs. We want to get not more than ten answers (Cthr = 10). However, too many
answers have been returned: number of discovered data subgraphs K = 84 exceeds
cardinality threshold Cthr = 10. By processing the query graph, the number of answers
grows, when we search for club, because the same player can play at different times
during his career in several clubs. While Marcelo Bordon played in four clubs, Aílton
Gonçalves da Silva played in 21 soccer teams. To explain, why the query delivers too

71

4.2. GENERATION OF SUBGRAPH-BASED EXPLANATIONS

club club

nationalitynationality

f f

Brazilian

(a) Original query

club

Schalke 04

Marcelo Bordon Ailton Gonçalves da Silva

Brazil

nationalitynationality

(b) Discovered BMCS

club

Ailton Gonçalves da Silva

!Schalke 04

!Marcelo Bordon

!Brazilian

(c) Differential graph

Figure 4.4: Why-so-many query and its answer: which two players of same nationality play in different
clubs?

many results, a why-so-many query can be executed, which discovers maximum exis-
ting data subgraphs, which correspond to the cardinality threshold. A possible answer
to this why-so-many query would consist of BMCS Gbnd

d as shown in Figure 4.4b, and
differential graphGubnd

q as in Figure 4.4c, which is an unbounded part of the query with
constraints. The first part includes, for example, all discovered instances of vertices and
edges like Aílton Gonçalves da Silva, Schalke 04, Brazil, and Marcelo Bordon. The second
part consists of discovered adjacent vertex Aílton Gonçalves da Silva, unbounded query
vertex and edges (gray), and constraints for vertices (gray).

Similar to DISCOVERMCS, the above presented BOUNDEDMCS algorithm considers
all query vertices as start vertices and therefore can produce duplicated results, whose
processing increases the response time. Therefore, several optimization techniques are
provided in Section 4.3, which reduce the processing overhead.

After MCSS or BMCSS have been discovered we know which query part exists or
satisfies the cardinality threshold, correspondingly. This is the first part of the query
answer which is delivered to a user. Based on these subgraphs, we calculate, which
part of a query is missing or violates a cardinality constraint called a differential graph
as presented below.

4.2.3 Calculation of Differential Subgraphs

To compute a failed subquery that is a missing part of a query for the empty-answer
problem or violates a cardinality constraint for the too-many- and too-few-answers
problems, a query graph and a discovered MCS (BMCS) are required. The computa-
tion consists of two steps: (1) the split of discovered and undiscovered vertices and
edges and (2) the annotation of an undiscovered query part with attribute or vertex
conditions.

In the first step, the mapping between data edges and query edges as well as data
vertices and query vertices is stored in temporary tables during query processing. Query
vertices and edges, which are not represented in this mapping, comprise the differential
graph. In the second step, this differential graph is annotated with several constraints
as follows. (1) If a query edge is not discovered, but at least one of its end vertices
has already been found, then this discovered end vertex has to be included into the
differential graph. In the example presented above, vertex Aílton Gonçalves da Silva
represents such a constraint (see Figure 4.4c) and is included in a differential graph.
(2) If a query vertex is discovered in the data graph, then its instance has to be excluded
from the non-discovered query vertices, which the differential graph consists of. In the
example in Figure 4.3c, we exclude vertices Schalke 04, Brazil, Marcelo Bordon, and
Aílton Gonçalves da Silva from a differential graph.

72

4.3. OPTIMIZATION

vq
1 vq

4

vq
3

vq
2

vq
1 vq

4

vq
3

vq
2eq

1 eq
2

eq
3 eq

4

eq
1 eq

2

eq
3 eq

4

Figure 4.5: Weakly connected graphs

4.3 Optimization

The DISCOVERMCS and BOUNDEDMCS algorithms exhibit several common features:
They are based on a depth-first search and require multiple runs from different starting
vertices (edges) in order to guarantee the delivery of the best results. Therefore, the
same optimization techniques can be applied to both algorithms.

We identified several drawbacks, whose solutions can increase the quality and the
performance of the algorithms, i.e., to find larger subgraphs and to reduce the number
of runs. First, both algorithms work only with connected graphs, therefore, query
edges are traversed only in a forward direction and the query graph can be split in
several unconnected components, which can remain unprocessed. To discover larger
subgraphs, queries have to be traversed as weakly connected graphs. Such graphs are
connected if the direction of edges is not considered. Second, traversing the query
graph multiple times from different query vertices creates large intermediate results
and duplicates. To reduce this overhead, the search can be done just for a single starting
vertex according to a single traversal path. Third, if a failed subquery splits a query
graph in several unconnected components, the largest MCSS (BMCSS) can be missed.
To prevent this situation, the search can be restarted for non-processed query edges.
These improvements are applied to both algorithms DISCOVERMCS and BOUNDEDMCS
and described in this section.

4.3.1 Processing of Weakly Connected Components

The first drawback of DISCOVERMCS and BOUNDEDMCS algorithms implies traversal
of the query graph only in a forward direction, according to the depth-first search. This
can limit the size of discovered subgraphs and deliver subgraphs of potentially smaller
size than could be determined if edges are traversed in both directions. To ensure the
discovery of a maximum subgraph, the query traversal has to be started with a vertex,
from which all vertices are reachable. Because the algorithms work only in a forward
direction, it is not always possible to find the best start vertex.

Example Assume an example query in Figure 4.5, which highlights two traversal
orders for the same query. A black part corresponds to a traversed subquery, a gray
part models a non-traversed one. This query does not have an ideal starting vertex,
because there are always non-processed query parts. This is a weakly connected graph:
it is connected, if directions of edges are not considered. For this query the depth-first
search can discover the maximum subgraphs only with two edges and three vertices
(v1q , v

2
q , v

3
q or v4q , v

2
q , v

3
q).

To process queries with unreachable components, we propose to construct an all-
covering spanning tree, which describes the order, in which query vertices and edges
are processed.

Definition 12. Let Gq = (Vq, Eq, uq, fq, gq, AVq , AEq) be a graph query. An all-covering
spanning tree is a directed tree for Gq whose nodes represent query vertices and arrows

73

4.3. OPTIMIZATION

Algorithm 6 GETNEXTEDGESTOTRAVERSE: Extraction of candidate edges for traversal
from all-covering spanning tree

Input: all-covering spanning tree tree, query graph Gq, set of rejected edges rejected
Output: set edges of non-traversed edges

1: cursor ← get cursor for tree
2: vc ← extract query vertex pointed by cursor
3: edges← get adjacent edges for vc from Gq

4: edges← filter out traversed edges from edges
5: edges← filter out rejected from edges
6: if edges == ∅ then
7: vc ← mark as complete
8: parent← get parent for vc
9: if parent == ∅ then

10: return ∅
11: else
12: cursor ← parent
13: edges←GETNEXTEDGESTOTRAVERSE (tree,Gq, rejected)

14: return edges

describe traversed query edges. The root of the tree is represented by the start query vertex
and the cursor describes the position in the tree, which is currently used to extend it. The
all-covering spanning tree is complete, if it cannot be further extended and the cursor
points to the root of the tree.

By walking a tree top-down from left to right, a traversal order can be collected,
which is used to process a query graph. If a query does not violate a cardinality const-
raint, the whole query graph can be traversed and an all-covering spanning tree covers
all query vertices and edges. At initialization, the all-covering spanning tree consists
only of a single vertex as its root, which is marked as incomplete and pointed by the
tree cursor.

By extending the tree, a new edge is inserted at the current cursor position with
its second incident vertex. The extension is finalized after the cursor is moved to this
second vertex. The exact traversal direction (backward or forward) can be easily re-
trieved from the spanning tree by providing the queried edge. If the source of an edge
is on a higher level of the tree then this edge is forward-traversed. Otherwise, it is
traversed backwards.

We adapt Algorithms 3, 4, and 5 to work with the all-covering spanning tree. From
now on, we consider both incoming and outgoing edges for each query vertex at line 8
in Algorithm 3 and line 1 in Algorithm 5.

To get the candidate edges for traversal, the all-covering spanning tree is processed
according to Algorithm 6. First, the last processed vertex pointed by the tree cursor is
retrieved at lines 1 – 2. Then non-processed non-rejected adjacent edges are extracted
for this vertex at lines 3 – 5. If the filtering removed all edges from the set, then the
tree is backtracked and the procedure is repeated again at lines 6 – 13. Otherwise, the
left edges are returned at line 14.

Example Referring to our example in Figure 4.5, assume that the search begins
from vertex v1q . In Figure 4.6, we present the stepwise changes applied to the spanning
tree. In Figure 4.6a, the sketches of the query tree for consequent processing steps are
illustrated, where the black vertices describe the current traversal position pointed by
the tree cursor, the gray vertices represent already traversed query vertices, and the

74

4.3. OPTIMIZATION

(a) Traversal steps

*v1

v2

e1

v3

e2

*v1

v1

*v2

e1

v1

v2

e1

*v3

e2

v1

*v2

e1

v3

e2

v1

v2

e1

v3

e2

e3

*v4

*v1

v2

e1

v3

e2

e3

v4

*v1

v2

e1

v3

e2

e3

v4

traversal backtracking v - complete vertex *v - tree cursor

(b) Spanning trees for different traversal steps

Figure 4.6: All-covering spanning tree and backtracking procedure

white ones are unvisited vertices. In Figure 4.6b, the corresponding sketches for the
spanning tree are provided, where the nodes are processed query vertices and edges
are traversed query edges. The dashed arrows denote backtracking. The star in each
tree represents the position of the tree cursor. If a vertex is arranged by a square, it and
its subtrees are complete and cannot be further extended. By launching the discovery
process, first vertex v1q is inserted into the tree and is pointed by the cursor. This
vertex has two outgoing edges. Assuming the next edge to be traversed is edge e1q , it is
inserted into the tree, the cursor moves to its target and points to vertex v2q as illustrated
in Figure 4.6b. This vertex has only one non-traversed edge e2q in Figure 4.6a, which
is processed to vertex v3q . Both of them are added to the tree and the cursors points to
the last processed node in Figure 4.6b. Following the same procedure, the next edge to
be processed is edge e4q , which represents a failed edge. No other non-traversed edges
exist, therefore, the system marks vertex v3q as complete, and backtracks to vertex v2q ,
which becomes pointed by the cursor. Similar to v3q , vertex v2q also does not have
further edges to be traversed. It is marked as complete in Figure 4.6b, and the search
backtracks to root v1q , which has non-traversed edge e3q . Therefore, it is traversed, and
last non-processed vertex v4q is reached by the search. It is marked as complete and
the search backtracks to root v1q , which is finally marked as complete and the discovery
process terminates.

With the all-covering spanning tree, we can construct a traversal path for why-
empty queries or establish a join order for why-so-many and why-so-few queries, which
includes all vertices and edges, and process weakly connected graphs. Moreover, the
tree provides us a set of available edges for traversal. Therefore, the next question to
be answered is: Which query edge should be preferred for traversal to overcome the
multiple search from all query vertices and multiple traversals of the same data edges?
We will answer this question in the following section.

4.3.2 Selection of Single Traversal Path

To decrease the number of intermediate results and to prevent multiple search along
the same data, DISCOVERMCS and BOUNDEDMCS are extended with several heuristics
to establish a single traversal path. These heuristics improve search performance, but
they do not guarantee the discovery of an optimal solution.

Maximal In- And Out-Degree According to this heuristic, a query vertex and query
edge are selected to be processed based on in- and out-degrees of query vertices.

75

4.3. OPTIMIZATION

vq
1 vq

3

eq
1

vq
2

vq
4 vq

6

vq
5

vq
7

eq
2

eq
3

eq
4

eq
5

eq
6

eq
7 eq

8

Figure 4.7: Example of missing largest subgraph caused by splitting query in unreachable components
and traversal in its smaller part

A query vertex with maximal in-degree or out-degree is selected as a starting
point. This method relies only on the query graph and does not consider the
statistical information about the underlying data graph. This is supported by the
fact that more edges need to be processed for the query vertex with a larger
degree and therefore MCSS (BMCSS) can be discovered earlier.

Minimal Edge and Vertex Cardinality This heuristic selects a query vertex or query
edge to be processed based on its cardinality, which shows the number of its data
instances in a data graph. A query edge (vertex) with the minimal cardinality is
selected as a starting point. This heuristic requires the calculation of cardinali-
ties for all query edges and vertices in advance and proposes them for traversal
according to their cardinalities in an ascending order, which allows to reduce the
size of intermediate results in order to improve performance. It also supports
selection of a search direction based on the cardinality of a source and a target
if an all-covering spanning tree is constructed. If the cardinality of a target is
less than the cardinality of a source then an edge has to be traversed in a back-
ward direction. Otherwise, it is forwardly processed. In addition, for why-empty
queries this method has the advantage that if an edge has zero cardinality then it
is discarded from the traversal.

The proposed heuristics together with the construction of an all-covering spanning
tree allow to process the query graph only once and therefore improve performance of
DISCOVERMCS and BOUNDEDMCS algorithms. Thus, the first problem of duplicated
answers and high amount of intermediate results is solved. The second question re-
mains open: How to deal with unconnected components? The answer to this question
is discussed in the following section.

4.3.3 Processing of Unconnected Components

Single traversal of a query graph works well if all query edges can be considered. How-
ever, in case of why-empty queries some edges can be missing from the data graph. In
case of why-so-many queries, some edges are skipped, otherwise, the result cardinality
would exceed a cardinality threshold. Such non-considered edges can split a query
graph into several subgraphs, which are unreachable from each other. In this case, if
we start with a vertex from one subgraph, we will miss an MCS (BMCS) from another
one. Thereby, it leads to the problem of missing maximum subgraphs, which can be
solved by a restart strategy.

Example The problem of missing MCSS (BMCSS) can be explained with a query
graph containing a bridge. In our example query in Figure 4.7, edge e4q does not have
any matching data edges for why-empty queries or increases the result cardinality dra-
matically for why-so-many queries and therefore it serves as a bridge between two
unreachable components. In this case, a MCS (BMCS) found by our algorithm DISCOV-
ERMCS (BOUNDEDMCS) would be the left or right query parts of the graph. If the

76

4.4. USER INTEGRATION

search is conducted left, the MCS (BMCS), which is located right, will not be found.
To solve this problem, we can resume the search for non-traversed edges and the final
result will include MCSS (BMCSS) from both areas.

To restart the discovery process, a list of traversed query edges has to be maintained.
After the first set of MCSS is returned, those edges are removed from the list that have
already been traversed and the first edge to traverse is extracted from this list. This
strategy facilitates the discovery of MCSS (BMCSS) for a given starting vertex if an
all-covering spanning tree is constructed.

Example At the beginning, a query graph in Figure 4.7 has an empty list of traversed
edges. Assuming the query is traversed from e1q to e2q , then e3q and the absence of edge
e4q cancels the discovery process. Therefore, processed edges e1q − e3q are moved from
the list of non-traversed to traversed edges and a re-starting edge is chosen among
non-traversed edges e4q − e8q for BOUNDEDMCS. For DISCOVERMCS, a re-starting vertex
is chosen among source and target vertices of these non-visited edges. If the restarted
search discovers larger MCSS (BMCSS) in the right query part they are returned to
a user. This methodology can potentially return larger subgraphs than the original
strategy with a single execution.

4.4 User Integration

In the previous sections, we consider the generation of subgraph-based explanations
with several user-independent optimization techniques to increase performance and
quality of discovered maximum subgraphs. Although the proposed methods can lead
to the discovery of larger MCSS, they can miss such subgraphs, which are of interest
for users. Therefore, to make the above presented solutions user-aware, they have to
consider a user-preference model. For this purpose, we introduce a new heuristic for
choosing a single traversal path along the query graph according to user preferences.
Its task is to discover MCSS or BMCSS based on the user interest in specific query
elements and to deliver the most interesting maximum discovered subgraphs.

In the following, we describe how to define user preferences in Section 4.4.1, how
to adapt the establishment of a traversal path according to a user-preference model
in Section 4.4.2, and how to calculate the rank of discovered MCSS (BMCSS) in Sec-
tion 4.4.3.

4.4.1 Definition of User Preferences

To discover user-relevant query subgraphs, we require user preferences in query ver-
tices and edges. Such preferences can be provided in the form of relevance weights
that are float numbers ∈ [0; 1] assigned to vertices ω(viq) and edges ω(ejq) in a graph
query. They show the importance of annotated query elements for a user. Graph ele-
ments with higher relevance weights are more important than those with lower values.
A weight ω = 0 denotes low relevance and thus reflects the default of a vertex and an
edge. The negative evidence is not defined because if a graph element is not interesting
to a user then it would not be included in the query. The relevance weights form a user-
preference model and are used for several purposes, e.g.: (1) for steering the discovery
process in a more relevant direction, (2) for earlier processing of elements with higher
relevance, and (3) in a scoring function for the ranking itself. The relevance weights
facilitate the discovery of such subgraphs that are more interesting to a user, and the
elimination of less relevant data subgraphs.

77

4.4. USER INTEGRATION

located in

live in

described in about

illness

organization
city

person document

provided by

(a) Original query

live in

described in about

Bob Report Osteosclerosis

San Francisco

(b) Discovered MCS

located in

organization

provided by

Report

San Francisco

(c) Differential graph

Figure 4.8: Why-empty query example with user preferences

The relevance weights can be directly defined by a user. If no such assignment
exists, they can be defined based on a use case or one of the following strategies.

Minimum-Representative-Element Strategy This strategy considers how well query
elements are represented in a data graph. If a graph element has less representa-
tives in a data graph, it can be of more interest to a user than generally described
graph elements with more instances. Therefore, a graph element with the least
number of data instances is annotated with the highest relevance weight and
should be processed first during the traversal. This is valid for edges and ver-
tices. In this case, the discovery process is managed by the minimum-cardinality
heuristic and reduces the number of answers.

Maximum-Connected Vertex Strategy This strategy analyzes the degree of vertices
that describes the number of connections (outgoing and incoming) in a graph
query. If a graph element has the most number of connections to other vertices
then it provides more information about a graph query than other vertices. Such
vertices represent the topological centers of a query. As a consequence, they can
be potentially of more interest to a user than less connected ones. Therefore,
vertices with the maximum degree are annotated by the highest relevance weight
and should be traversed first. In this case, the discovery process is managed
by the maximum-incoming or maximum-outgoing heuristic, which facilitates the
discovery of larger MCSS (BMCSS) as described in Section 4.3.2.

If relevance weights are defined by a particular use case, they have to consider its
specific features, an objective function, which a use case tries to minimize or maximize.
Some examples of objective functions are a data transfer rate in networks of hubs
or traffic in road networks. If a user aims at maximizing an objective function, then
graph elements with higher values of an objective function are annotated with higher
relevance weights.

Example As an example, imagine a data graph derived from text documents that
contains information about patients, their diagnoses, and medical institutions, which is
stored together with a source description in a graph database to allow its collaborative
use by several doctors. Assume a doctor is interested in names of all persons together
with their illnesses, cities of residence, medical organizations, and information docu-
ments like in Figure 4.8a. If this query does not deliver any answer, it can be debugged
for the reasons of the empty answer. If a doctor is more interested in the names of
persons together with their diseases, then the highest relevance weights are assigned
to corresponding vertices: ω(vperson) = 1 and ω(villness) = 1. The discovered results
are illustrated in Figures 4.8b – 4.8c.

4.4.2 User-Centric Selection of Traversal Path

To integrate a user-preference model in the discovery of MCSS or BMCSS, the selec-
tion of a traversal path has to be adapted in such a way that the most relevant elements

78

4.4. USER INTEGRATION

����������	�
���
����

������

���	
�
�	�
�����	�������

����������

��		����

���������

����	����
�	�
��	�������

��������

�������
�	�

Figure 4.9: Relevance-based search

are processed first. If all query vertices and edges are annotated then the query graph
can be traversed from most relevant to less relevant query elements. Otherwise, addi-
tional steps are required: pre- and post-processing of query elements and distribution
of relevance weights across non-specified query elements to establish the most relevant
traversal path along the query.

The relevance-based search is illustrated in Figure 4.9. After a user has annotated
a query with the relevance weights, a relevance-based search is executed, which is
outlined in the dashed box. At the stage of pre-processing, the relevance weights are
transformed into the format required by the relevance flooding: edge relevance weights
are converted into the relevance weights of incident vertices. Afterwards, the relevance
flooding propagates the weights along the graph query, if at least one vertex does not
have a user-defined relevance weight. Then, the subgraph discovery is executed along
the most relevant traversal path, which detects the most relevant MCSS (BMCSS) by
DISCOVERMCS or BOUNDEDMCS algorithms. Afterwards, the post-processing is exe-
cuted over relevance weights to prepare them for final ranking.

4.4.2.1 Pre-Processing and Post-Processing of Relevance Weights

Relevance flooding considers relevance weights only on vertices. To account for the
relevance on edges, edge weights are converted into the weights of incident vertices
before flooding. The pre-processing consists of two steps: assignment of missing rele-
vance weights and transformation of relevance weights. Graph elements without user-
defined weights are annotated with zero values. Afterwards, the system distributes the
relevance weights of edges to their incident vertices as follows. (1) The user-defined
relevance weight of an edge is distributed equally across its source and target vertices.
(2) Given a set of k incident edges, the relevance weight of the vertex viq is the sum of
the square root of k edge relevance weights ω(ejq), which are incident to the vertex viq,
and its initial relevance weight ωinit(v

i
q) (if any):

ω(viq) =
k∑

i=1

√
ω(ejq) + ωinit(viq) (4.1)

The post-processing is conducted after the subgraph search; it prepares the weights
for ranking. By default, the user-defined weights are used in ranking, therefore, the
weights changed during the relevance flooding have to be reset to values derived at
the pre-processing step. Non-annotated graph elements are specified by the minimal
weights:

ωmin(ejq) =
1

M
,ωmin(viq) =

1

N
, (4.2)

where M is the number of query edges and N is the number of query vertices.
In order to use the relevance flooding weights for ranking, the weights for edges

can be derived by multiplying the weights of their sources and targets:

ω(ejq) = ω(ejq(source)) ∗ ω(ejq(target)) (4.3)

79

4.4. USER INTEGRATION

Algorithm 7 Relevance flooding

Input: query graph Gq

Output: annotated query graph Gq

1: for all vertex viq in query graph Gq do
2: if viq has user-defined weight then
3: ω ← get weight of viq
4: neighbors← get all direct neighbors of viq
5: ∆ω ← calculate propagation weight as ω/size(neighbors)
6: for all neighborsj in neighbors do
7: store ∆ω in neighborsj
8: for all vertex viq ∈ Gq do
9: increase weight for viq

10: max(ω) = 0
11: for all vertex viq in query graph Gq do
12: if max(ω) < get weight of viq then
13: max(ω)← get weight of viq
14: for all vertex viq ∈ Gq do
15: if initial weight of viq > 0 then
16: weight of viq ← get initial weight of viq
17: else
18: weight of viq ← weight of viq/max(ω)

19: sum = 0
20: for all vertices viq ∈ Gq do
21: sum← sum+ (get previous weight of viq− get weight of viq)

2

22: if sum <= ε OR κ >= diameter then
23: terminate flooding

4.4.2.2 Relevance Flooding

After the relevance weights have been pre-processed, the relevance flooding can be con-
ducted if not all query elements are annotated with relevance weights. This procedure
distributes the weights along query edges and establishes the most relevant traversal
path. The algorithm for relevance flooding is based on similarity flooding [97], where
two schemes are matched by comparing similarities of their vertices. We extend this
algorithm to propagate the relevance weights to all vertices in a graph query and to
keep the initial user-defined relevance weights. The relevance flooding has to exhibit
two properties in order to establish the most relevant path such as locality and stability
of relevance. The locality assigns higher relevance weights to the direct neighbors and
lower relevance weights to remote vertices. The stability keeps the relevance weights
provided by a user and prevents the system from reducing them during flooding.

Relevance flooding works as described in Algorithm 7. At lines 1 – 9, each vertex
broadcasts its value to direct neighbors according to the locality property. Afterwards,
the values are normalized to the highest value at line 18 and user-defined relevance
weights are set back to ensure the stability of given relevance weights at line 16. If
a termination condition is satisfied, the propagation is interrupted at line 23. As a
termination condition, we can use either threshold ε for the difference of relevance

80

4.4. USER INTEGRATION

illness

organizationcity

person document

� = 1(0.67) � = 1

� = 0.33

� = 1(0.67)

(a) First iteration

city

person document

� = 1(0.67) � = 1

� = 0.33

�� = 0.33

�� = 0.5

�
�
=

0
.
1
7

�
�
=

0
.
5

(b) Example relevance distribution

Figure 4.10: Relevance flooding: gray relevance weights correspond to non-resetted weights

Iteration

Vertex Initial 1st 2nd 3rd 4th

Person 1 1 1 1 1

Document 0 1 1 1 1

Illness 1 1 1 1 1

City 0 0.33 0.33 0.34 0.34

Organization 0 0 0.06 0.09 0.11

Table 4.1: Relevance weights produced at different iterations of relevance flooding

weights of two subsequent iterations or number of iterations κ, which corresponds to
the diameter of a graph query. The number of iterations κ is more appropriate, because
we can be sure that relevance weights reached all elements in a query graph.

Following the example in Figure 4.8a and assigned relevance weights ω(vperson) =
ω(villness) = 1, at each iteration equal relevance weights are distributed across all direct
neighbors (an exemplary weight propagation for a query subgraph during the second
iteration is shown in Figure 4.10b). Flooding considers a query graph as undirected and
transmits the weights along all edges. After the first iteration, vertices vdocument, vcity
get the propagated relevance weights from vperson, villness according to the locality pro-
perty (see Figure 4.10a). Vertex vorganization still remains without a relevance weight,
because it is two hops away from the vertices with non-zero initial weights and during
one iteration the weights are distributed only among direct neighbors. After each ite-
ration, the weights are normalized by the highest value and weights of vertices, which
were originally annotated with user-defined values, are reset to their initial relevance
values. The gray relevance weights in brackets for vertices vperson, villness show the
weights without reset. The process is repeated, until it converges according to speci-
fied threshold ε or when number of iterations κ has exceeded the diameter of the graph
query. The final relevance weights are presented in Table 4.1.

4.4.2.3 Maximum Common Subgraph Discovery with Relevance Weights

User-defined relevance weights represent an interest of a user in dedicated graph ele-
ments: such elements have to be processed first. Therefore, a traversal path between
all relevant elements in a query graph are treated as a cost-based optimization, where
the relevance of a traversal path is maximized.

81

4.5. EVALUATION

The DISCOVERMCS and BOUNDEDMCS algorithms are adapted to consider user-
defined relevance weights as following. (1) The vertex with the highest relevance
weight is chosen as a start vertex. (2) That edge is traversed first, which second vertex
has the highest relevance weight among second vertices of all incident edges. This
process continues until all vertices and edges in a query graph are considered. If
a chosen edge does not satisfy the cardinality constraint then the search is adapted
dynamically—the next best query edge and vertex are chosen for traversal. If several
vertices have the same weight, then an edge is chosen dependent on a used heuris-
tics from Section 4.3.2. The proposed strategy steers the search in the most relevant
direction first, guaranteeing the early discovery of the most relevant parts.

4.4.3 Rank Calculation

After MCSS or BMCSS have been discovered they have to be ranked. The answers
with higher relevance weights are ranked higher. A rating score is calculated based
on the values of edges and vertices a result comprises. After ratings of all results are
computed, they are normalized to the highest discovered rating score. Given N vertices
and M edges in a query graph Gq, the rating of discovered subgraph G′d is calculated
as follows

rating(G′d) =

i=N∑
i=1

{
ω(viq) , if vid ∈ G′d
0 , otherwise

+

j=M∑
j=1

{
ω(ejq) , if ejd ∈ G

′
d

0 , otherwise
(4.4)

Following our example in Figure 4.8, the rating of the discovered subgraph in Figu-
re 4.8b before normalization equals to rating = 3 by default or rating = 5.68 by using
the relevance flooding weights from the fourth iteration (see Table 4.1).

4.5 Evaluation

In this section, we evaluate DISCOVERMCS and BOUNDEDMCS algorithms on DBPE-
DIA and LDBC data sets for the empty-answer and too-many-answers problems. The
description of both data sets and evaluated queries are provided in Appendix A.

The DBPEDIA queries taken from the logs for the SPARQL endpoint mainly represent
a star topology with a limited number of predicates on query vertices and edges. The
LDBC queries taken from the interactive workload of the LDBC benchmark have diverse
topologies and multiple predicates on vertices and edges.

The evaluation of the DBPEDIA data set includes five queries with empty results for
DISCOVERMCS and one query with a star topology delivering more than 200,000 sub-
graphs for the BOUNDEDMCS algorithm. The LDBC evaluation considers eight instances
of four queries LDBC QUERY 1 – QUERY 4 such that four of them deliver no results and
the remaining four of them have result cardinalities varying between 1,626 and 5,020
data subgraphs.

In this evaluation, we mainly focus on the following questions:

• Do the proposed algorithms discover query subgraphs responsible for the delivery
of unexpected results?

• Does the construction of an all-covering spanning tree increase the quality of the
discovered data subgraphs?

• Does the performance of the algorithms degrade with constructing an all-covering
spanning tree?

82

4.5. EVALUATION

Abbreviation Short Name Description

MAX(CARD) Maximal cardinality Edge with maximal cardinality

MIN(CARD) Minimal cardinality Edge with minimal cardinality

MAX(IN) Maximal in-degree Edge which non-traversed incident vertex
has maximal in-degree

MIN(IN) Minimal in-degree Edge which non-traversed incident vertex
has minimal in-degree

MAX(OUT) Maximal out-degree Edge which non-traversed incident vertex
has maximal out-degree

MIN(OUT) Minimal out-degree Edge which non-traversed incident vertex
has minimal out-degree

Table 4.2: Evaluated heuristics for choosing traversal paths

• Which single-traversal strategy should be preferred during the discovery of MCSS

(BMCSS) to solve empty-answer and too-many-answers problems?

In the following sections, we first evaluate the DISCOVERMCS algorithm for DBPE-
DIA and LDBC queries for the empty-answer problem. Afterwards, we test the BOUND-
EDMCS algorithm for different cardinality thresholds for both data sets.

4.5.1 DISCOVERMCS Algorithm for Empty-Answer Problems

In the evaluation of the DISCOVERMCS algorithm, we compare seven strategies, which
select a single traversal path, in different setups: with or without constructing an all-
covering spanning tree, and with a single traversal or with restarting the search. In
total, each query is evaluated in 28 experimental configurations.

As a performance measure, we consider response time, which shows how much
time the MCS search requires in a specific experimental configuration. This measure
depends on the number of processed data subgraphs. As a quality measure, the syntac-
tic distance described in Chapter 3.2.2 is used, which shows how different two queries
appear to a user. For evaluating DISCOVERMCS and BOUNDEDMCS, this similarity mea-
sure describes how the query corresponding to the best discovered MCS differs from a
failed one. Higher values for the syntactic distances describe stronger differences from
the original query and the lower values are preferable over higher ones. In addition,
the number of discovered MCSS is also provided.

In this section, we start with the evaluation of selection strategies for a single traver-
sal path along a failed query. The best-performed strategy is then used in all subsequent
tests. Afterwards, we show how evaluated metrics differ by considering the construc-
tion of a spanning tree and the restart strategy.

Selection of Traversal Paths

In the first experiment, we evaluate different strategies for selection of a single traversal
path. For this experiment, we construct a spanning tree and launch the discovery of
MCSS without restarting for four LDBC and five DBPEDIA queries. For each considered
heuristic presented in Table 4.2, we calculate a syntactic distance of its explanation.
Afterwards, all runs for the same query are ranked based on the derived syntactic
distances, the runs with smaller distances are ranked higher than ones with larger

83

4.5. EVALUATION

LDBC DBPEDIA

0.0

0.5

1.0

1.5

MAX(IN) MAX(CARD) MIN(CARD) MIN(IN) MAX(OUT) MIN(OUT) MAX(IN) MAX(CARD) MIN(CARD) MIN(IN) MAX(OUT) MIN(OUT)

 Selection Strategy

A
ve

ra
g

e
R

an
k

(a) Average ranks for heuristics
LDBC DBPEDIA

0.00

0.25

0.50

0.75

1.00

LDBC
 Query 1

LDBC
 Query 2

LDBC
 Query 3

LDBC
 Query 4

DBpedia
 Query 1

DBpedia
 Query 2

DBpedia
 Query 3

DBpedia
 Query 4

DBpedia
 Query 5

 Query

S
yn

ta
ct

ic
 D

is
ta

n
ce

Selection of a Single Traversal Path MAX(IN) MAX(CARD) MIN(CARD)

(b) Syntactic distances

Figure 4.11: Comparison of heuristics for choosing single traversal path for DISCOVERMCS

distances. Configurations with the same syntactic distances have the same rank. If a
tested configuration discovers no MCSS, its syntactic distance equals 1. We calculate
the average rank for the same configuration among all tested queries and present it in
Figure 4.11a.

The top-3 strategies for the LDBC graph include maximal in-degree, maximal car-
dinality, and minimal cardinality. However, their average ranks are very similar to
each other. For the DBPEDIA queries, the following heuristics perform best: minimal
in-degree, minimal cardinality, and maximal cardinality. Minimal in-degree performs
very badly for the LDBC graph and therefore it is not considered in subsequent exper-
iments. As we can see, the cardinality-aware strategies perform better, because they
omit non-existing elements and can always deliver at least some data subgraphs. In
contrast, most of the strategies, which do not consider cardinalities, can fail to produce
an explanation, if they start the search from query elements, which are not represented
in the data graph.

