3,174 research outputs found

    Towards building information modelling for existing structures

    Get PDF
    The transformation of cities from the industrial age (unsustainable) to the knowledge age (sustainable) is essentially a ‘whole life cycle’ process consisting of; planning, development, operation, reuse and renewal. During this transformation, a multi-disciplinary knowledge base, created from studies and research about the built environment aspects is fundamental: historical, architectural, archeologically, environmental, social, economic, etc is critical. Although there are a growing number of applications of 3D VR modelling applications, some built environment applications such as disaster management, environmental simulations, computer aided architectural design and planning require more sophisticated models beyond 3D graphical visualization such as multifunctional, interoperable, intelligent, and multi-representational. Advanced digital mapping technologies such as 3D laser scanner technologies can be are enablers for effective e-planning, consultation and communication of users’ views during the planning, design, construction and lifecycle process of the built environment. For example, the 3D laser scanner enables digital documentation of buildings, sites and physical objects for reconstruction and restoration. It also facilitates the creation of educational resources within the built environment, as well as the reconstruction of the built environment. These technologies can be used to drive the productivity gains by promoting a free-flow of information between departments, divisions, offices, and sites; and between themselves, their contractors and partners when the data captured via those technologies are processed and modelled into BIM (Building Information Modelling). The use of these technologies is key enablers to the creation of new approaches to the ‘Whole Life Cycle’ process within the built and human environment for the 21st century. The paper describes the research towards Building Information Modelling for existing structures via the point cloud data captured by the 3D laser scanner technology. A case study building is elaborated to demonstrate how to produce 3D CAD models and BIM models of existing structures based on designated technique

    A Low-Dimensional Representation for Robust Partial Isometric Correspondences Computation

    Full text link
    Intrinsic isometric shape matching has become the standard approach for pose invariant correspondence estimation among deformable shapes. Most existing approaches assume global consistency, i.e., the metric structure of the whole manifold must not change significantly. While global isometric matching is well understood, only a few heuristic solutions are known for partial matching. Partial matching is particularly important for robustness to topological noise (incomplete data and contacts), which is a common problem in real-world 3D scanner data. In this paper, we introduce a new approach to partial, intrinsic isometric matching. Our method is based on the observation that isometries are fully determined by purely local information: a map of a single point and its tangent space fixes an isometry for both global and the partial maps. From this idea, we develop a new representation for partial isometric maps based on equivalence classes of correspondences between pairs of points and their tangent spaces. From this, we derive a local propagation algorithm that find such mappings efficiently. In contrast to previous heuristics based on RANSAC or expectation maximization, our method is based on a simple and sound theoretical model and fully deterministic. We apply our approach to register partial point clouds and compare it to the state-of-the-art methods, where we obtain significant improvements over global methods for real-world data and stronger guarantees than previous heuristic partial matching algorithms.Comment: 17 pages, 12 figure

    From TLS survey to 3d solid modeling for documentation of built heritage: The case study of porta savonarola in Padua

    Get PDF
    It is a matter of fact that 3D visualisation and proper documentation of cultural objects helps to preserve the history and memories of historic buildings, archaeological sites and cultural landscapes, and supports economic growth by stimulating cultural tourism. Preservation, visualisation and recreation of valuable historical and architectural objects and places has always been a serious challenge for specialists in the field. Today, the rapid developments in the fields of close-range photogrammetry, terrestrial laser scanning (TLS) and computer vision (CV) enable to carry out highly accurate 3D models so as to be extremely effective and intuitive for users who have stringent requirements and high expectations. In this note we present the results of the survey and 3D modeling of an ancient gate, Porta Savonarola, located within the remains of the medieval town walls surrounding the historical city center of Padua, Italy. The work has been undertaken within the framework of the project \u201cWalls Multimedia Museum\u201d (WMM) promoted by the local private association \u201cPadua Walls Committee\u201d. The goal of the project was to develop a prototype of an \u201cextended\u201d virtual museum, spreaded along most interesting locations of the town walls. The survey of the ancient gate was performed with a Leica C10 and P20 terrestrial laser scanners. Once the acquired scans were properly merged together, a solid model was generated from the global point cloud, and plans and elevations were extracted from it for restoration purposes. A short multimedia video was also created for the \u201cWalls Multimedia Museum\u201d, showing both the outer and inner part of the gate. In the paper we will discuss all the steps and challenges addressed to provide the 3D solid model of Porta Savonarola from the TLS data

