
Similarity Based Ranking of Query Results
From Real Web Databases

Harish Kumar B T
Dept. CS&E

BIT
Bangalore, India

Deepa Chowdary
Dept. CS&E

BNMIT
Bangalore, India

Vibha L
Dept. CS&E

BNMIT
Bangalore, India

Venugopal K R
Principal
UVCE

Bangalore, India

L M Patnaik
II Sc.

Bangalore, India

E-mail: harish_bit82@yahoo.com

Abstract— The information available in the World Wide Web is
stored using many real web databases (e.g. vehicle database).
Accessing the information from these real web databases has
become increasingly important for the users to find the desired
information. Web users search for the desired information by
querying these web databases, when the number of query results
generated is large, it is very difficult for the web user to select the
most relevant information from the large result set generated.
Users today, have become more and more demanding in terms of
the quality of information that is provided to them while
searching the web databases. The most common solution to solve
the problem involves ranking the query results returned by the
web databases. Earlier approaches have used query logs, user
profiles and frequencies of database values. The problem in all of
these techniques is that ranking is performed in a user and query
independent manner. This paper, proposes an automated ranking
of query results returned by web databases by analyzing user,
query and workload similarity. The effectiveness of this approach
is discussed considering a vehicle web database as an example.

Keywords - Database; Ranking; Similarity; Spearman’s
coefficient; Workload

I. INTRODUCTION

Databases are searched by forming structured query
language (SQL). All these database systems are based on
boolean query model i.e., SQL based database, which
generates all the tuples that satisfy the conditions in the
query or empty tuples if the condition is not satisfied. SQL
based databases fails to handle the following cases.

1. Zero result set case
2. Large result set case

A. Zero Result-set Case

 The structured query language formulated by the user is
very choosy (discriminating). The number of results
returned by the web databases in this case may be empty or
NULL. In such circumstances it is necessary to generate a
ranked list of closely related tuples instead of generating
zero result set.

B. Large Result-set Case

 The structured query language formulated by the user is
not very choosy, (discriminating) the number of results
returned by the web databases may be very large. In this
situation, it is necessary to rank and order the closely related
tuples that best matches the user need. In this work, a user,
query and workload similarity model is proposed for
automated ranking of query results. The following three
scenarios are used as current examples.
 Example 1: Two users- a developer (U1) and sales
executive (U2), put-forth the same query (Q1):
Make=”Toyota AND Location=Bangalore”. The user (U1)
typically searches for vehicles with specific color choices
(e.g. only black co lored vehicles) to be ranked and displayed
at the top of search results. Similarly, U2 would likely to
search for vehicles with specific price. Hence, fo r U2
vehicles with price<10,000$ should be displayed before the
rest.
 Example 2: The same user (U2) moves to a company for
an internship and puts-forth a different query (Q2):
“Make=Honda and Location=Delhi”. Since the user has
secured an internship willing to pay higher p rice for a lesser
mileage vehicle. He would prefer vehicles with
mileage<10000 to be ranked higher than others.
 Example 3: Two workloads say W1 and W2 where W1
contains “Make = Volvo, Price = 5000$, Mileage = 10000,
Location = Bangalore AND Color=RED” and W2 contains
Make=Volvo, Color=White, Price=15000$. If there exists
large number of workloads similar to W1 then the workload
W1 should be displayed before the other.

 Motivation: The number of results returned by the web
databases will be empty if the user is too choosy and many
results if the user is not choosy. Hence an automated
ranking of query results yields in an optimal solution using
similarity models.

 Contribution: In the present work, the query results are
ranked by analyzing the user, query and workload
similarity. This helps in faster retrieval of informat ion from
the web database and eliminates the zero result set problem.

