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Abstract

A general approach to plasma shape control and its application to the tokamak Alcator

C-Mod is described. The method is linear in the magnetic measurements but is entirely

algorithmic, requiring no fitting of databases. Estimators of the shape parameters are

based on a complete vacuum reconstruction of the flux, so that control points can be de-

fined anywhere within the reconstructed region. The conversion of flux differences into

flux-surface distances, and the calculation of appropriate coil currents for controlling each

parameter, requires a specific reference equilibrium. However, the control is very insensi-

tive to the choice of reference equilibrium provided that the shape parameters are chosen

appropriately. Control current combinations that are orthogonal, in the sense of changing

one parameter and not the others, are obtained. Experiments with these estimators and

controllers show them to be accurate and robust over a wide range of plasma shapes.
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1. Introduction

The problem of control of the plasma shape in tokamaks can be considered to consist of two

main parts. First the shape must be diagnosed in real time, and second the coil currents

must be adjusted to correct it to what is required. In the past, a variety of methods have

been used for both the shape diagnosis ("estimation") and its correction ("control"). The

purpose of the present work is to describe a unified method of performing both of these

tasks and to illustrate its operation by experimental results from Alcator C-Mod '. We

note that the problem of stability, notably vertical stability, which has been extensively

studied elsewhere, is deliberately excluded from consideration here.

The problem of shape estimation can be approached in one of two main ways. Either

an algorithmic solution of the flux reconstruction problem is used, or else a large database

of equilibria spanning the space of interesting plasmas is precalculated and convenient fits

to the database derived. Historically, in early circular cross-section tokamaks, the plasma

position (and current) were diagnosed algorithmically, sometimes using specially designed

pick-up coils. However, because of the greater complication of magnetic diagnosis of shaped

plasmas, and the limited capabilities of real-time calculations, the database fitting approach

tended to be favored in many shaped tokamaks. This fitting has been done in a variety

of ways: for example, an ad hoc approach guided by an intuitive model was used on

DIIID 2, function-parameterization on ASDEX and ASDEX Upgrade 3, singular value

decomposition (SVD) on PBX-M ', and neural networks on Compass 6. In contrast, the

method described here and in use on Alcator C-Mod is purely algorithmic yet performed

in real-time at speeds easily exceeding those necessary for tokamak control. The trend

toward a return to the algorithmic approach is also represented by JET ", and TCV 8.

A feature of the Alcator C-Mod control system hardware 9,0 is that it is capable of

summing real-time signals multiplied by programmable coefficients; that is, it is a linear

system. Because of this practical restriction, because of the relative ease of analysis of linear

systems, and because an accurate linear system can in fact be developed, the method we

2



describe is linear. (Prior recognition that the problem could be specified linearly permitted

the original hardware choice that was made.) Section 2 describes the method and illustrates

its accuracy.

With reliable estimators of the required shape parameters in hand, the problem of

what current combinations to use to control them arises. Most modern shaped tokamaks

have a substantial number of independently controllable poloidal field coils that must

be used in concert to control the shape. Here ad hoc approaches have dominated past

practice, although systematic methods have been proposed 11'. In section 3 we describe

a systematic method of deriving "controllers" based on estimators of the type described

in section 2.

Section 4 shows examples of the complete shape control system in action on Alcator

C-Mod.

2. Shape Estimation

The plasma shape is often described in terms of intuitive generic parameters such as size,

position, elongation, triangularity, and so on. However, the customary intuitive definition

of these parameters rarely gives the exact quantities that one wishes to control in a practical

tokamak. Therefore one needs a more flexible definition of plasma shape parameters. The

shape parameters of interest refer mostly to the locus of the last closed flux surface; for

a divertor plasma, the separatrix. The control of this shape requires us, therefore, to be

able to reconstruct the separatrix from magnetic measurements.

Broadly, tokamak flux surface reconstructions can be classified as belonging to two

main categories: those that do not use the fact that the plasma is in force-balance, and

those that do. In the former category are reconstructions of the vacuum flux surfaces

outside the plasma. These require the representation of the plasma current in the form of

sums of current elements, whether multipoles 13, filaments 15, surface current expansions

16, or finite elements 17. The choice of current representation is immaterial to the present
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discussion. In the present realization a large number of filaments distributed on a surface

are used. The major advantage of the vacuum reconstruction technique, which makes it

the method of choice for the present purposes, is that it can be formulated as a linear

problem. The second type of reconstructions, that do use the force balance to produce

solutions of the Grad-Shafranov equation, are non-linear, and generally non-local.