In Figure 4.11b, we illustrate syntactic distances for three best-performed heuris-
tics including maximal in-degree, minimal cardinality, and maximal cardinality for all
evaluated queries. All strategies show very similar results except two runs. In the first
case, the maximal in-degree does not find a solution for DBPEDIA QUERY 2 (the cor-
responding query graph is illustrated in Figure A.3c), because it starts the discovery
process on edge e2q from vertex v2q , which has no matching instances in the data graph.
Therefore, an empty result set is returned to a user and no explanation is generated.
In order to discover at least some results, it is necessary to consider cardinalities of
vertices and edges by constructing a traversal path. In the second case, the maximal-
cardinality heuristic derives a worse explanation for LDBC QUERY 2. In this query illus-
trated in Figure A.2b, only the left or the right side is represented in the data graph.
The maximal-cardinality heuristic launches the discovery process from vertex v2q . Al-
though it has multiple data instances, none of their connections matches the adjacent

84

4.5. EVALUATION

LDBC DBPEDIA

-1.0

-0.5

0.0

0.5

1.0

LDBC
 Query 1

LDBC
 Query 2

LDBC
 Query 3

LDBC
 Query 4

DBpedia
 Query 1

DBpedia
 Query 2

DBpedia
 Query 3

DBpedia
 Query 4

DBpedia
 Query 5

Query

R
el

at
iv

e
C

h
an

g
e

O
f

 R
es

p
o

n
se

 T
im

e

Figure 4.12: Relative change of response time for DISCOVERMCS algorithm with construction of spanning
tree

query edge. As a result, this part of the query becomes unconnected and consists only
of a single vertex. A larger subgraph can only be found if we restart the discovery pro-
cess from non-processed query vertices and edges. From top-3 heuristics for choosing
a single traversal path, the minimal-cardinality strategy shows stable behavior among
all queries and therefore is used in further experiments.

To conclude, in order to discover large data subgraphs, it is necessary to consider
cardinality of vertices and edges by choosing a single traversal path. To prevent the
loss of a larger subgraph, we have to be able to restart the discovery process for non-
processed query parts.

Construction of an All-Covering Spanning Tree

In the previous test, we concluded that the minimal-cardinality heuristic provides stable
results among all queries and almost always derives the best result. Therefore, in this
experiment we consider only this strategy and evaluate the construction of a spanning
tree.

In this evaluation, we use experimental results without a spanning tree as a baseline
and calculate relative changes for syntactic distances, numbers of discovered MCSS,
and response times. A negative value of a relative change means that the use of a span-
ning tree improves the corresponding metric. In eight out of nine cases, the same data
subgraphs with the same syntactic distances are delivered independently of construc-
ting a spanning tree. However, in LDBC QUERY 4, its creation is necessary, because it
reduces the syntactic distance up to 40% and therefore delivers a better explanation.
For this query in both setups, the search starts with edge e5q (see Figure A.2d), which
has vertex v3q as a source and vertex v1q as a target. By considering a spanning tree,
DISCOVERMCS can choose a traversal direction. Therefore, v3q is used by default when
a spanning tree is not created, which leads to a large number of small graphs consisting
only of a single vertex. It cannot traverse further to less representative vertices and the
search terminates. In contrast, with a spanning tree, the backward traversal is allowed
and the discovery process begins at vertex v1q , which has only a few instances in the
data graph, and detects a smaller amount of data subgraphs and of a larger size. The
use of a spanning tree improves not only the quality of discovered solutions, but also
can reduce the response time as presented in Figure 4.12. For this query, the number
of discovered MCSS reduces twice.

The construction of a spanning tree can also cause changes in the performance as
shown in Figure 4.12. In four out of nine cases, it allows to reduce the search time up to
two times, because it facilitates early processing of less representative query elements
and therefore reduces the size of intermediate results. For LDBC QUERY 1, a spanning

85

4.5. EVALUATION

LDBC DBPEDIA

-1.0

-0.5

0.0

0.5

1.0

LDBC
 Query 1

LDBC
 Query 2

LDBC
 Query 3

LDBC
 Query 4

DBpedia
 Query 1

DBpedia
 Query 2

DBpedia
 Query 3

DBpedia
 Query 4

DBpedia
 Query 5

Query

R
el

at
iv

e
C

h
an

g
e

o
f

 R
es

p
o

n
se

 T
im

e

Figure 4.13: Relative response time of DISCOVERMCS algorithm for restart with minimal-cardinality
heuristic

tree does not change a traversal order and therefore, there is no change in time or
quality of generated explanations. In remaining four out of nine cases, the use of a
spanning tree increases the response time. However, for DBPEDIA QUERY 2 and QUERY

3 this increase is minor. For LDBC QUERY 3 and DBPEDIA QUERY 4 it does not exceed
70%.

To summarize, the use of a spanning tree derives results of the same or even better
quality and therefore, it should be considered during the search for MCSS. It allows to
traverse edges in a backward direction and to cover vertices without incoming edges.
Performance and quality gain of derived explanations depends on the cardinality of
query elements and query topology. The use of a spanning tree can change the traver-
sal order established by a traversal heuristic in such a way that backward edges can be
processed earlier. This allows to discover larger subgraphs earlier. The next optimiza-
tion feature, which we evaluate, is re-execution of the discovery process if some query
edges and vertices were not visited.

Search Restart vs. Single Traversal

In the previous experiment for the DISCOVERMCS algorithm, we evaluate whether the
use of a spanning tree is advantageous for the discovery of MCSS. In this section,
we restart the search and consider relative metrics for the syntactic distance, number
of discovered MCSS, and response time. These measures are calculated in respect to
results for a single execution. Negative values describe the improvement achieved by
the restarting the discovery process.

According to the evaluation results, independent on whether the discovery process
has been restarted or not, for all queries we receive the same number of MCSS and
of the same quality. It means that no query has been split in unreachable components
during the search and therefore the restart strategy does not lead to any improvement.
Only the performance changes, which is illustrated as a relative change of response time
in Figure 4.13. It increases by up to 35%, which is required to restart the search and to
check, which vertices and edges have to be processed. The largest increase is observed
for DBPEDIA queries, which have a larger number of discovered data subgraphs, for
which the restart is triggered.

To show the advantages of restarting the discovery process in terms of quality of
discovered MCSS, in Figure 4.14, we present evaluation results for the minimal in-
degree heuristic with and without re-executing the search, which according to its rank
described in Figure 4.11a has the best rank for DBPEDIA queries and performs badly
for the LDBC queries. The restart strategy improves the quality of discovered MCSS

for three out of nine evaluated queries, which are represented by the LDBC queries.

86

4.5. EVALUATION

LDBC DBPEDIA

-1.0

-0.5

0.0

0.5

1.0

LDBC
 Query 1

LDBC
 Query 2

LDBC
 Query 3

LDBC
 Query 4

DBpedia
 Query 1

DBpedia
 Query 2

DBpedia
 Query 3

DBpedia
 Query 4

DBpedia
 Query 5

Query

R
el

at
iv

e
C

h
an

g
e

o
f

 S
yn

ta
ct

ic
 D

is
ta

n
ce

(a) Syntactic distance
LDBC DBPEDIA

-4

-2

0

2

4

LDBC
 Query 1

LDBC
 Query 2

LDBC
 Query 3

LDBC
 Query 4

DBpedia
 Query 1

DBpedia
 Query 2

DBpedia
 Query 3

DBpedia
 Query 4

DBpedia
 Query 5

Query

R
el

at
iv

e
C

h
an

g
e

o
f

 N
u

m
b

er
 o

f
M

C
S

(b) Number of discovered MCSS

LDBC DBPEDIA

-1.0

-0.5

0.0

0.5

1.0

LDBC
 Query 1

LDBC
 Query 2

LDBC
 Query 3

LDBC
 Query 4

DBpedia
 Query 1

DBpedia
 Query 2

DBpedia
 Query 3

DBpedia
 Query 4

DBpedia
 Query 5

Query

R
el

at
iv

e
C

h
an

g
e

o
f

 R
es

p
o

n
se

 T
im

e

(c) Response time

Figure 4.14: Evaluation results of DISCOVERMCS algorithm for restart with minimal in-degree heuristic

The syntactic distance reduces for them by from 29% to 39%. In these cases, the
heuristic for choosing a traversal path splits a query in unconnected components such
that the discovery process is conducted only in a smaller query part. By restarting the
search, we force the algorithm to traverse a non-processed query part and to discover
larger MCSS with smaller syntactic distances. This quality improvement affects also
the number of discovered MCSS and response time. For LDBC QUERY 2, the amount of
delivered data subgraphs is four times as big as without restarting the search, which
increases the response time only twice. For the remaining six out of nine queries, the
restart increases the response time maximum by 35%.

To summarize, to restart the discovery of MCSS is advantageous if a failed query
is split by a traversal-path strategy in several unconnected components. In this case,
restart can balance the drawbacks of the used traversal-path strategy and improve the
quality of discovered subgraphs. However, it comes with additional costs for restarting,
which do not exceed 35% for cases if no quality improvement is expected. Therefore,
the restart strategy should be used in order to discover high-quality MCSS.

Summary To conclude, in this evaluation, we test the DISCOVERMCS algorithm
on two data sets. While the LDBC queries are characterized by different topologies and

87

4.5. EVALUATION

LDBC Query 1 LDBC Query 2 LDBC Query 3 LDBC Query 4

0.00

0.25

0.50

0.75

1.00

10 50 10
0

20
0

50
0

10
00 ∞ 10 50 10

0
20

0
50

0
10

00 ∞ 10 50 10
0

20
0

50
0

10
00 ∞ 10 50 10

0
20

0
50

0
10

00 ∞

Cardinality Threshold

C
ar

d
in

al
it

y
D

is
ta

n
ce

(a) Cardinality distance
LDBC Query 1 LDBC Query 2 LDBC Query 3 LDBC Query 4

0.00

0.25

0.50

0.75

1.00

10 50 10
0

20
0

50
0

10
00 ∞ 10 50 10

0
20

0
50

0
10

00 ∞ 10 50 10
0

20
0

50
0

10
00 ∞ 10 50 10

0
20

0
50

0
10

00 ∞

Cardinality Threshold

S
yn

ta
ct

ic
 D

is
ta

n
ce

(b) Syntactic distance
LDBC Query 1 LDBC Query 2 LDBC Query 3 LDBC Query 4

0

1

2

3

4

10 50 10
0

20
0

50
0

10
00 ∞ 10 50 10

0
20

0
50

0
10

00 ∞ 10 50 10
0

20
0

50
0

10
00 ∞ 10 50 10

0
20

0
50

0
10

00 ∞

Cardinality Threshold

R
es

p
o

n
se

 T
im

e,
 s

(c) Response time

Figure 4.15: Evaluation results of BOUNDEDMCS algorithm with single traversal for LDBC data graph

DBpedia Query

0.00

0.25

0.50

0.75

1.00

10 50 10
0

50
0

10
00

50
00

10
00 ∞

Cardinality Threshold

C
ar

d
in

al
it

y
D

is
ta

n
ce

(a) Cardinality distance

DBpedia Query

0.00

0.25

0.50

0.75

1.00

10 50 10
0

50
0

10
00

50
00

10
00

0 ∞

Cardinality Threshold

S
yn

ta
ct

ic
 D

is
ta

n
ce

(b) Syntactic distance

DBpedia Query

0.0

0.3

0.6

0.9

10 50 10
0

50
0

10
00

50
00

10
00

0 ∞

Cardinality Threshold

R
es

p
o

n
se

 T
im

e,
 s

(c) Response time

Figure 4.16: Evaluation results of BOUNDEDMCS algorithm with single traversal for DBPEDIA data graph

multiple attributes, the DBPEDIA queries represent stars with only a few attributes. This
characteristic explains the difference in evaluation results of heuristics for selecting a
single traversal path: While the diversity of the LDBC queries results in different quality
of produced results, similar explanations are generated by different heuristics for the
same DBPEDIA queries. To increase the quality of discovered MCSS, the discovery
process has to be conducted with constructing an all-covering spanning tree and its
restarting for non-considered graph elements.

4.5.2 The BOUNDEDMCS Algorithm for the Too-Many-Answers Problem

The second set of experiments evaluates the BOUNDEDMCS algorithm, which was int-
roduced in Section 4.2.2. For the LDBC data set, the configuration of the LDBC queries

88

4.5. EVALUATION

from Appendix A with cardinalities of the class C3 are chosen, which are provided in
Table A.1. Considering a typical star topology for the DBPEDIA graph, we create only a
single query for its evaluation presented in Table A.2 as DBPEDIA QUERY, which origi-
nally delivers more than 200,000 solutions.

We use eight cardinality thresholds [10; 50; 100; 500; 1000; 5000; 10000;∞] for DBPE-
DIA queries and seven thresholds [10; 50; 100; 200; 500; 1000;∞] for LDBC queries, where
∞means that no cardinality threshold is considered. We evaluate them in four different
configurations, which include single-traversal search or restart and construct or do not
construct an all-covering spanning tree. Considering large intermediate results, which
can be created by non-directing the search along less representative elements, we use a
minimal-cardinality heuristic to select a single traversal path. We provide the response
time in seconds as a performance measure. The quality measure is represented by the
syntactic and cardinality distances, which are described in detail in Section 3.2. The
cardinality distance is further normalized to a cardinality threshold, in order to make
it comparable across different queries.

Consideration of a Cardinality Threshold

We start this set of experiments with evaluation of different cardinality thresholds for
the BOUNDEDMCS algorithm, whose results are illustrated in Figure 4.15 for the LDBC

data graph and in Figure 4.16 for the DBPEDIA data graph. The y axes describe evalua-
ted quality or performance metrics and the x axes denote the used cardinality thresh-
olds. In this evaluation, we execute the search only one time without restarting and
construct a spanning tree.

First, we analyze how well the BOUNDEDMCS algorithm achieves its goal: The re-
sult size of a generated explanation should not exceed a cardinality threshold. With
changing the threshold for the result size, the cardinality distance of discovered BM-
CSS changes as well, which is illustrated in Figure 4.15a. By increasing the cardinality
threshold, cardinality and syntactic distances typically decrease. While the algorithm
aims at discovering BMCSS by not violating the cardinality threshold, in some cases the
cardinality distance for a higher threshold can be larger than with a smaller threshold.
This situation happens for example for LDBC QUERY 2 for cardinalities 500 and 1,000.
Explanations generated for these two cases are equal and have the same syntactic dis-
tance as presented in Figure 4.15b. By increasing the cardinality threshold and keeping
the syntactic distance the same, the cardinality distance grows, which is illustrated by
its spikes in Figure 4.15a.

Considering the original cardinality of a result set, which varies between 1,626 and
5,020, we could assume that starting from cardinality threshold Cthr = 1, 000, the car-
dinality and semantic distances should approach 0. However, this assumption is wrong.
During the search, the cardinality of BMCSS can violate the cardinality threshold mul-
tiple times, which depends on the topology of a query, the complex dependencies bet-
ween elements and their predicates, etc. As a result, although the cardinality threshold
is similar to the cardinality of the original result set, the size of the discovered BMCSS

does not reach its original value.
In Figure 4.15b, the syntactic distances for discovered explanations are presented.

With increasing a cardinality threshold, we receive better explanations with smaller
syntactic distances. By small values of cardinality threshold ∈ [10, 200], no explanation
can be generated for LDBC queries and the corresponding syntactic distances equal 1.
LDBC QUERY 2 and QUERY 4 are the most difficult queries for rewriting, because all
their elements have cardinalities larger than any used cardinality threshold. Therefore,
no edge and vertex can serve as starting elements for the BOUNDEDMCS algorithm.

89

4.5. EVALUATION

In Figure 4.15c, response time of generating the explanations is presented as a per-
formance metric. The response time reduces with the increasing cardinality threshold,
because at each step less data subgraphs are considered. The corresponding syntactic
distances are represented in Figure 4.15b.

The evaluation results for DBPEDIA QUERY are illustrated in Figure 4.16. With
increasing the cardinality threshold, the syntactic distance of discovered BMCSS de-
creases, which corresponds to the goal of the BOUNDEDMCS algorithm: the size of a
BMCS should be increased without violating a given cardinality threshold.

The cardinality distance becomes smaller, which can also be explained by the to-
pology of the evaluated query: each time we add a new edge to a star, it increases
the cardinality of a result set. We also see that for Cthr = [1, 000; 10, 000] the cardina-
lity distance increases, which can be explained by the fact, the result size grows more
slowly with introducing new edges than the increase of a cardinality threshold. This
very similar results can be explained by the topology of the evaluated query, which
represents a star. Each time we require a backtrack, we return to its center, if we start
from it. Otherwise, we arrive at the center after we processed the first edge.

To conclude, with increasing a cardinality threshold, better explanations can be
discovered that have smaller syntactic distances. However, if a query initially has a high
number of answers and each query edge has a cardinality, which exceeds a cardinality
threshold, no explanation can be generated.

In the following experiments, we also analyze the influence of a spanning tree and
restart strategy.

Construction of an All-Covering Spanning Tree

Consideration of a spanning tree for LDBC queries affects only experimental runs for
high cardinality thresholds, which exceed the original cardinalities. For small cardi-
nalities, the quality and performance are similar for both setups: with or without a
spanning tree.

Therefore, for this evaluation, we provide additional experimental results for Cthr =
[5, 000; 10, 000]. For the LDBC QUERY 1 and LDBC QUERY 2, the complete queries can
be processed without violating a cardinality threshold, which change corresponding
cardinality distances.

The construction of a spanning tree improves the quality of generated subgraph-
based explanations by up 0.35 for high cardinality thresholds for LDBC QUERY 1 –
QUERY 2 and by up to 0.75 for the LDBC QUERY 3. For LDBC QUERY 1 and QUERY

2, the spanning tree has the same response time or varies only slightly. For the LDBC

QUERY 4, it is even less than for the configuration without a spanning tree, which
can be explained by the smaller number of intermediate results. For the LDBC QUERY

3, the processing of a spanning tree increases the response time by up to 0.5 s for
low cardinality thresholds. The strong increase in response time for the case without
limiting the size of a result set is explained by 75% of quality improvement, which is
achieved if a spanning tree is constructed.

For the DBPEDIA query, no difference in quality of generated explanations is ob-
served. In this case, the discovery process begins from the center of the star, vertex v0q
(see the query graph in Figure A.3f), and visits query edges in the same traversal order
with and without a spanning tree. We observe only a minor variation of response time
(less than 5%) by considering a spanning tree, which can be tolerated.

To conclude, the construction of a spanning tree can improve the quality of gene-
rated explanations for high cardinality thresholds. For small cardinality thresholds, the

90

4.5. EVALUATION

BOUNDEDMCS algorithm behaves similarly, because only a few query elements with
cardinalities less than a cardinality threshold are considered.

Search Restart vs. Single Traversal

In this set of experiments, we consider multiple restart and single traversal for the
BOUNDEDMCS algorithm. Like in the previous evaluation, we consider here some ad-
ditional cardinality thresholds ∈ [5, 000; 10, 000]. In most cases, syntactic distances do
not differ between the single-run strategy and multiple restarts. However, for LDBC

QUERY 3, the syntactic distance improves up to 50% for high cardinality thresholds if
we restart the discovery process. Such a limited difference of the syntactic distance can
be explained as follows. As a heuristic for choosing a traversal path, we use a minimal-
cardinality strategy, which visits elements with a smaller number of instances in the
data graph first. Therefore, it is very unlikely that restarting the search from elements
with a larger number of data representatives might reduce the syntactic distance. How-
ever, it can be possible for high cardinality thresholds, which for example happens to
LDBC QUERY 3.

The restart strategy increases the response time very strongly for small cardinality
thresholds for LDBC QUERY 3, which is up to three times so high as the time for the
single-traversal search. However, the increase is rather small for LDBC QUERY 1 and
QUERY 2. The increase is caused by the fact, that for small cardinality thresholds no
explanation can be generated and the syntactic distance equals one. As a consequence,
the restart strategy tries to re-execute the discovery process from all query elements.
With increasing a cardinality threshold, some explanations can be found. Therefore,
the restart re-executes the discovery process from a smaller number of query elements
and therefore the response time decreases.

Similar to the evaluation of using a spanning-tree, in this experiment the restart
strategy and single traversal behave very similarly for different cardinality thresholds.
The restart strategy produces explanations with the same cardinality distance as a sin-
gle traversal, because both of them deliver in most cases the same BMCSS. A small
variation can only be seen for LDBC QUERY 3, where for high cardinality thresholds we
receive different BMCSS. In this case, the restart strategy discovers a better explana-
tion by restarting.

The evaluation results for the DBPEDIA graph are similar to the results derived for
the LDBC graph. The restart strategy increases the response time in the same way:
it is higher for smaller cardinality thresholds because only small explanations can be
generated and multiple query elements remain for the restart. The restart strategy does
not affect the quality, which remains the same for both configurations: a single traversal
and with restart. As a consequence, the cardinality distance behaves in exactly the same
way. In both setups, the discovery process begins at central vertex v0q (see Figure A.3f),
from which all vertices are reachable. Therefore, no unconnected components are
created by using only a single traversal along the query graph and therefore, the restart
does not give any advantages.

In this section, we evaluate the BOUNDEDMCS algorithm on two data sets for differ-
ent cardinality thresholds and consider three metrics such as syntactic and cardinality
distances and response time. We conclude that the use of a spanning tree can improve
the quality of generated subgraph-based explanations and therefore it should be used
in the debugging process, if a directed query graph becomes unconnected during its
traversal. The use of a restart strategy does not give a clear advantage over a single-
traversal for low cardinality thresholds if the minimal-cardinality heuristic for choos-
ing a traversal path is used for the too-many-answers problem or maximal-cardinality

91

4.6. SUMMARY

heuristic is applied for the too-few-answers problem. In such setups, the restart stra-
tegy can be omitted. The restart strategy is advantageous in such scenarios where a
single traversal makes a query graph unconnected and a larger BMCS can be missed.

4.5.3 Evaluation Summary

In this section, we evaluate two algorithms for generating subgraph-based explanations
such as DISCOVERMCS and BOUNDEDMCS. Both methods are able to deliver differen-
tial graphs corresponding to the query part, which are responsible for no or too many
answers. We optimize both approaches by online adapting a single traversal path along
the query graph and show that just a single traversal can deliver good results by the
use of minimal-cardinality traversal strategy. Any poor performance of a traversal stra-
tegy can be compensated by restarting the search along non-traversed query branches.
DISCOVERMCS and BOUNDEDMCS can discover larger MCSS and BMCSS with const-
ructing the all-covering spanning tree without strong performance degradation.

4.6 Summary

In this chapter, we investigated the first kind of explanations—subgraph-based expla-
nations, which have to be provided by the debugging tool for pattern matching queries.
This kind of explanations describes what was the reason of unexpected results as diffe-
rential subgraphs, which are missing from the data graph for the empty-answer prob-
lem or violate the cardinality threshold for too-few- and too-many-answers problems.
In addition, a user receives maximum common connected subgraphs between a query
graph and a data graph, which correspond to the cardinality constraint.

To generate subgraph-based explanations for the empty, too-few-, and too-many-
answers problems, we proposed two algorithms: DISCOVERMCS and BOUNDEDMCS.
Both methods have similar properties and therefore the same optimizations are ap-
plied for them such as online selection of a traversal path, construction of a spanning
tree, and search restart. The first optimization, online selection of a traversal path,
determines a next edge and vertex to process at runtime, which allows to traverse the
query graph only once and to prevent discovery of the duplicated MCSS (BMCSS).
The evaluation results show the advantageous of using minimal-cardinality strategy for
choosing a traversal path, which delivers the best results among all evaluated queries.
To consider user intention in specific query elements, a heuristic for integrating user
interest is discussed which can be used as a strategy for selecting a traversal path. The
second optimization, construction of an all-covering spanning tree, allows to discover
larger MCSS (BMCSS) by considering a query graph as weakly-connected. According
to the experiments, constructing a spanning tree can improve the quality of detected
MCSS and deliver larger subgraphs. The third optimization, restarting the algorithms,
facilitates the discovery of MCSS (BMCSS) if an investigated query is split in several
unconnected components during the search. The evaluation shows that restarting the
search can facilitate the discovery of larger MCSS if the query was split in several un-
connected components by the traversal strategy. It also can compensate the quality
reduction injected by a used traversal strategy.

Subgraph-based explanations are query-based ones, which focus on the query to-
pology and deliver MCSS. They can be used as an upper limit for rewriting of a failed
query. Still, they do not give any detail about query predicates and defined types and
therefore in the following chapters more fine-granular explanations will be presented,

92

4.6. SUMMARY

which represent rewritten queries derived by changing the types and predicates of
query elements.

93

5
Coarse-Grained Why-Empty Query
Modification

In the previous chapter, we proposed to explain reasons of a query failure in terms of its
subgraph, which violates a cardinality constraint. This solution is based on the query
topology, where the smallest element is represented by a vertex or an edge.

In this chapter, we will go one step further and consider predicates for attribute
value on edges and vertices during explanation generation. We will propose a next de-
bugging step: a rewriting method for why-empty queries that introduces a new granu-
larity level represented by predicates, types, and directions in addition to vertices and
edges. In general, this approach generates modification-based explanations by remov-
ing some constraints from the failed query. Potentially, this method can also be used for
solving too-few- and too-many-answers problems. However, it does not have a strong
focus on the value of a cardinality threshold and therefore its use for these problems is
rather suboptimal.

In Section 5.1, the general architecture of the why-empty system, the runtime pro-
cess for query rewriting, and its central component, query relaxation, are described.
The relaxation process is supported by a cardinality estimation module, which is int-
roduced in Section 5.2. In Section 5.3, a comparison of rewritten queries is described
in detail. The model for integrating user preferences in the relaxation process is out-
lined in Section 5.4. Finally, the proposed approach is evaluated in Section 5.5. Parts
of the modification-based approach presented in this chapter have been published
in [138, 139, 143].

5.1 Predicate- and Topology-Aware Modification Process

If a query delivers no results, it is probably over-constrained with topological or at-
tribute predicates, whose removal can potentially change the query in such a way that
it delivers at least a few answers. This observation is taken in consideration by const-
ructing the why-empty engine described in this chapter.

5.1.1 System Architecture

The why-empty system illustrated in Figure 5.1 is an extension of a graph database
with the why-empty engine, which is activated by the user if an empty result set was
delivered to his query. The relaxation process is managed by the query manager that re-
ceives user queries and redirects them to a graph database. If no data subgraphs match

95

5.1. PREDICATE- AND TOPOLOGY-AWARE MODIFICATION PROCESS

Cardinality Estimator

Query Manager

Candidate Selector

Query Candidates

1

2

3

4

Query Relaxer

query Qo

execute query

data subgraphs

initialize statistics for Qo

simple queries cardinalitiesrelax

8 request

9 cardinalities

relaxed

queries

get new query

14 query Qi

request

cardinalities

data subgraphs

15

5 6

10

11

12

13
7

Figure 5.1: System architecture for why-empty query rewriting

a request the relaxation process is triggered, which starts with initializing the cardi-
nality estimator that maintains, calculates, and estimates cardinalities for cardinality
queries. At the initialization, the cardinality estimator collects some cardinalities from
the graph database, which is described in detail in Section 5.2. Afterwards, the query
manager triggers relaxation of a failed query, which is conducted by the query relaxer
that generates multiple query candidates from it. This step can be optimized with ap-
plying different relaxation strategies reducing the size of candidate space by choosing
the most promising vertex and edge to be relaxed. These strategies are described in
Section 5.1.2. Produced query candidates are transmitted to the candidate selector that
stores them in a priority queue and provides the most promising query candidate to the
query manager by request. The prioritization of query candidates is a crucial point in
the rewriting process, which is described in detail in Section 5.3. The query manager
receives the best query candidate from the queue and executes it in the graph database.
If this candidate failed to deliver a non-empty result, the query manager forwards it to
the query relaxer for its further relaxation. The process terminates if a query delivering
a non-empty answer is found.

To summarize, the modification process is based on A*-search, where in each step a
set of query candidates is generated and stored in a priority queue of candidates. Those
query candidates are tested first on the delivery of non-empty results which appear to
be more promising to lead to a non-empty answer. In the following, we will discuss
different aspects of this modification process starting with query relaxation.

5.1.2 Query Relaxation

The main component of the why-empty engine is the query relaxer that receives a query
as an input and produces a set of query candidates (relaxed versions of the query) as
an output.

To modify a query, the relaxation manager uses relaxation operations and relaxation
heuristics. Relaxation operations have been already presented in Section 3.2.1 and
include the deletion of a vertex, an edge, a type, a direction, and a predicate. A refined

96

5.1. PREDICATE- AND TOPOLOGY-AWARE MODIFICATION PROCESS

query is generated by applying one of these operations on a query. By default, only one
change is induced by a single iteration. To model more complex changes like subgraph
deletion, several relaxation iterations have to be executed. However, some operations
can cause additional relaxations such as the edge deletion, which removes also the
type, the direction, and predicates of an edge. The vertex removal deletes a vertex
together with its adjacent edges.

In general, the total number of generated query candidates at a single iteration is k ·
(mq+nq), where mq is a number of query edges, nq is a number of query vertices, and k
is a number of relaxation operations. This candidate space represents the full relaxation
space for a query and a relaxation iteration. With an increasing number of iterations
l, the total candidate space grows and can include up to k · l · (m + n) candidates.
To minimize the number of generated candidates and thus to reduce search space,
relaxation heuristics are proposed which choose the most promising query elements to
relax.

Minimum Cardinality of Edges and Vertices This heuristic assumes that less repre-
sentative vertices and edges in the data graph are more likely to produce empty
results than query elements with a large number of instances. Therefore, the first
proposed strategy relaxes query elements with the lowest cardinalities in the data
graph. To discover such vertices and edges, estimated cardinalities for each query
vertex and edge are provided by the cardinality-estimation module. At least one
edge and vertex are chosen for the relaxation, which have the lowest cardina-
lity. If several elements have the same number of data instances, all of them are
relaxed and multiple query candidates are generated.

Maximum Impact & Minimum Vertex Cardinality Relaxation of specific query edges
and vertices can have different impact on the rest of the query graph. Some
relaxations can cause more changes in the query than others. A higher impact
caused by a single relaxation can reduce the number of iterations and facilitate
early discovery of a non-failed query. Therefore, the second heuristic tries to
discover and relax the most influencing query element. This heuristic is based on
the calculation of vertex and path cardinalities. Vertices are selected according
to the first relaxation heuristic. To choose an edge, it has to be observed how
cardinalities of its direct neighbors are changed by its relaxation. The total impact
of a relaxation operation for this particular edge is modeled as the sum of relative
path cardinalities of neighboring edges (As a reminder, a single path cardinality
shows the number of edge instances by considering specific source and target).
Edges with the maximum impact are chosen for further relaxation. This heuristic
accounts indirectly for the correlation between edges and their vertices in a query
graph and relaxes less representative elements first. If several vertices have the
same number of data instances or several edges have the same maximum impact,
all of them are considered for relaxation.

In Section 5.5, both heuristics are compared against two baselines full relaxation
and random relaxation where the first one produces the whole candidate space and
the second one considers only some random elements. The heuristics maximum impact
and minimum cardinality require cardinalities for edges, vertices, and paths, which are
provided by the cardinality estimator described in detail in Section 5.2.

97

5.2. CARDINALITY ESTIMATION

vq
1 vq

2
Age = 25

Name = Anna
friend

(a) Example query

Vertex ID Map

1

2

Configuration Vertex Bitvector

100 11111111

101 11001001

110 11011010

Edge ID Map

1

Configuration Edge Bitvector

100 11111111111

101 00100110010

110 11111111111

(b) Cardinality maps for vertices and edges

Path (1) Edge Bitvector

hash(1:110(1:111,2:1)) 00000110000 Path (n) Cardinality

Catalog for Empty Paths(n)

hash(1:111(1:111,2:1))

(c) Paths(n) catalogs

Figure 5.2: Example query and its query-dependent statistics

5.2 Cardinality Estimation

The query relaxer and candidate selector require cardinalities of edges, vertices, and
paths to decide which query vertices and edges have to be relaxed and to prioritize
modified queries, correspondingly. In this sense, both modules rely on the cardinality
estimator that calculates or estimates queried cardinalities. To prevent duplicated cal-
culation of the same cardinalities, the cardinality estimator maintains queried statistics
and re-uses them if necessary. It also keeps query-specific information such as the num-
ber of edges, vertices, predicates, which the original query has, and general statistics
about the data graph such as the number of edges, vertices, and the vertex-edge map-
ping, i.e., source and target vertices of data edges, which are represented by their data
identifiers.

In Section 5.2.1, we start with describing query-dependent statistics that represent
the core of the cardinality-estimation module, keep already requested statistics, and
provide required data for calculating new statistics. Afterwards, we explain how to
query statistics for vertices and edges in Section 5.2.2 and for paths(n) in Section 5.2.3.

5.2.1 Query-Dependent Statistics

The query-dependent statistics (see the example in Figure 5.2) are maintained in a
core data structure that stores the original query as presented in Figure 5.2a and several
kinds of cardinalities: cardinalities for edges and vertices in the cardinality maps as well
as cardinalities for path expressions in the path catalogs as illustrated in Figures 5.2b –
5.2c.

Statistics for Vertices and Edges

The maps for cardinalities of vertices and edges have two levels like presented in Fi-
gure 5.2b. On the first level, the key is the identifier of a query vertex or edge, which
can be acquired from the query. On the second level, the value of this outer map rep-
resents a map itself which entries are pairs of two bit vectors (a configuration mask, a
data bitvector). The configuration mask describes which properties of the vertex (edge)
have been relaxed. The data bitvector shows which data vertices (edges) match the
queried vertex (edge) with this configuration mask.