2014 Fifth International Conference on Signals and Image Processing

978-0-7695-5100-5/13 $31.00 © 2013 IEEE

DOI 10.1109/ICSIP.2014.58

328

2014 Fifth International Conference on Signals and Image Processing

978-0-7695-5100-5/13 $31.00 © 2013 IEEE

DOI 10.1109/ICSIP.2014.58

328

2014 Fifth International Conference on Signal and Image Processing

978-0-7695-5100-5/13 $31.00 © 2013 IEEE

DOI 10.1109/ICSIP.2014.58

328

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ePrints@Bangalore University

https://core.ac.uk/display/72805911?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 The remainder of the paper is organized as follows –
Section II gives the overview of the related work. Section III
presents the architecture modeling. In section IV problem
definition is discussed. Similarity models are presented in
section V. Section VI contains the algorithms of the
similarity models. Performance results are analyzed in
section VII. Section VIII contains conclusion.

II. RELATED WORK
A brief survey of related work in the area of database

systems despite of their efficient data management
capabilit ies they fail to effectively handle the informat ion
retrieval queries from many emerging applicat ions. These
emerging applicat ions pose the following data management
challenge.

A. Boolean Based Query Processing
 This model based on set theory and Boolean algebra is
one of the traditional model for informat ion retrieval. The
query is a Boolean algebra expression using connectives.
The documents retrieved are the documents that completely
match the g iven query. Partial matches are not retrieved, the
retrieved set of documents is not ordered. For each term in
the query, a list of documents that contain the term is
created then the lists are merged according to the Boolean
operators. Boolean model is still widely used in small scale
searches like searching emails , files from local hard drives
or in a mid-sized library. The retrieval strategy is based on
binary criteria so, partial matches are not retrieved. Only
those documents that exactly match the query are retrieved.
Hence, to effectively retrieve from a large set of documents
users must have good domain knowledge to form good
queries. The retrieved documents are not ranked. Given a
large set of documents, say, at web scale, the Boolean model
either retrieves too many documents or very few documents.

J. Basilico and T. Hofmann in [1] proposed a ranking
model for database tuples in a query- and user-independent
framework. This model relies on the availability o f a
workload of queries spanning all attributes and values to
establish a score for a tuple. A drawback of such a workload
is that in the context of web databases, user queries are
restricted to a subset of the attributes that are displayed in
the results. In such a setting, the workload will fail to
capture user preferences towards those attributes and values
that cannot be specified in the query. In contrast, we capture
these preferences via users browsing choices in a query- and
user-dependent setting.

 M. K. Bergman in [2] presented a model for query-
dependent ranking which analyzes the relat ionship between
the query results and the tuples in the database. The
drawback of this work lies in the fact that it requires the
knowledge of the complete underlying database at all t imes
to rank query results, an improbable setting for web
databases that dynamically obtain data from a slew of
individual sources. In contrast, we establish query-
dependent ranking by analyzing the user’s browsing choices

and comparing different queries in terms of their similarity
with each other without requiring full knowledge of the web
database.

 Context preferences for user-dependent ranking have been
proposed however, these models require the user to specify
an order/preference for the tuples in the absence of a
specific query from which a global o rdering across the
database is obtained. In [3] and [4] the SQL query language
is extended to allow the user to specify the ranking function
according to their preference fo r the attributes.

 S. Chaudri et al., in [5] defined a user relevance feedback
and is employed to learn the similarity between a result
record and the query for ranking in relat ional mult imedia
databases. All these approaches require considerable user
input and are an arduous task for web users who have no
clear idea how to assign order to tuples and/or attributes. In
contrast, this work relies purely on users browsing choices
that reveal their implicit ranking preferences without
requiring them to have an excessive interaction with the
system.

 S. Gauch and M. Speretta in [6] focused on query
similarity which has been widely studied in Informat ion
Retrieval and Collaborative Filtering but the database
queries involving mult iple combinations cannot be directly
compared like IR-keyword queries.

 M. Balabanovic and Y. Shoham in [7] provided an
intuitive mechanism for es tablishing user similarity based
on profiles. It involves the use of domain experts in addit ion
to learn ing models to derive this similarity. A lternatively,
we propose a mechanism to capture user similarity by
analyzing the relationship between the users’ past browsing
choices.