In brief the reconstruction technique for an assumed axisymmetric plasma is as follows,

the currents in the problem are denoted by the vector I whose components are all the coil

currents, any currents in assumed passive elements such as vessel and structure, and the

plasma current elements. Naturally a finite approximation to the distributed currents must

be adopted. We find that the method of representation of the passive currents is relatively

unimportant provided that the magnetic measurement set is sufficiently complete and

that the active coil currents are present as elements in the model. The influence of each

current element at any measurement (flux-loop or poloidal field pick-up coil) can readily

be calculated from the Green's function so to give a matrix C such that the measurement

signals (vector m) is given by

m=CI . (1)

One can then invert this relation in a least-squares sense to find the currents in terms of the

measurements. This may be done most conveniently using a pseudo-inverse. If D. and DI

are diagonal square matrices whose diagonal elements are respectively the characteristic

sizes of the measurements and currents, then we form the matrix

C-' = DI(D-'CDI)tD , (2)

where t denotes a pseudo-inverse" obtained by singular value decomposition truncated

by discarding those singular values that are smaller than the maximum singular value by

some tolerance factor. The truncation procedure amounts to a smoothing. The solution

C-Im then gives the set of currents that minimizes the measurement errors (normalized

by D.) and the mean square currents (normalized by DI) subject to the smoothing given
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by the truncation. Thus the model currents are expressed as linear combinations of the

measurements.

Alcator C-Mod uses 26 flux loops and 26 poloidal field loops distributed approximately

uniformly around the vacuum vessel. The truncation tolerance is decided on the basis of

considerations of measurement uncertainty and smoothness of reconstruction. We find

that a truncation that leaves 5 modes of the plasma and about 14 of the passive structure

plus 9 for the active coils is approximately optimal.

Such current moments as the total plasma current, I,, and I, times the centroid of the

current, I,.R, I,.Z, can then also be written as linear combinations of the measurements.

These are useful as control parameters but are not sufficient for detailed shape control.

The influence of each current element at any other position in the domain of interest

can readily be calculated. We use a 65 x 65 rectangular mesh as a practical basis for inter-

polating to any other point, although direct Green's function evaluation is also possible. If

we denote that influence vector by F, such that the flux at the relevant point is ?k = FTI,

then the reconstructed flux can be written as

iP = F TC-IM ,(3)

which is completely linear, with F and C- 1 being precalculated.

General plasma shape estimators can be considered to be flux differences or sets of

flux differences between points in the domain of interest. For example, instead of the

current centroid, we can define the plasma radial position R, via the difference in flux

between two control positions at the midplane, at R = Ro ± a, where a is the nominal

minor radius. When the flux difference is zero, a flux surface passes through both points,

so the deviation of the geometrical major radius from RO is then zero. Similar definition

of vertical position is also possible. It must be emphasised that the control points do not

have to be at places where measurements exist. The reconstruction allows one to put

them essentially anywhere. Figure 1 shows the standard control points used for Alcator

5



C-Mod. For diverted plasmas, the clearance of the separatrix from limiting structures at

the inboard and outboard is important. Flux estimators for these clearances are most

naturally defined as the difference between the flux at a point located at the x-point and

that at a control point near the limiting structure. If the surface of the structure is chosen,

then this estimator is zero when a flux surface passes through both control points, i.e.

when the separatrix just touches the limiter. The strike-point of the separatrix on the

divertor plates can similarly be defined in terms of the flux difference between the x-point

and a local control point on the plate.

The position of the x-point itself is the place where both BR and B, are zero. Therefore

the values of the fields (which are also, of course, linear functions of the fluxes, since they

are given by flux derivatives) at a control point close to the expected position of the x-point

provides a measure of the distance of the x-point from the control point.

