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Abstract— The information available in the World Wide Web is 
stored using many real web databases (e.g. vehicle database). 
Accessing the information from these real web databases has 
become increasingly important for the users to find the desired 
information. Web users search for the desired information by 
querying these web databases, when the number of query results 
generated is large, it is very difficult for the web user to select the 
most relevant information from the large result set generated. 
Users today, have become more and more demanding in terms of 
the quality of information that is provided to them while 
searching the web databases. The most common solution to solve 
the problem involves ranking the query results returned by the 
web databases. Earlier approaches have used query logs, user 
profiles and frequencies of database values. The problem in all of 
these techniques is that ranking is performed in a user and query 
independent manner. This paper, proposes an automated ranking 
of query results returned by web databases by analyzing user, 
query and workload similarity. The effectiveness of this approach 
is discussed considering a vehicle web database as an example.  

Keywords - Database; Ranking; Similarity; Spearman’s 
coefficient; Workload 

I. INTRODUCTION

Databases are searched by forming structured query 
language (SQL). All these database systems are based on 
boolean query model i.e., SQL based database, which 
generates all the tuples that satisfy the conditions in the 
query or empty tuples if the condition is not satisfied. SQL 
based databases fails to handle the following cases.  

1. Zero result set case 
2. Large result set case 

A. Zero Result-set Case 

 The structured query language formulated by the user is 
very choosy (discriminating). The number of results 
returned by the web databases in this case may be empty or 
NULL. In such circumstances it is necessary to generate a 
ranked list of closely related tuples instead of generating 
zero result set. 

B. Large Result-set Case 

 The structured query language formulated by the user is 
not very choosy, (discriminating) the number of results 
returned by the web databases may  be very large. In this 
situation, it is necessary to rank and order the closely related 
tuples that best matches the user need. In this work, a user, 
query and workload similarity model is proposed for 
automated ranking of query results. The following three 
scenarios are used as current examples.  
 Example 1: Two users- a developer (U1) and sales 
executive (U2), put-forth the same query (Q1): 
Make=”Toyota AND Location=Bangalore”. The user (U1)
typically searches for vehicles with specific color choices 
(e.g. only black co lored vehicles) to be ranked and displayed 
at the top of search results. Similarly, U2 would likely to 
search for vehicles with specific price. Hence, fo r U2
vehicles with price<10,000$ should be displayed before the 
rest. 
 Example 2: The same user (U2 ) moves to a company for 
an internship and puts-forth a different query (Q2): 
“Make=Honda and Location=Delhi”. Since the user has 
secured an internship willing to  pay higher p rice for a lesser 
mileage vehicle. He would prefer vehicles with 
mileage<10000 to be ranked higher than others.  
 Example 3: Two workloads say W1 and W2  where W1 
contains “Make = Volvo, Price = 5000$, Mileage = 10000, 
Location = Bangalore AND Color=RED” and W2  contains 
Make=Volvo, Color=White, Price=15000$. If there exists 
large number of workloads similar to W1 then the workload 
W1 should be displayed before the other.  

 Motivation: The number of results returned by the web 
databases will be empty if the user is too choosy and many 
results if the user is not choosy. Hence an automated 
ranking of query results yields in an optimal solution using 
similarity models. 

 Contribution: In the present work, the query results are 
ranked by analyzing the user, query and workload 
similarity. This helps in faster retrieval of informat ion from 
the web database and eliminates the zero result set problem.  
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 The remainder of the paper is organized as follows –
Section II gives the overview of the related work. Section III 
presents the architecture modeling. In section IV problem 
definition is discussed. Similarity models are presented in 
section V. Section VI contains the algorithms of the 
similarity models. Performance results are analyzed in 
section VII. Section VIII contains conclusion. 

II. RELATED WORK 
A brief survey of related work in the area of database 

systems despite of their efficient data management 
capabilit ies they fail to effectively  handle the informat ion 
retrieval queries from many emerging applicat ions. These 
emerging applicat ions pose the following data management 
challenge. 