98

5.2. CARDINALITY ESTIMATION

11…1

Reservation

Attribute 1

Attribute K

K times

(a) Vertex mask

Attribute HTypeReservation

1111…1

Direction Attribute 1

H times

(b) Edge mask

1:111(1:111,2:1)

Edge ID Source ID Target ID

Vertex Mask Vertex MaskEdge Mask

(c) Path(1) mask

Figure 5.3: Configuration masks for vertices, edges, and paths(1)

The size of a configuration mask is retrieved from the description of the correspon-
ding query vertex (edge) and each of its bits defines a particular property of a vertex
(edge). Templates for the configuration masks are illustrated in Figure 5.3. The config-
uration mask for a vertex comprises a reservation bit and bits for all predicates specified
for this vertex in a query as illustrated in Figure 5.3a. The configuration mask for an
edge provided in Figure 5.3b consists of at least three elements: a reservation bit, a
direction bit, and a type bit. In addition, it can include bits for predicates, if avail-
able. The size of a data bit vector equals to the number of vertices (edges) in the data
graph. Those bits are set in the data bit vector, whose data vertices (edges) match the
configuration mask.

Example Assume the original query and its statistics presented in Figure 5.2. The
vertex v1q has two predicates as illustrated in Figure 5.2a, therefore, its configuration
mask has in total three bits: two bits for predicates and one reservation bit. The vertex
v2q has no predicates and its configuration mask consists of a single reservation bit. In
Figure 5.2b, configuration masks and data bitvectors are illustrated for vertex v1q and
edge e1q in the cardinality maps.

Statistics for Paths(n)

The query-dependent statistics also keep the cardinalities for paths(n), which can be
of different sizes n ∈ (1,N). Statistics about them are collected in the catalogs for
paths up to size n or non-existing paths. The catalog for non-existing (empty) paths(n)
in Figure 5.2c is a set of paths, which have no matching data in a data graph and
therefore are empty. The catalog for paths with length 1 maps simple paths consisting
of single edges with their adjacent vertices to data edge bitvectors. The path(n) catalog
keeps mappings between paths(n) and numbers of their instances in a data graph.

The key in a path catalog represents the descriptor of a queried path. A simple path
descriptor (for a path of size 1) has three tuples (an identifier in a query, a configuration
mask). The first tuple describes a query edge, second and third ones represent its source
and target vertices as sketched in Figure 5.3c. In the example in Figure 5.2, the path(1)
for edge e1q can be encoded as 1:111(1:110,2:1) and stored in the path(1) catalog. If
a path consists of several hops, its descriptor includes descriptors of all single paths it
comprises, which are ascendingly ordered according to their query-edge identifiers.

Statistics Initialization

The query-dependent statistics represent query-specific information, which is used if a
query failed and should be refined in order to deliver at least some results. Therefore,
they have to be initialized before the relaxation process begins. At the initialization,
query-dependent statistics are filled with cardinalities for vertices and edges together
with the description of the failed original query. For this purpose, the query manager
poses simple cardinality queries to the graph database that describe only single pro-
perties for a vertex (edge) and correspond to configuration masks with at most two

99

5.2. CARDINALITY ESTIMATION

Algorithm 8 CALCULATEDATAVECTOR: Calculation of data bit vector for given query
vertex
Input: relaxed vertex viqj , for which data vector has to be calculated
Output: data bit vector result with set bits for data vertices, which match viq

1: // 1. Constructing a configuration mask

2: viqo ← get vertex from original query(viq)// viqo .id = viq.id
3: queriedMask ← calculate configuration(viqo , v

i
q)

4: if ∃ queriedMask then
5: result← get data bitvector from vertexMap(viq.id, queriedMask)
6: return result
7:

8: // 2. Extracting matching configuration masks

9: masks[]← get all configurations from vertexMap(viq.id)
10: for all candidateMask ∈ masks[] do
11: for all bit ∈ queriedMask do
12: if (bit == 0) AND (candidateMask[position(bit)] 6= 0) then
13: break
14:

15: // 3. Extracting data bit vectors

16: if bit is last bit then
17: dataV ectors[]← insert data bitvector(viq.id, candidateMask)

18:

19: // 4. Calculating an output data bit vector

20: for all dataV ector ∈ dataV ectors[] do
21: if dataV ector is first then
22: result← dataV ector
23: else
24: result & = dataV ector

25: return result

set bits (the reservation bit is always set). Responses to such queries describe data bit
vectors which set bits indicate matching data vertices (edges). If a vertex without any
predicate is requested all bits in the returned data bit vector are set. In such a way,
data bit vectors are collected for all query vertices and edges.

Example Assuming the previous example in Figure 5.2, during initialization four
queries have to be requested for two vertices in total: three for vertex v1q and one for
vertex v2q . We can omit execution of two queries for masks 100 of vertex v1q and 1 of
vertex v2q , because they request the same data bit vector for all data vertices. This data
bit vector can be constructed without querying a graph database by creating a set data
bit vector corresponding to the number of vertices in the data graph. Therefore, the
number of simple cardinality queries can be derived as

∑|Vq |
i=1 |predicates(viq)|. Cardi-

nalities for edges are collected in the same way like for vertices. The only difference
is that two additional kinds of queries are executed to acquire data bit vectors for the
type and direction of an edge.

100

5.2. CARDINALITY ESTIMATION

10000

11000

10100

10010

10001

10000

11000

10001

vqj

1 Name = Anna

Lastname = Smith

Configuration = 11001

I. Create Configuration Mask II. Extract Matching

Configuration Masks

III. Extract Data Bitvectors

Configuration Vertex Bitvector

10000 1111111111111111

11000 1100110010101000

10100 1111110011111010

10010 0100000001010010

10001 1000100010100010

IV. Calculate Output

Data Bitvector

1111111111111111

1100110010101000

1000100010100010

1000100010100000

�

Figure 5.4: Example of vertex bitvector calculation

5.2.2 Querying Statistics for Edges and Vertices

Which statistics for vertices and edges are collected is determined by the used relaxa-
tion heuristic described in Section 5.1.2 and priority function of the candidate queue
provided in Section 5.3.1.

In general, acquiring cardinalities for edges and vertices implies four steps:

1. Constructing a configuration mask. A configuration mask has to be constructed for
the queried vertex (edge). The size of the mask is derived from the corresponding
vertex (edge) of the original query according to templates in Figure 5.3. In the
configuration mask, those bits are set, which correspond to the properties existing
in the investigated query element.

2. Extracting matching configuration masks. At this step, the cardinality map is tra-
versed for the queried vertex (edge) and the corresponding inner map is extrac-
ted. Then the inner map is traversed and those configuration masks are collected
which contribute to the queried configuration mask.

3. Extracting data bit vectors. At this step, the data bit vectors are collected for the
collected configuration masks.

4. Calculating an output data bit vector. Finally, the data bit vector is produced for a
queried vertex (edge) by combining collected data bit vectors.

The process of discovering the required configuration masks and combining their
data bit vectors for a vertex is described in Algorithm 8. First, the statistics controller
selects only matching configuration masks based on the unset bits at lines 10 – 17.
Second, a bitwise logical AND operation is performed on the data bitvectors for selected
configuration masks at lines 20 – 24. Finally, the calculated data bitvector is returned
at line 25. This calculation is possible without additional querying the graph database
because data bitvectors were collected for each single bit from the configuration mask
during the initialization. In a similar way, the data bitvector for an edge can be retrieved
by acquiring matching data bitvectors from the edge cardinality map.

Example Assume the input query has a vertex v1qj with four properties like pre-
sented in Figure 5.4 and its cardinality map is populated with data bit vectors for
all properties. After some relaxation, the cardinality estimator receives a cardinality
request for the modified version of vertex v1q . First, the system identifies its correspon-
ding vertex in the query description and constructs its configuration mask 11001, which
has two unset bits corresponding to non-considered properties type and age. Second,
matching configuration masks are extracted from the masks available in its cardina-
lity map based on these two unset bits. Third, the corresponding data bit vectors are
retrieved from the statistics. Finally, a bitwise logical AND is performed on the data
bit vectors. The result data bitvector in Figure 5.4 shows which data vertices match
the queried vertex v1qj . There are four such data vertices and therefore the queried
cardinality equals four.

101

5.2. CARDINALITY ESTIMATION

Algorithm 9 GETPATHCARDINALITY: Algorithm for retrieving path cardinality

Input: path p, which can be of size n
Output: estimated number of data instances, which match p

1: descriptor ← construct path descriptor(p)
2: if descriptor ∈ catalog for empty paths then
3: return 0
4: if p has one step then
5: if descriptor ∈ path(1)-catalog then
6: dataMask ← get data bitvector from path(1)-catalog(descriptor)
7: else
8: dataMask ← get single path data vector(descriptor)
9: path(1)-catalog← insert(descriptor, dataMask)

10: return count(dataMask)
11: if descriptor ∈ path(n)-catalog then
12: cardinality ← get cardinality from path(n)-catalog(descriptor)
13: else
14: cardinality ← estimate path(n) cardinality(descriptor)
15: path(n)-catalog← insert(descriptor, cardinality)
16: return cardinality

5.2.3 Querying Statistics for Paths(n)

The cardinality of a path is derived according to Algorithm 9. First, at line 1 the descrip-
tor of a queried path is constructed from descriptors of vertices and edges it consists of
according to the path template in Figure 5.3. Second, we check whether this path was
queried before and delivered empty results at line 2. In this case, it can be found in the
catalog for empty paths and the cardinality calculation process can be terminated with
the return value of 0. This part of the algorithm is common for paths of any length. If
the path has not been found in the catalog for empty paths, remaining catalogs have to
be inspected on the containment of this path. For a path(1), at line 5 we check whether
it was queried before and calculate its cardinality if necessary. A similar procedure is
executed at line 11 for paths with multiple hops.

To resolve a path miss in the statistics, a corresponding data bit vector result for the
path p has to be estimated based on the already collected information. The estimation
of the path(1) cardinality is exact and described in Algorithm 10. For this purpose,
the data bit vectors for its edge, source, and target are extracted at lines 2 – 7 by
Algorithm 8. Afterwards, for each set bit in the edge bit vector, the corresponding
entry (sourceId, targetId) from the vertex-edge mapping is checked on the existence
in the extracted vertex bit vectors at lines 10 – 14 and in case of non-existence, the
corresponding bits of the edge mask are reset. The final bit vector is returned at line 15.

Example Assume the system acquired data bit vectors for an edge and its vertices
like presented in Figure 5.5a. To derive the path(1) for the given edge and its ver-
tices, the vertex-edge mapping is filtered according to Algorithm 10. The entries in the
vertex-edge mapping are pairs of source and target positions in the vertex bitvector.
The algorithm checks the set bits 1, 3, and 5 in the edge bitvector. The bits 3 and 5 are
reset, because the source of the third edge and the target of the fifth edge do not exist
in source and target data bit vectors, correspondingly. The final path(1) has only one
set bit and therefore its cardinality equals one.

102

5.2. CARDINALITY ESTIMATION

Algorithm 10 GETSINGLEPATHDATAVECTOR: Algorithm for calculating data bit vector
for path(1)

Input: path p of length 1
Output: data bitvector result for edges, which match p with their vertices

1: // 1. Extracting independent statistics

2: edge← extract edge from path(p)
3: result← calculate data bit vector for edge
4: source← extract source from path(p)
5: sourceDataMask ← calculate data bit vector for source
6: target← extract target from path(target)
7: targetDataMask ← calculate data bit vector for target
8:

9: // 2. Filtering out edges with non-matching vertices

10: for all set bits ∈ dataMask do
11: sourceId← get source identifier from mapping for bit
12: targetId← get target identifier from mapping for bit
13: if sourceId /∈ sourceDataMask OR targetId /∈ targetDataMask then
14: unset bit in result
15: return result

The cardinality of a path(n) is estimated from the n paths(1), which it consists of,
in four steps:

1. Encoding the data. At this step, each path(1) from path(n) is encoded in a sparse
matrix in the coordinate format, which consists of three fields: identifiers of
source and target vertices as well as the number of data edges between these two
data vertices. To construct these matrices, first, data bit vectors for each path(1)
are retrieved by Algorithm 10. Second, their corresponding pairs of sources and
targets are extracted from the vertex-edge mapping. If a single path is specified
as undirected then edges have to be retrieved in the backward direction as well,
which is done by transposing the entries and adding to the directed edges. As
a result, each path(1) is described as a set of source-target pairs. Finally, the
number of edges is summed up between the same source and target vertices.

2. Establishing a traversal order. At this step, we have to choose a traversal order for
the path. As the starting point, a vertex without incoming or outgoing connec-
tions is used. Then, we traverse the path as an undirected graph in a depth-first
manner and memorize the traversal order.

3. Multiplying the matrices. After the traversal order is prepared, the corresponding
matrices can be multiplied along it. If an edge is traversed in the backward
direction, its matrix has to be transposed before multiplication.

4. Estimating a cardinality. The cardinality of a path is estimated as a sum of all
non-zero elements of the derived matrix.

Example Assume the example in Figure 5.5b, where the query describes a vertex
connected with three other vertices. To calculate the cardinality of the path(2) inclu-
ding edges e1q , e

2
q , first, sparse matrices for both edges are prepared in the coordinate

format. Next, a vertex with the minimal degree is chosen as the start of the path. As-
sume vertex v1q with an incoming edge e1q to be a starting edge. To traverse backward
from vertex v1q to vertex v0q , the sparse matrix for edge e1q has to be transposed. Vertex
v0q in path e1q , e

2
q has two outgoing edges: already processed edge e1q and non-processed

edge e2q . Next, edge e2q is traversed to its target vertex v2q . The direction of this edge

103

5.3. QUERY-CANDIDATE SELECTION

10101 Source Target

1 2

2 4

4 3

6 5

1 4

101001

011011

1

0

1

0

1

1

0

0

0

0

Statistics for

Vertices and Edges

Edge

Source

Target

Edge Path(1)

(a) Path(1) calculation

vq
1

vq
3

vq
2vq

0

eq
1

eq
2

eq
3

(b) Path(n) calculation

Figure 5.5: Examples for path calculations

corresponds to the direction of the traversal. Therefore, its sparse matrix is used as it
is and, finally, both matrices are multiplied. The sum of all non-zero elements of the
produced matrix is the estimated cardinality of path(2) e1q , e

2
q .

To summarize, in this section we present how to derive cardinalities for vertices,
edges, and paths, which is based on constructing a configuration mask and calculating
a data bit vector for it. The derived statistics are extensively used among different
components of the why-empty system such as the query relaxer and candidate selec-
tor. In the following section, we will discuss how the candidate selector makes use of
cardinalities from the query-dependent statistics.

5.3 Query-Candidate Selection

The above presented query-dependent statistics are used to prioritize query candidates
and to select the most promising ones to be checked on the delivery of non-empty
results. Received query candidates are ordered dependent on a ranking function and
stored in the priority queue that represents an ordered list of rewritten queries, where
more promising candidates are located at the beginning of the queue.

5.3.1 Placement of New Query Candidates

To insert a new query candidate in the queue, the exact position has to be derived for
it. For this purpose, the new candidate is compared with query candidates from the
queue from head to tail according to two criteria like illustrated in Figure 5.6. The
first criterion compares average path cardinalities of both queries and sorts them in
a descending order. It requires parameter n that describes the maximal path length,
which can be used for comparison. To calculate the compared values, both queries
are split in sets of paths of length n if possible. If there is no path with length n
at least in one query, paths with a smaller length are acquired. Afterwards, for each
path of each query, its cardinality is requested and the average path cardinalities are
calculated for them. If both queries have equal average-path cardinalities, the path
length is decremented and they are compared again. The last available path length is
1, which corresponds to a path(1). In case the average path(1) cardinalities are equal
the queries are ordered according to the second criterion.

The second criterion considers the relative cardinality change induced by applied
relaxations that shows how strong the cardinality change is in reference to the original
query. A higher induced cardinality change describes stronger modifications, which
may eliminate unique information from the query. Therefore, the candidate with a

104

5.3. QUERY-CANDIDATE SELECTION

Average-Cardinality Path Comparator

…Q1 Qi Qn

C(Qi) == C(Qnew)

Cardinality-Change Comparator

CC(Qi) >= CC(Qnew)

i++

Qnew

<

>=

>=

i++

<

==

Qi

path(n) path(1)

C(Qi) == C (Qnew)

path(n-1)

Figure 5.6: Placement of new queries in priority queue

lower induced cardinality change is placed ahead in the queue. In Section 5.3.2, the
calculation of the induced cardinality change is discussed in detail.

To summarize, the first criterion chooses those changes, which promise to increase
the result cardinality, the second one keeps the changes minimal by preventing strong
cardinality modifications. From them, the induced cardinality change is a stronger
comparator, because it leads to a more optimal solution by passing all possible relaxa-
tions. Although it may provide better results with a limited cardinality change, it can
increase time for discovery of a non-failed query strongly. Based on these observations,
induced cardinality changes are compared at the second step. If it would be executed
on the first place, the changes to the original query would be too small and this would
increase the number of relaxation iterations and, as a consequence, the response time.

5.3.2 Calculation of Induced Cardinality Changes

To place a new candidate in the queue, relative cardinality changes have to be calcu-
lated, which are induced in the query candidate by the relaxation. The term induced
cardinality change describes a maximum possible relative cardinality change caused by
a relaxation of a specific query element. Induced cardinality changes can be calculated
for each query constraint and relaxation operation, which can change it. For example,
for edge eiq we can calculate cardinality changes for deletion of its type, direction, each
predicate, and edge deletion itself.

The hierarchy of induced cardinality changes is represented in Figure 5.7, which
consists of four levels: (I) full relaxation, (II) attribute and topological relaxations,
(III) an operational level, and (IV) an instance level. If all elements have been relaxed
and a new query candidate is empty, this corresponds to a full relaxation, which is
characterized by a total induced cardinality change. This measure considers all possible
relaxations which can be applied to a query and aggregates their induced cardinality
changes. The total cardinality change corresponding to a full relaxation equals 1. We
also can distinguish lower levels for aggregating cardinality changes such as attribute
and topological relaxations (level II) or operational level (level III). The instance level
(level IV) represents induced cardinality changes of relaxation operators which are
instantiated for specific query elements and their properties.

In general, all cardinality changes on the instance level are dependent on each
other. Any relaxation can modify the cardinality changes of other elements as well,
which leads to a complexity of O(mq · nq · k) for calculating the cardinality change,
where nq, mq are numbers of vertices and edges in a query graph, respectively, and k is
a number of candidates. We consider the changes to be independent and thus reduce
the complexity to O(nq +mq) and consider the maximum possible cardinality changes.

105

5.3. QUERY-CANDIDATE SELECTION

Full Relaxation

Attribute Relaxation

Topological Relaxation

Predicate Deletion (Vertex) Type Deletion

Edge Deletion Direction Deletion

Predicate Deletion (Vertex, Predicate)

Vertex Deletion

Predicate Deletion (Edge)

Predicate Deletion (Edge, Predicate) Type Deletion (Edge)

Edge Deletion (Edge) Direction Deletion (Edge) Vertex Deletion (Edge)

I Full Relaxation

II Topological and

Attribute Relaxation

III Operational Relaxation

IV Instance Relaxation

Figure 5.7: Hierarchy of induced cardinality changes

Cardinality changes are calculated in two steps before the relaxation takes place.
First, the cardinality changes are calculated on the instance level and summed up. The
derived cardinality value describes then the full relaxation, which equals 1. There-
fore, as second, the instance-level cardinality changes are scaled by the value for a full
relaxation.

The cardinality changes on the instance levels are derived as the upper bounds
for the relative cardinality changes of their elements or elements’ neighbors caused
by relaxation operations without considering any correlation between graph elements
and their predicates. Cardinality changes for operations on attributes consider only a
modified element, while cardinality changes for topological operations can be derived
from the neighboring elements.

We start the description of calculating cardinality changes with relaxation opera-
tions on predicates. The predicate deletion PD(viq, a

k
q) of predicate akq for vertex viq is a

cardinality change of vertex viq caused by this relaxation:

PD(viq, a
k
q) =

C(Vd)− C(Vd|akq)

C(Vd)
=

∆C(Vd, a
k
q)

Nd
(5.1)

Similarly, the cardinality change for predicate deletion PD(ejq, ahq) of predicate ahq for
edge ejq is derived as

PD(ejq, a
h
q) =

C(Ed)− C(Ed|ahq)

C(Ed)
=

∆C(Ed, a
h
q)

Md
(5.2)

The similar equation is used for type deletion TD(ejq) of edge ejq:

TD(ejq) =
C(Ed)− C(Ed|T)

C(Ed)
=

∆C(Ed, T)

Md
(5.3)

In contrast to relaxation operations on attributes, topological relaxations modify the
query structure. Topological operations are represented by a vertex deletion, an edge
deletion, and a direction deletion. While the influence on predicates can be expressed
by the relative cardinality of the relaxed elements themselves, topological changes for
a vertex and an edge deletion are difficult to express, because if the elements are re-
moved, their cardinalities cannot be calculated. Therefore, topological modifications
are interpreted as cardinality changes of direct neighbors of removed elements. The
change for a direction deletion is expressed by the cardinality change of a relaxed
edge. A direction deletion DD(ejq) of an edge ejq increases its cardinality twice, because
a relaxed edge can be considered during graph traversal in both directions.

DD(ejq) =
C(Ed)− C(Ed|D)

C(Ed)
=

∆C(ejq, D)

Md
= 0.5 (5.4)

106

5.3. QUERY-CANDIDATE SELECTION

vq
1

vq
3

vq
2

vq
4

degree = 3 degree = 2

degree = 2degree = 1

(a) Initial graph

vq
1 vq

2

vq
4

degree = 2

degree = 1degree = 1

(b) Without v3q

vq
1

vq
3

vq
2

vq
4

degree = 3 degree = 1

degree = 1degree = 1

(c) Without edge (v2q ; v3q)

Figure 5.8: Influence of vertex deletion on degrees of neighboring vertices

By deleting a vertex or an edge, the cardinalities of neighboring vertices can change,
which can be expressed through the number of data vertices having a specific degree.

Example Assume a graph query as presented in Figure 5.8a. There are four vertices
with a degree deg ∈ [1; 3]. The deletion of vertex v3q also removes its adjacent edges.
Therefore, the degrees of direct neighbors v2q , v

4
q are reduced by the number of removed

adjacent edges like presented in Figure 5.8b. If the edge between vertices v2q , v
3
q is

deleted their degrees reduce as well (see Figure 5.8c).
If an edge ejq is deleted by the edge deletion operation ED(ejq) the degrees of its

source and target decrease. Therefore, its change is described as a cardinality change
of an edge’s ends derived from the change of the number of instances with a specific
degree.

ED(ejq) =
C(Vd|deg(src(ejq))− 1)− C(Vd|deg(src(ejq)))

C(Vd|deg(src(ejq))− 1)
+

C(Vd|deg(tgt(ejq))− 1)− C(Vd|deg(tgt(ejq)))

C(Vd|deg(tgt(ejq))− 1)

(5.5)

V D(viq) =

Nadj∑
p=0

C(Vd|deg(vp)− 1)− C(Vd|deg(vp))

C(Vd|deg(vp)− 1)
(5.6)

whereC(Vd|deg(vp)−1), C(Vd|deg(vp)) is a number of data vertices with deg ≥ deg(vp)−
1 or deg ≥ deg(vp), respectively.

After cardinality changes on the instance level are calculated they have to be scaled
by the full relaxation. The total cardinality change that corresponds to full relaxation
equals 100%. Therefore, the calculated cardinality changes have to be normalized to
this value with α = change(total)

100 .

Application to Different Use Cases The proposed induced cardinality change is gene-
ral and not limited to any specific use case. To adapt it to a particular use case and to
express the influence of specific relaxations on the final cardinality change, the nor-
malization weight can be calculated at different levels: at the level of all attribute or
topological operations or even further at the level of specific operations. This thesis
focuses on property graphs, for which the attribute and topological descriptions are
equally important and, thereby, both total predicate and topological changes have the
same weight α = 50%.

Assume a corporate database including information about company partners, business
processes, etc., which is filled with additional information about data flows in the com-
pany extracted from internal text documents. The quality of a created graph depends

107

5.4. USER INTEGRATION

strongly on the extractors and may be not fully correct. Based on the quality of ext-
ractors, a user can define different weights for attribute and topological parts. In this
example, the topology is created from unreliable data and includes mistakes. There-
fore, topological aggregation can be annotated by a smaller weight α � 100%, which
would describe how much this information is trusted.

To summarize, in this section we discussed how to prioritize refined queries in such
a way that the most promising candidates to deliver non-empty results are processed
first. For this purpose, we introduced two criteria based on calculations for average
path cardinalities and induced cardinality changes. The first one characterizes a query
itself, while the second one describes applied relaxations. Until now, we presented
all components of the why-empty system, which allow to conduct automatic query
relaxation without considering a user feedback. In the following section, we will discuss
how to improve the relaxation process with non-intrusive user integration.

5.4 User Integration

The why-empty system takes its decisions based on several heuristics, which allow to
reduce the search space by considering only the most promising changes. This is an
automatic relaxation process without considering user interest in rewriting decisions.
Although this approach can lead to the early discovery of a successful query candidate,
it may ignore sensitive information from the query and deliver non-interesting relaxed
queries. To prevent deletion of sensitive information from the query, user interest in
specific query elements should be incorporated in the relaxation process.

A straightforward approach may integrate a user in each relaxation iteration. In
this case, the system generates several query candidates and proposes all of them to
the user who chooses one candidate for further investigation. If a selected candidate
fails to deliver a non-empty result, it is relaxed again in multiple ways and a new
set of candidates is proposed to the user. The user is completely integrated into the
relaxation process, all critical decisions are taken by him. This approach is called na-
vigational [108]. It can lead to a high number of iterations and therefore frustrates
the user. The navigational approach can be improved by predicting user interest in
some query parts based on domain knowledge or querying history. This means that
such query candidates can be first proposed for ranking, which are assumed to be more
relevant. If user interest cannot be predicted, such an improvement is impossible.

Considering drawbacks of the navigational approach and necessity of user integra-
tion, we aim at combining the advantages of automatic and navigational methods and
propose a semi-automatic approach for integrating a user in the relaxation process. The
main idea is to integrate the user non-intrusively by allowing to rank only already disco-
vered non-failed queries. While the navigational approach provides query candidates
to the user, which are not tested yet on the delivery of non-empty results, our semi-
automatic method suggests already evaluated query candidates called query solutions
that deliver non-empty results. The why-empty system automatically discovers query
solutions and proposes them to the user, who can either reject or accept them. Based
on the provided rating, the system constructs a user model and adapts the rewriting
process accordingly.

Rejecting Changes The rejection of a solution can mean that this solution is probably
over-relaxed and includes some unfavorable changes. From this information, the
why-empty system can conclude which changes are not likely to be preferred by
the user and try to postpone their relaxation to a later point in time. Therefore,

108

5.4. USER INTEGRATION

rejection of a solution reduces the search space by discarding relaxation branches
below the rejected query candidates and prioritizes the changes.

Accepting Changes Similar to the rejection, a user can choose queries which are in-
teresting to him. If a query is accepted by the user, it includes information which
is critical for him. In addition, relaxations performed in accepted queries are to-
lerated by the user and can be prioritized during the relaxation. If a user accepts
a solution then the search can be either terminated or continued dependent on
whether a user is interested in discovery of a better solution with less changes.

5.4.1 User-Preference Model

From the above presented acceptance and rejection of query solutions, a user-preference
model can be derived to prioritize specific query elements. This model consists of
identifier-preference pairs, where identifier is a vertex or edge query identifier in the
original query graph and preference score is a real number which describes the impor-
tance of this element to the user.

The preference scores can be positive, negative, or neutral. The relaxation of ele-
ments with lowers scores is more easily tolerated by the user than the modification of
elements with higher scores. The neutral value (score = 0) means that the user interest
in this element is unknown.

At initialization, all pairs have neutral scores. With the appearance of new user
ratings, the model is adapted. For each rated solution, its user-preference model is
created, which is further integrated in the overall user-preference model.

Model Construction For Accepted Solutions Assume the query Qo consists of N ver-
tices and M edges and delivers an empty answer and assume it has been relaxed
in such a way that its solution S1 with N − K vertices and M − L edges deli-
vers a non-empty result. A user accepts it and continues the search for a better
solution. Based on this user rating, the K removed vertices and the L removed
edges are considered to be tolerated changes and therefore each of them is rated
by the negative score −1. The rest of the graph is considered to be unchanged
and should be kept during the search. As a result, N − K vertices and M − L
edges are rated by the positive score +1.

Model Construction For Rejected Solutions Assume the same query Qo and its se-
cond solution S2 with N − P vertices and M − T edges delivers a non-empty re-
sult. A user rejects it and continues the search for a better solution. Any rejection
shows non-preferred changes. Therefore, the P vertices and T edges are rated
by the system with the positive score +1 showing that they have to be kept with-
out changes. The rest of the elements existing in S2 is difficult to rate: they can
be important or irrelevant to a user. Therefore, they are set to be unknown and
annotated by the neutral score 0. After a user-preference model is constructed
for a solution, it can be integrated in the overall user-preference model. For this,
the preference scores for the same vertices and edges are aggregated. As a conse-
quence, new levels apart -1, 0, +1 can arise, which describe stronger acceptance
or rejection of relaxations.

Example Assume a user searches for data subgraphs with Alice and Bob, who know
each other, live in Berlin and Cologne, respectively (see Figure 5.9a). Alice works in
Cologne, while Bob studies at a university in Berlin. The why-empty system automa-
tically detected two solutions S1, S2 (see Figure 5.9b – 5.9c), which return non-empty
results. A user accepts the first proposal S1 and rejects the second one S2. Therefore,

109

5.4. USER INTEGRATION

v1: type = person

gender = female

firstname = Alice

v5: type =

university

v2: type = city

name = Berlin

e2: workAt

since = 01.03.2012

e5: locatedIn

e1: liveIn

v4: type = city

name = Cologne

e6: studyAt

since = 01.09.2014

v6: type = person

gender = male

firstname = Bob

e4: liveIn

v3: type =

organisation

e3: locatedIn

e7: knows

e8: knows

(a) Initial query Qo

v1: type = person

gender = female

firstname = Alice

v2: type = city

name = Berlin

e1: liveIn

v4: type = city

name = Cologne
v6: type = person

gender = male

firstname = Bob

e4: liveIn

e7: knows

e8: knows

(b) First solution S1

v1: type = person

gender = female

firstname = Alice

v5: type =

university

v2: type = city

name = Berlin

e2: workAt

since = 01.03.2012

e5: locatedIn

e1: liveIn

v4: type = city

name = Cologne
v6: type = person

gender = male

firstname = Bob

e4: liveIn

v3: type =

organisation

e3: locatedIn

(c) Second solution S2

Figure 5.9: Example query delivering empty result and its two explanations

Action e1 e2 e3 e4 e5 e6 e7 e8 v1 v2 v3 v4 v5 v6

Initialize 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Accept S1 +1 -1 -1 +1 -1 -1 +1 +1 +1 +1 -1 +1 -1 +1

Reject S2 0 0 0 0 0 +1 +1 +1 0 0 0 0 0 0

Model +1 -1 -1 +1 -1 0 +2 +2 +1 +1 -1 +1 -1 +1

Table 5.1: User-preference model derived from ratings of two solutions S1 and S2

the S1 mode includes positive and negative constraints and the S2 model consists of
positive and neutral elements (see Table 5.1). The overall user model derived from the
combination of the initial ratings and S1, S2 models introduces the new level +2, which
highlights the importance of the friend relationship to the user.

5.4.2 Adaptation of Query Rewriting

Considering the why-empty system architecture introduced in Figure 5.1, the user-
preference model can be integrated in the candidate selector or query relaxer.

Adapting the Candidate Selector To integrate the user-preference model in the can-
didate selector, its priority function has to be adapted. Originally, the candi-
date selector of the why-empty system aims at prioritization of query candidates
which are likely to produce non-empty answers and considers average path car-
dinality and induced cardinality changes as presented in Section 5.3. The first
ranking criterion focuses strongly on cardinalities. Therefore, the only way to

110

5.5. EVALUATION

influence the prioritization of query candidates is to modify the calculation of
cardinality changes. By integrating user preferences, the cardinality changes for
graph elements with positive weights from the user model are annotated with
higher weights. Processing of query candidates with higher cardinality changes
are postponed according to the priority function. After the annotation, all cardi-
nality changes are recalculated and all query candidates in the queue have to be
resorted according to recalculated values. This means that each time a user pro-
vides feedback the cardinality changes have to be updated and query candidates
have to be re-ordered in the priority queue. However, the cardinality change cor-
responds to the second ranking criterion, which is rarely considered. Most of the
query candidates are filtered out already by the first criterion and therefore only
a limited number of query candidates are checked according to the second one.
As a consequence, multiple low-relevant query candidates will not be filtered out.
Therefore, this integration options is less preferable.

Adapting the Query Relaxation To generate query candidates, the query relaxer re-
quires a heuristic to select query vertices and edges for modification. There-
fore, we propose a feedback-based heuristic, which considers the user-preference
model. According to it, elements with lower preference scores are selected first
for the relaxation. Assume a query candidate Qi and user-preference model P .
First, the system extracts the lowest preference score pmin and all query edges and
vertices ∈ Qi for this score pmin. Second, the query relaxation component genera-
tes new query candidates according to them. If there is no e(pmin), v(pmin) ∈ Qi

or no new query candidates were generated, the next lowest preference score
is extracted from the model and the generation is repeated. This recursion ter-
minates if some new candidates were generated or no higher preference scores
exist. Referring to the example in Figure 5.9 and the user integration model in
Table 5.1, first the elements with pmin = −1, then with pmin = 0 are relaxed.