In all these cases, the estimator can, and generally should, be chosen so that its value is

small when the parameter is at its nominal value. The limit of this prescription is to adopt

the procedure of Hofmann and Jardin " whereby the reference point is moved such that

the desired estimator value is always exactly zero. It is generally unnecessary to proceed

to this limit, however, and even if one does, the question remains of how to interpret the

error when it is non-zero. To derive a quantitative measure of the parameter, when it is

non-zero, expressed in terms of distance from the control point of the flux surface, requires

division by a flux gradient. We may want to specify many shape parameters in terms of the

position of the flux surface, not merely the value of the flux. For example we might want

to specify the separatrix outboard clearance in meters. To transform from flux-difference

to distance requires us to know the flux gradient and obtain dx = d(do/dx)1 The flux

gradient is another linear flux function and so the calculation is straightforward. However,

for a linear system, an estimate of the calibrating flux gradient must be specified ahead

of time. The most accurate way to do this is to derive the gradient from a reference

equilibrium, which may be an actual plasma or simply a numerical equilibrium. Once that
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factor is derived, the shape parameter can be expressed linearly in terms of fluxes. That

linearization is very good provided that we recognize that the calibrating flux gradient for a

plasma of constant shape is proportional to the plasma current. Therefore the shape error

must be considered to be expressed not in distance alone but as the product of distance

and plasma current. In other words, we consider the quantities under control to be Ix,

governed by:

d(Ix) = do ( d) (4)

and the entire calibrating quantity in the brackets is evaluated once and for all for the ref-

erence shot. Note that this calibrating factor has the dimensions of magnetic permeability,

which for free-space can be considered to be a constant, po.

In the estimators for the clearance of the separatrix the presumption thus far has

been that the x-point position is known and so the separatrix flux value is simply equal

to the value at that x-point reference. In reality the x-point position may not be exactly

at its control point. However, since the x-point is where the flux gradients are zero, the

difference of the separatrix value from the reference value will generally be rather small,

provided that the reference is not too far from the actual x-point. It would be possible

to improve on the estimate of the separatrix flux value by using an expansion of the flux

about the x-point. However this extra sophistication is not essential.

The x-point position is a quantity that it is generally useful to estimate and control.

A slightly more subtle algorithm is required for this purpose, as follows. The magnetic

field (equivalent to the flux gradient) at a reference point in the vicinity of the x-point can

be expressed linearly as:

dBR dBR
BR -~B (R - R,)+ d (z- z.)

dR dz (5)
B. zsdBz (R-R)+dBZ ( X
B dugR -R) dz ( .
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These simultaneous equations may be solved for R - R. and z - z. as

. dB, 1 dBR 1
Rd- RA= BR - dz ZBz (6)

dBz 1 dBR 1Z - zX = - + dR A R B ,

where the determinant is A = (dBR/dR)(dBz/dz) - (dBR/dz)(dBz/dR). The x-point

position (R., z,) can thus be obtained by a linear process if the coefficients of BR and B, are

precalculated constants. This precalculation is performed based on a reference equilibrium.

In addition, both sides of the above equation are considered to be multiplied by the plasma

current so that the calibration coefficients for the linear estimator of I,.(R - R.) and

I,.(z - z') are (dB./dz)(I,/A) etc., which are independent of the current scaling factor.

In the case of strike-point estimation, the difference in flux between the x-point and

the reference point must be divided by a flux gradient to give the separatrix position. If we

use the flux gradient at the midplane rather than along the plate for this transformation,

the result is a strike-point estimator in units of p (0 - ?k_)/(dt/dR) the equivalent

flux-surface position at the miplane. This is convenient because this midplane coordinate

is conventionally used to describe the scrape-off layer.

Section 4 illustrates the accuracy of the estimators in practice on Alcator C-Mod.
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3. Controllers

Having decided what shape parameters it is desirable to control, and given reliable estima-

tors of their values, the problem still remains of what currents and voltages to apply to the

coils to perform that control. Ad hoc combinations of currents can be devised intuitively

that will serve to control the various parameters. However, a more systematic approach is

desirable. In particular, it is useful to obtain combinations of currents (or voltages), which

we refer to as "controllers", that are capable of changing particular shape parameters

without affecting the other parameters. Such controllers are called "orthogonal".

Recall that we have the flux influence of the coils such that 40 = FTI. Since the shape

parameters are combinations of flux at various control points, the influence of the coil

currents on the shape parameters can also be written s = FI, where F, is a matrix whose

rows are the corresponding influence coefficients, F. The parameters a may be considered

to have units of flux or alternatively amp-meters: the product of plasma current times

distance, as described above. The current vector here includes all the passive elements and

the plasma current elements as well as the active coils over which we have direct control.

In general both the passive currents and the plasma currents will change in response to

any changes in the active coil currents. To calculate these effects requires a model of the

plasma equilibrium and circuit equations for the passive currents. A full solution to this

problem is then a major undertaking, which is necessary for addressing problems such

as the vertical stability of an elongated plasma but is not so essential for shape control.