A. Boolean Based Query Processing 
 This model based on set theory and Boolean algebra is 
one of the traditional model for informat ion retrieval. The 
query is a Boolean algebra expression using connectives. 
The documents retrieved are the documents that completely  
match the g iven query. Partial matches are not retrieved, the 
retrieved set of documents is not ordered. For each term in  
the query, a list of documents that contain the term is 
created then the lists are merged according to the Boolean 
operators. Boolean model is still widely used in small scale 
searches like searching emails , files from local hard  drives 
or in  a mid-sized library. The retrieval strategy is based on 
binary criteria so, partial matches are not retrieved. Only 
those documents that exactly match the query are retrieved. 
Hence, to effectively retrieve from a large set of documents 
users must have good domain knowledge to form good 
queries. The retrieved documents are not ranked. Given a 
large set of documents, say, at web scale, the Boolean model 
either retrieves too many documents or very few documents. 

J. Basilico and T. Hofmann in [1] proposed a ranking 
model for database tuples in a query- and user-independent 
framework. This model relies on the availability o f a 
workload of queries spanning all attributes and values to 
establish a score for a tuple. A drawback of such a workload 
is that in the context of web databases, user queries are 
restricted to a subset of the attributes that are displayed in 
the results. In such a setting, the workload will fail to 
capture user preferences towards those attributes and values 
that cannot be specified in  the query. In  contrast, we capture 
these preferences via users browsing choices in a query- and 
user-dependent setting. 

 M. K. Bergman in [2] presented a model for query-
dependent ranking which analyzes the relat ionship between 
the query results and the tuples in the database. The 
drawback of this work lies in  the fact that it requires the 
knowledge of the complete underlying database at all t imes 
to rank query results, an improbable setting for web 
databases that dynamically obtain data from a slew of 
individual sources. In contrast, we establish query-
dependent ranking by analyzing the user’s browsing choices 

and comparing different queries in terms of their similarity 
with each other without requiring full knowledge of the web 
database. 

 Context preferences for user-dependent ranking have been 
proposed however, these models require the user to specify 
an order/preference for the tuples in the absence of a 
specific query from which a global o rdering across the 
database is obtained. In [3] and [4] the SQL query language 
is extended to allow the user to  specify the ranking function 
according to their preference fo r the attributes. 

 S. Chaudri et al., in [5] defined a user relevance feedback 
and is employed to learn  the similarity between a result 
record and the query for ranking in relat ional mult imedia 
databases. All these approaches require considerable user 
input and are an arduous task for web users who have no 
clear idea how to assign order to tuples and/or attributes. In 
contrast, this work relies purely on users browsing choices 
that reveal their implicit ranking preferences without 
requiring them to have an excessive interaction with the 
system. 

 S. Gauch and M. Speretta in  [6] focused on query 
similarity which has been widely studied in Informat ion 
Retrieval and Collaborative Filtering but the database 
queries involving mult iple combinations cannot be directly 
compared like IR-keyword queries. 

 M. Balabanovic and Y. Shoham in [7] provided an 
intuitive mechanism for es tablishing user similarity based 
on profiles. It involves the use of domain experts in addit ion 
to learn ing models to derive this similarity. A lternatively, 
we propose a mechanism to capture user similarity by 
analyzing the relationship between the users’ past browsing 
choices. 

 T. Holfmann in [8] d iscussed the use of learning methods 
for deriv ing ranked lists which has been studied extensively 
in Machine Learning and Image Processing similar to these 
techniques; we propose a probabilistic learn ing method for 
capturing attribute preferences for web queries. Our results 
show that within the framework that we tested, our proposed 
model performed better than existing bayesian or regression 
models. 
 Chaudhuri et al. in [10] address the problem of query-
dependent ranking by adapting the   vector model from 
informat ion retrieval.  However, fo r a g iven query, these   
techniques provide the same ordering of tuples across all 
users.  