 T. Holfmann in [8] d iscussed the use of learning methods
for deriv ing ranked lists which has been studied extensively
in Machine Learning and Image Processing similar to these
techniques; we propose a probabilistic learn ing method for
capturing attribute preferences for web queries. Our results
show that within the framework that we tested, our proposed
model performed better than existing bayesian or regression
models.
 Chaudhuri et al. in [10] address the problem of query-
dependent ranking by adapting the vector model from
informat ion retrieval. However, fo r a g iven query, these
techniques provide the same ordering of tuples across all
users.

 The work proposed in [11] requires the user to specify
an ordering across the database tuples without posing
any specific query from which a g lobal ordering is
obtained for each user. A drawback in all these works is
that they do not consider that the same user may have varied

329329329

ranking preferences for different queries. In contrast, our
framework provides an automated query- as well as user-
dependent ranking solution without requiring users to
possess knowledge about query languages, data models and
ranking mechanis ms.

 The problem of integrating the informat ion retrieval
system and database systems have been attempted in [12]
with a view to apply the ranking models to derive the
similarity; however, the intrinsic difference between their
underlying models is a major problem.

III. ARCHITECTURE MODELING

III. ARCHITECTURE MODELING

Figure 1. Similarity Model for Ranking

 The core component of ranking framework is the
similarity model as shown in Fig 1. The similarity model
contains three models such as user, query and workload.
When the user Ui enters the query Qq the query similarity
model determines the set of queries (Qq, Q1, Q2...Qp) most
similar to Qq. Similarly the user similarity model determines
the set of users (Up, U1,U2...Uv) most similar to Ui and the
workload similarity model finds the set of workloads (Wr,
W1, W2.....Wx) most similar to Wr. By using these three
ordered set of similar user, queries and workload, it derives
the ranking function F(UxQyWz), such that the combination

of Ux, Qy and Wz is most similar to Ui, Qq and Wr. This
function is then used to rank the Qj’s results for Ui.

IV. PROBLEM DEFINITION
Given a web database table D over a set of K attributes

A={A1, A2, … ,Ak}, an user U can put-forth a query Q in the
form “SELECT * FROM D WHERE X1=V1 AND Xs=Vs”
where each Xi € A and Vi is value in its domain. Let N={t1,
t2, …, tn} be the set of result tuples for query Q. The query
Q may generally result in zero tuples if the user U is too
choosy in writing the query or may result in large number of
tuples if the user U is not choosy. Hence a similarity based
ranking of query results is proposed, whose objectives are:

Faster retrieval of query results.
Elimination of zero result set problem.
Ranking of query results.

V. SIMILARITY MODEL GENERATION
 In the proposed work similarity model is generated by
considering the following different types of similarit ies.

A. User Similarity
 The user similarity models aims to determine the similar
users in a web database. This model is based on the attribute
conditions such as location, profess ion and age. Two users
U1 and U2 are said to be similar, if they have same values
for the attributes such as location, profession and age. Some
weightages will be assigned to the attributes such as for
location, profession and age. The attributes profession and
age are optional.

B. Query Similarity
 The goal of this model is to determine the queries which
are more similar to each other. The model is based on price,
mileage, make and color. Two queries Q1 and Q2 are said to
be similar if they have same price, mileage, make and color.
The concept of weightage is used in order to determine the
similar queries. Some values will be assigned to the
attributes such as price, mileage, make and co lor. When two
queries have the same weightages then those two queries are
similar.

C. Ranking Function
By analyzing the user’s browsing choices in a web

database; the ranking function is derived which is a user-
query pairs from the workload W. There should be at least
one ranking function in the workload table which
corresponds to the given input query entered by the user.
The ranking framework derives the appropriate ranking
function exists in the workload W.

D. Workload Generation
The workload W consists of the ranking function derived

across several user-query pairs. The queries Q1, Q2, … Qn

F(Ux Qy Wz)

Similarity Model

User Similarity Query Similarity Workload Similarity

Web
Database

U1, U2, …Un Q1, Q2,…, Q k W1, W2, …, Wm

Work load

Queryj
Useri Workloadk

Tj Ranked Tj

330330330

entered by the user U1, U2, ... Un are stored in the form of
ranking function such as f11, f12, ... fmn. The users preference
towards the specific attribute condition, specified in the
query are generated as ranking function which is derived
from the workload.