Therefore, as an approximation to be justified later on the basis of its results, we shall

ignore the changes in plasma and passive element currents and regard the influence of

the controlled current on the shape parameters as due to their direct flux influence alone.

Then change in the shape vector is related to changes in the coil currents by 6s = Fe6Ic

where I, is the reduced dimension vector of changes of active coil currents, and F, is the

appropriate submatrix of F..

Now consider a set of shape parameters equal in number to the number of active coils,
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so that F, is a square matrix. Its inverse, F,- = E, is, of course, such that the jth column

of E (denoted Ei) when multiplied by F. gives a vector with unity in its jth element and

zero everywhere else. Therefore, a set of currents equal to Ei gives rise to unity change in

the jth shape parameter and zero change in all the others: Ei is an 'orthogonal' controller.

(Actually 'orthonormal' but note that there are two vector spaces here: currents and shape

parameters, so the controllers are orthogonal to parameters not to other controllers, and

the normalization is not to unit length of controller but to unit change of the parameter.)

On the face of it, this is the solution to the controller problem. However, it proves

not to be a fully satisfactory solution, as we will illustrate by a specific example based on

Alcator C-Mod. There are nine free poloidal field currents in Alcator C-Mod (not counting

the fast vertical stability power-supply whose current is very limited). Figure 2 shows the

location and nomenclature of the coils to which they are attached. The upper and lower

coils are in series for EF3 and EF4, while the EFCs are in anti-series and controlled by

the vertical stability power supply. A reasonable choice of nine shape parameters, with

reference to figure 1, is as follows. The flux on axis bo (which is used to control the plasma

current), the position R, and ze, the inboard clearance c;, the position of the lower and

upper x-points (R,, z. ),(Ru, z.) and the current in the EF4 coil IEF4- (This last is

appropriate because the power-supply provides limited flexibility in the EF4 current which

is outside the thick cylindrical structure. Its inclusion as a shape parameter is the natural

method of accounting for this constraint.)

We can calculate the set of completely orthogonal controllers for this set of parameters

by direct matrix inversion. The matrix F, is non-singular because the shape parameter

set is reasonably well chosen. The effect of each controller may be illustrated by plotting

the flux pattern due to the control currents and the sum of these and the original equi-

librium (hence giving the effect of the controller on the plasma, to the extent that our

approach is a valid approximation). Figure 3 shows the 0 controller. It is naturally a

flat field null, with the consequence that the plasma shape is unperturbed; so the right
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hand frame illustrates the unperturbed equilibrium. Figure 4, on the other hand, shows

the z, controller influence. An intuitive controller for z, would be simply a horizontal field.

However, this orthogonal controller gives a much more-convoluted shape. The reason is

straightforward. The controller has been required, for example, not to move the x-points.

Therefore the perturbed field at the x-points is zero. The controller has contrived this

by a rather peculiar combination of coil currents with considerable opposition of adjacent

currents. It is far from obvious that this is a good vertical position controller. It seems

likely that the demand for large opposing currents will unreasonably stretch the capabili-

ties of power supplies and possibly lead to unacceptable forces on the coils. If the plasma

vertical position is moved without the x-points moving, a combination of currents like this

must be involved. However, if we demand that the plasma move vertically regardless of

the x-points, the currents required would be much lower and the field simpler. It is prob-

ably more important to control the plasma position than the x-point position; therefore a

hierarchy of controllers is desirable.

If we consider a set of controllers fewer in number than the number of control currents,

then finding orthogonal controllers is an underdetermined problem. We may consider

the pseudo-inverse of the then rectangular matrix F, (suitably weighted) as providing

orthogonal controllers that minimize the (weighted) sum of squares of the control currents.

If the plasma position and current controllers are considered to be of higher priority than

the other shape parameters, then we can obtain better controllers for them by using a

restricted set of plasma parameters. For example, we use the set bo, R., z, and the

elongation r, and obtain controllers for R, and z, that give essentially pure vertical and

horizontal field, in accord with our intuition. Figure 5 illustrates these. The controllers

thus obtained place far less demands on the coil currents. For example the largest current

element in the z. controller is reduced by a factor of six (for the same z, perturbation)

compared with the fully orthogonal controller. The penalty is that plasma position changes

also change the x-points etc, although if the x-points have other controllers applied to them,
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this effect will be compensated, albeit possibly on a longer timescale.