    Toward automated earned value tracking using 3D imaging tools

    Get PDF

    From survey to fem analysis for documentation of built heritage: The case study of villa revedin-bolasco

    Get PDF
    In the last decade advances in the fields of close-range photogrammetry, terrestrial laser scanning (TLS) and Computer Vision (CV) have enabled to collect different kind of information about a Cultural Heritage objects and to carry out highly accurate 3D models. Additionally, the integration between laser scanning technology and Finite Element Analysis (FEA) is gaining particular interest in recent years for structural analysis of built heritage, since the increasing computational capabilities allow to manipulate large datasets. In this note we illustrate the approach adopted for surveying, 3D modeling and structural analysis of Villa Revedin-Bolasco, a magnificent historical building located in the small walled town of Castelfranco Veneto, in northern Italy. In 2012 CIRGEO was charged by the University of Padova to carry out a survey of the Villa and Park, as preliminary step for subsequent restoration works. The inner geometry of the Villa was captured with two Leica Disto D3a BT hand-held laser meters, while the outer walls of the building were surveyed with a Leica C10 and a Faro Focus 3D 120 terrestrial laser scanners. Ancillary GNSS measurements were also collected for 3D laser model georeferencing. A solid model was then generated from the laser global point cloud in Rhinoceros software, and portion of it was used for simulation in a Finite Element Analysis (FEA). In the paper we discuss in detail all the steps and challenges addressed and solutions adopted concerning the survey, solid modeling and FEA from laser scanning data of the historical complex of Villa Revedin-Bolasco

    Developing a mixed-reality based application for bridge inspection and maintenance

    Get PDF
    Bridge inspection, which collects data for assessment and decision-making processes, plays an important role in the maintenance job of bridge structures. However, all of the inspection jobs, including general inspection, principal inspection and special inspection, generate large and unstructured data resulting in ineffective maintenance. Besides, traditional inspection generates only 2D-based and less visionary information. For a more reliable assessment of structures, it is necessary to improve the current inspection technology and process. In recent years, mixed reality (MR) technology has been proved to be effective in improving interaction, communication and collaboration among stakeholders for evaluating the database. MR and holographic technology blend 3D models with physical assets and support users to engage in the models and interact with the project data more intuitively in the real-time simulation. This paper presents an application of MR-based system called HoloBridge to enhance and facilitate bridge inspection and maintenance. The application consists of modules of inspection, evaluation, and damage mapping. The HoloBridge application is being deployed to Microsoft Hololens for tracking and assessing conditions of bridges. The application has been developed by building information modelling (BIM)-based system linked and integrated into a cross-platform game engine to evaluate bridge damage information. The application is piloted with a highway bridge in South Korea and has shown the benefits not only in the digitalized inspection processes, but also in systematic managing bridge performance

    Development of Bridge Information Model (BrIM) for digital twinning and management using TLS technology

    Get PDF
    In the current modern era of information and technology, the concept of Building Information Model (BIM), has made revolutionary changes in different aspects of engineering design, construction, and management of infrastructure assets, especially bridges. In the field of bridge engineering, Bridge Information Model (BrIM), as a specific form of BIM, includes digital twining of the physical asset associated with geometrical inspections and non-geometrical data, which has eliminated the use of traditional paper-based documentation and hand-written reports, enabling professionals and managers to operate more efficiently and effectively. However, concerns remain about the quality of the acquired inspection data and utilizing BrIM information for remedial decisions in a reliable Bridge Management System (BMS) which are still reliant on the knowledge and experience of the involved inspectors, or asset manager, and are susceptible to a certain degree of subjectivity. Therefore, this research study aims not only to introduce the valuable benefits of Terrestrial Laser Scanning (TLS) as a precise, rapid, and qualitative inspection method, but also to serve a novel sliced-based approach for bridge geometric Computer-Aided Design (CAD) model extraction using TLS-based point cloud, and to contribute to BrIM development. Moreover, this study presents a comprehensive methodology for incorporating generated BrIM in a redeveloped element-based condition assessment model while integrating a Decision Support System (DSS) to propose an innovative BMS. This methodology was further implemented in a designed software plugin and validated by a real case study on the Werrington Bridge, a cable-stayed bridge in New South Wales, Australia. The finding of this research confirms the reliability of the TLS-derived 3D model in terms of quality of acquired data and accuracy of the proposed novel slice-based method, as well as BrIM implementation, and integration of the proposed BMS into the developed BrIM. Furthermore, the results of this study showed that the proposed integrated model addresses the subjective nature of decision-making by conducting a risk assessment and utilising structured decision-making tools for priority ranking of remedial actions. The findings demonstrated acceptable agreement in utilizing the proposed BMS for priority ranking of structural elements that require more attention, as well as efficient optimisation of remedial actions to preserve bridge health and safety