E. Workload Similarity
The objective of this work is to determine the workloads

in terms of similarity with each other. In this model, two
workloads are compared based on queries entered by the
users. The workloads W1 and W2 are considered as similar
if they have same location, make, price, colour status and so
on.

F. Composite Similarity

When large number o f users and queries are involved in a
web database, then determin ing the similar users, queries
may not be the best solution. In such situations the
composite similarity model can be used, which is the
combination of user and query similarity models.

G. Correlating Using Spearman’s Rank Coefficient
The Spearman’s rank coefficient is given by the following

equation.
1- [6∑d2 /n (n2-1)] (1)

Where, d is difference between the two numbers in each pair
of ranks and n is the total number of pairs of data. The
Spearman’s coefficient can vary between -1 and 1.
Interpretation of result is as follows.

Close to -1 � Negative correlation
Close to 0 � No linear correlation
Close to 1 � Positive correlation

Correlation between different results and the quality of
ranking is determined using the Spearman’s rank coefficient
given in equation (1).

VI. ALGORITHMS
The different algorithms proposed in this work are:

A. User and Query Similarity

TABLE I
Algorithm to find user and query similarity

Input: 1. User U with attributes location (L),
 Profession (P) and age (A).
 2. Query Q with attributes price (PR), make (MK),
 mileage (ML), color (C)

 3. Workload W containing ranking function.
Output: Ukset: Top K similar users
 Qkset: Top k similar queries

/*User Similarity*/
WEIGHT_USER[N]: Array of size N

WEIGHT=0: Variable

Step1: for i = 1 to N do /*N = Total number of users*/
/* Determine the user similarity as U(L,P,A)=Ui

' (L,P,A) */
 if(U(L)== Ui

'(L))
 WEIGHT=W EIGHT+80;

 if(U(P)== Ui
'(P))

 WEIGHT=W EIGHT+10;
 if(U(A)== Ui

'(A))
 WEIGHT=W EIGHT+10;

 WEIGHT_USER[i]=W EIGHT;
 end for

Step2: Sort WEIGHT_USER[i] in descending order

Step3: Ukset=Select top K users from W EIGHT_USER[]
/*Query Similarity*/

WEIGHT_QUERY[N]: Array of size N
WEIGHT=0: Variable

Step4: for i = 1 to N do /*N = number of queries*/
 /* Determine the query similarity as

 Q(PR,MK,ML,C)=Qi
' (PR,MK,ML,C) */

 if(Q(PR)== Qi
'(PR))

 WEIGHT=W EIGHT+30;
 if(Q(MK)== Qi

'(MK))
 WEIGHT=W EIGHT+30;

 if(Q(ML)== Qi
'(ML))

 WEIGHT=W EIGHT+30;
 if(Q(C)== Qi

'(C))
 WEIGHT=W EIGHT+10;

 WEIGHT_QUERY[i]=W EIGHT;
 end fo r
Step5: Sort WEIGHT_QUERY[i] in descending order

Step6: Qkset=Select top K queries from
 WEIGHT_QUERY[]

The user and query similarity algorithm determines
similar users by scrutinizing N users in a web database. The
algorithm for finding similar user and query is as shown in
TABLE I. The variab les L, P, A denote the attributes
location, profession and age of a user U entering the query
Q. Values of these attributes are compared with the values
of the users Ui

' already exists in the database. PR, MK, ML,
C are the variables used to denote the attributes price, make,
mileage, co lor o f the query Q entered by user U. The values
of these attributes are compared with the values of the query
Qi

' already existing in the database.

