4,465 research outputs found

    Plasma shape control: a general approach and its application to Alcator C-Mod

    Get PDF

    On the beta-drift of an initially circular vortex patch

    Get PDF
    The nonlinear inviscid evolution of a vortex patch in a single-layer quasi-geostrophic fluid and within a background planetary vorticity gradient is examined numerically at unprecedented spatial resolution. The evolution is governed by two dimensionless parameters: the initial size (radius) of the vortex compared to the Rossby deformation radius, and the initial strength of the vortex compared to the variation of the planetary vorticity across the vortex. It is found that the zonal speed of a vortex increases with its strength. However, the meridional speed reaches a maximum at intermediate vortex strengths. Both large and weak vortices are readily deformed, often into elliptical and tripolar shapes. This deformation is shown to be related to an instability of the instantaneous vorticity distribution in the absence of the planetary vorticity gradient β. The extremely high numerical resolution employed reveals a striking feature of the flow evolution, namely the generation of very sharp vorticity gradients surrounding the vortex and extending downstream of it in time. These gradients form as the vortex forces background planetary vorticity contours out of its way as it propagates. The contours close to the vortex swirl rapidly around the vortex and homogenize, but at some critical distance the swirl is not strong enough and, instead, a sharp vorticity gradient forms. The region inside this sharp gradient is called the ‘trapped zone’, though it shrinks slowly in time and leaks. This leaking occurs in a narrow wake called the ‘trailing front’, another zone of sharp vorticity gradients, extending behind the vortex

    Model reduction for axisymmetric tokamak control

    Get PDF

    Long-time discrete particle effects versus kinetic theory in the self-consistent single-wave model

    Get PDF
    The influence of the finite number N of particles coupled to a monochromatic wave in a collisionless plasma is investigated. For growth as well as damping of the wave, discrete particle numerical simulations show an N-dependent long time behavior resulting from the dynamics of individual particles. This behavior differs from the one due to the numerical errors incurred by Vlasov approaches. Trapping oscillations are crucial to long time dynamics, as the wave oscillations are controlled by the particle distribution inhomogeneities and the pulsating separatrix crossings drive the relaxation towards thermal equilibrium.Comment: 11 pages incl. 13 figs. Phys. Rev. E, in pres
    corecore