Having integrated user interest, the why-empty engine works as follows: After a user
received an empty-answer, he triggers the why-empty engine to reformulate the origi-
nal query. At each iteration, the produced query candidates are stored in the candidate
queue. The best candidate is extracted from the queue and tested on the delivery of any
answer. After a query explanation with a non-empty result is found the user can rate
it. For each rated solution, a user-preference model is calculated and incorporated in
the overall preference model, which is valid only for relaxation of a specific query. All
model changes are directly considered by the relaxation process. Any heuristic based
only on the cardinality tends to follow a few branches from the relaxation tree. There-
fore, after the calculating a user-preference model, we restart the relaxation process in
order to induce the search along non-used relaxation branches according to the user
interest. The search can be terminated if the desired query refinement is found, the
number of iterations exceeds a predefined threshold, or no better query proposal can
be found.

5.5 Evaluation

In this section, the proposed why-empty engine is evaluated that provides refined query
candidates delivering at least some results as modification-based explanations. We test
the four LDBC and five DBPEDIA failed queries in all experiments, which are described
in Appendix A and whose original cardinalities equal 0. The same queries have already
been used for evaluating the generation of subgraph-based explanations for why-empty
queries discussed in Section 4.5.

111

5.5. EVALUATION

In this evaluation, we mainly focus on the following questions:

• Does the why-empty system discover refined queries delivering non-empty re-
sults?

• Which priority function and relaxation heuristic allow to discover solutions faster
and of better quality?

• How much resources do query-dependent statistics consume?

To answer these questions, we consider the syntactic distance as a quality measure,
which is described in Section 3.2.2 and show how a refined query differs in description
from an original query. As a performance measure, the number of relaxation iterations
is used, which corresponds to the number of executed refined queries. We normalize it
by the maximum number of iterations for a specific experiment per query.

In the following, we first evaluate different functions to order query candidates in
the priority queue of the query selector and choose the top-3 functions from them,
which are used for comparing relaxation heuristics in Section 5.5.1. In Section 5.5.2,
we consider the convergence of the best-performed priority function for first five disco-
vered explanations. In Section 5.5.3, we discuss resource consumption for maintaining
statistics and specifics of the best performing priority function. Finally, we evaluate
integration of a user-preference model in the relaxation process in Section 5.5.4.

5.5.1 Priority Functions of Query-Candidate Selector

In the first set of experiments, we consider different priority functions, which can be
used by the query-candidate selector to prioritize query candidates in the candidate
queue. We compare them against the priority function proposed in this thesis in Sec-
tion 5.3 that considers two criteria, i.e., an average path(1) cardinality and induced
cardinality change.

We conduct this experiment for all nine queries and four relaxation heuristics such
as full relaxation, random, maximum impact, and minimum cardinality, where the two
last heuristics are described in Section 5.1.2. Each experiment is terminated when the
first explanation is found or the time limit of two minutes is exceeded. If no solution
has been discovered, the priority function is annotated with a syntactic distance of 1,
and the maximum number of iterations per query. The goal of this experiment is to
discover the best three priority strategies for the further evaluation in this section. As
follow, we describe the evaluated priority functions.

Evaluated Priority Functions

For this evaluation, we generated 287 priority functions by combining some of seven
criteria including an induced cardinality change, a number of query vertices or edges,
average vertex or edge cardinality, average, or minimal path(1) cardinality. These
criteria characterize the size of queries and cardinalities of specific query elements. We
generate priority functions in such a way that a function may include either average or
minimal path(1) cardinality, but not both of them.

In this evaluation, we consider two general ways for comparing two queries: rule-
and sum-based ones. In the first case, constraints of a priority function are evaluated
sequentially until one of the queries dominates another one. In the second case, rewrit-
ten queries are compared according to all criteria and a total comparison score is used
for sorting the queries. The comparison of two queries according to a single criterion
derives a score, which equals 1 if the first query dominates, 0 if both queries are equal,

112

5.5. EVALUATION

1

10

100

Avg.Edge Cardinality
 & Cardinality Change

Avg.Path(1) Cardinality
 & Cardinality Change

Avg.Vertex Cardinality
 & Cardinality Change

Other

 Priority Function

A
ve

ra
g

e
R

an
k

Relaxation Heuristic Maximum Impact Full Relaxation Minimum Cardinality Random

Figure 5.10: Average rank for priority functions

and -1 if the second query dominates. The scores for all evaluated criteria are aggre-
gated in a total score used for the final prioritization. A positive score means that the
first query dominates over the second one and should be placed ahead in the queue.

In total, we generated 287 priority functions, which are defined as follows:

• 7 single-criterion functions,
• 12 rule-based functions, where each of them considers an induced cardinality

change and one of the six remaining criteria from the list,
• 120 rule-based functions with three criteria, where k = 3, n = 6:

n!

(n− k)!
= 120,

• 60 rule-based functions with three criteria, where k = 3, n = 6 and one of the
criteria is the minimal path(1) cardinality:

k · ((n− 1)!

((n− 1)− (k − 1))!
) = 60,

• 57 sum-based functions with the number of criteria varying from two up to six
from the list, where n = 6:

n∑
k=2

n!

(n− k)! · k!
= 15 + 20 + 15 + 6 + 1 = 57,

• 31 sum-based functions with the number of criteria varying from two up to six
from the list, where n = 6 and one of the criteria is the minimal path(1) cardina-
lity:

n∑
k=2

(n− 1)!

((n− 1)− (k − 1))! · (k − 1)!
= 5 + 10 + 10 + 5 + 1 = 31.

Average Ranks of Top-3 Priority Functions

For comparing priority strategies according to the performance and quality measures,
we calculate a ranking score as an average of the syntactic distance and the number
of relaxation iterations. In order to compare both measures between different queries,
they are normalized per query Q for each priority function priority according to the
feature scaling as follows:

distance′(priority,Q) =
distance(priority,Q)− distancemin(Q)

distancemax(Q)− distancemin(Q)

iterations′(priority,Q) =
iterations(priority,Q)− iterationsmin(Q)

iterationsmax(Q)− iterationsmin(Q)

113

5.5. EVALUATION

We calculate ranking scores for all priority functions and order them ascendingly
such that priority functions with the same ranking score occupy the same position in
the ranking list. Afterwards, we extract the rank for each function as its position in
this list and select three best-performed priority functions that consider two criteria in
a rule-based manner. Each selected function inspects the induced cardinality change
as the second criterion and average vertex, edge, or path(1) cardinality as the first
criterion.

The experimental results for selecting top-3 evaluated priority functions are illus-
trated in Figure 5.10, where the y axis defines the average rank among the queries and
the x axis describes priority functions. We aggregate ranks dependent on used rela-
xation heuristics, which are illustrated by different colors. The best rank is provided
by the priority function that considers average path(1) cardinality as the first criterion.
This function outperforms other best functions by two to three times. Although we
evaluate 287 functions, the average rank is rather small. Referring to the evaluated
functions, most of them consider three comparison conditions. From this observation,
we can assume that multiple priority functions have the same rank and two ranking
criteria are already enough to prioritize refined queries.

Considering relaxation heuristics which are illustrated by different colors in Fi-
gure 5.10, we can conclude that random relaxation should not be used because none
of the evaluated priority functions clearly dominates over other functions. Therefore,
we do not evaluate it in the following experiments. It also can be seen that the influ-
ence of maximum-impact, minimum-cardinality, and full relaxations on the relaxation
process is weaker than the influence of priority functions. Although the full relaxation
shows the best results for average path(1) cardinality it is unstable among other best-
performed functions. This means that the priority function with the average path(1)
cardinality compensates the disadvantages of the large search space induced by the
full relaxation, which cannot be easily done by another priority functions. Maximum-
impact and minimum-cardinality heuristics show the most stable behavior among dif-
ferent priority functions.

To summarize, the priority function that considers average path(1) cardinality with
the induced cardinality change derives the best rank among all evaluated queries,
which is two to three times better than the second and third best priority functions.
A priority function has a higher influence on the relaxation process than a relaxation
heuristic.

Quality and Performance of Top-3 Priority Functions Among Queries

Calculating the rank for priority functions helps us to judge which functions perform
best. However, it hides the quality of produced explanations and the performance of
the relaxation process from us. Therefore, in the following we present results for these
metrics.

In Figure 5.11, the performance and quality measures are provided for all evaluated
queries, where the y axis represents the normalized number of iterations as a perfor-
mance measure and the x axis describes the normalized syntactic distance of discovered
explanations as a quality measure. Relaxation heuristics are distinguished by different
colors. The shape of a point defines a priority function. In addition to using the shapes,
we increase the size of the points for top-3 priority functions.

According to the used relaxation strategies, full relaxation typically requires a high
number of iterations, which can be seen from the red points in the upper right corner. In
the limited amount of time, only a small fraction of experiments delivers queries with

114

5.5. EVALUATION

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Normalized Syntactic Distance

N
o

rm
al

iz
ed

 N
u

m
b

er
 o

f
It

er
at

io
n

s

 Relaxation Heuristic
Maximum Impact
Full Relaxation
Minimum Cardinality

 Priority Function
Avg.Edge Cardinality & Cardinality Change
Avg.Path(1) Cardinality & Cardinality Change
Avg.Vertex Cardinality & Cardinality Change
Other

Figure 5.11: Evaluation results for different priority strategies across evaluated queries

non-empty results. This explains the poor behavior of full relaxation for remaining
priority functions.

In this chart, we can distinguish about 30 groups of points, which correspond in
most cases to the same relaxation heuristic and to those priority functions which behave
very similarly. Referring to our previous discussion about the ranking in Figure 5.10,
the existence of these groups supports our conclusion for a low value of the average
rank. The establishment of these groups can be explained by characteristics of used
priority functions, namely: 180 out of 287 functions compare queries in a rule-based
manner according to three criteria. In many cases, the third criterion is not evaluated
and therefore two criteria are already enough for comparison.

In the chart, we also can see that in most cases the discovered solutions have a
normalized syntactic distance at around 0.6. Only a small part of experiments can
deliver queries of better quality, which is less than 0.25, which can be explained by
existence only of a few queries, which do not require strong modifications in order to
deliver some results.

For most queries, points for the top-3 functions lie in the low part of the figure.
The normalized number of iterations is more than 0.5 only for six points for the top-3
priority functions. Five out of six points correspond to the full relaxation and four out
of six are produced by the third best priority function that considers average vertex
cardinalities.

To summarize, the full relaxation requires a high number of iterations in order to
deliver explanations with non-empty results. Therefore, in the limited amount of time
it may not always produce non-failed queries. In most cases, top-3 priority strategies
deliver non-failed queries quickly at the cost of their reduced quality expressed by high
syntactic distances. In the following, we will analyze the distributions for the quality
and performance metrics of the top-3 priority functions.

Distributions of Quality and Performance Measures for Top-3 Priority Functions

Distributions of the normalized syntactic distances and normalized numbers of itera-
tions are illustrated in Figure 5.12 for the top-3 priority functions and the minimum-
cardinality relaxation strategy. In Figure 5.12a, the best distribution for the syntactic
distance is derived by priority function with the average path(1) cardinality: it has the
lowest median.

115

5.5. EVALUATION

0.00

0.25

0.50

0.75

1.00

Avg.Edge Cardinality
 & Cardinality Change

Avg.Path(1) Cardinality
 & Cardinality Change

Avg.Vertex Cardinality
 & Cardinality Change

 Priority Function

N
o

rm
al

iz
ed

 S
yn

ta
ct

ic
 D

is
ta

n
ce

(a) Distribution of syntactic distance

0.00

0.05

0.10

0.15

0.20

Avg.Edge Cardinality
 & Cardinality Change

Avg.Path(1) Cardinality
 & Cardinality Change

Avg.Vertex Cardinality
 & Cardinality Change

 Priority Function

N
o

rm
al

iz
ed

 N
u

m
b

er
 o

f
It

er
at

io
n

s

(b) Distribution of number of iterations

Figure 5.12: Evaluation results for top-3 priority functions

Considering the normalized number of iterations in Figure 5.12b, we can conclude
that the best performance is also provided by the best-ranked priority function that con-
siders the average path(1) cardinality. This priority function prefers stronger changes
and therefore provides the fastest answer.

To conclude, the best combination of quality and performance can be achieved by
the top-ranked priority function that considers the average path(1) cardinality and in-
duced cardinality change in combination with minimum-cardinality relaxation heuris-
tic. This strategy also provides the most stable behavior in terms of quality and perfor-
mance in comparison with other top-ranked functions.

To summarize, in this evaluation, we test 287 different priority functions, which
can be used to order queries in the query-candidate queue. In addition, four relaxa-
tion heuristics have been evaluated such as full relaxation, random, maximum impact,
and minimum cardinality. According to the results, the most promising priority func-
tions consider consequently cardinality-based properties like average cardinalities for
vertices, edges, or paths(1), and induced cardinality changes of rewritten queries. The
best ranking is exhibited by the strategy with average path(1) cardinality, which out-
performs other top-ranked functions by the factor of two to three. From the priority
functions and relaxation heuristics, the first ones affect the rewriting process stronger
and can compensate a poor behavior of relaxation strategies, if required. The best
combination of quality and performance is achieved by the priority function with the
average path(1) cardinality and minimum-cardinality relaxation strategy.

5.5.2 Runtime Convergence

In this set of experiments, we check whether better explanations with lower syntactic
distances can be delivered right after the discovery of the first one and how the relaxa-
tion process converges. For this purpose, we terminate the relaxation process after the
first five modification-based explanations are found. In this experiment, we evaluate
only the best-ranked priority function that considers the average path(1) cardinality
and three relaxation heuristics including full relaxation, maximum impact, and min-
imum cardinality. The experimental results are provided in Figure 5.13. As quality
measures, we use two metrics such as a syntactic distance described in Section 3.2.2
and its improvement, which is calculated as the difference in syntactic distances bet-
ween the first and the best discovered explanations among the five ones.

In Figure 5.13, the evaluation for the syntactic distance of the best explanation is
represented dependent on its order. The x axis denotes the order of explanations from
1 to 5 and the y axis represents the smallest syntactic distance among the explanations
found until a specific order. A new explanation might have a larger syntactic distance
than previously discovered ones, therefore, Figure 5.13 shows the syntactic distance of

116

5.5. EVALUATION

DBpedia Query 1 DBpedia Query 2 DBpedia Query 3 DBpedia Query 4 DBpedia Query 5

LDBC Query 1 LDBC Query 2 LDBC Query 3 LDBC Query 4
0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Explanation Order

S
yn

ta
ct

ic
 D

is
ta

n
ce

Relaxation Heuristic Maximum Impact Full Relaxation Minimum Cardinality

Figure 5.13: Syntactic distance of first five discovered explanations

the best explanation detected to a particular point in time. In six out of nine cases, a
better candidate can be found with an increasing number of considered explanations.
According to the used data sets, the convergence of DBPEDIA queries happens in three
out of five cases directly with the first discovered query candidate, while for LDBC

queries better solutions can be found later. This different behavior can be explained
by the characteristics of the evaluated queries. Thus, the DBPEDIA queries have fewer
constraints than the LDBC queries and therefore the relaxation space is smaller.

We also analyze how syntactic distances of discovered explanations improve among
different relaxation heuristics in respect to evaluated data graphs. Relaxation heuris-
tics allow to discover better results with time. The maximum improvement achieves
between 24% and 35% for the LDBC queries among different relaxation heuristics. This
improvement is rather limited for the DBPEDIA queries and varies between 0% and
28%.

According to the LDBC queries, the maximum-impact relaxation provides always a
better solution over time with improvement from 5% to 30%. These results show that
this strategy prefers stronger relaxed queries first and postpones less modified ones to
a later point in time, which leads to this improvement.

In contrast, the minimum-cardinality relaxation has 0 as the minimum value. In-
deed, this heuristic produces immediately the best rewriting in seven out of nine cases
and it also provides the largest improvement for the LDBC QUERY 2 as presented in
Figure 5.13, which achieves up to 36%. However, for LDBC QUERY 3 the minimum-
cardinality relaxation does not improve over time.

The third evaluated heuristic, the full relaxation, considers all possible relaxations
at all iterations and has the largest relaxation space among heuristics. Potentially, this
heuristic can provide the best improvement, if all rewritten queries are tested. However,
in this experiment we limit the relaxation process for the discovery of only the first
five solutions. As a result, only a few solutions are processed before the relaxation is
terminated and full relaxation does not provide the best improvement in the limited
time.

To summarize, in this experiment, we investigate the possibility of receiving a better
explanation with a lower syntactic distance if the search is resumed after the discovery
of the first one. We consider the first five solutions for LDBC and DBPEDIA queries and
compare the achieved improvement of the syntactic distance among three relaxation
heuristics. The analysis shows that improvement of a syntactic distance can be achieved

117

5.5. EVALUATION

-0.50

-0.25

0.00

0.25

0.50

LDBC
Query 1

LDBC
Query 2

LDBC
Query 3

LDBC
Query 4

DBpedia
Query 1

DBpedia
Query 2

DBpedia
Query 3

DBpedia
Query 4

DBpedia
Query 5

Query

R
el

at
iv

e
C

h
an

g
e

o
f

 N
u

m
b

er
 o

f
It

er
at

io
n

s

Path Length 2 3

Figure 5.14: Relative change of number of iterations for path(2) and path(3) with respect to path(1)

for queries with multiple attribute and topological predicates such as LDBC queries. For
topological queries such as the DBPEDIA queries, in the most cases the best explana-
tion is discovered directly at the beginning and therefore the syntactic distance is not
improved. This conclusion can also be explained by the small number of constraints
that DBPEDIA queries have and their small sizes. We also test the improvement distri-
bution for different relaxation heuristics. Although the full relaxation might potentially
deliver the best explanations, the achieved improvement is rather small for the limited
number of considered refinements. In contrast, the maximum-impact relaxation gene-
rates more relaxed queries first and therefore the syntactic distance decreases in most
cases with new generated modification-based explanations. The minimum-cardinality
relaxation delivers often the best solution as the first one.

5.5.3 Priority Function with Average Path(1) Cardinality and Induced Car-
dinality Changes

Based on the previous set of experiments, the proposed priority function that com-
pares the average path(1) cardinality and induced cardinality change out-performs
other priority functions. Therefore, in this experiment, we consider memory consump-
tion for storing query-dependent statistics, processing time, and specific parameter n
of this function that shows the length of considered paths. As a relaxation strategy,
the maximum-impact relaxation is used. The priority function is initialized with path
lengths n = 1, 2, or 3. We run this test ten times for each query and path configuration
and represent here the average values. The absolute values are provided in Section B.2.

Path Length

For evaluating the influence of a path length on quality of generated explanations and
performance of the rewriting process, we use the relative change of a syntactic distance
as a quality measure, which is calculated as follows:

change(path(n)) =
distance(path(n))− distance(path(1))

distance(path(1))
(5.7)

The relative change equals 0 means that it is exactly the same like the syntactic distance
derived by considering path(1) cardinalities. In the same way, we calculate the relative
change of a normalized number of iterations, a performance measure, that describes
how performance of the generation process changes by considering longer paths.

According to the evaluation results, the same solution is discovered for all path
configurations for seven out of nine queries and therefore the relative change of a
syntactic distance equals 0 for them. The only exception is the DBPEDIA QUERY 3,

118

5.5. EVALUATION

which solution is better and has a syntactic distance, which is smaller by about 25%
for the path(2) configuration than for the path(1) setup. However, this improvement
comes at additional costs—the number of iterations for this case increases by 50%,
which is illustrated in Figure 5.14.

According to the performance evaluation in Figure 5.14, there are some improve-
ments for two out of nine queries. For the LDBC QUERY 2, the why-empty system re-
quires 25% less iterations for path(2) and path(3) configurations than for the path(1)
setup. For the LDBC QUERY 4, the number of iterations is reduced by about 5% with
respect to the path(1) configuration.

For two cases, LDBC QUERY 2 and DBPEDIA QUERY 3, we see the strongest changes,
because the used path lengths correspond to the query diameter and therefore use the
most available information which can be extracted for the query.

To summarize, for a third of the evaluated queries, the use of increased path lengths
improves either the quality or performance of the query prioritization. This improve-
ment has been seen for those queries, which diameters equal to the used path length,
because the maximum available information about cardinality, which can be extracted,
is used.

Memory Consumption of Query-Dependent Statistics

In addition to the quality and performance of the best priority function, we consider
in this section the resource consumption for storing the query-dependent statistics. We
first describe the memory consumption for the path(1) setup and then its increase by
the use of larger paths.

Query-dependent statistics are populated in two ways: Before the relaxation of a
failed query begins, we initialize the query-dependent statistics by collecting the car-
dinalities for query vertices and edges. During the relaxation process, cardinalities for
paths are stored, which are required by the candidate selector and query relaxer. There-
fore, in this experiment we measure which part of the statistics is occupied during ini-
tialization and how much memory is consumed for storing it by the end of experiments.
The evaluation results show that the largest part of statistics is occupied at runtime for
storing path cardinalities. During initialization at most 40% of the statistics is filled.

We also analyze the size of query-dependent statistics with respect to the size of data
graph for three path lengths. The LDBC data graph occupies 1503.49 MB of memory,
while the DBPEDIA graph consumes only 91.31 MB. If we consider the path length 3,
the query-dependent statistics occupy less than 0.005% of memory required for storing
a corresponding data graph. By considering smaller paths, this number is even smaller
and do not exceed 0.004%.

To summarize, about 60% of the statistics is populated online during the query
rewriting. The consumed memory for storing query-dependent statistics is minor and
does not exceed 0.005% of consumed memory for keeping a data graph.

Response Time Distribution

In this experiment, we consider distribution of the response time if the why-empty
rewriting system uses the best evaluated priority function that considers the average
path(1) cardinality. The absolute numbers for this evaluation are represented in Sec-
tion B.2.

In Figure 5.15, the distribution of response time is shown for nine evaluated queries
and three path lengths. The x axis provides the length of a path, which is used for pri-
oritizing query candidates. The y axis describes the time distribution in percent. The

119

5.5. EVALUATION

DBpedia Query 1 DBpedia Query 2 DBpedia Query 3 DBpedia Query 4 DBpedia Query 5

LDBC Query 1 LDBC Query 2 LDBC Query 3 LDBC Query 4
0

25

50

75

100

0

25

50

75

100

1 2 3 1 2 3 1 2 3 1 2 3
Path Length

T
im

e
D

is
tr

ib
u

ti
o

n
,%

Phase
Statistics Initialization
Online Collection of Statistics

Calculation of Paths(n) Cardinalities, where n>1
Relaxation and Query Execution

Figure 5.15: Time distribution for evaluated queries

generation of modification-based explanations includes the following phases: statistics
initialization, online collection of statistics, calculation of path(n) cardinalities (with
n > 1), and relaxation itself, which also includes the time for checking query candi-
dates on the delivery of non-empty results. The calculation of path(1) cardinalities is
included in the online collection of statistics.

First, statistics initialization requires the least time among the all stages and con-
sumes at most 7% of the time, which can be seen for DBPEDIA QUERY 3. Second, the
longest phase is the relaxation process itself, which consumes from 30% up to 95% of
the total response time. Third, online collection of statistics requires from 1% up to
45% of the response time, where the maximum value is needed for the processing of
the LDBC QUERY 3 that exhibits the maximum number of constraints among all queries.
The path(n) calculation is minor in seven out of nine cases and takes no more than
5% of the processing time. However, its maximum values (about 40%) are shown for
the DBPEDIA QUERY 3 and QUERY 5. This can be explained by the fact, that these two
queries have a limited number of attribute predicates and therefore the cardinalities
of paths, which have to be calculated, are higher than for LDBC queries, which have
multiple attribute predicates.

To summarize, in most cases, the longest time is required for the relaxation pro-
cess itself, which includes query relaxation and execution of the most promising query
candidates. With increasing a path length, the why-empty system consumes additional
time for calculating path(n) cardinalities, which is minor for queries with multiple
attribute predicates. However, for topological queries with only a few attribute predi-
cates, this consumption can grow very strongly with an increasing path length.

To summarize, in this experiment, we evaluate specifics of the best performing pri-
ority function, which considers average path(1) cardinality and induced cardinality
change: the length of a path, the size of query-dependent statistics, and distribution of
response time. The evaluation results show that with increasing the path length, the
number of required relaxation iterations and syntactic distance can be reduced by up
to 25% and 30%, correspondingly. However, the improvement of the syntactic distance
comes at additional costs: the performance reduces by up to 50%. This performance
reduction is observed for the DBPEDIA queries, which include only a few attribute pred-
icates, and therefore, the calculating of path(n) cardinalities is complicated by the high
number of data instances for paths. However, this behavior is not observed for the LDBC

queries with multiple attribute predicates. These conclusions are also supported by the

120

5.5. EVALUATION

time distribution, which show the higher time consumption for DBPEDIA queries and
path(n) calculations. We also consider the size of query-dependent statistics, which
highest amount is collected at runtime and occupies at maximum several kB of mem-
ory, which is a little amount for large data graphs. To conclude, the increase of a path
length can derive better results and faster, if queries include attribute predicates. For
topological queries, the calculation of long paths should be avoided.

5.5.4 User Integration

To evaluate the feedback-based relaxation process proposed in Section 5.4, we use
an automatic approach based on a pseudo-relevance from the information retrieval
research [47]. We run the why-empty system in a general mode (no heuristics are
considered during the query relaxation) and collect the discovered explanations. We
consider the first and second solutions for simulating a user feedback and create in total
six user-preference models for each query and feedback configuration (Reject; Accept;
Reject, Reject; Reject, Accept; Accept, Reject; Accept, Accept).

In this evaluation, we compare two setups for the why-empty system: without and
with user feedback. In the first setup, without user feedback, the why-empty system
uses the maximum-impact relaxation strategy and the best performed priority function,
which considers the average path(1) cardinality and induced cardinality change. In the
second setup, with user feedback, the why-empty system selects elements for relaxa-
tion based on the feedback-based strategy. For this purpose, it first relaxes the query
according to the setup without user feedback and collects one or two explanations with
non-empty answers. A user-preference model is derived from them and the relaxa-
tion process is re-launched such that the why-empty system modifies an original query
according to the created model.

We use the appearance order of the explanations as a performance measure and an
aggregated score (relevance) of the solutions as a quality measure. The relevance of a
modified query is an aggregated weight of the edges and vertices it consists of, which
are extracted from the corresponding user-preference model. The relevance ∈ [0, 1] is
normalized to the maximum relevance score an explanation can have.

Two sets of experiments are conducted for three LDBC queries, which include LDBC

QUERY 1, LDBC QUERY 2, and LDBC QUERY 4 described in detail in Section A.2. In
the first set, only one successfully modified query is rated as accepted or rejected and
therefore two user-preference models, Accept or Reject, are calculated. In the second set,
both explanations are rated according to the four user-preference models, i.e., Reject,
Reject; Reject, Accept; Accept, Reject; Accept, Accept. In total, we execute 18 tests: 6 of
them in the first setup and 12 runs in the second setup. All experiments are interrupted,
after the first 100 query candidates are tested on the delivery of non-empty results.

Figure 5.16 shows the average relevance among evaluated queries on the y axis in
respect to six user-preference models. The light gray bars correspond to the experi-
ments running without user feedback according to the first setup described above. The
dark-gray bars illustrate relaxations in the second setup, when a user-preference model
is considered. According to this evaluation, by using a user feedback we can generate
more relevant modification-based explanations for users. The relevance improvement
achieves up to 25% for Accept, Accept and Reject, Accept user-preference models. No
improvement is obtained in average for the Reject user-preference model.

Some additional experimental results are provided in Section B.1 including run-
time evaluation of relevance and relevance distribution for discovered explanations
and query candidates. All results are presented in respect to evaluated queries and
user-preference models.

121

5.5. EVALUATION

0.0

0.2

0.4

0.6

0.8

Accept Accept, Accept Accept, Reject Reject Reject, Accept Reject, Reject

 User-Preference Model

A
ve

ra
g

e
R

el
ev

an
ce

 o
f

E
xp

la
n

at
io

n
s

Consideration of User Feedback during Relaxation No User Feedback Considered With User Feedback

Figure 5.16: Relevance distribution of discovered explanations

In this evaluation, we consider user ratings for discovered query solutions in order
to adapt the relaxation process dependent on the user preferences. According to the
evaluation results, we can conclude that user feedback facilitates early discovery of
user-relevant modification-based explanations for the empty-answer problem. The best
improvement of the relevance is derived if a user rates several successfully modified
queries and achieves up to 25% for two user-preference models such as Accept, Accept
and Reject, Accept. Combining ratings of several solutions creates a fine-granular user
model, which facilitates a more gradual selection of query elements for relaxation.

5.5.5 Evaluation Summary

In this section, we evaluated the why-empty system for generating modification-based
explanations according to several features including a priority function, a relaxation
heuristic, and user integration. As the best performing priority function, we considered
the function that inspects two criteria for prioritizing query candidates in the candidate
selector: an average path(1) cardinality and induced cardinality change. In general,
this function leads to a fast discovery of solutions.

According to a relaxation heuristic, the best distributions of syntactic distance and
number of relaxation iterations were achieved by the minimum-cardinality heuristic
in conjunction with the best performed priority function. This heuristic also provides
the most stable behavior among top-3 priority functions. To summarize, for evalua-
ted queries, the why-empty engine generated the best modification-based explanations
in a time frame of two minutes if it used the best performed priority function with
average path(1) cardinality and induced cardinality change and minimum-cardinality
relaxation strategy.

Considering the best priority function, we also tested its parameter n that describes
the path length and resource consumption such as response time and memory for sto-
ring query-dependent statistics. The use of large paths can lead to a faster generation
of modification-based explanations. However, the calculation of large paths resulted in
longer response times and therefore should be omitted.

Although all proposed optimizations improved the performance of the relaxation
process, they can potentially deliver non-interesting explanations to a user. There-
fore, we also evaluated the use of user feedback in the relaxation process based on six
user-preference models derived automatically from ratings of one or two successfully
modified queries. The evaluation results showed that the relevance of solutions could
be improved in average by up to 25% if two solutions were rated.

122

5.6. SUMMARY

5.6 Summary

In this chapter, we proposed the why-empty engine for rewriting queries delivering
empty results. The presented system conducts an A*-search, where new candidates are
generated from the failed query by removing vertices, edges, and their properties. The
refined queries are stored in a priority queue. The most promising query candidate
extracted from the queue is checked on the delivery of a non-empty answer. If a new
query failed it is relaxed and the process is repeated until a non-failed rewritten query
is discovered.

The proposed method is optimized in several ways. First, only limited search space
is considered by relaxing the failed query. Second, query candidates are checked on
the delivery of some answers according to their promise to deliver non-empty results.
Third, the system maintains query-dependent statistics that allow to store and reuse
already queried cardinalities.

In this chapter, a short overview how to integrate a user into the refinement pro-
cess was also given, which allows to steer the search according to an estimated user-
preference model. This model can be easily integrated with above presented optimiza-
tions for the user-aware relaxation.

The why-empty engine can also be potentially used for answering why-so-few and
why-so-many queries by removing the most specific or general query parts, correspond-
ingly. However, it has been optimized for why-empty queries and does not have a
strong focus on a specific cardinality threshold. In addition, this system provides a
coarse-grained rewriting and does not consider specific predicate changes. Therefore,
in the following we go one step further and propose fine-grained changes in attribute
descriptions of a failed query for why-so-few and why-so-many queries.

123

6
Fine-Grained Cardinality-Driven
Query Modification

In Chapter 4, we discussed how to generate subgraph-based explanations for why-
queries and proposed two algorithms: DISCOVERMCS and BOUNDEDMCS. While DIS-
COVERMCS focuses mainly on solving the empty-answer problem, BOUNDEDMCS con-
siders the cardinality threshold and therefore is more appropriate for too-few- and
too-many-answers problems. Both approaches are coarse-grained and take only the
topology of a query graph into account. As subgraph-based explanations, both of them
deliver differential graphs, which represent that query parts which can be discarded
from the original query in order to receive a better number of results and therefore can
be used as an upper bound of a syntactic distance for generating modification-based
explanations.

In Chapter 5, we proposed the next debugging step: a modification-based approach
for why-empty queries that in addition to topological modifications considers coarse-
grained predicate removals. According to this proposal, the originally failed query is
modified by removing its subgraphs or predicates without considering fine-granular
modifications of predicate values. Although such changes can be applied to all why-
query types, this approach does not consider the cardinality threshold and is more
appropriate for why-empty queries.

Therefore, in this chapter we will go one step further and propose a method to gene-
rate topology- and predicate-aware modification-based explanations, which considers
the cardinality threshold and supports fine-grained topological and predicate changes.
First, we give a general overview about the modification process in Section 6.1 and
introduce an operational representation for graph queries, which serves as a base for
query refinement, and a modification tree for tracking the rewriting process. We de-
scribe in detail the modification in Section 6.2 and several pruning techniques, which
are used during query modification in Section 6.3. Finally, the proposed techniques are
evaluated in Section 6.4.