B. Ranking Function

TABLE II
Algorithm for deriving ranking function

Input: Ukset and Qkset
Output: Fmn : Ranking function
Step 1: for each Um € Ukset do

331331331

Step 2: for each Qn € Qkset do
 rank (Um€ Ukset) = Index of Um in Ukset;

 rank (Qn € Qkset) = Index of Qn in Qkset;

Step 3: Rank (Um, Qn) = rank (Um€ Ukset) + rank
 (Qn € Qkset)
Step 4: end for
Step 5: end for
Step 6: Fmn= Get_Ranking_Function

The algorithm for deriving the ranking function is as
shown in TABLE II. It checks whether there are any user
Um and query Qn in the Ukset and Qkset. It combines the user
and query pair and derives the ranking function Fmn to rank
the query results.

C. Workload Generation

TABLE III
Algorithm for Generat ion of Workload

Input: Users Um and query Qn from Database D
Output: Workload W Containing ranking function Fmn

Step 1: Determine Um and Qn in a Database D
Step 2: Determine user preferences towards the query Q
Step 3: Generate the user-query pair i.e Fmn

The workload can be generated using the algorithm as
shown in TABLE III. A ll the ‘m’ users and ‘n’ queries are
examined to generate the ranking function Fmn and stored in
the workload W.

D. Workload Similarity

TABLE IV
Algorithm to find Workload Similarity

Input: Ranking function Fmn
Output: Gives the most similar ranking functions in W
Step 1: for each Fmn € W do
Step 2: Determine the similarity W and W '

Step 3: End for
Step 4: Sort (F11.....Fmn)

The workload similarit ies establish the ranking functions
which are most similar to each other. To find the similar
ranking function in a workload W scan all the existing
ranking function and compare it with other. Suppose there
are two ranking functions such as F11 and F12, these are
similar if they have same values for the attributes such as
location, price, make, mileage, color etc. The algorithm for
finding similar workload is as indicated in TABLE IV.

VII. IMPLEMEMTATION AND PERFORMANCE
ANALYSIS

The quality of ranking using similarity models is obtained
by observations performed on ten d ifferent workloads. The
ranking quality of user similarity model is as shown in
Figure 2.

Figure 2. Ranking Quality of User Similarity

The ranking quality of query similarity is as shown in
Figure 3. The user similarity model has the spearman’s
coefficient as 0.75 and the query similarity model has 0.70.
Hence, the user similarity performs better than the query
similarity model. This is because in web database there will
be more number of similar users than the similar queries.

Figure 3. Ranking Quality of Query Similarity

The composite model performs better than the user and
query similarity models which has the spearman’s
coefficient as 0.85 as shown in Figure 4.

332332332

Figure 4. Ranking Quality of Composite Similarity

Comparing ranking quality achieved by the composite
similarity model and the workload similarity model, the
workload similarity model performs better than the
composite similarity model. The workload similarity model
has the spearman’s coefficient 0.88 as shown in Figure 5.

Figure 5. Ranking Quality of Workload Similarity

The goal of performance analysis is to determine whether
the ranking framework can be incorporated into real world
applications. The performance is evaluated by average time
taken in seconds to perform ranking. The performance
analysis is as shown in Figure 6. The composite similarity
model takes 0.047 seconds to return the ranked results
where as the workload similarity model takes 0.016 seconds
which is less compared to the existing similarity models.

Figure 6. Performance Analysis

VIII. CONCLUSION

Similarity based ranking of the query results from real
web databases provides the solution to the zero result set
and many result set problems. Ranking of the query results
is done in user and query dependent manner by analyzing
the user, query, workload and composite similarity. The
present work demonstrates the quality of ranking the query
results by using the spearman’s constant.

333333333

REFERENCES
[1] J. Basilico and T. Hofmann, “A Joint Framework for

Collaborative and Content Filtering” Proc. 27th Ann.
International ACM SIGIR Conf. Research and
Development in Information Retrieval, pp. 550-551,
2004.

[2] M. K. Bergman, “The Deep Web: Surfacing Hidden
Value”, J. Electronic Publishing, vol. 7, no. 1, pp. 41-50,
2001.