 The  work proposed in  [11] requires the  user  to  specify  
an  ordering across the  database  tuples  without  posing  
any   specific query from  which  a g lobal  ordering is 
obtained for  each user.  A drawback in all these works is 
that they do not consider that the same user may  have varied 
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ranking preferences for different queries. In contrast, our 
framework provides an automated query- as well as user-
dependent ranking solution without requiring users to 
possess knowledge about query languages, data models and 
ranking mechanis ms. 

 The problem of integrating the informat ion retrieval 
system and  database systems have been   attempted  in [12]  
with    a   view   to  apply  the  ranking  models   to derive the 
similarity;  however, the intrinsic difference between their  
underlying  models  is  a major problem. 

III. ARCHITECTURE MODELING 

III. ARCHITECTURE MODELING 

Figure 1. Similarity Model for Ranking 

 The core component of ranking framework is the 
similarity model as shown in Fig 1. The similarity model 
contains three models such as user, query and workload. 
When the user Ui enters the query Qq the query similarity 
model determines the set of queries (Qq, Q1, Q2...Qp) most 
similar to Qq. Similarly  the user similarity model determines 
the set of users (Up, U1,U2...Uv)  most similar to Ui and the 
workload similarity model finds the set of workloads (Wr,
W1, W2.....Wx)  most similar to Wr. By using these three 
ordered set of similar user, queries and workload, it derives 
the ranking  function F(UxQyWz), such that the combination 

of Ux, Qy and Wz is most similar to Ui, Qq and Wr. This 
function is then used to rank the Qj’s results for Ui. 

IV. PROBLEM DEFINITION 
Given a web database table D over a set of K attributes 

A={A1, A2, … ,Ak}, an user U can put-forth a query Q in the 
form “SELECT *  FROM D WHERE X1=V1 AND Xs=Vs”
where each  Xi €  A  and Vi is value in its domain. Let N={t1, 
t2, …, tn} be the set of result tuples for query Q. The query 
Q may generally result in zero tuples if the user U is too 
choosy in writing the query or may result in large number of 
tuples if the user U is not choosy. Hence a similarity based 
ranking of query results is proposed, whose objectives are: 

Faster retrieval of query results. 
Elimination of zero result set problem. 
Ranking of query results.

V. SIMILARITY MODEL GENERATION 
 In the proposed work similarity model is generated by 
considering the following different types of similarit ies. 

A. User Similarity 
 The user similarity models aims to determine the similar 
users in a web database. This model is based on the attribute 
conditions such as location, profess ion and age. Two users 
U1 and U2 are said to be similar, if they have same values 
for the attributes such as location, profession and age. Some 
weightages will be assigned to the attributes such as for 
location, profession and age. The attributes profession and 
age are optional.  

B. Query Similarity 
 The goal of this model is to determine the queries which 
are more similar to each other. The model is based on price, 
mileage, make and color. Two queries Q1 and Q2 are said to 
be similar if they have same price, mileage, make and color. 
The concept of weightage is used in order to determine the 
similar queries. Some values will be assigned to the 
attributes such as price, mileage, make and co lor. When two 
queries have the same weightages then those two queries are 
similar. 

C. Ranking Function 
By analyzing the user’s browsing choices in a web 

database; the ranking function is derived which  is a user-
query pairs from the workload W. There should be at least 
one ranking function in the workload table which 
corresponds to the given input query entered by the user. 
The ranking framework derives the appropriate ranking 
function exists in the workload W. 

D. Workload Generation 
The workload W consists of the ranking function derived 

across several user-query pairs. The queries Q1, Q2, … Qn

F(Ux Qy Wz)

Similarity Model

User Similarity Query Similarity Workload Similarity

Web 
Database

U1, U2, …Un Q1, Q2,…, Q k W1, W2, …, Wm

Work load

Queryj
Useri Workloadk

Tj Ranked Tj
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entered by the user U1, U2, ... Un are stored in the form of 
ranking function such as f11, f12, ... fmn. The users preference 
towards the specific attribute condition, specified in the 
query are generated as ranking function which is derived 
from the workload. 