6.1 Predicate- and Topology-Aware Modification Process

If a query delivers unexpectedly too few or too many answers, it can be rewritten by
changing its structure or predicates in such a way that the size of a result set increases
or decreases. In this section, we give a general overview about such a modification ap-
proach that supports both topological and predicate changes in order to deliver results

125

6.1. PREDICATE- AND TOPOLOGY-AWARE MODIFICATION PROCESS

Query

Manager

Modification Tree

1

2

3

query Qo

execute query Qi

data subgraphs, operational graph

initialize tree,

query Qo,,

operational graph

12
query Qi

data subgraphs

13

Query Modifier

4 query Qi,, operational graph

5b

query Qi,,

operational graph

7 modify query at position

8 extract query

from position

10

consult histograms

11 intervals

adapt tree

9

extend with query Qi,,

operational graph

5aoutput

Cardinality

Checker

position

6

Figure 6.1: Modification process for why-so-few and why-so-many queries

.

of a better size with respect to a given cardinality threshold. In addition, we introduce
two new concepts, which are extensively used by the proposed method: an operational
representation of a graph query and a modification tree for storing executed changes.

6.1.1 General Modification Process

The rewriting procedure is presented in Figure 6.1. It is maintained by the query ma-
nager, which receives an original query from a user and redirects it to a graph database
that executes it and returns matching data subgraphs together with the operational
graph of a query. An operational graph is a representation of a query graph that descri-
bes how a query has been processed and is annotated with corresponding cardinalities.
We describe how to construct it in detail in Section 6.1.2.

As a next step, the cardinality checker tests the size of a given result set and takes
a decision, whether the query has to be modified. In case the result corresponds to
a cardinality threshold, data subgraphs can be outputted to a user and the modifica-
tion process terminates. Otherwise, the modification tree is initialized that is a data
structure for tracking applied changes to a query. How to construct and maintain a mo-
dification tree is described in detail in Section 6.1.3. The modification tree is extended
with a failed query and its operational graph, and a position of a query in the tree is re-
turned to the cardinality checker, which triggers the creation of a new query candidate.
For this purpose, the query modifier extracts a query from a specified position of the
modification tree and rewrites it by consulting a graph database and adapting the mo-
dification tree. This process of generating a new query candidate is described in detail
in Section 6.2.2. Finally, a produced query is redirected to the query manager which
repeats the process if necessary. The modification terminates if a query, which delivers
a required number of results is found or no new query candidates can be produced.

126

6.1. PREDICATE- AND TOPOLOGY-AWARE MODIFICATION PROCESS

Operator Abbreviation Relational Algebra CYPHER

getVertices(vertex) GV (vi) σ, π (label : {properties})

traverse(path(h)) TR(ej , h) σ, ./ source− ()→ target

filterPath(path(h)) FP (ej , h) σ, π [: type{properties}]

filterSource(path) FS(ej) σ, ./ (label : {properties})→ []

filterTarget(path) FT (ej) σ, ./ []→ (label : {properties})

join(path,path) join(ej , ek) ./ multiple traversals

Table 6.1: Graph processing operators used in operational graphs

To summarize, the modification process is implemented as an iterative procedure,
which intensively uses a modification tree and operational graphs.

6.1.2 Operational Graph-Query Representation

Before discussing how to generate modification-based explanations for why-so-few and
why-so-many queries, in this section we introduce one additional representation of
graph queries, an operational graph, which serves as a base for fine-grained query
modifications.

In this thesis, we have already discussed two representations of graph queries for
the property-graph model. The first one expresses a query as a property graph itself
with vertices and edges, which are annotated with predicates for attribute values. This
is the native representation for queries over property graphs. This model is described in
detail in Section 3.1.1 and extensively used for traversing query graphs and generating
subgraph-based and modification-based explanations in Chapters 4 – 5.

The second representation, the set-based model provided in Section 3.2.2, models
a query as a set of vertices and edges, which are sets of their predicates. This concept
is extensively used for calculating a syntactic distance between two graph queries and
for judging the quality of generated explanations.

While the property-graph and set-based representations provide general and de-
tailed query descriptions, respectively, they lack information about how a query is pro-
cessed in a database, which database operators are used, and how they depend on
each other. In other words, what is still missing is a query processing model that shows
which database operators in which order extract matching data subgraphs from a data
graph. We will use this model as a base for query modification in order to discover a
query, which delivers results of a better cardinality.

The query processing model is an operational graph with nodes describing database
operators and edges between them illustrating the propagation of operator results
bottom-up along it. During the execution of this graph, each node is annotated with
its selectivity and output cardinality. The operational graph processes the data graph
starting from the bottom nodes. The input for each operator on the bottom of the
operational graph is a data graph and the output is a set of data subgraphs.

For the property-graph model, we consider the following operators: acquiring data
vertices (paths) according to the queried vertex (path), path traversal, filtering of a
path, a source, and a target, and joining several paths. Table 6.1 describes a complete
list of these operators, which provide general functionality required for pattern match-

127

6.1. PREDICATE- AND TOPOLOGY-AWARE MODIFICATION PROCESS

v2: type = university

v4: type = person

gender = male

nationality = Chinese

v3: type = city

name = Berlin

e1: workAt

sinceYear = 2003 e2: locatedIn

e3: studyAt

v1: type = person

name = Anna

(a) Example query

GV(v1) GV(v2) GV(v3) GV(v4)FP(e1,1) FP(e2,1) FP(e3,1)

TR(e1,1)

FT(e1)

join(e1,e2)

TR(e3,1,back)

join(e1,e2,e3)

FT(e2) FT(e2)

TR(e2,1)

(b) General operational representation

σ(v1) σ(v2) σ(v3) σ(v4)σ(e1) σ(e2) σ(e3)

(v1,s1)

(t1,v2)

(s2)

t1,t2)

(t3)

(t1,s3)

(v2,t2) (v2,s3)

(c) Relational-algebra representation

(v1) (v2) (v3) (v4)[e1] [e2] [e3]

(v1)-[e1]

p1:(v1)-[e1]->(v2)

p1->(output)->p2

(output)<- p3

p2:(v3)-[e2]->(v2) p3:(v2)<-[e3]-(v4)

(v3)-[e2] [e3]-(v4)

(d) NEO4J representation

Figure 6.2: Example query and its operational representations

ing. All operators have parameters vertex and path(h) that denote a query vertex or
a path of length h with predicates for attribute values and types.

Example In this example, we describe the mapping between general operators of an
operational graph and operators of two mostly-used graph-processing engines: RDBMS

and the NEO4J database which are also given in Table 6.1. While RDBMS providing
a graph abstraction allow to process graph and relational data together, the NEO4J

database is one of the most popular graph databases implementing the property-graph
model. For RDBMS, we represent corresponding operators of relational algebra. For the
NEO4J database, we provide operators of the CYPHER language [146] that is one of
the first query languages delivered by native graph databases, which is currently used
as a base for a graph query language standardization. Assume the pattern query in
Figure 6.2a consisting of four vertices and three edges. Figure 6.2b shows the canonical
operational graph consisting of operators from Table 6.1. We substitute the general
operators with the operators from the linear algebra in Figure 6.2c and from CYPHER in
Figure 6.2d. The query language CYPHER implemented in the NEO4J database belongs
to the class of traversal-based languages, where the discovery of subgraphs is tightly
coupled with the order of path and vertex descriptions in the query. The result of the
query is denoted as output in Figure 6.2d.

As we can see, the proposed operational graph is general enough to be used across
GDBMS and RDBMS, which provide a graph abstraction. In the example above, we
demonstrate its appliance to RDBMS and NEO4J database. In order to use an operational
graph for query rewriting, we need to annotate it with output cardinalities of its nodes.
We characterize each node also with its selectivity sel(node) that is calculated from its
input and output cardinalities:

sel(node) =
C(node)∏|children|
i=1 Ci

, where (6.1)

Ci denotes the input cardinality of its i-children and Cnode describes the output cardi-
nality of the node.

128

6.1. PREDICATE- AND TOPOLOGY-AWARE MODIFICATION PROCESS

To summarize, in this section we propose the operational graph for pattern match-
ing queries, which consists of graph processing operations required to produce a set
of data subgraphs from a data graph, which match a given pattern. The operational
query model considers dependencies between different operators and serves as a base
for generating fine-granular modification-based explanations. The second important
aspect of the rewriting process is a modification tree, which is illustrated on the bottom
in Figure 6.1 and described in detail as follows.

6.1.3 Modification Tree

In order to maintain the modification process, we require the possibility to keep exe-
cuted changes along with cardinality alterations they produce. For this purpose, the
modification process stores all information in a data structure called modification tree.
The root of the tree describes the initialization of the modification process and there-
fore it keeps the operational graph of an original query. Each node of the modification
tree denotes a single iteration in the modification process and corresponds to a single
change applied to a query of a parental node. Along each branch, every operator of
an operational graph appears only once. This property guarantees the termination of a
modification process. Nodes of a modification tree keep the following information: a
modified operator from an operational graph and a corresponding refined query with
its operational graph. Traversing a modification tree top-down, we can collect all mo-
difications and track corresponding cardinality changes applied to an original query in
order to deliver a refined one at a destination node of a modification tree.

A modification tree supports several operations: extension, backtracking, pruning,
and finalization. During extension, a new node is appended to a modification tree,
which includes the last modified operator from an operational graph, a modified query,
and its operational graph. Finalizing a tree branch means that a modification tree
cannot be further extended at a current branch. Backtracking triggers traversing a
modification tree bottom-up from a current position by a given number of changes. It
also implies finalization of backtracked branches. Pruning rejects given modifications
and forbids the refinement of corresponding operators from an operational graph on
later iterations. It can also imply backtracking and finalizing tree branches.

Extension of Modification Tree

At initialization, the modification tree consists only of a root node that represents an
operational graph of an original query annotated with selectivities and cardinalities. In
each rewriting iteration, a modified operator is appended to a modification tree.

To extend the modification tree with a new node, the following steps are executed.
(1) It should be decided which problem has to be solved: too few or too many answers.
For this purpose, the cardinality difference between the last modified query and the
cardinality threshold is calculated. (2) The non-processed leaves of the operational
graph are extracted from the operational graph of the last modified query according to
the problem to solve, which was determined at the previous step. Extracted operations
are stored in a FIFO queue. (3) The first operator is extracted from the queue to extend
the modification tree.

The main extension step implies extraction of operations from an operational graph
according to a problem definition. For the too-many-answers problem, the operational
graph is traversed top-down along the branches with higher selectivity values first and
the leaves are collected according to the traversal order. For the too-few-answers prob-
lem, the branches with lower selectivity values are processed first. Some nodes in the

129

6.1. PREDICATE- AND TOPOLOGY-AWARE MODIFICATION PROCESS

GV(v1) GV(v2) GV(v3) GV(v4)FP(e1,1) FP(e2,1) FP(e3,1)

TR(e1,1)

FT(e1)

join(e1,e2)

TR(e3,1,back)

join(e1,e2,e3)

FT(e2) FT(e2)

TR(e2,1)

0.5

0.4

0.80.2 0.3

0.2

0.8

0.1 0.3 0.2 0.1 0.05 0.4

0.2 0.5

Too Few Answers
Too Many Answers

Too Few Answers

Too Many Answers

GV(v1)GV(v2) GV(v3) GV(v4)FP(e1,1) FP(e2,1) FP(e3,1)

GV(v1)GV(v2) GV(v3)GV(v4) FP(e1,1)FP(e2,1)FP(e3,1)

(a) Extraction of operator queues
GV(v2)

GV(v1) GV(v3) GV(v4)FP(e2,1) FP(e3,1)

FP(e3,1)GV(v1) GV(v3)FP(e2,1)

GV(v4)GV(v3)FP(e2,1) FP(e3,1)

GV(v4) FP(e3,1)

GV(v4) FP(e3,1)

GV(v4)FP(e3,1)

FP(e1,1)

GV(v4)

GV(v3)

(b) Modification tree for too-few-answers problem

Figure 6.3: Construction of modification tree for running example

operational graph can have several parents. To ensure the node uniqueness along each
branch of the modification tree and termination of the search, each node is represented
only once in the extracted queue.

For query modification, a single node is extracted from the queue and modified in
the query. A produced refined query is executed and stored together with its operational
graph in the modification tree.

To extend the modification tree vertically, the first operation from the queue is
extracted. To extend the modification tree horizontally, operators are used from the
second and larger positions of the queue.

130

6.2. GENERATION OF MODIFICATION-BASED EXPLANATIONS

Example The modification tree is constructed online and therefore its structure
and size depend on which concrete problem has to be solved at a specific point in
time: the too-few- or too-many-answers problem. Assume the operational graph with
the assigned selectivities in Figure 6.3a for our example query in Figure 6.2a. On
the bottom in Figure 6.3a, the created queues are presented for the too-few- and too-
many-answers problems. A part of a potential modification tree for the too-few-answers
problem is depicted in Figure 6.3b.

To summarize, the modification tree allows us to track changes applied to the query
and cardinality fluctuations of corresponding operational graphs and to reject unneces-
sary changes by discarding some search branches and backtracking. In the following,
we will describe the overall modification process, which maintains a modification tree
at runtime.

6.2 Generation of Modification-Based Explanations

The proposed operational graph describes how different database operators are con-
nected with each other and how they influence the output cardinality. For example in
Figure 6.2b, the top operator corresponds to join(e1, e2, e3), whose output cardinality
represents the result cardinality. An operational graph is constructed and annotated
with cardinalities and selectivities during the query execution. On the bottom of the
operational graph, all extraction operators are situated for filtering paths and acquiring
vertices. In order to improve the output cardinality of a query, we have to change the
output cardinality of the root of an operational graph that depends on all operational
nodes below it. This can be done in two ways: we can consider topological or predicate
changes. All applied changes have to be propagated along the operational graph to the
root and modify selectivities and cardinalities of its nodes on the way. The modifica-
tion of predicates implies changing the leaves of the operational graph, which describe
predicates for attribute values and types. The question here is how and in which order
to modify the leaves. For the topological changes, some nodes of the operational graph
and connections between them can be removed, which can be modeled by changing
their selectivities and cardinalities.

To summarize, by designing an algorithm for generating fine-grained modification-
based explanations, several observations have to be taken into account:

1. Any change applied to the operational graph should propagate to its output node
and all non-contributing modifications have to be rejected in order to keep the
syntactic distance minimal.

2. The structure of the operational graph has to be considered in order to take ad-
vantages of known dependencies.

3. The query modification process has to be adapted according to rejected changes
and current output cardinality.

To guarantee these properties, the algorithm has to be able to track the applied
changes and to reject them if necessary. For this purpose, we construct an adaptive
modification tree at runtime described in Section 6.1.3, which consists of modified leaf
operators from the operational graph, and permits backtracking along it with prohibi-
tion of non-propagating changes. Each node of the modification tree is unique in the
scope of a single branch and is annotated with its corresponding query candidate and
operational graph. We have already presented the properties of a modification tree
and supported operations in Section 6.1.3. Therefore, as follows in Section 6.2.1, we
discuss in detail the backtracking procedure for query rewriting and change of query
predicates in Section 6.2.2.

131

6.2. GENERATION OF MODIFICATION-BASED EXPLANATIONS

Algorithm 11 TRAVERSESEARCHTREE Algorithm

Input: modified query G′q, number of tracked changes N
Output: number of pruned changes counter
Global Variables: original query Gq, best refined query Gbest

q , cardinality threshold
Cthr, modification tree tree, prohibited changes prohibited, threshold for syntactic
distance, processed prefixes prefixes

1: // 1. Check rejection and acceptance conditions, track best candidate

2: if syntactic distance between G′q and G′′q > threshold then
3: finalize branch
4: return N
5: prefix← calculate prefix for G′q
6: if prefix ∈ prefixes then
7: finalize branch
8: return N
9: dataSubgraphs← execute G′q

10: if |dataSubgraphs| satisfy Cthr then
11: Gbest

q = G′q
12: finalize branch
13: return 0

14: if cardinalityDistance between Gq and G′q < cardinalityDistance between Gq

and Gbest
q then

15: Gbest
q = G′q

16:

17: // 2. Ensure propagation of changes or backtrack tracked changes

18: position← extend tree with G′q
19: trackedChanges← extract N last changes from tree
20: queue← extract non-changed elements for G′q from Gq and prohibited
21: if trackedChanges have non-processed neighbors ∈ queue then
22: reorder queue according to trackedChanges
23: increment N
24: else if trackedChanges are non-propagated then
25: return N
26: else
27: N = 0

28:

29: // 3. Modify query graph by recursive call - traverse modification tree

30: while queue 6= ∅ do
31: node← extract from queue
32: if G′q can be modified with node then
33: G′′q ←modify G′q with node
34: increment N
35: counter ← TRAVERSESEARCHTREE (G′′q , N)
36: if solution found then return 0

37: // 3a. Prohibit branch

38: if counter > 1 then
39: prune node in tree
40: prohibited← insert pruned node
41: return counter − 1

42: else
43: prohibited← insert non-modifiable node
44: return 0

132

6.2. GENERATION OF MODIFICATION-BASED EXPLANATIONS

6.2.1 TRAVERSESEARCHTREE Algorithm

In Algorithm 11, the TRAVERSESEARCHTREE algorithm is described, which explores
the modification tree and operational graphs of already processed modified queries
and implements the search properties for generating modification-based explanations
described above. This is an iterative backtracking procedure that ensures change pro-
pagation and prohibition of non-contributing changes. It requires a modified query and
the number of tracked changes, which are not propagated. The following global data
structures are used: an original query, a cardinality threshold, a modification tree, a set
of prohibited changes, a best refined query, a threshold for the syntactic distance, and
already processed prefixes. The procedure includes three important steps: rejection
and acceptance of a query candidate, change propagation, and query modification.

(1) Rejection and Acceptance of Query Candidates

After an improved query version is generated, we check whether it and its subsequent
tree branch can be rejected from the search. Rejection prevents (1) the evaluation of
too strongly modified queries and (2) repetitive consideration of similar candidates.
For this purpose, at line 4 in Algorithm 11, both original and rewritten queries are
considered as sets and a syntactic distance between them is calculated as an average
set-set distance of their vertex and edge subsets. A set-set distance of each subset is
modeled as a modified Hausdorff distance [45]. If the calculated distance exceeds the
predefined threshold for the syntactic distance, the modified query is rejected and the
corresponding branch of the modification tree is finalized. The algorithm traverses one
step back and the query modifier extracts a query candidate from a new position in the
tree and generates a new candidate along the neighboring branch. In our setup, we
prevent changes, which result in 50% difference from the original query. This condition
effectively reduces the depth of the modification tree.

If the syntactic distance of a refined query satisfies a predefined threshold, the query
modifier checks whether a similar candidate has already been processed at line 8 by
comparing the query with prefixes of already evaluated queries. A prefix represents
the unique name of a changed node from the operational graph. Thus, each query
candidate can be identified by the sum of its prefix hashes. During modification, we
collect all these values and check prefix hashes for all new candidates against cached
ones. If the same hash sum exists, a similar candidate has been already processed
and this candidate can be rejected. This process called a prefix optimization allows
us to effectively limit the size of the modification tree. Originally, the backtracking
has a worst-case complexity of O(N !), where N = |V | + |E|. The proposed prefix
optimization allows to reduce it up to O(2N). Although this complexity is high, it is
effectively reduced by other optimizations, which we present in the following.

After the rejection test, a refined query is sent to the query manager, which trig-
gers its execution and redirects the query with its operational graph to the cardinality
checker to test the delivery of the required amount of data subgraphs at line 10 in Al-
gorithm 11. If the root cardinality of the operational graph matches Cthr, the query is
accepted, the search is terminated, and query results are delivered to a user. Refined
queries with empty results are assumed to be modified too strongly and are rejected
because instead of refining original query results they discard all of them.

After the acceptance test, we analyze whether the query result has a smaller car-
dinality delta to a cardinality threshold than all previously evaluated query candidates
and can be stored as the best candidate at line 14.

133

6.2. GENERATION OF MODIFICATION-BASED EXPLANATIONS

(2) Change Propagation

If after the rejection and acceptance tests, the rewritten process is still running, the
cardinality checker extends the modification tree with the evaluated query and its ope-
rational graph and redirects a corresponding position in the tree to the query modifier,
which has to control whether the changes applied by the tracked operations caused
a cardinality change. For this purpose, those operators are extracted from the queue
of a corresponding position in the tree, which were not modified in the query and not
pruned by previous rewritings. In addition, the tracked operations are derived from the
modification tree whose changes did not affect a query output cardinality and whose
propagation has to be guaranteed at lines 21 – 27.

To ensure the change propagation and to optimize the search, the next branch of the
modification tree is selected based on two conditions: (1) whether the search direction
has changed (from too-many to too-few and vice versa) and (2) whether some tree
branches have been prohibited. For this purpose, the query modifier tracks the highest
element in the operational graph, which exhibits a cardinality change. If there are
some operators, whose modifications can force this highest operator to propagate its
cardinality change up the graph, they are prioritized and the queue of non-changed
elements is reordered. Otherwise, the tracked changes are pruned and backtracking is
triggered according to the number of tracked changes. The check is conducted online
to react to the modification tree adaptation, which is described in detail in Section 6.3.

(3) Query Modification with Branch Prohibition

After the queue of non-modified operators has been adapted at line 22 in Algorithm 11,
the backtracking algorithm resumes by traversing along each modification-tree branch
to discover the best query candidate at lines 30 – 43. The first node is extracted from the
queue and modified if possible. If its output cardinality has been successfully changed,
the query is rewritten by adapting node inG′q and traversing the modification tree down
the branch at lines 33 – 35. Non-modifiable operators are pruned for any following
modification at line 43 and the next branch from the queue is traversed (see line 30).
If some changes have to be pruned, the corresponding operators are removed from the
modification tree and stored as prohibited ones at lines 38 – 41.

To summarize, the cardinality-driven modification process is modeled as a backtrac-
king procedure along the modification tree, which reduces the search space by pruning
non-progressing branches. The search begins at the root (no changes to the original
query are done) and constructs the modification tree online by inserting modified nodes
from the operational graph and prohibiting the non-propagating branches. During the
modification process the best query candidate is stored and compared against each new
one.

In this section, we have already presented three ways to reduce the search space
such as the rejection of query candidates with large syntactic distances or delivering
empty results and prefix optimization. In the following, additional strategies for prun-
ing the search space will be introduced, namely: adaptive construction of a modifi-
cation tree and prohibition of a tree branch. Before discussing them, the core of the
rewriting process, the generation of a new query candidate, will be described in detail.

6.2.2 Generation of New Query Candidates

In the previous sections, we discussed the overall modification process, which is a
backtracking procedure allowing to prohibit non-propagating changes and to revert

134

6.2. GENERATION OF MODIFICATION-BASED EXPLANATIONS

�

(a) Initialization (b) Filtering (c) Rejection

Figure 6.4: Interval modification

changes. The key component of this procedure is the modification of a specific opera-
tor from the operational graph as presented in Algorithm 11 at line 33.

To produce a new query candidate, the following input is required: (1) a previ-
ous query candidate with its result cardinality, which has to be improved and (2) an
operational node, which has to be modified. In total, there are two kinds of changes,
which can be applied to a query: predicate and topological changes. Any removal of
operational leaves deletes the corresponding graph elements and all dependent nodes
in the operational graph. Therefore, the system first tries to change only predicates of
the given operational node. If it was unsuccessful, topological changes are applied.

Predicate Modification

To change predicates of an operational leaf, first we have to calculate a cardinality
distance to the cardinality threshold. This measure describes a delta cardinality that has
to be removed or introduced in a result cardinality. For a positive cardinality distance,
a query extension is triggered; otherwise, its restriction is performed.

Second, we refine a corresponding vertex or path according to the cardinality dis-
tance. For this purpose, equi-width attribute histograms are constructed offline be-
fore the modification process starts. The histograms are built for all edge and vertex
attributes in the data graph and describe cardinalities of attribute values [115]. An
extension is achieved by adding new values for predicate attributes or types via their
disjunctions according to the set-based model described in Section 3.2.2. The restric-
tion removes some predicate values from the query. Here, the query generator has to
take the main modification decision: which values have to be removed or attached to
a predicate. For this purpose, the attribute histograms are consulted as follows.

Interval Extension Let Ci be the result cardinality of query Qi and Cthr be the cardi-
nality threshold. Cardinality distance ∆C = Cthr − C(Qi) describes which cardinality
has to be acquired from equi-width histogram H(a,w) for attribute a and step size w.
The solution for this task is a list of the most similar intervals anew ∈ H(a,w), whose
aggregated cardinality max(

∑
C(anew)) ≤ ∆(Ci, Cthr). To acquire a list of new values

based on histogram H(a,w) shown in Figure 6.4a, intervals aexist ∈ H(a,w), already
used in query Qi, are skipped and new intervals anew are chosen from H(a,w) by ap-
plying the maximum subset algorithm like shown in Figure 6.4b. A modification is
rated as successful if the output cardinality of a node changes. To rate the rewriting,
the query generator constructs a simple getVertex(vertex), filterPath(path(n))

query. If the new cardinality differs from its old value, query Qi is extended by se-
lected predicate intervals anew. Otherwise, the intervals are rejected and new values
are chosen from the histogram (see Figure 6.4c).

135

6.2. GENERATION OF MODIFICATION-BASED EXPLANATIONS

Interval Restriction If Ci > Cthr then those values are filtered out from aexist, whose
aggregated cardinality max(

∑
C(aexist)) ≤ ∆(Ci, Cthr). In contrast to the extension

process, only those intervals are considered in H(a,w), which exist in query Qi. We
also support rejection and iterative acquisition of values for the restriction, if the modi-
fication causes no cardinality change.

In general, the number of iterations for acquiring or removing attribute values can
be limited by a user-defined number of iterations, a used point-point distance d (see
Section 3.2.2), or it lasts until all the values from the histogram are studied. The use of
a point-point distance has the advantage that only the values with the shortest distances
to already used attribute values are selected. Thus, it also facilitates the discovery of the
most similar query candidates. In this thesis, we interrupt this process, when at least
one of the following conditions evaluates truly: (1) The number of iterations exceeds
the half of the query size expressed by its total number of edges and vertices, (2) The
derived interval is shorter than the half of the original one for an interval restriction, or
(3) The derived interval is twice as large as the original one for an interval extension.
The last two conditions prevent predicate changes, which are stronger that 50%.

Each vertex or edge can have predicates for multiple attributes. If a predicate
change did not influence the output cardinality of the operational node, a predicate for
another attribute is chosen for the modification. The predicate order for the evaluation
is determined by output cardinalities of predicates. For the too-many-answers problem,
predicates with higher output cardinalities are first evaluated. For the too-few-answers
problem, predicates with low cardinalities are adjusted ahead.

If individual modifications of all single predicates were not successful, predicates
for several attributes are evaluated all at once. For this purpose, the predicates are
changed only once and new one are involved stepwise until the rewriting is successful
or there are no further predicates for refinement. If the conducted modification did not
change the output cardinality of an operational node, it is changed topologically.

Topological Modification

Topological modification involves the deletion of an operational node together with
its dependent nodes. To remove a getVertices(vertex) operational node, we need to
discard all filterPath(path(h)) nodes for adjacent edges. For a filterPath(path(h))

operational node, those getVertices(vertex) nodes for incident vertices have to be
removed which have only this path.

The topological change is modeled as an assignment of any vertex or any path to
an operational node. In this case, the affected leaves are annotated with the selec-
tivity 1 and their output cardinalities correspond to the number of data vertices for
getVertices(vertex) and the number of data edges for filterPath(path(h)) ope-
rators. The structure of an operational graph remains unchanged, which allows us to
model the search if there would be no topological changes. Removing any leaf affects
also the operational nodes on the upper levels. Any upper node has at most two chil-
dren. If both children have selectivity 1 then the upper-level node is annotated with
the same selectivity and its cardinality corresponds to the multiplied cardinalities of its
children. If only one child has selectivity 1 then the upper node inherits cardinality and
selectivity of its second child.

As we can see, any topological change might also affect the neighboring leaves in
addition to a given operational node. They are collected and inserted in the modifica-
tion tree, whose depth is effectively increased by their total number.

Example Assuming our example query in Figure 6.2a, leaf node FP (e2, 1) has to be
removed from the operational graph in Figure 6.5. This node filters path e2 of length

136

6.3. ADAPTATION OF MODIFICATION TREE

GV(v1) GV(v2) GV(v3) GV(v4)FP(e1,1) FP(e2,1) FP(e3,1)

TR(e1,1)

FT(e1)

join(e1,e2)

TR(e3,1,back)

join(e1,e2,e3)

FT(e2) FT(e3)

TR(e2,1)

C = C(GV(v2))
sel = sel(GV(v2))

C = |Vd|
sel = 1

C = |Ed|
sel = 1

C = |Ed|*|Vd|
sel = 1

C = C(GV(v2))
sel = sel(GV(v2))

Complete removal

Partial removal

Figure 6.5: Topological removal for operator FP (e2, 1)

1, is marked as removed, and annotated with selectivity 1. This path has two vertices,
one of them v3 has only one connection. Therefore, its corresponding node GV (v3) is
marked as removed and annotated with selectivity 1. As next, we have to propagate
the changes bottom up to parental nodes. Traversal operator TR(e2, 1) is marked as
removed and operator FT (e2) is annotated with the cardinality and selectivity of its
second child GV (v2). To conclude, two operators have to be inserted into the modifi-
cation tree: GV (v3) and FP (e2, 1).

If a topological change does not result in any cardinality change or creates an un-
connected query graph then the complete modification of the node is discarded and
it is marked as prohibited at line 43 in Algorithm 11. The node prohibition is spread
along the whole modification tree and the prohibited nodes cannot be further used in
the modification process. As a result, the modification tree is pruned and modification
space is effectively reduced horizontally and vertically.

In this section, we had a look at the modification process with constructing and
adapting the modification tree and discussed generation of new query candidates, its
core component. The modification tree serves for storing changed operational nodes,
modified queries, and their operational graphs and for navigating the search. The
backtracking traversal along the modification tree allows to discard non-propagating
changes and thus to reduce the search space. In the following section, we will describe
optimizations we applied to this algorithm in detail.

6.3 Adaptation of Modification Tree

In this section, we will have a deep look at already sketched techniques, which prevent
from unnecessary rewritings and reduce the search space: guaranteeing of change
propagation, discarding of non-contributing changes, and pruning of tree branches.

137

6.3. ADAPTATION OF MODIFICATION TREE

get parentsget children p n sparent neighbor start leaf

GV(v1) FP(e1,1)

TR(e1,1)

(a) Neighbors of GV (v1)

GV(v1) GV(v2) GV(v3) GV(v4)FP(e1,1) FP(e2,1) FP(e3,1)

TR(e1,1)

FT(e1)

TR(e3,1,back)

FT(e2) FT(e2)

TR(e2,1)

(b) Neighbors of GV (v2)

Figure 6.6: Acquisition of neighbors for leaves GV (v1) and GV (v2)

6.3.1 Guaranteeing of Change Propagation

This optimization describes the first property that the modification process has to ex-
hibit, namely: any change applied to the operational graph should propagate to the
top of the graph and result in a cardinality change. This is achieved by the online
adaptation of the modification tree, which is executed at lines 21 – 27 in Algorithm 11.

This property is realized by tracking the highest operator in the operational graph,
whose cardinality has been changed, and propagating this modification to its parents.
If the applied rewriting resulted in a cardinality change of the output node then the
search continues without any adaptation. Otherwise, we have to compare the opera-
tional graphs of current and previously generated query candidates, i.e. the current
position of the modification tree and its parent. We extract the highest node from the
operational graphs, which cardinality differs between both query candidates. This is
the highest query node along the operational graph, which has to be tracked and whose
cardinality change has to be propagated to its parent.

The cardinality of each node strongly depends on its children. If a modification
of one of them did not result in a cardinality improvement of its parent then we can
assume strong correlation between children. To account for this correlation, the re-
maining non-modified children have to be adjusted until their delta cardinalities are
propagated to the parent. For this purpose, we prioritize them by re-arranging the
nodes in the queue on the current level of the modification tree such that they are pro-
cessed first. The rewriting process continues as usually and goes to the next level in
the modification tree. If a change of neighboring nodes affects the cardinality of the
(grand-) parent then it is marked as a tracked one and its non-modified children are
prioritized in the queue. Otherwise, the remaining neighbors are modified.

Example Following the operational graph for our example in Figure 6.2b, we as-
sume that the change of node GV (v1) did not improve the delta cardinality of its pa-
rents; only its own cardinality changed. Then GV (v1) is marked as the tracked node,
the search moves up and acquires its parent TR(e1, 1) as presented in Figure 6.6a. To
propagate the cardinality change of GV (v1), its neighbor FP (e1, 1) has to be modified.
If the tracking node has multiple parents like for example GV (v2) in Figure 6.6b then
the children of all node’s parents are returned for the modification.

6.3.2 Discarding of Non-Contributing Changes and Search Branches

The previously described optimization focuses on the propagation of changes to the
output node of an operational graph. However, it can happen that although all children
have already been modified they have no impact on the cardinality of the parent. Such
changes increase only the syntactic distance, but are useless in order to achieve the
cardinality threshold. Therefore, in this section we discuss the second property of the

138

6.3. ADAPTATION OF MODIFICATION TREE

GV(v1) GV(v2) GV(v3) GV(v4)FP(e1,1) FP(e2,1) FP(e3,1)

TR(e1,1)

FT(e1)

join(e1,e2)

TR(e3,1,back)

join(e1,e2,e3)

FT(e2) FT(e2)

TR(e2,1)

count = 1count = 1 count = 1

count = 2

count = 1

(a) Subtree removal for FT (e1)

GV(v1) GV(v2) GV(v3) GV(v4)FP(e1,1) FP(e2,1) FP(e3,1)

TR(e1,1)

FT(e1)

join(e1,e2)

TR(e3,1,back)

join(e1,e2,e3)

FT(e2) FT(e2)

TR(e2,1)

count = 2

(b) Subtree removal for join(e1, e2)

Figure 6.7: Subtree removal from modification tree

modification process: non-contributing changes have to be avoided in order to keep
the syntactic distance minimal.