    HBIM, dibujo 3D y realidad virtual aplicados a sitios arqueológicos y ruinas antiguas

    Full text link
    [EN] Data collection, documentation and analysis of the traces of ancient ruins and archaeological sites represent an inestimable value to be handed down to future generations. Thanks to the development of new technologies in the field of computer graphics, Building Information Modelling (BIM), Virtual Reality (VR) and three-dimensional (3D) digital survey, this research proposes new levels of interactivity between users and virtual environments capable of communicating the tangible and intangible values of remains of ancient ruins. In this particular field of development, 3D drawing and digital modelling are based on the application of new Scan-to-HBIM-to-VR specifications capable of transforming simple points (point clouds) into mathematical models and digital information. Thanks to the direct application of novel grades of generation (GOG) and accuracy (GOA) it has been possible to go beyond the creation of complex models for heritage BIM (HBIM) and explore the creation of informative 3D representation composed by subelements (granular HBIM objects) characterized by a further level of knowledge. The value of measurement, 3D drawing and digital modelling have been investigated from the scientific point of view and oriented to the generation of a holistic model able to relate both with architects, engineers, and surveyors but also with archaeologists, restorers and virtual tourists.[ES] La captura de datos, la documentación y el análisis de los restos de las ruinas antiguas y  de  los sitios arqueológicos representan una herencia inestimabile que debe ser transferida a las generaciones futúras. Gracias al desarrollo de las nuevas tecnologías en el campo de los gráficos por ordenador, el modelado de información de la construción (BIM), la realidad virtual (RV) y el levantamiento  digital tridimensional (3D), esta investigación propone nuevos niveles de interacción entre los usuarios y los entornos digitales que pueden comunicar los valores tangibiles e intangibles de los restos de las ruinas antiguas. En este particular ámbito de desarrollo, el dibujo 3D y la modelización digital se basan en la aplicación de las nuevas especificaciones escaneado-a-HBIM-a-RV, capaces de transformar puntos simples (nubes de puntos) en modelos matemáticos e informacción digital. Gracias a la aplicación directa de los GOG (grados of generación) y GOA (grados de exactitud) ha sido posible ir más allá de la creacción de los complejos BIM patrimoniales (HBIM) y explorar la creacción de representaciones 3D, formada por sub-elementos (objetos HBIM granulares) caracterizados por un mayor nivel de conocimiento. El valor de la medición, el dibujo 3D y el modelado digital ha sido investigado desde un enfoque científico y orientado a la generación de un modelo holístico capaz de relacionar tanto a arquitectos, ingenieros y aparejadores con arqueológos, restauradores y turistas virtuales.Banfi, F. (2020). HBIM, 3D drawing and virtual reality for archaeological sites and ancient ruins. Virtual Archaeology Review. 11(23):16-33. https://doi.org/10.4995/var.2020.12416OJS16331123Alby, E., Vigouroux, E., & Elter, R. (2019). Implementation of survey and three-dimensional monitoring of archaeological excavations of the Khirbat al-Dusaq site, Jordan. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W15, 41-47. https://doi.org/10.5194/isprs-archives-XLII-2-W15-41-2019Alia, A., & Cuomo, L. (2017). Bajardo 360: Strategie di rigenerazione per un borgo dell'entroterra ligure (Master's thesis Politecnico di Milano ICAR/21 Urbanistica).Antonopoulou, S., & Bryan, P. (Eds.). (2017). Historic England BIM for Heritage: Developing a Historic Building Information Model. Swindon: Historic England. Retrieved March 10, 2019, from https://historicengland.org.uk/imagesbooks/publications/bim-for-heritage/heag-154-bim-for-heritage/Anzani, A., Baila, A., Penazzi, D., & Binda, L. (2004). Vulnerability study in seismic areas: the role of on-site and archives investigation. In IV International Seminar on Structural Analysis of Historical Constructions (Vol. 2, pp. 1051-1059).Arayici, Y., Counsell, J., Mahdjoubi, L., Nagy, G. A., Hawas, S., & Dweidar, K. (Eds.) (2017). Heritage building information modelling. Abingdon: Routledge. Taylor & Francis. https://doi.org/10.4324/9781315628011Banfi, F. (2019). HBIM generation: extending geometric primitives and bim modelling tools for heritage structures and complex vaulted systems. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W15, 139-148. https://doi.org/10.5194/isprs-archives-XLII-2-W15-139-2019Banfi, F. (2017). BIM orientation: grades of generation and information for different type of analysis and management process. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII(2/W5), 57-64. https://doi.org/10.5194/isprs-archives-XLII-2-W5-57-2017Banfi, F., Brumana, R., & Stanga, C. (2019). Extended reality and informative models for the architectural heritage: from scan-to-BIM process to virtual and augmented reality. Virtual Archaeology Review, 10(21), 14-30. https://doi.org/10.4995/var.2019.11923Barba, S., Barbarella, M., Di Benedetto, A., Fiani, M., & Limongiello, M. (2019). Quality assessment of UAV photogrammetric archaeological survey. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, XLII-2/W9, 93-100. https://doi.org/10.5194/isprs-archives-XLII-2-W9-93-2019Barazzetti, L., Banfi, F., Brumana, R., Gusmeroli, G., Previtali, M., & Schiantarelli, G. (2015). Cloud-to-BIM-to-FEM: Structural simulation with accurate historic BIM from laser scans. Simulation Modelling Practice and Theory, 57, 71-87. https://doi.org/10.1016/j.simpat.2015.06.004Binda, L., Anzani, A., Baila, A., & Penazzi, D. (2004). Indagine conoscitiva, per l'analisi di vulnerabilità, di due centri storici liguri. In XI Cong. Naz. L'Ingegneria Sismica in Italia (pp. 1-8). Padova: Servizi Grafici Editoriali.Bolognesi, C., & Aiello, D. (2019). The secrets of s. Maria delle Grazie: virtual fruition of an iconic milanese architecture. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, XLII-2/W15, 185-192. https://doi.org/10.5194/isprs-archives-XLII-2-W15-185-2019Brumana, R., Banfi, F., Cantini, L., Previtali, M., & Della Torre, S. (2019). HBIM level of detail-geometry and survey analysis for architectural preservation. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, XLII-2/W11, 293-299. https://doi.org/10.5194/isprs-archives-XLII-2-W11-293-2019Brumana, R., Condoleo, P., Grimoldi, A., Banfi, F., Landi, A. G., & Previtali, M. (2018). HR LOD based HBIM to detect influences on geometry and shape by stereotomic construction techniques of brick vaults. Applied Geomatics, 10(4), 529-543. https://doi.org/10.1007/s12518-018-0209-3Biagini, C., Capone, P., Donato, V., & Facchini, N. (2016). Towards the BIM implementation for historical building restoration sites. Automation in Construction, 71, 74-86. https://doi.org/10.1016/j.autcon.2016.03.003Böhler, W., & Marbs, A. (2004). 3D scanning and photogrammetry for heritage recording: a comparison. In S. Anders Brandt (Ed.), Proceedings of 12th International Conference on Geoinformatics (pp. 291-298). Gävle, Sweden.Caballero Zoreda, L. (2010). Experiencia metodológica en Arqueología de la Arquitectura de un grupo de investigación. In Actas del congreso Arqueología aplicada al estudio e interpretación de edificios históricos. Últimas tendencias metodológicas (pp. 103-119). Madrid: Ministerio de Cultura.Chiabrando, F., Lo Turco, M., & Rinaudo, F. (2017). Modeling the decay in an HBIM starting from 3D point clouds. a followed approach for cultural heritage knowledge. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, XLII-2/W5, 605-612. https://doi:10.5194/isprs-archives-XLII-2-W5-605-2017Cogima, C. K., Paiva, P. V. V., Dezen-Kempter, E., Carvalho, M. A. G., & Soibelman, L. (2019). The role of knowledge-based information on BIM for built heritage. In Advances in Informatics and Computing in Civil and Construction Engineering (pp. 27-34). Cham: Springer. https://doi.org/10.1007/978-3-030-00220-6_4Cuca, B., & Barazzetti, L. (2018). Damages from extreme flooding events to cultural heritage and landscapes: water component estimation for Centa River (Albenga, Italy). Advances in Geosciences, 45, 389-395. https://doi.org/10.5194/adgeo-45-389-2018Della Torre, S. (2012). Renovation and post-intervention management. Annales, Series Historia et Sociologia, 22(2), 533-538.Diara, F., & Rinaudo, F. (2019). From reality to parametric models of cultural heritage assets for HBIM. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, XLII-2/W15, 413-419, https://doi.org/10.5194/isprs-archives-XLII-2-W15-413-2019Dore, C., Murphy, M., McCarthy, S., Brechin, F., Casidy, C., & Dirix, E. (2015). Structural simulations and conservation analysis-historic building information model (HBIM). International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-5/W4, 351-357. https://doi:10.5194/isprsarchives-XL-5-W4-351-2015Fai, S., & Rafeiro, J. (2014). Establishing an appropriate level of detail (LoD) for a building information model (BIM)-West Block, Parliament Hill, Ottawa, Canada. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, II-5, 123-130. https://doi:10.5194/isprsannals-II-5-123-2014Fazio, L., & Lo Brutto, M. (2019). 3D Survey for the archaeological study and virtual reconstruction of the "Sanctuary of Isis" in the ancient Lilybaeum (Italy). Virtual Archaeology Review, 11(22), 1-14. https://doi.org/10.4995/var.2020.11928Garagnani, S., Gaucci, A., & Gruška, B. (2016). From the archaeological record to ArchaeoBIM: the case study of the Etruscan temple of Uni in Marzabotto. Virtual Archaeology Review, 7(15), 77-86. https://doi.org/10.4995/var.2016.5846Georgopoulos, A., (2018a). Contemporary Digital Technologies at the Service of Cultural Heritage. In B. Chanda, S. Chaudhuri, S. Chaudhury (Eds.), Heritage Preservation (pp. 1-20). Singapore: Springer. https://doi.org/10.1007/978-981-10-7221-5_1Georgopoulos, A., Ioannidis, C., Soile, S., Tapeinaki, S., Chliverou, R., Moropoulou, A., Tsilimantou, E., & Lampropoulos, K. (2018b). The role of Digital Geometric Documentation in the Rehabilitation of the Tomb of Christ. In 3rd International Congress & Expo Digital Heritage 2018. https://10.1109/DigitalHeritage.2018.8810044Grussenmeyer, P., Landes, T., Voegtle, T., & Ringle, K. (2008). Comparison Methods of Terrestrial Laser Scanning, Photogrammetry and Tacheometry Data for Recording of Cultural Heritage Buildings. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(B5): 213-218. https://www.isprs.org/proceedings/XXXVII/congress/5_pdf/38.pdfIoannides, M., Magnenat-Thalmann, N., & Papagiannakis, G. (2017). Mixed Reality and Gamification for Cultural Heritage. Cham: Springer. https://doi.org/10.1007/978-3-319-49607-8Khalil, A., & Stravoravdis, S. (2019). H-BIM and the domains of data investigations of heritage buildings current state of the art. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, XLII-2/W11, 661-667. https://doi.org/10.5194/isprs-archives-XLII-2-W11-661-2019Korumaz, M., Betti, M., Conti, A., Tucci, G., Bartoli, G., Bonora, V., ... & Fiorini, L. (2017). An integrated Terrestrial Laser Scanner (TLS), Deviation Analysis (DA) and Finite Element (FE) approach for health assessment of historical structures. A minaret case study. Engineering Structures, 153, 224-238. https://doi.org/10.1016/j.engstruct.2017.10.026Kuo, C. L., Cheng, Y. M., Lu, Y. C., Lin, Y. C., Yang, W. B., & Yen, Y. N. (2018). A Framework for Semantic Interoperability in 3D Tangible Cultural Heritage in Taiwan. In Euro-Mediterranean Conference (pp. 21-29). Cham: Springer. https://doi.org/10.1007/978-3-030-01765-1_3Kumar, S. S., & Cheng, J. C. (2015). A BIM-based automated site layout planning framework for congested construction sites. Automation in Construction, 59, 