E.  Workload Similarity 
The objective of this work is to determine the workloads 

in terms of similarity with each other. In this model, two  
workloads are compared based on queries entered by the 
users. The workloads W1 and W2  are considered as similar 
if they have same location, make, price, colour status and so 
on.
  
F.  Composite Similarity 

When large number o f users and queries are involved in a 
web database, then determin ing the similar users, queries 
may not be the best solution. In such situations the 
composite similarity model can be used, which is the 
combination of user and query similarity models.  

G.  Correlating Using Spearman’s Rank Coefficient
The Spearman’s rank coefficient is given by the following 

equation. 
1- [6∑d2 /n (n2-1)]          (1)

Where, d is difference between the two numbers in each pair 
of ranks and n is the total number of pairs of data. The 
Spearman’s coefficient can vary between -1 and 1. 
Interpretation of result is as follows. 

Close to -1 � Negative correlation  
Close to 0  � No linear correlation 
Close to 1  � Positive correlation 

Correlation  between different results and the quality of 
ranking is determined using the Spearman’s rank coefficient 
given in equation (1). 

VI.   ALGORITHMS 
The different algorithms proposed in this work are: 

A.  User and Query Similarity 

TABLE I 
Algorithm to find user and query similarity 

Input:  1. User U with attributes location (L),   
                     Profession (P) and age (A).  
                2. Query Q with attributes  price (PR),   make (MK),   
                     mileage (ML), color (C) 

  3. Workload W containing ranking function. 
Output:   Ukset: Top K similar users 
                  Qkset: Top k similar queries 

/*User Similarity*/
WEIGHT_USER[N]:  Array of size N 

WEIGHT=0: Variable 

Step1:  for i  = 1 to N do /*N = Total number of users*/ 
/* Determine the user similarity as U(L,P,A)=Ui

' (L,P,A) */ 
               if(U(L)== Ui

'(L))
          WEIGHT=W EIGHT+80;

       if(U(P)== Ui
'(P))

          WEIGHT=W EIGHT+10;
         if(U(A)== Ui

'(A))
           WEIGHT=W EIGHT+10;

         WEIGHT_USER[i]=W EIGHT;
       end for

Step2: Sort WEIGHT_USER[i] in descending order

Step3: Ukset=Select top K users from W EIGHT_USER[ ]
/*Query Similarity*/ 

WEIGHT_QUERY[N]:  Array of size N 
WEIGHT=0: Variable 

Step4:  for i  = 1 to N do /*N = number of  queries*/  
                   /* Determine the query similarity as     

                         Q(PR,MK,ML,C)=Qi
' (PR,MK,ML,C) */ 

               if(Q(PR)== Qi
'(PR))

          WEIGHT=W EIGHT+30;
       if(Q(MK)== Qi

'(MK))
          WEIGHT=W EIGHT+30;

         if(Q(ML)== Qi
'(ML))

           WEIGHT=W EIGHT+30;
                              if(Q(C)== Qi

'(C))
           WEIGHT=W EIGHT+10;

         WEIGHT_QUERY[i]=W EIGHT;
                end fo r
Step5: Sort WEIGHT_QUERY[i] in descending order

Step6: Qkset=Select top K queries from           
                          WEIGHT_QUERY[ ]  

The user and query similarity algorithm determines 
similar users by scrutinizing N users in a web database. The 
algorithm for finding similar user and query is as shown in 
TABLE I. The variab les L, P, A  denote the attributes 
location, profession and age of a user U entering the query 
Q. Values of these attributes are compared  with the values 
of the users Ui

'  already exists in the database. PR, MK, ML, 
C are the variables used to denote the attributes price, make, 
mileage, co lor o f the query Q entered by user U. The values 
of these attributes are compared with the values of the query 
Qi

' already existing in the database. 