The current changes required for the controllers we calculate must be induced by

changes in the coil voltages. Therefore a means for transforming the 'current controllers'

into 'voltage controllers' is needed. We approximate this tranformation by ignoring all but

the mutual and self inductances of the active coils. If this inductance matrix is Mc then

application of voltages M-1 Ej will, in this approximation, give rise to current derivatives

such that the shape parameter .s has 1 Am/s time derivative. For a restricted set of

orthogonal parameters it may be advantageous to minimize not the mean-square currents

alone but some combination of currents and voltages. This leads to slightly different opti-

mizations depending on the relative weight of current and voltage. The R and z-controllers

of figure 4 were obtained using a relative voltage and current weighting appropriate for a

situation where the time-constant of evolution is 0.1s. This tends to put significant weight

on the voltage optimization. That explains why the z-controller relies strongly on OH2,

which has relatively few turns so that its inductance is lower than, for example, EF2.

In a full feedback control loop, the estimator (error) signal is multiplied by a gain, Gj,

(with possibly derivative and integral components - PID - but we ignore that complication

here) and the resultant multiplies the controller (M- 1 Ej), applying feedback voltages to

the coils. Since we have orthonormal controllers, we can immediately derive the approx-

imate behaviour of the system. In so far as our approximations are valid, there results a

decoupled eigenmode of the system corresponding to each shape parameter. The decay

time-constant of the error in shape parameter si is 1/G, s. It should be noted that this

extremely simple result is not affected by any uncertainty introduced by the use of flux

gradient calibration factors obtained from a reference equilibrium. This is because the

same factor applies to both the estimator and the controller and so any error in the factor

cancels out from the time-constant.

Of course, our controller approximations are not accurate for the parameters R, and

ze because the assumption that the plasma does not move in response to the currents is
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obviously incorrect for them. For the other shape parameters, however, the approximations

are quite good, and the time-constants derived can be expected to be realistic.

For comparison, controllers have also been derived on the basis of the neighbouring-

equilibrium approach of Humphreys and Hutchinson 12, which gives a linearized flux re-

sponse to coil currents including the response of the plasma. We find that the controllers

obtained for the plasma position are completely different, as might be expected. However

the controllers for the other shape parameters are highly similar to those derived on the

present basis. (Within 20% for their largest elements). Moreover, the R and z controllers

derived from the neighbouring equilibrium response are less plausible than the present

ones. For example, the z controller has inverted sign because the equilibrium position

moves in a direction opposite to the applied force for an unstable (i.e. elongated) equilib-

rium. Therefore it appears that there is no significant advantage for deriving controllers

in using the more complicated neighbouring-equilibrium treatment.

Table 1 shows an example of a set of controllers in routine use for Alcator C-Mod. The

first three, tko, R,, ze, are based on the restricted orthogonality, described above (including

orthogonality to r). The others are fully orthogonal to each other and to the first three.

This combination has proven to be a good compromise in practice, as the next section

illustrates.
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4. Alcator C-Mod Experimental Results

Estimators and controllers of the type described have been implemented on Alcator C-

Mod. The entire duration of the plasma shot after the first 0.1 s is routinely controlled

by feedback purely upon these shape parameters. (The initiation uses partially prepro-

grammed currents and voltages because of the uncertainties in reconstructing the very

small plasma current.) .

The estimators are found to be extremely accurate as evidenced by their agreement

with calculations of the same quantity using the full equilbrium code EFIT 9 . As a quan-

titative test of the accuracy of the vacuum reconstruction, the last closed flux surface

contour it finds has been compared with that of EFIT. The (signed) perpendicular dis-

tance was obtained between the two boundary contours at a large number of points around

the boundary. The mean and standard deviation of the set of distances was then evaluated

for a variety of different plasma shapes, limited and diverted. The worst case found, for

plasmas reasonably centered in position, gave a mean distance of 2.3 mm and a standard

deviation of 2.8 mm. Some shapes are somewhat better, and the reconstruction develops

major errors if the plasma is moved by a large fraction ( O 1/4) of the minor radius without

compensating adjustments to the plasma representation, but these values may be taken as

representative. Two millimeters is about 1 percent of the minor radius.

Figure 6 illustrates a particular estimator, the inner gap between the bumper limiter

and the separatrix. The shape parameters in this and subsequent figures have been divided

by the plasma current so as to display them in units of meters. The gap as determined by

the linear estimator and by EFIT agree to within about 2 mm when the plasma is diverted.