24-37. https://doi.org/10.1016/j.autcon.2015.07.008Lerma, J. L., Navarro, S., Cabrelles, M., & Villaverde, V. (2010). Terrestrial laser scanning and close range photogrammetry for 3D archaeological documentation: the Upper Palaeolithic Cave of Parpalló as a case study. Journal of Archaeological Science, 37(3), 499-507. https://doi.org/10.1016/j.jas.2009.10.011López, F. J., Lerones, P. M., Llamas, J., Gómez-García-Bermejo, J., & Zalama, E. (2018). Linking HBIM graphical and semantic information through the Getty AAT: Practical application to the Castle of Torrelobatón. In IOP Conference Series: Materials Science and Engineering (Vol. 364, No. 1, p. 012100). IOP Publishing. https://doi.org/10.1088/1757-899X/364/1/012100Masiero, A., Chiabrando, F., Lingua, A. M., Marino, B. G., Fissore, F., Guarnieri, A., & Vettore, A. (2019). 3D modeling of Girifalco Fortress. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, XLII-2/W9, 473-478, https://doi.org/10.5194/isprs-archives-XLII-2-W9-473-2019Nieto Julián, J. E., & Moyano Campos, J. J. (2013). La necesidad de un modelo de información aplicado al patrimonio arquitectónico. In 1er Congreso Nacional BIM-EUBIM. Valencia, Spain. https://pdfs.semanticscholar.org/4979/bf843da620460cdaa4c3520acd5d5ad8a23c.pdfNieto Julián, J., & Moyano Campos, J. (2014). The paramental study on the model of information of historic building or "HBIM Project". Virtual Archaeology Review, 5(11), 73-85. https://doi.org/10.4995/var.2014.4183Parrinello, S., Bercigli, M., & Bursich, D. (2017). From survey to 3D model and from 3D model to "videogame". The virtual reconstruction of a Roman Camp in Masada, Israel. DISEGNARECON, 10(19), 11.1-11.19.Penna, A., Calderini, C., Sorrentino, L., Carocci, C. F., Cescatti, E., Sisti, R., ... & Prota, A. (2019). Damage to churches in the 2016 central Italy earthquakes. Bulletin of Earthquake Engineering, 17(10), 5763-5790. https://doi.org/10.1007/s10518-019-00594-4Piegl, L., & Tiller, W. (2012). The NURBS book. Springer Science & Business Media. Cham: Springer.Previtali, M., Barazzetti, L., Banfi, F., & Roncoroni, F. (2019). Informative content models for infrastructure load testing management: the Azzone Visconti Bridge In Lecco. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W11, 995-100. https://doi.org/10.5194/isprs-Archives-XLII-2-W11-995-2019Pybus, C., Graham, K., Doherty, J., Arellano, N., & Fai, S. (2019). New Realities for Canada's Parliament: a Workflow for Preparing Heritage Bim for Game Engines and Virtual Reality. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W15, 945-952. https://doi.org/10.5194/isprs-archives-XLII-2-W15-945-2019Reina Ortiz, M., Yang, C., Weigert, A., Dhanda, A., Min, A., Gyi, M., ... & Santana Quintero, M. (2019). Integrating heterogeneous datasets in HBIM of decorated surfaces. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W15, 981-988. https://doi.org/10.5194/isprs-archives-XLII-2-W15-981-2019Riveiro, B., & Lindenbergh, R. (Eds.) (2020). Laser Scanning: An Emerging Technology in Structural Engineering. CRC Press. London: Taylor & Francis Group. https://doi.org/10.1201/9781351018869Rossi, C. (2019). Aristotle's mirror: combining digital and material culture. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W11, 1025-1029. https://doi.org/10.5194/isprs-archives-XLII-2-W11-1025-2019, 2019.Russo, M., Remondino, F., & Guidi, G. (2011). Principali tecniche e strumenti per il rilievo tridimensionale in ambito archeologico. Archeologia e calcolatori, 22, 169-198.Rua, H., & Alvito, P. (2011). Living the past: 3D models, virtual reality and game engines as tools for supporting archaeology and the reconstruction of cultural heritage-the case-study of the Roman villa of Casal de Freiria. Journal of Archaeological Science, 38(12), 3296-3308. https://doi.org/10.1016/j.jas.2011.07.015Scianna, A., Gristina, S., & Paliaga, S. (2014). Experimental BIM applications in archaeology: a work-flow. In Euro-Mediterranean Conference (pp. 490-498). Cham: Springer. https://doi.org/10.1007/978-3-319-13695-0_48Stampouloglou, M., Toska, O., Tapinaki, S., Kontogianni, G., Skamantzari, M., & Georgopoulos, A. (2019). 