2,101 research outputs found

    Applications of aerospace technology in the electric power industry

    Get PDF
    An overview of the electric power industry, selected NASA contributions to progress in the industry, linkages affecting the transfer and diffusion of technology, and, finally, a perspective on technology transfer issues are presented

    D-SPACE4Cloud: A Design Tool for Big Data Applications

    Get PDF
    The last years have seen a steep rise in data generation worldwide, with the development and widespread adoption of several software projects targeting the Big Data paradigm. Many companies currently engage in Big Data analytics as part of their core business activities, nonetheless there are no tools and techniques to support the design of the underlying hardware configuration backing such systems. In particular, the focus in this report is set on Cloud deployed clusters, which represent a cost-effective alternative to on premises installations. We propose a novel tool implementing a battery of optimization and prediction techniques integrated so as to efficiently assess several alternative resource configurations, in order to determine the minimum cost cluster deployment satisfying QoS constraints. Further, the experimental campaign conducted on real systems shows the validity and relevance of the proposed method

    Queueing networks: solutions and applications

    Get PDF
    During the pasttwo decades queueing network models have proven to be a versatile tool for computer system and computer communication system performance evaluation. This chapter provides a survey of th field with a particular emphasis on applications. We start with a brief historical retrospective which also servesto introduce the majr issues and application areas. Formal results for product form queuenig networks are reviewed with particular emphasis on the implications for computer systems modeling. Computation algorithms, sensitivity analysis and optimization techniques are among the topics covered. Many of the important applicationsof queueing networks are not amenableto exact analysis and an (often confusing) array of approximation methods have been developed over the years. A taxonomy of approximation methods is given and used as the basis for for surveing the major approximation methods that have been studied. The application of queueing network to a number of areas is surveyed, including computer system cpacity planning, packet switching networks, parallel processing, database systems and availability modeling.Durante as últimas duas décadas modelos de redes de filas provaram ser uma ferramenta versátil para avaliação de desempenho de sistemas de computação e sistemas de comunicação. Este capítulo faz um apanhado geral da área, com ênfase em aplicações. Começamos com uma breve retrospectiva histórica que serve também para introduzir os pontos mais importantes e as áreas de aplicação. Resultados formais para redes de filas em forma de produto são revisados com ênfase na modelagem de sistemas de computação. Algoritmos de computação, análise de sensibilidade e técnicas de otimização estão entre os tópicos revistos. Muitas dentre importantes aplicações de redes de filas não são tratáveis por análise exata e uma série (frequentemente confusa) de métodos de aproximação tem sido desenvolvida. Uma taxonomia de métodos de aproximação é dada e usada como base para revisão dos mais importantes métodos de aproximação propostos. Uma revisão das aplicações de redes de filas em um número de áreas é feita, incluindo planejamento de capacidade de sistemas de computação, redes de comunicação por chaveamento de pacotes, processamento paralelo, sistemas de bancos de dados e modelagem de confiabilidade

    Architecting Efficient Data Centers.

    Full text link
    Data center power consumption has become a key constraint in continuing to scale Internet services. As our society’s reliance on “the Cloud” continues to grow, companies require an ever-increasing amount of computational capacity to support their customers. Massive warehouse-scale data centers have emerged, requiring 30MW or more of total power capacity. Over the lifetime of a typical high-scale data center, power-related costs make up 50% of the total cost of ownership (TCO). Furthermore, the aggregate effect of data center power consumption across the country cannot be ignored. In total, data center energy usage has reached approximately 2% of aggregate consumption in the United States and continues to grow. This thesis addresses the need to increase computational efficiency to address this grow- ing problem. It proposes a new classes of power management techniques: coordinated full-system idle low-power modes to increase the energy proportionality of modern servers. First, we introduce the PowerNap server architecture, a coordinated full-system idle low- power mode which transitions in and out of an ultra-low power nap state to save power during brief idle periods. While effective for uniprocessor systems, PowerNap relies on full-system idleness and we show that such idleness disappears as the number of cores per processor continues to increase. We expose this problem in a case study of Google Web search in which we demonstrate that coordinated full-system active power modes are necessary to reach energy proportionality and that PowerNap is ineffective because of a lack of idleness. To recover full-system idleness, we introduce DreamWeaver, architectural support for deep sleep. DreamWeaver allows a server to exchange latency for full-system idleness, allowing PowerNap-enabled servers to be effective and provides a better latency- power savings tradeoff than existing approaches. Finally, this thesis investigates workloads which achieve efficiency through methodical cluster provisioning techniques. Using the popular memcached workload, this thesis provides examples of provisioning clusters for cost-efficiency given latency, throughput, and data set size targets.Ph.D.Computer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91499/1/meisner_1.pd