When the plasma is limited, at the beginning and end of the shot, EFIT sets the gap to

zero. The linear estimator derives a negative value at that time, entirely consistent with

its definition in terms of the flux value at the wall relative to the x-point. It says that if

the separatrix were followed round to the inboard position, it would be beyond the wall

by the indicated distance. It should be emphasized that this is a better quantity to use for
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feedback control than the gap as determined by EFIT (based on the last closed flux surface)

because the linear estimator has a consistent meaning and remains controllable even when

limited, whereas the gap has a slope discontinuity and becomes zero by definition when

limited.

Of course, both EFIT and the linear estimators depend on the accuracy of the same

magnetics measurements. However, independent comparisons of the reconstructions with,

for example, probe data, indicate that the separatrix strike-point is obtained correctly to

within two or three millimeters.

Figures 7 (a) and (b) display time histories of the controlled quantities for a typical

elongated, lower diverted shot, overlaid with their programmed values. The four quantities,

Ip, Rg, z, and ci, in (a) must be controlled the most accurately. Together they determine

the proximity of the separatrix to the main chamber wall and RF limiter. As is evident

from the figure, these quantities are in fact well controlled. During the plasma ramp-up

and ramp-down the control is not quite so good because of power supply limitations, for

example at about 0.35s where cross-over of the current polarity of the OH power-supply

renders its control inactive for about 50ms, causing a perturbation on the parameters. The

use of controllers for I,, R,, and z. that are not orthogonal to the other parameters is one

reason why their control is so accurate. (The vertical position control is also assisted by

the fast stabilization supply which is not part of the present analysis.) Good accuracy is

also achieved on the inboard clearance, c;, by the use of integral gain in the PID controller.

This is the cause of the apparent delay in the ci trace relative to its demand.

Control of the four x-point parameters (b) is important but not as critical for plasma

shape control. For a lower diverted shot, the upper x-point location is used to control

the poloidal field at the top of the plasma. As long as the field is sufficiently high that

the plasma is far from being double-diverted, the exact upper x-point position is not

important. The lower x-point position control requires higher precision. The radial position

is controlled within perhaps 2 mm; the vertical position is allowed to run with a constant
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offset of perhaps 5 mm. This offset is a result of various factors including coil resistance

and finite loop gain. We could use integral gain here (as we did on c;) to remove the offset

but we find the present configuration acceptable in practice. After time 1 s, the current

is ramped down with the plasma limited on the inner wall: negative ci. During this time,

the lower and upper x-points are allowed to evolve freely by lowering their feedback gain.

Figure 8 illustrates the extent to which independent x-point control has been obtained.

In two different shots (but with the same feedback control settings) the demanded x-point

position was subjected to steps in R and z. We find that not only does the x-point follow

the demand and equilibrate at the new setting, but also it does so in accord with the

expectations of an independent eigenmode of the system. The other parameters are not

significantly perturbed by the motion of the x-point, and the approach of the x-point

position to its new demand is via an exponential decay whose time constant is equal to

the theoretical value (28 ms for both R and z) within experimental uncertainty.

It is useful in some circumstances to employ a control configuration which is overdeter-

mined, i.e. in which one is nominally controlling more parameters than there are degrees

of freedom (power supplies). Such a situation arises on Alcator C-Mod for the divertor

configuration. It is often advantageous to control not the x-point position but the position

of the strike-point on (for example) the outer divertor plate. There is in general a close

relationship between the strike-point and x-point positions but, because of the evolution

of the overall magnetic configuration, the relationship is not unique. Figure 9 shows an

example of the transition between x-point and strike-point control. A controller that is or-

thogonal to all parameters except R.1 and zl is used in addition to the x-point controllers.

In (a) its gain is zero, so no added control is being attempted. There is a significant drift of

the strike-point, which is normalized in the estimator itself to read in terms of flux-surface

distance at the midplane (p).

Figure 9(b) shows a subsequent shot, identical except for applying significant gain

(100 s- 1 ) on the strike-point control and reduced gain on the x-point. The result, for these
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settings, is extremely good strike-point control at the expense of slightly worse x-point

control. A continuously variable trade-off of the accuracies of these degenerate parameters

is possible via different gain settings.