3D documentation and virtual archaeological restoration of Macedonian tombs. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W11, 1073-1080, https://doi.org/10.5194/isprs-archives-XLII-2-W11-1073-2019Saglietto G. (ND). Breve guida illustrata di Bajardo (Imperia). Municipality of Bajardo.Stanga, C., Spinelli, C., Brumana, R., Oreni, D., Valente, R., & Banfi, F. (2017). A n-d virtual notebook about the basilica of S. Ambrogio in Milan: information modeling for the communication of historical phases subtraction process. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W5, 653-660. https://doi.org/10.5194/isprs-archives-XLII-2-W5-653-2017Solarino, S. (2007). Il terremoto del 23 Febbraio 1887 in Liguria Occidentale, Descrizioni, considerazioni e prevenzione 120 anni dopo il grande evento, in "Memoria in occasione della mostra Terremoti: conoscerli per difendersi" . Retrieved from https://docplayer.it/18977788-Il-terremoto-del-23-febbraio-1887-in-liguria-occidentale-descrizioni-considerazioni-e-prevenzione-120-anni-dopo-il-grande-evento.htmlTrizio, I., Savini, F., Giannangeli, A., Boccabella, R., & Petrucci, G. (2019). The Archaeological Analysis of Masonry for the Restoration Project in HBIM. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W9, 715-722. https://doi.org/10.5194/isprs-archives-XLII-2-W9-715-2019Tucci, G., Conti, A., Fiorini, L., Corongiu, M., Valdambrini, N., & Matta, C. (2019). M-BIM: a new tool for the Galleria dell'Accademia di Firenze. Virtual Archaeology Review, 10(21), 40-55. https://doi.org/10.4995/var.2019.11943Quattrini, R., Clementi, F., Lucidi, A., Giannetti, S., & Santoni, A. (2019). From TLS to FE analysis: points cloud exploitation for structural behaviour definition. The San Ciriaco's bell tower. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W15, 957-964. https://doi.org/10.5194/isprs-archives-XLII-2-W15-957-2019Valente, R., Brumana, R., Oreni, D., Banfi, F., Barazzetti, L., & Previtali, M. (2017). Object-oriented approach for 3D archaeological documentation. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W5, 707-712. https://doi.org/10.5194/isprs-archives-XLII-2-W5-707-2017Yang, X., Koehl, M., & Grussenmeyer, P. Mesh-to-BIM: from segmented mesh elements to BIM model with limited parameters. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2, 1213-1218. https://doi.org/10.5194/isprs-archives-XLII-2-1213-201

    Diachronic and Synchronic Analysis for Knowledge Creation: Architectural Representation Geared to XR Building Archaeology (Claudius-Anio Novus Aqueduct in Tor Fiscale, the Appia Antica Archaeological Park)

    Get PDF
    This study summarises research progress to identify appropriate quality methodologies for representing, interpreting, and modelling complex contexts such as the Claudian Aqueduct in the Appian Way Archaeological Park. The goal is to intrinsically integrate (embed) geometric survey (Laser scanning and photogrammetric) with the materials and construction techniques (Stratigraphic Units-SU), semantic models in order to support the design with a better understanding of the artefact considered, and also to give indications that can be implemented in the future in a continuous cognitive process. Volume stratigraphic units in the form of architectural drawings, heritage building information modelling (HBIM) and extended reality (XR) environments have been oriented to comparative analyses based on the research case study's complex morphology. Analysis of geometries' intersection, construction techniques and materials open up new cognitive scenarios, self-feeding a progressive knowledge and making different studies correlatable, avoiding diaspora or incommunicability. Finally, an extended reality (XR) platform aims to enhance tangible and intangible values through new human-computer interaction and information sharing levels
    corecore