If a parent cardinality did not change, the modifications have to be prohibited and
the search has to backtrack by the number of prohibited changes, which is tracked
during the search. This number is resetted if the changes propagated to the output
node. During backtracking, the algorithm traverses the modification tree up, finalizes
the corresponding tree branches and marks finalized nodes as prohibited. The filtered-
out nodes are not considered further in the search and in such a way the search space
is reduced. The backtracking for this case is described at lines 25 and 38 – 41 in
Algorithm 11. Considering the example in Figure 6.6a: if after modifying both children,
the output cardinality of TR(ei, 1) did not improve the complete subtree has to be
prohibited.

In the operational graph, there can be leaves with multiple parents. Their removal
can affect the modification of the parents remaining in the modification tree. To over-
come this problem, we consider partial removal for such nodes, which is achieved by
tracking the number of removals for the leaves and discarding only those of them which
counts equal to the number of their direct parents.

To discard the last changes applied to the query, the tracked parental node broad-
casts removal messages to its leaves. Each node increments its internal parental counter
by the number of received messages. If the parental counter on a leaf equals to the
number of its direct parents then this leaf sends an acknowledgment up the operatio-
nal graph along the transmission edges and the leaf is finalized. Those non-leaves are
marked for complete removal, whose numbers of messages received from children and
called children counters equal to the number of children. The leaves, whose parental
counters differ from the number of parents, are marked for partial removal. Although
the intermediate nodes are not considered during the search, we still require them to
prevent the double counting of partially removed nodes.

Example Given the example query in Figure 6.7a and subtree for removal FT (e1),
its root broadcasts messages down the tree. Vertices GV (v1) and FP (e1, 1) are marked
for complete removal visualized using a black flash. GV (v2) still has two non-prohibited
parents and is marked for partial removal depicted with a gray flash. Assume the mo-
dification process continues with the subtree for join(e1, e2) and chooses it for deletion
(see Figure 6.7b). In this scenario, join(e1, e2) broadcasts removal messages along
its children. Node FT (e1) was already finalized and therefore does not redirect the
message to its children. Leaf GV (v2) receives the message from node FT (e2) and in-
crements its parental counter. However, the parental counter does not equal to the
number of parents, therefore, it does not send an acknowledge message to its parents.

139

6.4. EVALUATION

To conclude, with the proposed pruning procedure we reduce the modification
space, which is achieved by finalizing those branches of the modification tree from
which the modification process does not benefit. We prevent removal of those opera-
tional nodes, which still can contribute to the modification process.

In this chapter, we discussed how to generate modification-based explanations for
why-so-few and why-so-many queries. The underlying backtracking procedure explores
an operational graph for the query and adapts the modification tree in order to guaran-
tee change propagation, to discard non-contributing changes, and to reduce the search
space. In the following, we will evaluate this approach and compare it with the modi-
fied rewriting method for why-empty queries introduced in Chapter 5.

6.4 Evaluation

In this chapter, we evaluate the proposed TRAVERSESEARCHTREE algorithm to pro-
duce fine-grained modification-based explanations for why-so-few and why-so-many
queries, which guarantees the change propagation and prohibition of non-contributing
modifications, and try to answer the following questions:

• Can TRAVERSESEARCHTREE generate explanations with a better size of a result
set than the original query has?

• Does the considered method out-performs the baseline approaches according to
the quality and performance metrics?

• How do topological changes affect the quality and performance metrics?

Similar to the experiments in previous sections, we consider the following met-
rics: As quality metrics, we use syntactic, cardinality and result distances, which are
described in detail in Section 3.2. The first one, the syntactic distance between an
original query and a generated explanation, qualifies how different the evaluated exp-
lanation appears to a user. The second one, the cardinality distance, judges how well
the applied changes adjust the result size to the cardinality threshold. The last one, the
result distance, compares the content of both result sets and shows how much infor-
mation remains in the answer of the evaluated explanation after query rewriting. As a
performance measure, we consider the number of rewritten queries, which have been
executed until the best rewritten query has been found.

For evaluating the TRAVERSESEARCHTREE method for generating fine-grained modi-
fication-based explanations, we use the LDBC data set described in Appendix A.2. We
test four LDBC query templates from cardinality classes C1−C4 in Table A.1. For all con-
figurations of each query, we created multiple cardinality thresholds, which correspond
to 1%, 10%, 20%, 50%, 200%, 500%, 1,000%, and 10,000% of the result cardina-
lity to an original query such that at least 1 data subgraph has to be delivered and no
more than 10,000 subgraphs are requested. The cardinality factors and corresponding
cardinality thresholds are represented in Table 6.2.

In Section 6.4.1, we describe the used baseline strategies. Afterwards, in Sec-
tion 6.4.2, we evaluate them together with TRAVERSESEARCHTREE. We answer the
question whether topological changes are beneficial for query rewriting in addition to
predicate changes in Section 6.4.3.

6.4.1 Baseline Approaches

The TRAVERSESEARCHTREE algorithm for generating fine-grained modification-based
explanations is compared against several methods including two naïve approaches

140

6.4. EVALUATION

Query Class Co 0.01 0.1 0.2 0.5 2 5 10 100

Q1

C1 21 1 2 4 10 42 105 210 2100
C2 262 2 26 52 131 524 1310 2620 –
C3 1687 16 168 337 843 3374 8435 – –
C4 6991 69 699 1398 3495 – – – –

Q2

C1 39 1 3 7 19 78 195 390 3900
C2 627 6 62 125 313 1254 3135 6270 –
C3 1626 16 162 325 813 3252 8130 – –
C4 5933 59 593 1186 2966 - - – –

Q3

C1 188 1 18 37 94 376 940 1880 –
C2 654 6 65 130 327 1308 3270 6540 –
C3 2139 21 213 427 1069 4278 – – –
C4 8871 88 887 1774 4435 – – – –

Q4

C1 195 1 19 39 97 390 975 1950 –
C2 775 7 77 155 387 1550 – – –
C3 5020 50 502 1004 2510 – – – –
C4 5044 50 504 1008 2522 – – – –

In Total - 16 16 16 16 16 11 9 7 2

Table 6.2: Original cardinalities and cardinality thresholds of evaluated LDBC queries

based on topological and predicate changes and an adapted A*-search described in
Chapter 5.

Predicate and Topological Baselines The naïve approach for rewriting why-queries
implies changes on vertices and edges in a random order. The maximum number
of rewriting steps corresponds to the total number of query vertices and edges.
At each step, the system chooses randomly a vertex or an edge for rewriting from
the set of non-modified elements. The newly generated query is then checked
whether it delivers a required cardinality. If necessary, the rewriting procedure
continues by selecting a new query element for modification. This process termi-
nates if a graph query delivering a required cardinality is generated or no further
query elements can be modified. We distinguish two baselines based on this naïve
solution. While the first one (Predicate Baseline) considers only predicate changes,
the second one (Topological Baseline) implies only structural modifications. Pred-
icate changes are done similarly to the TRAVERSESEARCHTREE algorithm without
any propagation guarantee, i.e. one of the predicates on a vertex or an edge is
chosen randomly for modification and its interval is extended or restricted as de-
scribed in Section 6.2.2 by acquiring a delta cardinality from attribute histograms.
In both topological and predicate rewriting methods, we track the best rewritten
query with the lowest cardinality distance.

A*-Search The third baseline approach corresponds to the coarse-grained modification
for why-empty queries described in detail in Chapter 5, which we adjusted in or-
der to be used for why-so-few and why-so-many queries. The adapted version
considers a cardinality threshold in order to change predicate intervals by acquir-

141

6.4. EVALUATION

0

25

50

75

100

Topological
Baseline

Predicate
Baseline

A*-Search Traverse
Search

Tree
Approach

Im
p

ro
ve

d
 Q

u
er

ie
s,

 %

(a) Distribution of improved queries

Too-Few-Answers ProblemsToo-Many-Answers Problems

0

25

50

75

100

0.01 0.1 0.2 0.5 2 5 10 100

Cardinality Factor

Im
p

ro
ve

d
 Q

u
er

ie
s,

 %

Approach
Topological Baseline
Predicate Baseline

A*-Search
TraverseSearchTree

(b) Improved queries vs. cardinality factors

Figure 6.8: Baseline comparison: distribution and percentage of refined queries

ing a required cardinality delta from histograms like described in Section 6.2.2.
Query proposals are ordered based on their syntactic distances. For this approach,
we allow both predicate and topological rewriting. Query elements for rewriting
are chosen based on the problem definition: For why-so-few queries, elements
with lowest cardinalities are preferred. For why-so-many queries, query elements
with the highest cardinalities are refined first.

To summarize, in this evaluation we compare TRAVERSESEARCHTREE against three
baselines including Predicate Baseline, Topological Baseline, and A*-search.

6.4.2 Baseline Comparison

In the first set of experiments, we compare the TRAVERSESEARCHTREE algorithm and
three aforementioned baselines for generating fine-grained modification-based expla-
nations. We analyze quality as well as performance metrics between them.

As a performance measure, we consider the number of iterations that corresponds
to the number of refined queries, which are generated before the best refinement is
found. For the TRAVERSESEARCHTREE, this number can achieve maximally the amount
of nodes in the modification tree. For the topological baseline, this number cannot
exceed the total number of vertices and edges in a query graph. For the predicate base-
lines, it is limited by the total number of predicates in a query. For the A*-search, the
maximal number cannot exceed the number of iterations consumed by the TRAVERS-
ESEARCHTREE algorithm rounded to the next large value.

As a quality metric, we consider three measures: syntactic, cardinality, and result
distances introduced in Section 3.2. To be able to aggregate cardinality distances bet-
ween different queries, we normalize them to original cardinality distancess. Not all
queries can be refined by all evaluated methods. Therefore, we also consider the per-
centage of improved queries, which shows how many queries can be refined from the
total set of evaluated queries and deliver better cardinalities.

142

6.4. EVALUATION

Distribution of Improved Queries

In Figure 6.8, we illustrate which amount of queries is modified and returns the car-
dinality distance with a value less than 1. The chart in Figure 6.8a describes the dis-
tributions of refined queries with minimum, 25% percentile, median, 75% percentile,
and maximum. The x axis denotes evaluated algorithms. The most of the queries are
refined by the TRAVERSESEARCHTREE algorithm, which also has the smallest variation.
The predicate baseline improves the least number of queries, which varies between
no and 45% of the queries. This fact is explained by the small number of changes,
which are allowed for this baseline. The largest variation is derived by the topological
baseline which refines from 25% up to 100% of queries. This baseline considers only
topology, which belong to the class of strong modifications that can change the result
size dramatically. The A*-search has a similar distribution to the topological baseline
with the same median value.

Figure 6.8b describes the percentage of improved queries according to the evaluated
cardinality factors. All factors below 1 correspond to the too-many-answers problems,
while remaining ones describe the too-few-answers problems. The predicate baseline is
able to restrict some queries in order to deliver less results, but it completely fails to pro-
duce refinements with more answers for the cardinality factors above 1. The topological
baseline and A*-search refine similar amounts of queries. The TRAVERSESEARCHTREE

algorithm out-performs compared methods for all cardinality factors, except 100. For
this factor, three out of four algorithms refine all queries, which is explained by the
small number of evaluated queries. Please note that we evaluate only two queries for
this cardinality factor as highlighted in Table 6.2.

To summarize, according to the evaluation results for the number of refines queries,
the TRAVERSESEARCHTREE algorithm is able to refine the same up to twice so many
queries as compared methods. The predicate baseline fails to solve too-few-answers
problems and improves no queries in these scenarios. The A*-search and the topologi-
cal baselines behave very similarly and modify almost the same amount of queries. The
percentage of refined queries quantifies the stability of the refinement process among
different queries and cardinality factors. In the following, we will consider specific
quality and performance metrics and will start with the cardinality distance, which
describes how well different algorithms achieve desired cardinality thresholds.

Cardinality Distance vs. Cardinality Factor

The distributions for cardinality distances are represented in Figure 6.9 with mini-
mum, 0.25 quantile, median, 0.75 quantile, and maximum values for cardinality dis-
tances. The x axis illustrates evaluated cardinality factors. The corresponding cardi-
nality thresholds for specific queries are provided in Table 6.2. The medians of three
compared baselines approach to the maximum cardinality distance that is equal one,
because most of the queries are not improved. In comparison, the median of the TRA-
VERSESEARCHTREE algorithm varies from almost 0 to 0.8. Also the distribution of our
method occupies lower values of the cardinality distance than the compared baselines.

To summarize, the TRAVERSESEARCHTREE algorithm out-performs the compared
methods in terms of derived cardinality distances, which are closer to cardinality thresh-
olds. Our algorithm generates explanations almost with exact result sizes for the too-
many-answers problems. For the too-few-answers problems, it delivers refined queries
with cardinalities which are from 10% to 50% better than ones produced by the eva-
luated baselines.

143

6.4. EVALUATION

Predicate Baseline Topological Baseline

A*-Search TraverseSearchTree
0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.01 0.1 0.2 0.5 2 5 10 100 0.01 0.1 0.2 0.5 2 5 10 100

Cardinality Factor

D
is

tr
ib

u
ti

o
n

 o
f

C
ar

d
in

al
it

y
D

is
ta

n
ce

Figure 6.9: Baseline comparison: distribution of cardinality distance

Result and Syntactic Distances vs. Cardinality Factor

As next quality measures, we consider result and syntactic distances with respect to
used cardinality factors, which are presented in Figure 6.10. As we can see, syn-
tactic and result distances have similar distributions, which can be explained by the
dependency of a result difference on a syntactic measure: It becomes higher if a
query is changed more strongly and its syntactic distance is high. As expected, the
smallest syntactic distance is derived by the predicate baseline, which considers only
predicates and does not modify the structure of a query. The next lowest syntac-
tic distance is provided by the A*-search, which first considers less changed queries
and aims to generate explanations with limited deviations to an original query. The
topological baseline exhibits the largest syntactic distances caused by strong struc-
tural changes. This method does not reject any explanation with a high syntactic
value like TRAVERSESEARCHTREE does. The distribution of the result distance for the
TRAVERSESEARCHTREE algorithm demonstrates the expected behavior. For too-many-
answers problems, the TRAVERSESEARCHTREE method restricts queries such that they
return only a part of original results. Therefore, considering the cardinality factor of
0.01, in general we expect to deliver only 1% of the original answers and the corres-
ponding result distance approaches 1. The result distance decreases by looking for such
a number of answers, which is close to the original cardinality and corresponds to the
cardinality factors 2 and 5. With an increasing cardinality threshold, the number of
results grows by acquiring new data vertices and edges and maybe by removing some
structural parts.

To summarize, the lowest syntactic distance can be achieved if only predicate chan-
ges are allowed or refined queries are processed according to their syntactic distances
in an ascending order. Any topological change strongly increases a syntactic difference
of an explanation. The TRAVERSESEARCHTREE algorithm considers topological changes
for high or low cardinality factors, which make the cardinality thresholds very different
from the original cardinalities. It prefers small predicate modifications for low original
cardinality distances.

144

6.4. EVALUATION

Predicate Baseline Topological Baseline

A*-Search TraverseSearchTree
0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.01 0.1 0.2 0.5 2 5 10 100 0.01 0.1 0.2 0.5 2 5 10 100

Cardinality Factor

D
is

tr
ib

u
tio

n
 o

f
R

es
u

lt
 D

is
ta

n
ce

(a) Baseline comparison: distribution of result distances
Predicate Baseline Topological Baseline

A*-Search TraverseSearchTree
0.000

0.005

0.010

0.015

0.020

0.0

0.2

0.4

0.6

0.8

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

0.5

0.01 0.1 0.2 0.5 2 5 10 100 0.01 0.1 0.2 0.5 2 5 10 100

Cardinality Factor

D
is

tr
ib

u
ti

o
n

 o
f

S
yn

ta
ct

ic
 D

is
ta

n
ce

(b) Baseline comparison: distribution of syntactic distances

Figure 6.10: Baseline comparison: distribution of result and syntactic distances

Number of Iterations vs. Cardinality Factor

To evaluate the performance of generating fine-grained modification-based explana-
tions, we use a number of iterations, i.e., a number of generated refined queries, which
are processed before the best explanation is discovered. The evaluation results are il-
lustrated in Figure 6.11, where like in the previous charts, the minimum, 0.25 quantile,
median, 0.75 quantile, and maximum values of the evaluated metric are presented. The
lowest numbers of iterations are derived by topological and predicate baselines, which
consider only a limited number of changes, which does not exceed the size or the num-
ber of predicates in a query graph, respectively. The largest variations are detected by
the A*-search and the TRAVERSESEARCHTREE algorithm. While the first method allows
multiple changes of the same elements, the second one supports only a single modi-
fication of the same element in the same refined query. The TRAVERSESEARCHTREE

algorithm requires a larger number of iterations according to the median than the A*-
search which can be explained by several facts. First, it successfully rewrites up to
50% more queries than other methods. For these cases, the compared approaches have

145

6.4. EVALUATION

Predicate Baseline Topological Baseline

A*-Search TraverseSearchTree
0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.01 0.1 0.2 0.5 2 5 10 100 0.01 0.1 0.2 0.5 2 5 10 100

Cardinality Factor

D
is

tr
ib

u
ti

o
n

 o
f

N
o

rm
al

iz
ed

 N
u

m
b

er
 o

f
It

er
at

io
n

s

Figure 6.11: Baseline comparison: distribution of normalized number of iterations

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Cardinality Distance

N
o

rm
al

iz
ed

 N
u

m
b

er
 o

f
It

er
at

io
n

s

Approach Predicate Baseline
Topological Baseline

A*-Search
TraverseSearchTree

Cardinality Factor 0.01
0.1

0.2
0.5

2
5

10
100

(a) Baseline comparison: cardinality dis-
tance vs. number of iterations

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Cardinality Distance

S
yn

ta
ct

ic
 D

is
ta

n
ce

Approach Predicate Baseline
Topological Baseline

A*-Search
TraverseSearchTree

Cardinality Factor 0.01
0.1

0.2
0.5

2
5

10
100

(b) Baseline comparison: cardinality dis-
tance vs. syntactic distance

Figure 6.12: Baseline comparison: dependencies between evaluated metrics

the number of iterations equals 0, while the TRAVERSESEARCHTREE has at least one
iteration. Second, the TRAVERSESEARCHTREE also provides better results according to
the cardinality, which might require additional efforts. To consider the dependencies
between different metrics, we present individual evaluation points in Figure 6.12.

In Figure 6.12a, the x axis describes the cardinality distance of generated expla-
nations and the y axis introduces the normalized number of iterations. We denote
different methods with specific shapes of the points and highlight the medium values
for cardinality factors with various colors. The median points are also larger than the
individual experimental points, which are filled with a white color. As it can be seen,
most of the median points for three baselines approach the cardinality distance of 1,
which means that they are not successful in refining the queries. Most of the expla-
nations delivered by the TRAVERSESEARCHTREE algorithm have a cardinality distance
which is half as large as the original cardinality distance. By considering individual
experiments, the TRAVERSESEARCHTREE algorithm tends to consume the largest num-

146

6.4. EVALUATION

ber of iterations by generating results with low cardinality distances and requires less
iterations, otherwise.

In Figure 6.12b, we also provide cardinality and syntactic distances for specific eva-
luation runs. As in the previous chart, the large colored points describe medians for
different cardinality factors. For the TRAVERSESEARCHTREE algorithm, generated exp-
lanations with higher syntactic distances have results with lower cardinality distances
and vise versa. Considering only structural changes, we generate explanations with
higher syntactic distances as presented for the topological baseline.

To summarize, the topological and predicate baselines consume a small number of
iterations, which can be explained by their demands: they consider only one change
per query element. The A*-search and TRAVERSESEARCHTREE require a larger number
of iterations to produce explanations. Although TRAVERSESEARCHTREE consumes in
some cases the maximum number of iterations among all methods, it is compensated
by the high quality of generated explanations: it can successfully rewrite twice so many
queries as competitors do and reduce the cardinality distance by up to 50% for specific
cardinality factors in respect to other approaches.

In this set of experiments, we compared the TRAVERSESEARCHTREE algorithm with
three baselines for generating fine-grained modification-based explanations for why-
so-few and why-so-many queries. We analyzed the following metrics: the number of
improved queries, syntactic, cardinality, and result distances, and the number of itera-
tions. The TRAVERSESEARCHTREE algorithm out-performs other approaches according
to the cardinality distance, which is the main goal of a rewriting process, and can suc-
cessfully modify twice so many queries as compared methods do. However, it requires
a higher number of iterations for solving the too-many-answers problems.

6.4.3 Topology Consideration

In the previous section, we compared the TRAVERSESEARCHTREE algorithm with three
baselines. We concluded that our method produces the best explanations in terms of
the cardinality distance and the number of improved queries. However, we also noticed
that in some cases it requires a large number of iterations, which can be observed for
the too-many-answers problems. This fact can be explained in many cases with the
topological changes applied to a query graph, which generate multiple query candi-
dates with too high query distances that are later rejected. Topological changes also
can affect several operational nodes at once, which can reduce the success of used pre-
fix optimization. Therefore, in this evaluation, we consider two configurations of the
TRAVERSESEARCHTREE algorithm: with and without topological changes. As a perfor-
mance metric, we use the number of iterations. The quality metrics are represented by
the number of successfully rewritten queries, syntactic, cardinality, and result distances
as discussed in Section 3.2.

In Figure 6.13, we present the complete evaluation results for these experiments.
We evaluate the LDBC queries presented in Table 6.2 for eight cardinality factors. Fi-
gure 6.13a describes the percentage of queries improved by the TRAVERSESEARCHTREE

algorithm according to cardinality factors annotated on the x axis. The TRAVERS-
ESEARCHTREE algorithm with topological changes refines up to 30% more queries than
the setup with only predicate changes for the too-many-answers problems. For the too-
few-answers problems, the algorithm improves the same amount of queries indepen-
dent of its setup. However, from these results we cannot say how good the generated
explanations are in terms of cardinality and syntactic distances.

Figure 6.13b illustrates distributions of syntactic distances for different cardinality
factors with minimum, 0.25 quantile, median, 0.75 quantile, and maximum values.

147

6.4. EVALUATION

Too-Few-Answers ProblemsToo-Many-Answers Problems

70

80

90

100

0.01 0.1 0.2 0.5 2 5 10 100

Cardinality Factor

Im
p

ro
ve

d
 Q

u
er

ie
s,

 %

Modification Topology and Predicates Predicates

(a) Percentage of improved queries vs.
cardinality factors

0.0

0.1

0.2

0.3

0.4

0.5

0.01 0.1 0.2 0.5 2 5 10 100

Cardinality Factor

D
is

tr
ib

u
ti

o
n

 o
f

S
yn

ta
ct

ic
 D

is
ta

n
ce

Modification Topology and Predicates Predicates

(b) Distribution of syntactic distance vs.
cardinality factors

0.0

0.1

0.2

0.3

0.4

0.5

0.00 0.25 0.50 0.75 1.00
Cardinality Distance

S
yn

ta
ct

ic
 D

is
ta

n
ce

Modification Topology and Predicates Predicates

Cardinality Factor
0.01
0.1

0.2
0.5

2
5

10
100

(c) Syntactic distance vs. cardinality dis-
tance

0.00

0.25

0.50

0.75

1.00

0.01 0.1 0.2 0.5 2 5 10 100

Cardinality Factor

D
is

tr
ib

u
tio

n
 o

f
C

ar
d

in
al

it
y

D
is

ta
n

ce

Modification Topology and Predicates Predicates

(d) Distribution of cardinality distance
vs. cardinality factors

0

1000

2000

-1 0 1 2 3
Relative Change of Cardinality Distance

R
el

at
iv

e
C

h
an

g
e

o
f

S
yn

ta
ct

ic
 D

is
ta

n
ce

Modifications
Query Refined in Both Setups
Non-Modified Query
Topological Refinement is Necessary

(e) Relative changes of syntactic dis-
tance in respect to cardinality dis-
tance

0

100

200

300

400

500

-1 0 1 2 3
Relative Change of Cardinality Distance

R
el

at
iv

e
C

h
an

g
e

o
f

N
u

m
b

er
 o

f
It

er
at

io
n

s

Modification
Query Refined in Both Setups
Non-Modified Query
Topological Refinement is Necessary

(f) Relative changes of number of itera-
tions in respect to cardinality distance

Figure 6.13: Consideration of topological changes in TRAVERSESEARCHTREE algorithm

148

6.4. EVALUATION

We distinguish between two evaluated configurations of the TRAVERSESEARCHTREE

algorithm with specific colors. First, without considering topological changes, the al-
gorithm delivers some explanations with less changes and smaller syntactic distances.
Second, the median of the syntactic distance for the setup with topological modifica-
tions achieves the maximum value of 0.38 for the cardinality factor of 0.01. According
to Figure 6.13a, the numbers of improved queries differ for too-many-answers prob-
lems, while it is the same for the too-few-answers problems. However, considering the
syntactic distances in Figure 6.13b, we can conclude that both setups produce different
explanations with non-identical syntactic distances. To clarify this situation, we have
to consider the quality of derived explanations in terms of cardinality distances they
have.

The cardinality distances of produced solutions are illustrated along the x axis in
Figure 6.13c, where the y axis denotes the syntactic distances of the best generated
explanations. We distinguish between two configurations of the TRAVERSESEARCHTREE

algorithm with different shapes of the points. The colors represent the evaluated car-
dinality factors. The syntactic distances produced by considering only the predicate
changes lie in the low half of the chart and correspond to the values, which do not
exceed 0.1. However, the cardinality distances for these solutions are distributed along
the whole x axis, which show their poor behavior in order to achieve the desired car-
dinality. If the TRAVERSESEARCHTREE algorithm supports topological changes then the
situation improves dramatically: most of the produced explanations have a cardinality
distance less than the value of 0.5. Only a few points exceed this value. Considering
different factors represented by the colors, we can conclude that although both setups
can improve the same number of queries, they produce different results and topolog-
ical changes allow to deliver better cardinality. For example, for the cardinality factor
with a value of 100, topological changes lead to a cardinality distance, which is almost
50% better than that of the explanation derived by the TRAVERSESEARCHTREE algo-
rithm with only predicate changes. We show the distributions of cardinality distances
for different cardinality factors in Figure 6.13d. As it can be seen, in most cases both se-
tups deliver different results, which correspond to different cardinality distances. Such
topological changes allow not only to improve more queries, but also to deliver bet-
ter explanations with lower cardinality distances. According to the median values, the
topological setup improves the cardinality distance by at most 70%.

In Figure 6.13e, we present the relative difference of syntactic and cardinality dis-
tances by considering topological modifications with respect to the configuration with-
out structural changes. We distinguish three kinds of scenarios with colors: a query can
be refined in both setups, a query cannot be improved, and a query requires topological
modifications. The horizontal and vertical lines represent the axes, where both setups
deliver explanations either with the same cardinality distance or the same syntactic dis-
tance. As it can be seen, there are several queries which require topological changes.
There are a few queries which are rewritten very similarly and therefore are placed
on the intersection of lines. We also see at least four points having similar syntactic
distances in both setups, but which return results of up to 3.5 times closer to the cardi-
nality threshold with topological modifications. In such scenarios, structural rewritings
are of most interest. However, we also see seven points that have similar cardinality
distances, but different syntactic differences. For such cases, predicate modifications
are preferable, because they deliver less-changed queries and faster.

We use a similar representation for comparing the performance of both setups in Fi-
gure 6.13f, where the y axis represents the relative change of the numbers of iterations,
and the x axis describes differences in cardinality changes. By comparing two graphs,

149

6.5. SUMMARY

we see that if both setups deliver explanations with the same cardinality distances, but
with different syntactic distances and number of iterations, then some of the applied
modifications are redundant: they only increase the syntactic distance and the number
of iterations without giving a clear improvement in the cardinality. Therefore, such
modifications should be avoided. If we consider the points right in the chart, which
increase the cardinality distance by several times, they reduce the performance only
slightly, and therefore topological changes in such cases should be preferred.

To summarize, in this evaluation, we analyzed two configurations for the TRA-
VERSESEARCHTREE algorithm: the first one considers both topological and predicate
changes, the second one conducts only predicate modifications. Rewriting a query to-
pology, we can improve up to 30% more queries for the too-many-answers problems.
Although for the too-few-answers problems, the number of improved queries is the
same, the quality of generated explanations differs. The topological changes produce
refined queries with cardinality distances, which are smaller by up to 3.5 times. Consi-
dering cardinality improvements for different cardinality factors, we can conclude that
topological changes are preferred for those cardinality thresholds, which differ from
original cardinalities in one or two orders of magnitude. For small changes in cardina-
lity, predicate modifications are more preferable.

6.4.4 Evaluation Summary

In this section, we compared the TRAVERSESEARCHTREE algorithm with three baselines
for generating fine-grained modification-based explanations: topological and predicate
baselines and A*-search. The evaluation results showed that our proposal allows to
improve up to 50% more queries than considered baselines. The produced explanations
also out-perform the competitors in terms of lower cardinality distances, which are
the goal of the rewriting process. The TRAVERSESEARCHTREE algorithm controls the
modification process and discards strong modifications which generate refined queries
with the syntactic distances larger than 0.5. It provides very similar performance in
reference to the A*-search. In some cases, it is still higher, which can be tolerated by
the better quality of generated explanations. Considering this fact, we also evaluated
two configurations for the TRAVERSESEARCHTREE algorithm: the first one considers
both topological and predicate changes, which is used in the first evaluation, and the
second one allows only predicate changes. If we change the structure of a query, we
can refine up to 30% more queries for the too-many-answers problems and decrease the
cardinality distance by up to 3.5 times. However, for the cardinality factors of {0.5; 2; 5}
we observed that the topological changes increase the number of considered iterations,
but still provide very similar syntactic distances. Therefore, in order to deliver the best
combination of quality and performance, we should allow topological changes for large
cardinality distances and consider only predicate modifications, otherwise.

6.5 Summary

In this chapter, we proposed the TRAVERSESEARCHTREE algorithm for generating fine-
grained modification-based explanations for solving too-many- and too-few-answers
problems. The presented algorithm is an iterative procedure, which traverses the mo-
dification tree that comprises all changes applied to a query in order to generate exp-
lanations, ensures propagation of applied changes to the output cardinality, and pro-
hibits non-propagating changes. The TRAVERSESEARCHTREE algorithm makes use of
the operational graph of a query for constructing the modification tree and changing

150

6.5. SUMMARY

a failed query. In contrast to subgraph-based explanations proposed in Chapter 4 and
modification-based explanations in Section 5, we did not present a new model for gene-
rating user-aware answers. We believe that the user-integration methods can be used,
which were previously introduced in Chapters 4 – 5. For example, the user-preference
model for subgraph-based explanations can be re-applied to modification-based expla-
nations in order to adapt the modification tree by re-arranging branches: Such neigh-
boring operational nodes have to be modified first, which are less relevant to a user.

In this section, we also compared our approach with three baselines according to
the number of improved queries, cardinality, result, and syntactic distances, and the
number of considered iterations. Our approach TRAVERSESEARCHTREE out-performs
all competitors in the quality of generated explanations and the quantity of modified
queries and shows very similar performance to the A*-search. To improve the per-
formance, we studied the role of topological changes in the explanation generation
process. We came to the conclusion that if a cardinality threshold differs from an ori-
ginal cardinality in several orders of magnitude the topological changes have to be
considered. For small cardinality distances, predicate modifications are good enough
to derive better explanations.

151

7
Conclusion and Future Work

Graph databases implementing the property-graph model allow to store information
of a different degree of structure and provide sophisticated queries for data analysis.
They keep heterogeneous information without a rigid schema as a property graph,
where entities are represented by vertices and edges describe relations between them.
The stored data graph can be easily modified by introducing new data or removing
existing data. Keeping the data in the form of a graph makes it also possible to con-
duct complex graph algorithms over it and to combine standard queries with complex
analytics. The flexibility of the property-graph model and various query types come
at additional costs and complicate the query-answering process. Without deep data
knowledge and with little experience in constructing graph-aware queries, a user can
create requests that deliver no, too few, or too many results. A user can get frustrated
by receiving unexpected results, because the reason of unexpectedness is difficult to
understand and resolve. Considering these facts, in this thesis we focus on the usabil-
ity issues for graph databases implementing property graphs and study fundamental
functionality for debugging the graph queries delivering unexpected results. We in-
vestigate the cardinality problems on the example of pattern-matching queries as one
of the commonly used graph-query types. To summarize, this thesis describes debug-
ging features for pattern-matching queries delivering unexpected query results in the
form of why-queries, which explain query results and thus make graph databases more
user-friendly.

We classify unexpected results according to the subject of unexpectedness such as
content or size of the received result. Content-based unexpectedness can mean pre-
sence of unexpected results or absence of expected ones. Two kinds of why-queries
deal with these issues: why-so and why-not queries. If the size of the result set does
not satisfy user expectations because it has no, too few, or too many answers then
we speak about why-empty, why-so-few, and why-so-many queries. Considering the
fact that cardinality issues like receiving no or too many results are very typical for
graph queries with multiple constraints, in this thesis we address them and provide
cardinality-based why-queries over property graphs. In general, this thesis has the fol-
lowing contributions:

Extraction of Common Features for Why-Queries First, in this thesis we reviewed
the existing state-of-the-art approaches for debugging unexpected results in order
to extract general features enabling basic debugging capabilities. The extracted
features described in Section 2 include efficient generation of explanations, user
integration, generation of different kinds of explanations, discovery of the reason

153

7 CONCLUSION AND FUTURE WORK

of unexpectedness, and query refinement. These aspects were then revised for
graph databases in Chapters 3 – 6.