Figure 10shows examples of a few of the shapes that can be produced and controlled

using the present approach. A 'Slot' divertor, where the separatrix runs almost parallel to

the vertical divertor plate, is most accurately produced using the strike-point controller.

Diversion on to the top face of the shaped divertor can be produced using lower x-point

position control or strike-point control. In the latter case, moving the strike-point reference

point to the vicinity of the required position is found to be advantageous. Plasmas that

are limited on the inner wall are also easily programmed by using negative values of the

inner clearance, c;; their shape is still controlled by the same parameters.

5. Conclusions

A systematic linear approach to plasma shape control has been described. The real-time

estimators are found to have accuracy essentially as good as that of a full Grad-Shafranov

reconstruction. A method of deriving orthogonal controllers has been employed but it

proves disadvantageous to use an orthogonal system of full rank (i.e. with the number of

shape parameters equal to the number of power supplies). Instead, lower rank controllers

are used for the major parameters, plasma current and position. Fully orthogonal con-

trollers are used for the remaining shape parameters. In some cases, an overdetermined

control system is useful (i.e. one in which the nominal number of parameters under control

exceeds the number of power supplies). Smooth transitions between different dominantly

controlled parameters are then possible. The system is in routine operation on Alcator

C-Mod and provides accurate and reliable control of a variety of plasma shapes. The

approach developed here appears to have widespread applicability for existing and future

tokamaks.
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Table 1. The controller matrix of power supply voltages in volts that are calculated to give

a rate of change of 10' Am/s in the indicated shape parameter (times plasma current) and

no change in the orthogonal parameters. (The axial flux, 0, is normalized by dividing

by 2poR/a to render it into Am.) The EF4 current controller is not used in practice; a

controller that uses just EF4 voltage, ignoring inductive coupling is more convenient.

00 R,

0.326

0.326

0.175

0.175

1.871

-0.357

1.017

0.275

0.275

-0.197

-0.197

-0.045

-0.046

2.846

0.498

-0.592

-0.160

-0.160

0.393

-0.393

0.284

-0.284

0.000

0.000

-0.002

0.282

-0.283

-0.124

-0.125

1.451

1.451

-1.083

-0.123

0.057

0.096

0.096

-0.011

0.126

0.311

0.667

-0.197

0.043

-0.049

0.019

-0.072

zI Rxv ZZU EF4

0.073

0.670

-0.806

-1.471

0.560

-0.021

-0.011

-0.047

-0.018

0.112

0.009

0.381

0.056

-0.010

0.058

-0.051

-0.078

0.003

-0.531

-0.015

0.671

0.121

-0.057

0.063

-0.010

-0.018

0.002

-1.244

-1.244

11.046

11.046

-28.101

87.877

0.859

0.269

0.269
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Figure Captions

Fig. 1 Standard reference points for the estimators and controllers in Alcator C-Mod.

Estimators are based on the combinations: R, : 02 - 01; ci : 0.1 - 01; Rz, zz : Brz, Bz;

p. : Os. - O1

Fig. 2 The poloidal field coils of Alcator C-Mod.

Fig. 3 Form of the 0 flux controller, used for current control. For a chosen amplitude,

the flux perturbation and the resulting perturbed flux surfaces are shown. In this case,

the flux surfaces are the same as the unperturbed equilibrium, because the ccontroller is a

field null.

Fig. 4 Form of the ze controller orthogonal to all other parameters. The strange shape

is caused by the requirement of orthogonality. The perturbed plasma in the right frame

should be compared with the unperturbed case of Fig. 3.

Fig. 5 The R. and zc controllers obtained when orthogonality only to 0 and K is required.

These are the controllers actually used.

Fig. 6 Comparison of the real-time estimator for the inner clearance, expressed here in

distance of the separatrix from the wall, with the inner gap calculated by EFIT.

Fig. 7 Evolution of the shape parameters under control (solid) and their demand signals

(dashed) for a typical diverted shot. Values are in meters except for I,.

Fig. 8 Illustration of independent control of lower x-point radius (a) and height (b). Values

in meters.

Fig. 9 Using an overdetermined system to control the strike-point. (a) Strike-point p,

uncontrolled. (b) p, controlled at the expense of R,1 and zgl. The values shown are

plotted relative to the x-point reference at R = 0.56, z = -0.39 m.

Fig. 10 Some equilibria that have been obtained using the present control scheme. (a) a

'Slot' divertor. (b) a 'Flat-plate' divertor. (c) a limited plasma.
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