B.  Ranking Function 

TABLE II
Algorithm for deriving ranking function 

Input:   Ukset and Qkset
Output: Fmn : Ranking function
Step 1: for each Um € Ukset do
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Step 2: for each Qn € Qkset do
             rank (Um€ Ukset) = Index of Um in Ukset;

                   rank (Qn € Qkset) = Index of Qn in Qkset;

Step 3: Rank (Um, Qn) = rank (Um€ Ukset) + rank   
             (Qn € Qkset)
Step 4: end for
Step 5: end for
Step 6: Fmn= Get_Ranking_Function 

The algorithm for deriving the ranking function is as 
shown in TABLE II. It checks whether there are any user 
Um and query Qn in the Ukset and Qkset. It combines the user 
and query pair and derives the ranking function Fmn to rank 
the query results. 

C. Workload Generation 

TABLE III 
Algorithm for Generat ion of Workload 

Input:   Users Um and query Qn from Database D
Output: Workload W Containing ranking  function  Fmn

Step 1: Determine Um and Qn in a Database D
Step 2: Determine user preferences towards the  query Q
Step 3: Generate the user-query pair i.e Fmn 

The workload can be generated using the algorithm as 
shown in TABLE III. A ll the ‘m’ users and ‘n’ queries are 
examined to generate the ranking function Fmn and stored in 
the workload W. 

D. Workload Similarity 

TABLE IV 
Algorithm to find Workload Similarity 

Input:   Ranking function Fmn
Output: Gives the most similar ranking functions in  W
Step 1: for each Fmn € W do
Step 2: Determine the similarity W and W '

Step 3: End for
Step 4: Sort (F11.....Fmn) 

The workload similarit ies establish the ranking  functions 
which are most similar to each other. To find the similar 
ranking function in a workload W scan all the existing 
ranking function and compare it with other. Suppose there 
are two ranking functions such as F11 and F12, these are 
similar if they have same values for the attributes such as 
location, price, make, mileage, color etc. The algorithm for 
finding similar workload is as indicated in TABLE IV. 

VII. IMPLEMEMTATION AND PERFORMANCE 
ANALYSIS 

The quality of ranking using similarity  models is obtained 
by observations performed on ten d ifferent workloads. The 
ranking quality of user similarity model is as shown in 
Figure 2.

Figure 2. Ranking Quality of User Similarity 
         

The ranking quality of query similarity is as shown in 
Figure 3. The user similarity model has the spearman’s 
coefficient as 0.75 and the query similarity model has 0.70. 
Hence, the user similarity performs better than the query 
similarity model. This is because in web database there will 
be more number of similar users than the similar queries.  

                                 

Figure 3. Ranking Quality of Query Similarity 

The composite model performs better than the user and 
query similarity models which  has the spearman’s 
coefficient as 0.85 as shown in Figure 4.  
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Figure 4. Ranking Quality of Composite Similarity 

Comparing ranking quality achieved by the composite 
similarity model and the workload similarity model, the 
workload similarity model performs better than the 
composite similarity model. The workload similarity model 
has the spearman’s coefficient 0.88 as shown in Figure 5.

Figure 5. Ranking Quality of Workload Similarity 

The goal of performance analysis is to determine whether 
the ranking  framework can be incorporated into real world  
applications. The performance is evaluated by average time 
taken in seconds to perform ranking. The performance 
analysis is as shown in Figure 6. The composite similarity 
model takes 0.047 seconds to return the ranked results 
where as the workload similarity model takes 0.016 seconds 
which is less compared to the existing similarity models.  

Figure 6. Performance Analysis 

VIII.     CONCLUSION 

Similarity based ranking of the query results from real 
web databases provides the solution to the zero result set 
and many result set problems. Ranking of the query results 
is done in user and query dependent manner by analyzing 
the user, query, workload and composite similarity. The 
present work demonstrates the quality of ranking the query 
results by using the spearman’s constant.
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