Generation of Subgraph-Based Explanations One of the extracted features focuses
on the discovery of the reason of unexpectedness. In the state-of-the-art systems,
this aspect is represented by query-based explanations, which show the cause of
unexpected results as a part of a query graph. Speaking in graph terms, a query-
based explanation for a pattern-matching query represents a query subgraph,
which violates the cardinality constraint. In Section 4, we provided two methods
for generating such explanations: DISCOVERMCS and BOUNDEDMCS algorithms
for empty-answer and too-few- and too-many-answers problems, respectively. We
evaluated both approaches using two data sets and showed several optimizations
to improve their performance by preventing duplicate processing. We also in-
creased the quality of generated subgraph-based explanations with considering
weakly-connected and unconnected query subgraphs.

Generation of Modification-Based Explanations Instead of providing subgraph-ba-
sed explanations, the user can also be directly supplied with a rewritten query,
which corresponds to a given cardinality constraint. This answer is called a mo-
dification-based explanation and represents the second typical kind of explana-
tions produced by the state-of-the-art why-queries. We investigated two methods
for generating such explanations: one for why-empty and another one for why-
so-few and why-so-many queries. For the empty-answer problem, in Section 5
we proposed a query rewriting approach that relaxes specific query constraints
and processes rewritten queries based on how likely they can deliver some re-
sults. For why-so-few and why-so-many queries, in Section 6 we introduced the
TRAVERSESEARCHTREE algorithm, which supports fine-granular predicate and
topological changes. This algorithm adapts to the cardinality problem that has
to be solved, guarantees propagation of changes, and optimizes the search by
rejecting non-contributing changes.

Comprehensive Analysis of Why-Explanations In this thesis, we proposed methods
to explain unexpected results for pattern-matching queries over property graphs.
In order to judge the quality of generated explanations, we compared them on
three different levels as described in Section 3.2 including the syntactic, cardi-
nality, and result distances. The syntactic distance describes how different an
explanation appears to the user. The cardinality distance shows the difference
between the user-defined cardinality threshold and size of the result, provided by
the explanation. The result distance explains how many answers remain in the
result set, after an explanation has been generated. The three-level comparison
considers all important aspects for judging the quality of explanations.

Development of Models for User Integration To steer the generation of explanations
according to the user interest, we proposed two ways for considering user pre-
ferences in specific query elements: The first approach, for generating subgraph-
based explanations, requires a user to mark relevant query elements. Then it
calculates the most relevant traversal path along the query, and traverses the
query along it as described in Section 4.4. The user integration is easily done by
choosing the most relevant vertices and edges to process. The second approach
as presented in Section 5.4, for generating modification-based explanations for
why-empty queries, constructs a user-preference model from already rated exp-
lanations. Based on this model, the rewriting system adapts the modification
process and discovers relevant explanations first. Both approaches are general
enough and can be re-used in generating modification-based explanations for
why-so-few and why-so-many queries.

154

7 CONCLUSION AND FUTURE WORK

Future Work

In this thesis, we have set the foundations for making graph databases more user-
friendly by introducing debugging capabilities in the form of why-queries. We opened
up a new research field for cardinality-driven why-queries over property graphs. There
are a lot of interesting open challenges, which can be studied in this area. In the
following, we present the most important ones.

Developing Content-Based Why-Queries over Property Graphs In this thesis, we
focused on cardinality-based why-queries and proposed several methods for ge-
nerating explanations for unexpected answers. Content-based queries introduce
a new aspect in the generation of explanations. For these queries, a user speci-
fies which results are unexpectedly missing or present in a result set. In case of
pattern-matching queries, such unexpected answers can be not just single ver-
tices, but they can represent a query (sub)graph annotated with additional const-
raints, which express user interest. As a consequence, instead of items of interest
known from RDBMS as described in Section 2.2 we have to deal with subgraphs
of interests. This new aspect of the content-based why-queries opens several di-
rections for future work including how to specify unexpected (sub)graphs, how
to prioritize specific edges, vertices, and their combinations, and how to gene-
rate explanations efficiently. All these questions should be investigated in order
to provide debugging functionality for content-based why-queries on property
graphs.

Considering Graph-Specific Queries This thesis mainly focuses on pattern-matching
queries. The study of other graph-specific queries such as shortest path or reacha-
bility queries would be of great interest. It is also necessary to keep in mind that
not all queries can suffer from all kinds of unexpected results or they can suffer
from new kinds of unexpectedness. For example, a why-not query for calcula-
ting the shortest path between two nodes can ask why the path does not cross
a specific node or why it is so long or short. Such queries require the formal
definitions for unexpected-results problems and efficient methods for generating
explanations for them.

Studying Usability Issues This thesis mainly focuses on how to generate explanations
and optimize the generation process. For the proposed approaches, we also deve-
loped a demonstration [139] that represents a typical debugging session starting
with defining a query, its debugging, and visualizing the results of the derived
explanation. However, what is still missing is the study of a user interaction with
the tool, automatic extraction of a user-preference model from his actions, result
and explanation representation, and adaptation of a debugging session based on
the collected information. With respect to this fact, future work might investigate
all these aspects of communication with the debugging tool.

Generating Query-Specific Explanations and Considering Dependencies between
Explanations In this thesis, we focused on different debugging aspects inclu-
ding generating multiple explanations, which we supported with subgraph- and
modification-based explanations. As we have pointed out in the survey about the
state-of-the-art solutions in Chapter 2, also other kinds of explanations can ex-
ist, which are problem-specific. For example, why-so-many queries can provide
also result-based explanations, which change neither query nor data, but modify
the representation of a result set via reordering, clustering, faceting, etc. Inves-
tigation of such problem-specific explanations would be an interesting research
topic. Moreover, we generate all explanations independent of each other. In ad-
dition to investigating different explanations, it would be interesting to combine

155

7 CONCLUSION AND FUTURE WORK

them and to re-use already gained knowledge. As we have already mentioned,
modification-based explanations can profit from subgraph-based explanations,
which can provide the upper limit of applied modifications. All these aspects
could be considered by designing and testing the debugging tool.

Considering Intra-Graph Dependencies and Graph-Specific Characteristics Graph
queries over property graphs consist of multiple correlated constraints, whose
dependencies can affect the generation of explanations. We account for these de-
pendencies in subgraph-based explanations implicitly by traversing the graph. In
why-empty queries, we model them explicitly in the form of path(n) cardinalities.
In modification-based explanations for why-so-few and why-so-many queries, we
provide even stronger consideration of them by re-arranging search branches ac-
cording to neighboring operators and backtracking. We think our methods can
be even more optimized by integrating graph-specific statistics into the process of
rewriting predicates or modifying the query topology. It might also be advanta-
geous to extend the graph query with new vertices and edges in order to change
the cardinality of the result.

With this thesis, we have taken the first step towards creating a debugging tool
for why-queries over property graphs and opened up new challenges to be solved in
order to make graph databases more usable by providing comprehensive explanation
functionality.

156

A
Evaluation Setup

This section provides technical details about the evaluation setup used in this thesis.
In Section A.1, an overview of the used evaluation system is described in detail. In
Section A.2, evaluated data sets and their queries are introduced.

A.1 System Overview

All algorithms and their optimizations are implemented as a C++-based extension
of the prototypical graph database GRAPHITE [114], which stores data as a property
graph in two separate tables for vertices and edges. In the first table, vertices are rep-
resented by a set of columns for their attributes and unique identifiers. In the second
table, edges are modeled as simplified adjacency lists with an additional set of columns
for attributes. In GRAPHITE, both edges and vertices have unique identifiers. Unique
identifiers on edges allow modeling of temporal behavior, which is realized by using
timestamps as attributes. To enable efficient graph processing, GRAPHITE provides op-
timized flexible tables [21, 124], which support insertion of new attributes for edges
and vertices. The proposed algorithms and the graph database are run on a single
server machine equipped with SUSE Linux Enterprise Server 11 (64 bit) with an Intel
Xeon Processor E5-2643 (24 CPUs and 96 GB RAM).

A.2 Data Sets

For the evaluation, two data sets have been used: LDBC and DBPEDIA. The first one is
a generated graph for a social network, which is used for benchmarking graph databa-
ses. The second one represents RDF data describing general knowledge about famous
people, cities and countries, etc. Both data sets are used for evaluating subgraph- and
modification-based explanations for no, too few, and too many answers.

A.2.1 LDBC Data Set and Its Queries

The LDBC data graph evaluated in this thesis represents a social network with 3.7 M
vertices and 21.7 M edges. This graph provides general information about persons,
blogs, forums, and places and considers typical social-network connections like knows,
hasMembers, etc. The schema of the graph is illustrated in Figure A.1. The LDBC data
graph allows multiple attributes on vertices and edges and represents a typical property
graph without a rigid schema.

157

A.2. DATA SETS

Pe
rs

on

+
 c

re
at

io
nD

at
e:

 D
at

eT
im

e
+

 fi
rs

tN
am

e:
 S

tr
in

g
+

 la
st

Na
m

e:
 S

tr
in

g
+

 g
en

de
r:

St
rin

g
+

 b
irt

hd
ay

: D
at

e
+

 e
m

ai
l:

St
rin

g[
1.

.*
]

+
 s

pe
ak

s:
 S

tr
in

g[
1.

.*
]

+
 b

ro
w

se
rU

se
d:

 S
tr

in
g

+
 lo

ca
tio

nI
P:

 S
tr

in
g

O
rg

an
is

at
io

n

+
 n

am
e:

 S
tr

in
g

0.
.*

0.
.*

w
or

kA
t

+
 w

or
kF

ro
m

: 3
2b

itI
nt

eg
er

0.
.*

0.
.*

st
ud

yA
t

+
 c

la
ss

Ye
ar

: 3
2b

itI
nt

eg
er

0.
.*

0.
.*

Co
un

tr
y

Ci
ty

Co
nt

in
en

t

Pl
ac

e

+
 n

am
e:

 S
tr

in
g

is
Pa

rt
Of

1.
.*

1
is

Pa
rt

Of
1.

.*
1

is
Lo

ca
te

dI
n

0.
.*

1

<
<

in
te

rf
ac

e>
>

 M
es

sa
ge

+
 c

re
at

io
nD

at
e:

 D
at

eT
im

e
+

 b
ro

w
se

rU
se

d:
 S

tr
in

g
+

 lo
ca

tio
nI

P:
 S

tr
in

g
+

 c
on

te
nt

: T
ex

t[0
..1

]
+

 le
ng

th
: 3

2b
itI

nt
eg

er

Po
st

+
 la

ng
ua

ge
: S

tr
in

g[
0.

.1
]

+
 im

ag
eF

ile
: S

tr
in

g[
0.

.1
]

is
Lo

ca
te

dI
n

0.
.*

1

Ta
g

+
 n

am
e:

 S
tr

in
g

Ta
gC

la
ss

+
 n

am
e:

 S
tr

in
g

ha
sT

yp
e

0.
.*

0.
.*

is
Su

bc
la

ss
Of

0.
.*

0.
.*

is
Lo

ca
te

dI
n

0.
.*

1

ha
sI

nt
er

es
t

0.
.*

0.
.*

0.
.*

0.
.*

ha
sC

re
at

or

0.
.*

1

Fo
ru

m

+
 ti

tle
: S

tr
in

g
+

 c
re

at
io

nD
at

e:
 D

at
eT

im
e

co
nt

ai
ne

rO
f

1 1.
.*

ha
sM

od
er

at
or

0.
.1

1
0.

.*
1.

.*

ha
sM

em
be

r

+
 jo

in
Da

te
: D

at
eT

im
e

ha
sT

ag
0.

.*

0.
.*

re
pl

yO
f

0.
.*

1

Co
m

m
en

t
lik

es

+
 c

re
at

io
nD

at
e:

 D
at

eT
im

e

U
ni

ve
rs

it
y

Co
m

pa
ny

is
Lo

ca
te

dI
n

0.
.*

1

ha
sT

ag

0.
.*

0.
.*

kn
ow

s

+
 c

re
at

io
nD

at
e:

 D
at

eT
im

e

Figure A.1: LDBC social network benchmark schema (Source: Prat et al. [118])

For evaluating LDBC, query templates inspired by the queries Q1, Q2, Q3, Q5 from
the LDBC interactive workload [20] have been created which are illustrated in Fi-

158

A.2. DATA SETS

Name LDBC |Vq| |Eq| |Aq|+ |Tq| C0 C1 C2 C3 C4

LDBC QUERY 1 Q1 6 7 16 0 21 262 1687 6991
LDBC QUERY 2 Q2 3 3 11 0 39 627 1626 5933
LDBC QUERY 3 Q3 8 8 19 0 188 654 2139 8871
LDBC QUERY 4 Q5 4 5 12 0 195 775 5020 5044

Table A.1: Evaluated queries and their original cardinalities for LDBC data set

Name |Vq| |Eq| |Aq|+ |Tq| C0

DBPEDIA QUERY 1 4 3 3 0
DBPEDIA QUERY 2 3 2 3 0
DBPEDIA QUERY 3 5 4 4 0
DBPEDIA QUERY 4 7 6 8 0
DBPEDIA QUERY 5 3 2 1 0
DBPEDIA QUERY 10 9 9 217,944

Table A.2: Evaluated queries and their original cardinalities for DBPEDIA data set

gure A.2. For evaluating the empty-answers problems, we configured the predicates
for these queries in such a way that they deliver empty results. For testing too-few-
and too-many-answers problems, for each query template, four different configurations
have been generated by modifying different sets of predicates. The sizes of the result
sets for these generated queries are given in Table A.1, which provides the query names
used in the evaluation in Chapters 3 – 6, original names from the benchmark, numbers
of query vertices, edges, and total numbers of defined predicates and attributes, and
five cardinality classes C0 − C4 with cardinalities of their result sets. The cardina-
lity class C0 represents those instances of LDBC queries, which deliver empty results
and therefore are used for evaluating the why-empty queries. The cardinality classes
C1 − C4 are used to test why-so-few and why-so-many queries.

A.2.2 DBPEDIA Data Set and Its Queries

In contrast, the DBPEDIA graph describes mainly a topology with a limited number of
attributes, because it is produced from the DBPEDIA RDF graph. The DBPEDIA project
extracts the data from Wikipedia that comprises general knowledge of multiple con-
tributors, which post Wikipedia articles, and represents the derived information as a
cross-domain knowledge base. The data can be in multiple languages; however, in this
thesis, we use only the data set in English. For storing the data, DBPEDIA uses RDF,
which allows to query it using SPARQL. In this thesis, we created a property graph
from the DBPEDIA tables, which are publicly available1. The generated graph consists
of 213 K edges and 30 K vertices with 740 attributes, which are sparsely distributed
across the graph.

A typical query over RDF data represents a star topology with a few nodes, where
the central one has the largest degree and connects to all remaining nodes that typi-

1http://wiki.dbpedia.org/services-resources/downloads/dbpedia-tables

159

A.2. DATA SETS

cally have only one connection. The queries for evaluating the DBPEDIA are inspired
by the real queries to DBPEDIA SPARQL endpoint taken from the public logs2, which we
expressed in the subgraph isomorphism language of GRAPHITE. The evaluated queries
represent stars, include only a few vertices, and are illustrated in Figure A.3 and de-
scribed in Table A.2.

2ftp://download.openlinksw.com/support/dbpedia/

160

A.2. DATA SETS

�

�� �

��

type = person

gender = XXX

type = place

type = person

firstname = XXX

type = place

name = XXX

type = organisation type = organisation

isLocatedIn

knows

knows

workAt

studyAt

isLocatedIn

isLocatedIn

(a) LDBC QUERY Q1

� ��

type = person

gender = XXX

type = person

gender = XXX

lastname = XXX

type = post

creationdate = XXX

knows

knows,creationdate = XXX

hasCreator

(b) LDBC QUERY Q2

�

�

�

�

��

type = person

type = place

name = XXX

type = persontype = post

creationdate = XXX

type = place

name = XXX

type = post

creationdate = XXX

isLocatedIn

knows

knows

hasCreator

hasCreatorisLocatedIn

�

isLocatedIn

type = place

�
isPartOf

type = place

(c) LDBC QUERY Q3

�

�

��

type = person

lastname = XXX

type = persontype = post

creationdate = XXX

type = forum

knows

knowshasCreator

isContainerOf hasMember, joindate = XXX

(d) LDBC QUERY Q4

Figure A.2: Evaluated queries for LDBC data graph

161

A.2. DATA SETS

�

�

�
page

thumbnail

�
homepage

(a) DBPEDIA

QUERY 1

�

�

�
page

thumbnail

�
homepage

�

thumbnail

(b) DBPEDIA QUERY 3

�

�

�
type

headquarters

name = XXX

(c) DBPEDIA QUERY 2

�

�

�

name = XXX

(d) DBPEDIA QUERY 5

�

�

�

type

�
disambiguates

��

�

label = XXX label = XXX

type

disambiguates

wikiPageDisambiguateswikiPageDisambiguates

(e) DBPEDIA QUERY 4

�

�

�

�

�

�

�

�

	

hasPhotoCollectiontype

(f) DBPEDIA QUERY for evaluating too-many-answers
problem

Figure A.3: Evaluated queries for DBPEDIA graph

162

B
Additional Evaluation Results

In this section, we present detailed evaluation results for user integration and resource
consumption of the why-empty system introduced in Chapter 5.

B.1 User Integration in Why-Empty Query Rewriting

In this section, in Figure B.1, relevance distributions for first 100 refined queries are
presented for three LDBC queries which originally fail to deliver any result. These de-
tailed results belong to the evaluation of the user-integration model for coarse-grained
modification explanations described in Section 5.5.4. Two different configurations are
used: with considering user intention and without it.

LDBC Query 1 LDBC Query 2 LDBC Query 4

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

S
o

lu
tio

n
s

A
ll Q

u
e
ry

 C
a
n

d
id

a
te

s

Acc
ep

t

Acc
ep

t,
Acc

ep
t

Acc
ep

t,
R
ej
ec

t

R
ej
ec

t

R
ej

ec
t,

Acc
ep

t

R
ej
ec

t,
R
ej
ec

t

Acc
ep

t

Acc
ep

t,
Acc

ep
t

Acc
ep

t,
R
ej

ec
t

R
ej
ec

t

R
ej
ec

t,
Acc

ep
t

R
ej

ec
t,

R
ej
ec

t

Acc
ep

t

Acc
ep

t,
Acc

ep
t

Acc
ep

t,
R
ej

ec
t

R
ej

ec
t

R
ej
ec

t,
Acc

ep
t

R
eje

ct
, R

ej
ec

t

User Ratings

R
e
le

v
a
n

c
e
 D

is
tr

ib
u

ti
o

n

Consideration of User Feedback during Relaxation No user feedback considered With user feedback

Figure B.1: Evaluation of user integration in the rewriting process for LDBC queries

In Figure B.2, we also present relevances of non-failed rewritten queries generated
in first 100 iterations for both experiments: with and without considering the user
feedback.

163

B.2. RESOURCE CONSUMPTION FOR WHY-EMPTY QUERY REWRITING

Accept Accept, Accept Accept, Reject Reject Reject, Accept Reject, Reject

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

L
D

B
C

 Q
u

e
ry

 1
L

D
B

C
 Q

u
e
ry

 2
L

D
B

C
 Q

u
e
ry

 4

0
2
5

5
0

7
5

1
0
0 0

2
5

5
0

7
5

1
0
0 0

2
5

5
0

7
5

1
0
0 0

2
5

5
0

7
5

1
0
0 0

2
5

5
0

7
5

1
0
0 0

2
5

5
0

7
5

1
0
0

Solution Order

R
e
le

v
a
n

c
e

Consideration of User Feedback during Relaxation No user feedback considered With user feedback

Figure B.2: Evaluation of relevance

B.2 Resource Consumption for Why-Empty Query Rewriting

In Table B.1, we describe the absolute numbers for processing time in ms and size of
collected query-dependent statistics, which were collected by evaluating the length of
a path to be considered in Section 5.5.3.

164

B.2. RESOURCE CONSUMPTION FOR WHY-EMPTY QUERY REWRITING

Time (ms) Statistics Size (B)

Data
Query

Path
Total

Statistics Calculate
Final Initial

Set Size Initialize Extend Paths

LD
B

C

QUERY 1
1 41,594 107 1,187 0 4,425 2,356
2 42,295 108 1,206 21.06 5,312 2,356
3 41,377 105 1,195 52.8 7,192 2,356

QUERY 2
1 6,998 98.4 1,756 0 4,074 1,304
2 6,209 69.5 1,688 14.7 4,710 1,304
3 6,257 70.7 1,683 15.4 4,710 1,304

QUERY 3
1 2,779 113 1,201 0 5,185 3,136
2 2,828 112 1,211 20.1 5,989 3,136
3 2.917 112 1,195 55.7 8,079 3,136

QUERY 4
1 15,312 143 2,057 0 4,859 1,828
2 16,550 174 2,153 29.2 6,146 1,828
3 15,010 157 2,098 66.8 8,646 1,828

D
B

P
E

D
IA

QUERY 1
1 35 1.85 14.1 0 1,265 860
2 36 1.80 17.1 1.7 1,414 860
3 36 1.86 17.2 1.7 1,414 860

QUERY 2
1 1,118 2.08 39.5 0 979 660
2 1,122 2.08 41.8 0.07 1,055 660
3 1,127 2.11 41.7 0.08 1,055 660

QUERY 3
1 41 2.65 25.6 0 1,664 1,124
2 183 2.73 41.1 47.9 1,813 1,124
3 104 2.65 34.4 52.4 1,921 1,124

QUERY 4
1 3,150 5.23 282.3 0 3,436 1,780
2 3,246 5.19 327.3 71.6 3,842 1,780
3 3,450 5.23 360.9 192.4 4,436 1,780

QUERY 5
1 8,724 0.78 207.3 0 888 660
2 10,391 0.78 204.7 2,973.27 964 660
3 10,389 1.16 180.1 2,989.94 964 660

Table B.1: Memory consumption and response time of why-empty rewriting system for different queries
and path lengths

165

Bibliography

[1] Daniel Abadi, Rakesh Agrawal, Anastasia Ailamaki, Magdalena Balazinska,
Philip A. Bernstein, Michael J. Carey, Surajit Chaudhuri, Jeffrey Dean, AnHai
Doan, Michael J. Franklin, Johannes Gehrke, Laura M. Haas, Alon Y. Halevy,
Joseph M. Hellerstein, Yannis E. Ioannidis, H. V. Jagadish, Donald Kossmann,
Samuel Madden, Sharad Mehrotra, Tova Milo, Jeffrey F. Naughton, Raghu Ra-
makrishnan, Volker Markl, Christopher Olston, Beng Chin Ooi, Christopher Ré,
Dan Suciu, Michael Stonebraker, Todd Walter, and Jennifer Widom. The beck-
man report on database research. SIGMOD Rec., 43(3):61–70, December 2014.

[2] Parag Agrawal, Omar Benjelloun, Anish Das Sarma, Chris Hayworth, Shubha
Nabar, Tomoe Sugihara, and Jennifer Widom. Trio: A system for data, uncer-
tainty, and lineage. In Proceedings of the 32Nd International Conference on Very
Large Data Bases, VLDB ’06, pages 1151–1154. VLDB Endowment, 2006.

[3] Rakesh Agrawal, Ralf Rantzau, and Evimaria Terzi. Context-sensitive ranking. In
Proceedings of the 2006 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’06, pages 383–394, New York, NY, USA, 2006. ACM.

[4] Sanjay Agrawal, Surajit Chaudhuri, Gautam Das, and Aristides Gionis. Auto-
mated ranking of database query results. In CIDR, 2003.

[5] Boanerges Aleman-Meza, C Halaschek-Weiner, Cartic Ramakrishnan, Amit P
Sheth, et al. Ranking complex relationships on the semantic web. Internet
Computing, IEEE, 9(3):37–44, 2005.

[6] Laurent Amsaleg, Michael J. Franklin, Anthony Tomasic, and Tolga Urhan. Im-
proving responsiveness for wide-area data access. IEEE Data Engineering Bul-
letin, 20:3–11, 1997.

[7] Kemafor Anyanwu, Angela Maduko, and Amit Sheth. Semrank: Ranking comp-
lex relationship search results on the semantic web. In Proceedings of the 14th
International Conference on World Wide Web, WWW ’05, pages 117–127, New
York, NY, USA, 2005. ACM.

[8] Akanksha Baid, Wentao Wu, Chong Sun, AnHai Doan, and Jeffrey F. Naughton.
On debugging non-answers in keyword search systems. In Proceedings of the
18th International Conference on Extending Database Technology, EDBT 2015,
Brussels, Belgium, March 23-27, 2015., pages 37–48, 2015.

[9] Egon Balas and Chang Sung Yu. Finding a maximum clique in an arbitrary
graph. SIAM J. Comput., 15(4):1054–1068, November 1986.

167

BIBLIOGRAPHY

[10] Senjuti Basu Roy, Haidong Wang, Gautam Das, Ullas Nambiar, and Mukesh Mo-
hania. Minimum-effort driven dynamic faceted search in structured databases.
In Proceedings of the 17th ACM Conference on Information and Knowledge Man-
agement, CIKM ’08, pages 13–22, New York, NY, USA, 2008. ACM.

[11] Mounir Bechchi. Clustering-based Approximate Answering of Query Result in Large
and Distributed Databases. PhD thesis, Université de Nantes, 2009.

[12] Omar Benjelloun, Anish Das Sarma, Alon Halevy, and Jennifer Widom. Uldbs:
Databases with uncertainty and lineage. In Proceedings of the 32Nd International
Conference on Very Large Data Bases, VLDB ’06, pages 953–964. VLDB Endow-
ment, 2006.

[13] Philip A. Bernstein and Thomas Bergstraesser. Meta-data support for data trans-
formations using microsoft repository. IEEE Data Eng. Bull., 22(1):9–14, 1999.

[14] Deepavali Bhagwat, Laura Chiticariu, Wang-Chiew Tan, and Gaurav Vijay-
vargiya. An annotation management system for relational databases. In Proceed-
ings of the Thirtieth International Conference on Very Large Data Bases - Volume
30, VLDB ’04, pages 900–911. VLDB Endowment, 2004.

[15] Nicole Bidoit, Melanie Herschel, and Aikaterini Tzompanaki. Efficient computa-
tion of polynomial explanations of why-not questions. In Proceedings of the 24th
ACM International on Conference on Information and Knowledge Management,
CIKM ’15, pages 713–722, New York, NY, USA, 2015. ACM.

[16] Nicole Bidoit, Melanie Herschel, and Katerina Tzompanaki. Immutably answer-
ing why-not questions for equivalent conjunctive queries. In 6th USENIX Work-
shop on the Theory and Practice of Provenance (TaPP 2014), Cologne, June 2014.
USENIX Association.

[17] Nicole Bidoit, Melanie Herschel, and Katerina Tzompanaki. Query-Based Why-
Not Provenance with NedExplain. In Proceedings of the 17th International Confer-
ence on Extending Database Technology, EDBT 2014, Athens, Greece, March 24-28,
2014., pages 145–156, 2014.

[18] Nicole Bidoit, Melanie Herschel, and Katerina Tzompanaki. Efficient computa-
tion of polynomial explanations of Why-Not questions. In 31ème Conférence sur
la Gestion de Données - Principes, Technologies et Applications - BDA 2015, Île de
Porquerolles, France, September 2015.

[19] Nicole Bidoit, Melanie Herschel, and Katerina Tzompanaki. Efq: Why-not ans-
wer polynomials in action. Proc. VLDB Endow., 8(12):1980–1983, August 2015.

[20] Peter Boncz. Ldbc: Benchmarks for graph and rdf data management. In Pro-
ceedings of the 17th International Database Engineering & Applications Sym-
posium, IDEAS ’13, pages 1–2, New York, NY, USA, 2013. ACM.

[21] Christof Bornhövd, Robert Kubis, Wolfgang Lehner, Hannes Voigt, and Horst
Werner. Flexible information management, exploration and analysis in SAP
HANA. In DATA 2012 - Proceedings of the International Conference on Data Tech-
nologies and Applications, Rome, Italy, 25-27 July, 2012, pages 15–28, 2012.

[22] Peter Buneman, Alin Deutsch, and Wang-Chiew Tan. A deterministic model for
semistructured data. In Workshop on Query Processing for Semistructured Data
and Non-Standard Data Formats, pages 14–19, 1999.

168

BIBLIOGRAPHY

[23] Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan. Why and where: A
characterization of data provenance. In Proceedings of the 8th International Con-
ference on Database Theory, ICDT ’01, pages 316–330, London, UK, UK, 2001.
Springer-Verlag.

[24] Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. On propagation of dele-
tions and annotations through views. In Proceedings of the Twenty-first ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS
’02, pages 150–158, New York, NY, USA, 2002. ACM.

[25] Rafael Caballero, Yolanda García-Ruiz, and Fernando Sáenz-Pérez. Declarative
debugging of wrong and missing answers for sql views. In Tom Schrijvers and
Peter Thiemann, editors, Functional and Logic Programming, volume 7294 of Lec-
ture Notes in Computer Science, pages 73–87. Springer Berlin Heidelberg, 2012.

[26] Michael J. Cafarella, Christopher Re, Dan Suciu, Oren Etzioni, and Michele
Banko. Structured querying of web text. In 3rd Biennial Conference on Inno-
vative Data Systems Research (CIDR), Asilomar, California, USA, 2007.

[27] Andrea Cali, Domenico Lembo, and Riccardo Rosati. Query rewriting and an-
swering under constraints in data integration systems. In Proceedings of the 18th
International Joint Conference on Artificial Intelligence, IJCAI’03, pages 16–21,
San Francisco, CA, USA, 2003. Morgan Kaufmann Publishers Inc.

[28] Diego Calvanese, Magdalena Ortiz, Mantas Simkus, and Giorgio Stefanoni. The
complexity of explaining negative query answers in dl-lite. In Proc. of the 13th
Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 2012),
pages 583–587. AAAI Press, 2012.

[29] Diego Calvanese, Magdalena Ortiz, Mantas Simkus, and Giorgio Stefanoni. Rea-
soning about explanations for negative query answers in dl-lite. J. Artif. Intell.
Res. (JAIR), 48:635–669, 2013.

[30] Kaushik Chakrabarti, Surajit Chaudhuri, and Seung-won Hwang. Automatic
categorization of query results. In Proceedings of the 2004 ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD ’04, pages 755–766, New
York, NY, USA, 2004. ACM.

[31] Hans Chalupsky and Thomas A. Russ. Whynot: Debugging failed queries in
large knowledge bases. In Proceedings of the Eighteenth National Conference on
Artificial Intelligence and Fourteenth Conference on Innovative Applications of Ar-
tificial Intelligence, July 28 - August 1, 2002, Edmonton, Alberta, Canada., pages
870–877, 2002.

[32] Adriane Chapman and H. V. Jagadish. Why not? In Proceedings of the 2009 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’09, pages
523–534, New York, NY, USA, 2009. ACM.

[33] Surajit Chaudhuri. Generalization and a framework for query modification. In
Proceedings of the Sixth International Conference on Data Engineering, pages 138–
145, Washington, DC, USA, 1990. IEEE Computer Society.

[34] Surajit Chaudhuri, Gautam Das, Vagelis Hristidis, and Gerhard Weikum. Prob-
abilistic ranking of database query results. In Proceedings of the Thirtieth In-
ternational Conference on Very Large Data Bases - Volume 30, VLDB ’04, pages
888–899. VLDB Endowment, 2004.

169

BIBLIOGRAPHY

[35] Surajit Chaudhuri, Gautam Das, Vagelis Hristidis, and Gerhard Weikum. Prob-
abilistic information retrieval approach for ranking of database query results.
ACM Trans. Database Syst., 31(3):1134–1168, September 2006.

[36] Lei Chen, Xin Lin, Haibo Hu, Christian S Jensen, and Jianliang Xu. Answering
why-not questions on spatial keyword top-k queries. In Data Engineering (ICDE),
2015 IEEE 31st International Conference on, pages 279–290. IEEE, 2015.

[37] Zhiyuan Chen and Tao Li. Addressing diverse user preferences: A framework for
query results navigation. IEEE Data Eng. Bull., 32(4):41–48, 2009.

[38] Zhiyuan Chen, Tao Li, and Yanan Sun. A learning approach to sql query results
ranking using skyline and users’ current navigational behavior. IEEE Trans. on
Knowl. and Data Eng., 25(12):2683–2693, December 2013.

[39] Sean Chester and Ira Assent. Explanations for skyline query results. In Proceed-
ings of the 18th International Conference on Extending Database Technology, EDBT
2015, Brussels, Belgium, March 23-27, 2015., pages 349–360, 2015.

[40] Laura Chiticariu, Wang-Chiew Tan, and Gaurav Vijayvargiya. Dbnotes: A post-it
system for relational databases based on provenance. In Proceedings of the 2005
ACM SIGMOD International Conference on Management of Data, SIGMOD ’05,
pages 942–944, New York, NY, USA, 2005. ACM.

[41] Wesley W. Chu, Hua Yang, Kuorong Chiang, Michael Minock, Gladys Chow, and
Chris Larson. Cobase: A scalable and extensible cooperative information system.
Journal of Intelligent Information Systems, 6(2-3):223–259, 1996.

[42] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson.
Introduction to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

[43] Yingwei Cui and Jennifer Widom. Lineage tracing for general data warehouse
transformations. The VLDB Journal, 12(1):41–58, May 2003.