[3] S. Amer-Yahia, A. Galland, J. Stoyanovich, and C. Yu,
“From del.icio.us to x.qui.site: Recommendations in
Social Tagging Sites,” Proc. ACM SIGMOD Int’l Conf.
Management of Data, pp. 1323-1326, 2008.

[4] R. Baeza-Yates and B. Ribeiro-Neto, Modern
Information Retrieval. ACM Press, 1999

[5] S. Chaudhuri, G. Das, V. Hristidis and G. Weikum,
“Probabilistic Information Retrieval approach for
Ranking of Database Query Results”, TODS, vol. 31, no.
3, pp. 1134–1168, 2006.

[6] S. Gauch and M. Speretta, “User Profiles for
Personalized Information Access,” Adaptive Web, pp.
54-89, 2007.

[7] M. Balabanovic and Y. Shoham, “Content-Based
Collaborative Recommendation”, Comm. ACM, vol. 40,
no.3 pp. 66-72, 2007.

[8] T. Hofmann, “Collaborative Filtering via Gaussian
Probabilistic Latent Semantic Analysis,” Proc. 26th Ann.
Int’l ACM SIGIR Conf. Research and Development in
Information Retrieval, pp. 259-266, 2003.

[9] K. Werner, “Foundations of Preferences in Database
Systems,” in VLDB. VLDB Endowment, pp. 311–322,
2002

[10] C. Li, M. Soliman, K. C.-C. Chang, and I. Ilya,
“Ranksql: Supporting ranking queries in relational
database management systems,” in VLDB, pp. 1342–
1345, 2005.

[11] G. Koutrika and Y. E. Ioannidis, “Constrained
Optimalities in Query Personalization,”in SIGMOD
Conference, pp. 73–84, 2005.

[12] Agrawal, S. Chaudhuri,G. Das, and A. Gionis,
“Automated Ranking of Database Query Results,” in
CIDR, 2003.

[13] W. Su, J. Wang, Q. Huang, and F. Lochovsky, “Query
Result Ranking Over E-commerce Web Databases,” in
CIKM, pp. 575–584, 2006.

[15] R. Agrawal , R. Rantzau , and E. Terzi , “Context -
sensitive Ranking,” in SIGMOD Conference. New York,
NY, USA: ACM, pp. 383–394, 2006.

[16] S.R.F.D. Retrieval, “Supporting Ranking for Data
Retrieval,” Ph.D.dissertation University of Illinois,
Urbana Champaign, 2005.

[17] G. Agarwal, N. Mallick, S. Turuvekere, and C. Zhai,
“Ranking Database Queries with User Feedback: A
neural network approach,” in DASFAA, pp. 424–431,
2008.

[18] M. Ortega-Binderberger, K. Chakrabarti, and S.
Mehrotra, “An Approach to Integrating Query
Refinement in Sql,” in EDBT. Springer-Verlag, pp. 15–
33, 2002.

[19] K. Chakrabarti, K. Porkaew, and S. Mehrotra, “Efficient
Query Refinement in Multimedia Databases,” in ICDE,
p. 196, 2000.

[20] L. Wu, C. Faloutsos, K. P. Sycara, and T. R. Payne,
“Falcon: Feedback Adaptive Loop for Content-Based
Retrieval,” in VLDB, pp. 297–306, 2000.

[21] B. Aditya, G. Bhalotia, S. Chakrabarti, A. Hulgeri, C.
Nakhe, and S. Sudarshan,“Banks: Browsing and
Keyword Searching in Relational Databases,” in VLDB,
no.1083-1086, 2002.

[22] G. Koutrika and Y. E. Ioannidis, “Personalization of
Queries in Database Systems,” in ICDE, pp. 597–608,
2004.

[23] H. Yu, Y. Kim, and S. won Hwang, “Rv-svm: An
efficient Method for Learning Ranking svm,” in
PAKDD, pp. 426–438, 2009.

[24] X. Jiang, L.-H. Lim, Y. Yao and Y. Ye , “Learning to
Rank with Combinatorial Hodge Theory,” CoRR, 2008.

334334334