    Queuing Models of Tertiary Storage

    Get PDF
    Large scale scientific projects generate and use large amounts of data. For example, the NASA Earth Observation System Data and Information System (EOSDIS) project is expected to archive one petabyte per year of raw satellite data. This data is made automatically available for processing into higher level data products and for dissemination to the scientific community. Such large volumes of data can only be stored in robotic storage libraries (RSL's) for near-line access. A characteristic of RSL's is the use of a robot arm that transfers media between a storage rack and the read/write drives, thus multiplying the capacity of the system. The performance of the RSL's can be a critical limiting factor for the performance of the archive system. However, the many interacting components of an RSL make a performance analysis difficult. In addition, different RSL components can have widely varying performance characteristics. This paper describes our work to develop performance models of an RSL in isolation. Next we show how the RSL model can be incorporated into a queuing network model. We use the models to make some example performance studies of archive systems. The models described in this paper, developed for the NASA EODIS project, are implemented in C with a well defined interface. The source code, accompanying documentation, and also sample JAVA applets are available at: http://www.cis.ufl.edu/~ted

    Designing, Building, and Modeling Maneuverable Applications within Shared Computing Resources

    Get PDF
    Extending the military principle of maneuver into war-fighting domain of cyberspace, academic and military researchers have produced many theoretical and strategic works, though few have focused on researching actual applications and systems that apply this principle. We present our research in designing, building and modeling maneuverable applications in order to gain the system advantages of resource provisioning, application optimization, and cybersecurity improvement. We have coined the phrase “Maneuverable Applications” to be defined as distributed and parallel application that take advantage of the modification, relocation, addition or removal of computing resources, giving the perception of movement. Our work with maneuverable applications has been within shared computing resources, such as the Clemson University Palmetto cluster, where multiple users share access and time to a collection of inter-networked computers and servers. In this dissertation, we describe our implementation and analytic modeling of environments and systems to maneuver computational nodes, network capabilities, and security enhancements for overcoming challenges to a cyberspace platform. Specifically we describe our work to create a system to provision a big data computational resource within academic environments. We also present a computing testbed built to allow researchers to study network optimizations of data centers. We discuss our Petri Net model of an adaptable system, which increases its cybersecurity posture in the face of varying levels of threat from malicious actors. Lastly, we present work and investigation into integrating these technologies into a prototype resource manager for maneuverable applications and validating our model using this implementation

    Overview on: sequencing in mixed model flowshop production line with static and dynamic context

    Get PDF
    In the present work a literature overview was given on solution techniques considering basic as well as more advanced and consequently more complex arrangements of mixed model flowshops. We first analyzed the occurrence of setup time/cost; existing solution techniques are mainly focused on permutation sequences. Thereafter we discussed objectives resulting in the introduction of variety of methods allowing resequencing of jobs within the line. The possibility of resequencing within the line ranges from 1) offline or intermittent buffers, 2) parallel stations, namely flexible, hybrid or compound flowshops, 3) merging and splitting of parallel lines, 4) re-entrant flowshops, to 5) change job attributes without physically interchanging the position. In continuation the differences in the consideration of static and dynamic demand was studied. Also intermittent setups are possible, depending on the horizon and including the possibility of resequencing, four problem cases were highlighted: static, semi dynamic, nearly dynamic and dynamic case. Finally a general overview was given on existing solution methods, including exact and approximation methods. The approximation methods are furthermore divided in two cases, know as heuristics and methaheuristic

    Risk-Based Optimal Scheduling for the Predictive Maintenance of Railway Infrastructure

    Get PDF
    In this thesis a risk-based decision support system to schedule the predictive maintenance activities, is proposed. The model deals with the maintenance planning of a railway infrastructure in which the due-dates are defined via failure risk analysis.The novelty of the approach consists of the risk concept introduction in railway maintenance scheduling, according to ISO 55000 guidelines, thus implying that the maintenance priorities are based on asset criticality, determined taking into account the relevant failure probability, related to asset degradation conditions, and the consequent damages
    corecore