[44] Yingwei Cui, Jennifer Widom, and Janet L. Wiener. Tracing the lineage of view
data in a warehousing environment. ACM Trans. Database Syst., 25(2):179–227,
June 2000.

[45] Marie-Pierre Dubuisson and Anil K. Jain. A modified Hausdorff distance for
object matching. In Pattern Recognition, 1994. Vol. 1 - Conference A: Computer
Vision amp; Image Processing., Proceedings of the 12th IAPR International Confer-
ence on, volume 1, pages 566–568 vol.1, Oct 1994.

[46] Paul J Durand, Rohit Pasari, Johnnie W Baker, and Chun-che Tsai. An efficient
algorithm for similarity analysis of molecules. Internet Journal of Chemistry,
2(17):1–16, 1999.

[47] Efthimis N Efthimiadis. Query expansion. Annual review of information science
and technology, 31:121–187, 1996.

[48] Wenfei Fan, Xin Wang, and Yinghui Wu. Diversified top-k graph pattern match-
ing. Proc. VLDB Endow., 6(13):1510–1521, August 2013.

[49] Géraud Fokou, Stéphane Jean, and Allel Hadjali. Endowing semantic query
languages with advanced relaxation capabilities. In Troels Andreasen, Henning

170

BIBLIOGRAPHY

Christiansen, Juan-Carlos Cubero, and ZbigniewW. Raś, editors, Foundations of
Intelligent Systems, volume 8502 of Lecture Notes in Computer Science, pages
512–517. Springer International Publishing, 2014.

[50] Xinbo Gao, Bing Xiao, Dacheng Tao, and Xuelong Li. A survey of graph edit
distance. Pattern Anal. Appl., 13(1):113–129, January 2010.

[51] Yunjun Gao, Qing Liu, Gang Chen, Baihua Zheng, and Linlin Zhou. Answering
why-not questions on reverse top-k queries. Proc. VLDB Endow., 8(7):738–749,
February 2015.

[52] Boris Glavic, Sven Köhler, Sean Riddle, and Bertram Ludäscher. Towards
constraint-based explanations for answers and non-answers. In Proceedings of
the 7th USENIX Conference on Theory and Practice of Provenance, TaPP’15, pages
13–13, Berkeley, CA, USA, 2015. USENIX Association.

[53] Parke Godfrey. Minimization in cooperative response to failing database queries.
International Journal of Cooperative Information Systems, 6(02):95–149, 1997.

[54] Todd J. Green. Containment of conjunctive queries on annotated relations. In
Proceedings of the 12th International Conference on Database Theory, ICDT ’09,
pages 296–309, New York, NY, USA, 2009. ACM.

[55] Todd J. Green, Grigoris Karvounarakis, and Val Tannen. Provenance semirings.
In Proceedings of the Twenty-sixth ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, PODS ’07, pages 31–40, New York, NY, USA,
2007. ACM.

[56] Torsten Grust and Jan Rittinger. Observing sql queries in their natural habitat.
ACM Trans. Database Syst., 38(1):3:1–3:33, April 2013.

[57] Steve Harris, Andy Seaborne, and Eric Prudh́ommeaux. Sparql 1.1 query lan-
guage. W3C Recommendation, 21, 2013.

[58] Zhian He and Eric Lo. Answering why-not questions on top-k queries. In IEEE
28th International Conference on Data Engineering (ICDE 2012), Washington, DC,
USA (Arlington, Virginia), 1-5 April, 2012, pages 750–761, 2012.

[59] Zhian He and Eric Lo. Answering why-not questions on top-k queries. IEEE
Trans. Knowl. Data Eng., 26(6):1300–1315, 2014.

[60] Melanie Herschel. Wondering why data are missing from query results?: ask
conseil why-not. In Proceedings of the 22nd ACM international conference on Con-
ference on information & knowledge management, CIKM ’13, pages 2213–
2218, New York, NY, USA, 2013. ACM.

[61] Melanie Herschel. A hybrid approach to answering why-not questions on rela-
tional query results. J. Data and Information Quality, 5(3):10:1–10:29, March
2015.

[62] Melanie Herschel and Hanno Eichelberger. The nautilus analyzer: Understand-
ing and debugging data transformations. In Proceedings of the 21st ACM Interna-
tional Conference on Information and Knowledge Management, CIKM ’12, pages
2731–2733, New York, NY, USA, 2012. ACM.

171

BIBLIOGRAPHY

[63] Melanie Herschel and Torsten Grust. Transformation lifecycle management with
nautilus. In VLDB Workshop on the Quality of Data (QDB), 2011.

[64] Melanie Herschel and Mauricio A. Hernández. Explaining missing answers to
spjua queries. Proc. VLDB Endow., 3(1-2):185–196, September 2010.

[65] Melanie Herschel, Mauricio A. Hernández, and Wang-Chiew Tan. Artemis: A
system for analyzing missing answers. Proc. VLDB Endow., 2(2):1550–1553,
August 2009.

[66] Hai Huang, Chengfei Liu, and Xiaofang Zhou. Approximating query answering
on rdf databases. World Wide Web, 15(1):89–114, 2012.

[67] Jiansheng Huang, Ting Chen, AnHai Doan, and Jeffrey F. Naughton. On the
provenance of non-answers to queries over extracted data. Proc. VLDB Endow.,
1(1):736–747, August 2008.

[68] Y. Huhtala, J. Karkkainen, P. Porkka, and H. Toivonen. Efficient discovery of
functional and approximate dependencies using partitions. In Data Engineering,
1998. Proceedings., 14th International Conference on, pages 392–401, Feb 1998.

[69] Ihab F. Ilyas, George Beskales, and Mohamed A. Soliman. A survey of top-k
query processing techniques in relational database systems. ACM Comput. Surv.,
40(4):11:1–11:58, October 2008.

[70] Tomasz Imieliński and Witold Lipski, Jr. Incomplete information in relational
databases. J. ACM, 31(4):761–791, September 1984.

[71] Md. Saiful Islam. On answering why and why-not questions in databases. In
Workshops Proceedings of the 29th IEEE International Conference on Data Engi-
neering, ICDE 2013, Brisbane, Australia, April 8-12, 2013, pages 298–301, 2013.

[72] Md. Saiful Islam, Chengfei Liu, and Jianxin Li. Efficient answering of why-not
questions in similar graph matching. Knowledge and Data Engineering, IEEE
Transactions on, 27(10):2672–2686, Oct 2015.

[73] Md. Saiful Islam, Chengfei Liu, and Rui Zhou. On modeling query refinement by
capturing user intent through feedback. In Proceedings of the Twenty-Third Aus-
tralasian Database Conference - Volume 124, ADC ’12, pages 11–20, Darlinghurst,
Australia, Australia, 2012. Australian Computer Society, Inc.

[74] Md. Saiful Islam, Chengfei Liu, and Rui Zhou. A framework for query refinement
with user feedback. J. Syst. Softw., 86(6):1580–1595, June 2013.

[75] Md. Saiful Islam, Chengfei Liu, and Rui Zhou. Flexiq: A flexible interactive
querying framework by exploiting the skyline operator. Journal of Systems and
Software, 97:97–117, 2014.

[76] Md. Saiful Islam, Rui Zhou, and Chengfei Liu. On answering why-not questions
in reverse skyline queries. In Data Engineering (ICDE), 2013 IEEE 29th Interna-
tional Conference on, pages 973–984. IEEE, 2013.

[77] H. V. Jagadish, Adriane Chapman, Aaron Elkiss, Magesh Jayapandian, Yunyao
Li, Arnab Nandi, and Cong Yu. Making database systems usable. In Proceed-
ings of the 2007 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’07, pages 13–24, New York, NY, USA, 2007. ACM.

172

BIBLIOGRAPHY

[78] Dietmar Jannach. Techniques for fast query relaxation in content-based recom-
mender systems. In Proceedings of the 29th Annual German Conference on Artifi-
cial Intelligence, KI’06, pages 49–63, Berlin, Heidelberg, 2007. Springer-Verlag.

[79] Ulrich Junker. Quickxplain: Preferred explanations and relaxations for over-
constrained problems. In Proceedings of the 19th National Conference on Artifical
Intelligence, AAAI’04, pages 167–172. AAAI Press, 2004.

[80] S. Jerrold Kaplan. Cooperative responses from a portable natural language query
system. Artificial Intelligence, 19(2):165 – 187, 1982.

[81] S. Jerrold Kaplan. Designing a portable natural language database query system.
ACM Trans. Database Syst., 9(1):1–19, March 1984.

[82] Nishant Kapoor, Gautam Das, Vagelis Hristidis, S. Sudarshan, and Gerhard
Weikum. STAR: A system for tuple and attribute ranking of query answers.
In Data Engineering, 2007. ICDE 2007. IEEE 23rd International Conference on,
pages 1483–1484, April 2007.

[83] Grigoris Karvounarakis and Todd J. Green. Semiring-annotated data: Queries
and provenance? SIGMOD Rec., 41(3):5–14, October 2012.

[84] Abhijith Kashyap, Vagelis Hristidis, and Michalis Petropoulos. Facetor: Cost-
driven exploration of faceted query results. In Proceedings of the 19th ACM In-
ternational Conference on Information and Knowledge Management, CIKM ’10,
pages 719–728, New York, NY, USA, 2010. ACM.

[85] Sven Köhler, Bertram Ludäscher, and Daniel Zinn. First-order provenance
games. In Val Tannen, Limsoon Wong, Leonid Libkin, Wenfei Fan, Wang-Chiew
Tan, and Michael Fourman, editors, In Search of Elegance in the Theory and Prac-
tice of Computation, volume 8000 of Lecture Notes in Computer Science, pages
382–399. Springer Berlin Heidelberg, 2013.

[86] Werner Kießling. Foundations of preferences in database systems. In Proceedings
of the 28th International Conference on Very Large Data Bases, VLDB ’02, pages
311–322. VLDB Endowment, 2002.

[87] Nick Koudas, Chen Li, Anthony K. H. Tung, and Rares Vernica. Relaxing join and
selection queries. In Proceedings of the 32Nd International Conference on Very
Large Data Bases, VLDB ’06, pages 199–210. VLDB Endowment, 2006.

[88] Harold W. Kuhn. The hungarian method for the assignment problem. Naval
Research Logistics Quarterly, 2(1-2):83–97, 1955.

[89] Thomas Lee, Stéphane Bressan, and Stuart E Madnick. Source attribution for
querying against semi-structured documents. In Workshop on Web Information
and Data Management, pages 33–39, 1998.

[90] Alon Y. Levy. Obtaining complete answers from incomplete databases. In Pro-
ceedings of the 22th International Conference on Very Large Data Bases, VLDB ’96,
pages 402–412, San Francisco, CA, USA, 1996. Morgan Kaufmann Publishers
Inc.

[91] Bin Liu and H. V. Jagadish. Using trees to depict a forest. Proc. VLDB Endow.,
2(1):133–144, August 2009.

173

BIBLIOGRAPHY

[92] Federica Mandreoli, Riccardo Martoglia, Giorgio Villani, and Wilma Penzo. Flex-
ible query answering on graph-modeled data. In Proceedings of the 12th In-
ternational Conference on Extending Database Technology: Advances in Database
Technology, EDBT ’09, pages 216–227, New York, NY, USA, 2009. ACM.

[93] Silvano Martello and Paolo Toth. Knapsack problems: algorithms and computer
implementations. John Wiley & Sons, Inc., New York, NY, USA, 1990.

[94] James J. McGregor. Backtrack search algorithms and the maximal common sub-
graph problem. Software: Practice and Experience, 12(1):23–34, 1982.

[95] Alexandra Meliou, Wolfgang Gatterbauer, Joseph Y Halpern, Christoph Koch,
Katherine F Moore, and Dan Suciu. Causality in databases. IEEE Data Eng. Bull.,
33(EPFL-ARTICLE-165841):59–67, 2010.

[96] Alexandra Meliou, Wolfgang Gatterbauer, Katherine F. Moore, and Dan Su-
ciu. The complexity of causality and responsibility for query answers and non-
answers. Proc. VLDB Endow., 4(1):34–45, October 2010.

[97] Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. Similarity flooding:
a versatile graph matching algorithm and its application to schema matching.
In Data Engineering, 2002. Proceedings. 18th International Conference on, pages
117–128, 2002.

[98] Eduardo Mena, Vipul Kashyap, Arantza Illarramendi, and Amit Sheth. Impre-
cise answers in distributed environments: Estimation of information loss for
multi-ontology based query processing. International Journal of Cooperative In-
formation Systems, 09(04):403–425, 2000.

[99] Matthew Merzbacher and Wesley W. Chu. Pattern–based clustering for database
attribute values. In in Proceedings of AAAI Workshop on Knowledge Discovery,
1993.

[100] Eric Miller. An introduction to the resource description framework. Bulletin of
the American Society for Information Science and Technology, 25(1):15–19, 1998.

[101] Chaitanya Mishra and Nick Koudas. Stretch ’n’ shrink: Resizing queries to user
preferences. In Proceedings of the 2008 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’08, pages 1227–1230, New York, NY, USA,
2008. ACM.

[102] Chaitanya Mishra and Nick Koudas. Interactive query refinement. In Proceedings
of the 12th International Conference on Extending Database Technology: Advances
in Database Technology, EDBT ’09, pages 862–873, New York, NY, USA, 2009.
ACM.

[103] Amihai Motro. Query generalization: A method for interpreting null answers.
In Proceedings from the First International Workshop on Expert Database Systems,
pages 597–616, Redwood City, CA, USA, 1986. Benjamin-Cummings Publishing
Co., Inc.

[104] Amihai Motro. SEAVE: A Mechanism for Verifying User Presuppositions in Query
Systems. ACM Trans. Inf. Syst., 4(4):312–330, December 1986.

[105] Amihai Motro. FLEX: a tolerant and cooperative user interface to databases.
Knowledge and Data Engineering, IEEE Transactions on, 2(2):231–246, Jun 1990.

174

BIBLIOGRAPHY

[106] Davide Mottin, Francesco Bonchi, and Francesco Gullo. Graph query reformu-
lation with diversity. In Proceedings of the 21th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD ’15, pages 825–834, New
York, NY, USA, 2015. ACM.

[107] Davide Mottin, Alice Marascu, Senjuti Basu Roy, Gautam Das, Themis Palpanas,
and Yannis Velegrakis. Iqr: An interactive query relaxation system for the empty-
answer problem. In Proceedings of the 2014 ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD ’14, pages 1095–1098, New York, NY,
USA, 2014. ACM.

[108] Davide Mottin, Alice Marascu, Senjuti Basu Roy, Gautam Das, Themis Palpanas,
and Yannis Velegrakis. A probabilistic optimization framework for the empty-
answer problem. Proc. VLDB Endow., 6(14):1762–1773, September 2013.

[109] Ion Muslea. Machine learning for online query relaxation. In Proceedings of the
Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’04, pages 246–255, New York, NY, USA, 2004. ACM.

[110] Ion Muslea and Thomas J. Lee. Online query relaxation via bayesian causal
structures discovery. In Proceedings of the 20th National Conference on Artificial
Intelligence - Volume 2, AAAI’05, pages 831–836. AAAI Press, 2005.

[111] Ullas Nambiar and Subbarao Kambhampati. Mining approximate functional de-
pendencies and concept similarities to answer imprecise queries. In Proceedings
of the 7th International Workshop on the Web and Databases: Colocated with ACM
SIGMOD/PODS 2004, WebDB ’04, pages 73–78, New York, NY, USA, 2004. ACM.

[112] Xiaomin Ning, Hai Jin, and Hao Wu. Rss: A framework enabling ranked search
on the semantic web. Inf. Process. Manage., 44(2):893–909, March 2008.

[113] Michael Ortega-Binderberger, Kaushik Chakrabarti, and Sharad Mehrotra. An
approach to integrating query refinement in sql. In ChristianS. Jensen, Simonas
Šaltenis, KeithG. Jeffery, Jaroslav Pokorny, Elisa Bertino, Klemens Böhn, and
Matthias Jarke, editors, Advances in Database Technology — EDBT 2002, volume
2287 of Lecture Notes in Computer Science, pages 15–33. Springer Berlin Heidel-
berg, 2002.

[114] Marcus Paradies, Wolfgang Lehner, and Christof Bornhövd. Graphite: An exten-
sible graph traversal framework for relational database management systems.
In Proceedings of the 27th International Conference on Scientific and Statistical
Database Management, SSDBM ’15, pages 29:1–29:12, New York, NY, USA,
2015. ACM.

[115] Marcus Paradies, Elena Vasilyeva, Adrian Mocan, and Wolfgang Lehner. Robust
cardinality estimation for subgraph isomorphism queries on property graphs. In
Big-O(Q) 2015 (co-located with VLDB 2015), 2015.

[116] Robert Pienta, Acar Tamersoy, Hanghang Tong, and Duen Horng Chau. MAGE:
Matching approximate patterns in richly-attributed graphs. In Big Data (Big
Data), 2014 IEEE International Conference on, pages 585–590, Oct 2014.

[117] Alexandra Poulovassilis and Peter T. Wood. Combining approximation and rela-
xation in semantic web path queries. In Peter F. Patel-Schneider, Yue Pan, Pascal

175

BIBLIOGRAPHY

Hitzler, Peter Mika, Lei Zhang, Jeff Z. Pan, Ian Horrocks, and Birte Glimm, edi-
tors, The Semantic Web – ISWC 2010, volume 6496 of Lecture Notes in Computer
Science, pages 631–646. Springer Berlin Heidelberg, 2010.

[118] Arnau Prat, Peter Boncz, Josep Lluìs Larriba, Renzo Angles, Alex Averbuch, Orri
Erling, Andrey Gubichev, Mirko Spasic, Minh-Duc Pham, and Norbert Martìnez.
Ldbc social network benchmark (snb) - v0.2.2 first public draft release v0.2.2.
Technical report, 2015.

[119] Bahar Qarabaqi and Mirek Riedewald. User-driven refinement of imprecise
queries. In Data Engineering (ICDE), 2014 IEEE 30th International Conference
on, pages 916–927, March 2014.

[120] Cartic Ramakrishnan, William H. Milnor, Matthew Perry, and Amit P. Sheth. Dis-
covering informative connection subgraphs in multi-relational graphs. SIGKDD
Explor. Newsl., 7(2):56–63, December 2005.

[121] Sean Riddle, Sven Köhler, and Bertram Ludäscher. Towards constraint prove-
nance games. In 6th USENIX Workshop on the Theory and Practice of Provenance
(TaPP 2014), Cologne, June 2014. USENIX Association.

[122] Marko A Rodriguez and Peter Neubauer. Constructions from dots and lines. Bul-
letin of the American Society for Information Science and Technology, 36(6):35–
41, 2010.

[123] Senjuti Basu Roy, Haidong Wang, Ullas Nambiar, Gautam Das, and Mukesh Mo-
hania. DynaCet: Building Dynamic Faceted Search Systems over Databases. In
Data Engineering, 2009. ICDE ’09. IEEE 25th International Conference on, pages
1463–1466, March 2009.

[124] Michael Rudolf, Marcus Paradies, Christof Bornhövd, and Wolfgang Lehner. The
graph story of the SAP HANA database. In Datenbanksysteme für Business, Tech-
nologie und Web (BTW), 15. Fachtagung des GI-Fachbereichs "Datenbanken und In-
formationssysteme" (DBIS), 11.-15.3.2013 in Magdeburg, Germany. Proceedings,
pages 403–420, 2013.

[125] Nikos Sarkas, Nilesh Bansal, Gautam Das, and Nick Koudas. Measure-driven
keyword-query expansion. Proc. VLDB Endow., 2(1):121–132, August 2009.

[126] Kostas Stefanidis, Evaggelia Pitoura, and Panos Vassiliadis. A context-aware
preference database system. Int. J. Pervasive Computing and Communications,
3(4):439–460, 2007.

[127] Weifeng Su, Jiying Wang, Qiong Huang, and Fred Lochovsky. Query result rank-
ing over e-commerce web databases. In Proceedings of the 15th ACM Interna-
tional Conference on Information and Knowledge Management, CIKM ’06, pages
575–584, New York, NY, USA, 2006. ACM.

[128] Wang-Chiew Tan. Containment of relational queries with annotation propaga-
tion. In Database Programming Languages, pages 37–53. Springer, 2004.

[129] Tao Tao and ChengXiang Zhai. Best-k queries on database systems. In Pro-
ceedings of the 15th ACM International Conference on Information and Knowledge
Management, CIKM ’06, pages 790–791, New York, NY, USA, 2006. ACM.

176

BIBLIOGRAPHY

[130] Aditya Telang, Chengkai Li, and Sharma Chakravarthy. One size does not fit all:
Toward user- and query-dependent ranking for web databases. IEEE Trans. on
Knowl. and Data Eng., 24(9):1671–1685, September 2012.

[131] Balder ten Cate, Cristina Civili, Evgeny Sherkhonov, and Wang-Chiew Tan. High-
level why-not explanations using ontologies. In Proceedings of the 34th ACM
Symposium on Principles of Database Systems, PODS ’15, pages 31–43, New York,
NY, USA, 2015. ACM.

[132] Quoc Trung Tran and Chee-Yong Chan. How to conquer why-not questions. In
Proceedings of the 2010 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’10, pages 15–26, New York, NY, USA, 2010. ACM.

[133] Quoc Trung Tran, Chee-Yong Chan, and Srinivasan Parthasarathy. Query by
output. In Proceedings of the 2009 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’09, pages 535–548, New York, NY, USA, 2009.
ACM.

[134] Thanh Tran, Haofen Wang, Sebastian Rudolph, and Philipp Cimiano. Top-k ex-
ploration of query candidates for efficient keyword search on graph-shaped (rdf)
data. In Proceedings of the 2009 IEEE International Conference on Data Engineer-
ing, ICDE ’09, pages 405–416, Washington, DC, USA, 2009. IEEE Computer
Society.

[135] Julian R. Ullmann. An algorithm for subgraph isomorphism. Journal of the ACM
(JACM), 23(1):31–42, January 1976.

[136] Arthur H Van Bunningen, Maarten M Fokkinga, Peter MG Apers, and Ling Feng.
Ranking query results using context-aware preferences. In Data Engineering
Workshop, 2007 IEEE 23rd International Conference on, pages 269–276. IEEE,
2007.

[137] Manasi Vartak, Venkatesh Raghavan, and Elke A. Rundensteiner. Qrelx: Genera-
ting meaningful queries that provide cardinality assurance. In Proceedings of the
2010 ACM SIGMOD International Conference on Management of Data, SIGMOD
’10, pages 1215–1218, New York, NY, USA, 2010. ACM.

[138] Elena Vasilyeva. Why-query support in graph databases. In 2016 IEEE 32nd
International Conference on Data Engineering Workshops (ICDEW), pages 221–
225, May 2016.

[139] Elena Vasilyeva, Thomas Heinze, Maik Thiele, and Wolfgang Lehner. DebEAQ
- debugging empty-answer queries on large data graphs. In 2016 IEEE 32nd
International Conference on Data Engineering (ICDE), pages 1402–1405, May
2016.

[140] Elena Vasilyeva, Maik Thiele, Christof Bornhövd, and Wolfgang Lehner.
GraphMCS: Discover the Unknown in Large Data Graphs. In Proceedings of the
Workshops of the EDBT/ICDT 2014 Joint Conference (EDBT/ICDT 2014), Athens,
Greece, March 28, 2014., pages 200–207, 2014.

[141] Elena Vasilyeva, Maik Thiele, Christof Bornhövd, and Wolfgang Lehner. Answer-
ing “Why Empty?” and “Why So Many?” queries in graph databases. Journal of
Computer and System Sciences, 82(1):3–22, 2016.

177

BIBLIOGRAPHY

[142] Elena Vasilyeva, Maik Thiele, Christof Bornhövd, and Wolfgang Lehner. Top-
k differential queries in graph databases. In Yannis Manolopoulos, Goce Tra-
jcevski, and Margita Kon-Popovska, editors, Advances in Databases and Informa-
tion Systems, volume 8716 of Lecture Notes in Computer Science, pages 112–125.
Springer International Publishing, 2014.

[143] Elena Vasilyeva, Maik Thiele, Adrian Mocan, and Wolfgang Lehner. Relaxation
of subgraph queries delivering empty results. In Proceedings of the 27th Interna-
tional Conference on Scientific and Statistical Database Management, SSDBM ’15,
pages 28:1–28:12, New York, NY, USA, 2015. ACM.

[144] Chad Vicknair. Research issues in data provenance. In Proceedings of the 48th
Annual Southeast Regional Conference, ACM SE ’10, pages 20:1–20:4, New York,
NY, USA, 2010. ACM.

[145] Marcos R. Vieira, Humberto L. Razente, Maria C. N. Barioni, Marios Hadjieleft-
heriou, Divesh Srivastava, Caetano Traina, and Vassilis J. Tsotras. On query
result diversification. In Proceedings of the 2011 IEEE 27th International Confer-
ence on Data Engineering, ICDE ’11, pages 1163–1174, Washington, DC, USA,
2011. IEEE Computer Society.

[146] Aleksa Vukotic, Nicki Watt, Tareq Abedrabbo, Dominic Fox, and Jonas Partner.
Neo4j in Action. Manning, 2015.

[147] Y. Richard Wang and Stuart E. Madnick. A polygon model for heterogeneous
database systems: The source tagging perspective. In Proceedings of the Sixteenth
International Conference on Very Large Databases, pages 519–533, San Francisco,
CA, USA, 1990. Morgan Kaufmann Publishers Inc.

[148] Jennifer Widom. Trio: A system for integrated management of data, accuracy,
and lineage. In CIDR, pages 262–276, 2005.

[149] Garrett Wolf, Aravind Kalavagattu, Hemal Khatri, Raju Balakrishnan, Bhaumik
Chokshi, Jianchun Fan, Yi Chen, and Subbarao Kambhampati. Query processing
over incomplete autonomous databases: Query rewriting using learned data
dependencies. volume 18, pages 1167–1190, Secaucus, NJ, USA, October 2009.
Springer-Verlag New York, Inc.

[150] A. Woodruff and Michael Stonebraker. Supporting fine-grained data lineage in
a database visualization environment. In Data Engineering, 1997. Proceedings.
13th International Conference on, pages 91–102, Apr 1997.

[151] Xintao Wu and Daniel Barbará. Learning missing values from summary const-
raints. SIGKDD Explor. Newsl., 4(1):21–30, June 2002.

[152] Shengqi Yang, Yinghui Wu, Huan Sun, and Xifeng Yan. Schemaless and struc-
tureless graph querying. Proc. VLDB Endow., 7(7):565–576, March 2014.

[153] Siyu Yao, Jun Liu, Meng Wang, Bifan Wei, and Xuelu Chen. ANNA: answer-
ing why-not questions for SPARQL. In Proceedings of the ISWC 2015 Posters &
Demonstrations Track co-located with the 14th International Semantic Web Con-
ference (ISWC-2015), Bethlehem, PA, USA, October 11, 2015., 2015.

178

BIBLIOGRAPHY

[154] Elad Yom-Tov, Shai Fine, David Carmel, and Adam Darlow. Learning to esti-
mate query difficulty: Including applications to missing content detection and
distributed information retrieval. In Proceedings of the 28th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval, SI-
GIR ’05, pages 512–519, New York, NY, USA, 2005. ACM.

[155] Lei Zou, Lei Chen, and Yansheng Lu. Top-k subgraph matching query in a large
graph. In Proceedings of the ACM First Ph.D. Workshop in CIKM, PIKM ’07, pages
139–146, New York, NY, USA, 2007. ACM.

179

List of Figures

1.1 Thesis outline . 5

2.1 Overview of why-queries . 8
2.2 Provenance hierarchy (Source: Green et al. [55]) 10
2.3 Example of provenance calculation (Source: Karvounarakis et al. [83]) . 11
2.4 Query-based solution for why-not query: Why is family Clarke not in

result set? Original query: SELECT Surname FROM Family AS F INNER
JOIN Apartments AS A ON F.Surname=A.Surname WHERE F.Children
= 3 AND A.Flat < 5 . 15

2.5 Example for database and query tree (Source: Bidoit et.al [17]) 16
2.6 Why-not provenance for 3hop(c,a) using provenance games (Source:

Riddle et al. [121]) . 19
2.7 Example of database table with train connections and ontology (Source:

ten Cate et al. [131]) . 21
2.8 Example of query representation in Meta Query Language 26
2.9 Query relaxation lattice . 27
2.10 Classification of top-k solutions for querying RDBMS (Source: Ilyas et

al. [69]) . 32

3.1 Holistic support of different cardinality-based problems 45
3.2 Classification of complex modification operations 48
3.3 Set-based query model, where ovals define operations such as union and

disjunctions of values and rectangles describe graph elements and their
properties. For reasons of simplicity, all elements are drawn only once
and dashed lines represent multiplicity of relations, for example: vertex
set can consist of multiple vertices . 49

3.4 Point-set distance d(ai, B) . 51
3.5 Example query and its modification-based explanation 54
3.6 Example of two result subgraphs for calculating result distance 55
3.7 Ordered syntactic distances for randomly generated explanations 59
3.8 Ordered result distances for randomly generated explanations 60
3.9 Ordered cardinality distances for randomly generated explanations . . . 61
3.10 Distribution of average result distances for randomly generated explana-

tions . 62

4.1 Example of why-empty query, data graph, and corresponding partial ans-
wers . 66

4.2 Depth-first search . 67

181

LIST OF FIGURES

4.3 Original query delivering empty result and its subgraph-based explana-
tion: which two vertices are from same country and play in same club? . 70

4.4 Why-so-many query and its answer: which two players of same nation-
ality play in different clubs? . 72

4.5 Weakly connected graphs . 73
4.6 All-covering spanning tree and backtracking procedure 75
4.7 Example of missing largest subgraph caused by splitting query in un-

reachable components and traversal in its smaller part 76
4.8 Why-empty query example with user preferences 78
4.9 Relevance-based search . 79
4.10 Relevance flooding: gray relevance weights correspond to non-resetted

weights . 81
4.11 Comparison of heuristics for choosing single traversal path for DISCOV-

ERMCS . 84
4.12 Relative change of response time for DISCOVERMCS algorithm with con-

struction of spanning tree . 85
4.13 Relative response time of DISCOVERMCS algorithm for restart with minimal-

cardinality heuristic . 86
4.14 Evaluation results of DISCOVERMCS algorithm for restart with minimal

in-degree heuristic . 87
4.15 Evaluation results of BOUNDEDMCS algorithm with single traversal for

LDBC data graph . 88
4.16 Evaluation results of BOUNDEDMCS algorithm with single traversal for

DBPEDIA data graph . 88

5.1 System architecture for why-empty query rewriting 96
5.2 Example query and its query-dependent statistics 98
5.3 Configuration masks for vertices, edges, and paths(1) 99
5.4 Example of vertex bitvector calculation 101
5.5 Examples for path calculations . 104
5.6 Placement of new queries in priority queue 105
5.7 Hierarchy of induced cardinality changes 106
5.8 Influence of vertex deletion on degrees of neighboring vertices 107
5.9 Example query delivering empty result and its two explanations 110
5.10 Average rank for priority functions . 113
5.11 Evaluation results for different priority strategies across evaluated queries 115
5.12 Evaluation results for top-3 priority functions 116
5.13 Syntactic distance of first five discovered explanations 117
5.14 Relative change of number of iterations for path(2) and path(3) with

respect to path(1) . 118
5.15 Time distribution for evaluated queries 120
5.16 Relevance distribution of discovered explanations 122

6.1 Modification process for why-so-few and why-so-many queries 126
6.2 Example query and its operational representations 128
6.3 Construction of modification tree for running example 130
6.4 Interval modification . 135
6.5 Topological removal for operator FP (e2, 1) 137
6.6 Acquisition of neighbors for leaves GV (v1) and GV (v2) 138
6.7 Subtree removal from modification tree 139
6.8 Baseline comparison: distribution and percentage of refined queries . . . 142

182

LIST OF FIGURES

6.9 Baseline comparison: distribution of cardinality distance 144
6.10 Baseline comparison: distribution of result and syntactic distances 145
6.11 Baseline comparison: distribution of normalized number of iterations . . 146
6.12 Baseline comparison: dependencies between evaluated metrics 146
6.13 Consideration of topological changes in TRAVERSESEARCHTREE algorithm 148

A.1 LDBC social network benchmark schema (Source: Prat et al. [118]) . . . 158
A.2 Evaluated queries for LDBC data graph 161
A.3 Evaluated queries for DBPEDIA graph . 162

B.1 Evaluation of user integration in the rewriting process for LDBC queries . 163
B.2 Evaluation of relevance . 164

183

List of Tables

2.1 Overview of why-so methods . 12
2.2 Overview of why-not methods . 24
2.3 Overview of why-empty methods . 30
2.4 Overview of why-so-many methods . 39
2.5 Common properties of why-queries . 40

3.1 Basic modification operations . 48

4.1 Relevance weights produced at different iterations of relevance flooding 81
4.2 Evaluated heuristics for choosing traversal paths 83

5.1 User-preference model derived from ratings of two solutions S1 and S2 . 110

6.1 Graph processing operators used in operational graphs 127
6.2 Original cardinalities and cardinality thresholds of evaluated LDBC queries141

A.1 Evaluated queries and their original cardinalities for LDBC data set . . . 159
A.2 Evaluated queries and their original cardinalities for DBPEDIA data set . 159

B.1 Memory consumption and response time of why-empty rewriting system
for different queries and path lengths . 165

185

Confirmation

I confirm that I independently prepared the thesis and that I used only the references
and auxiliary means indicated in the thesis.

Dresden, November 8, 2016

