1,452 research outputs found

    Leveraging Tendon Vibration to Enhance Pseudo-Haptic Perceptions in VR

    Full text link
    Pseudo-haptic techniques are used to modify haptic perception by appropriately changing visual feedback to body movements. Based on the knowledge that tendon vibration can affect our somatosensory perception, this paper proposes a method for leveraging tendon vibration to enhance pseudo-haptics during free arm motion. Three experiments were performed to examine the impact of tendon vibration on the range and resolution of pseudo-haptics. The first experiment investigated the effect of tendon vibration on the detection threshold of the discrepancy between visual and physical motion. The results indicated that vibrations applied to the inner tendons of the wrist and elbow increased the threshold, suggesting that tendon vibration can augment the applicable visual motion gain by approximately 13\% without users detecting the visual/physical discrepancy. Furthermore, the results demonstrate that tendon vibration acts as noise on haptic motion cues. The second experiment assessed the impact of tendon vibration on the resolution of pseudo-haptics by determining the just noticeable difference in pseudo-weight perception. The results suggested that the tendon vibration does not largely compromise the resolution of pseudo-haptics. The third experiment evaluated the equivalence between the weight perception triggered by tendon vibration and that by visual motion gain, that is, the point of subjective equality. The results revealed that vibration amplifies the weight perception and its effect was equivalent to that obtained using a gain of 0.64 without vibration, implying that the tendon vibration also functions as an additional haptic cue. Our results provide design guidelines and future work for enhancing pseudo-haptics with tendon vibration.Comment: This paper has been accepted by IEEE TVC

    Pseudo-haptics survey: Human-computer interaction in extended reality & teleoperation

    Get PDF
    Pseudo-haptic techniques are becoming increasingly popular in human-computer interaction. They replicate haptic sensations by leveraging primarily visual feedback rather than mechanical actuators. These techniques bridge the gap between the real and virtual worlds by exploring the brain’s ability to integrate visual and haptic information. One of the many advantages of pseudo-haptic techniques is that they are cost-effective, portable, and flexible. They eliminate the need for direct attachment of haptic devices to the body, which can be heavy and large and require a lot of power and maintenance. Recent research has focused on applying these techniques to extended reality and mid-air interactions. To better understand the potential of pseudo-haptic techniques, the authors developed a novel taxonomy encompassing tactile feedback, kinesthetic feedback, and combined categories in multimodal approaches, ground not covered by previous surveys. This survey highlights multimodal strategies and potential avenues for future studies, particularly regarding integrating these techniques into extended reality and collaborative virtual environments.info:eu-repo/semantics/publishedVersio

    Move or Push? Studying Pseudo-Haptic Perceptions Obtained with Motion or Force Input

    Full text link
    Pseudo-haptics techniques are interesting alternatives for generating haptic perceptions, which entails the manipulation of haptic perception through the appropriate alteration of primarily visual feedback in response to body movements. However, the use of pseudo-haptics techniques with a motion-input system can sometimes be limited. This paper investigates a novel approach for extending the potential of pseudo-haptics techniques in virtual reality (VR). The proposed approach utilizes a reaction force from force-input as a substitution of haptic cue for the pseudo-haptic perception. The paper introduced a manipulation method in which the vertical acceleration of the virtual hand is controlled by the extent of push-in of a force sensor. Such a force-input manipulation of a virtual body can not only present pseudo-haptics with less physical spaces and be used by more various users including physically handicapped people, but also can present the reaction force proportional to the user's input to the user. We hypothesized that such a haptic force cue would contribute to the pseudo-haptic perception. Therefore, the paper endeavors to investigate the force-input pseudo-haptic perception in a comparison with the motion-input pseudo-haptics. The paper compared force-input and motion-input manipulation in a point of achievable range and resolution of pseudo-haptic weight. The experimental results suggest that the force-input manipulation successfully extends the range of perceptible pseudo-weight by 80\% in comparison to the motion-input manipulation. On the other hand, it is revealed that the motion-input manipulation has 1 step larger number of distinguishable weight levels and is easier to operate than the force-input manipulation.Comment: This paper is now under review for IEEE Transactions on Visualization and Computer Graphic

    Examining the size-weight illusion with visuo-haptic conflict in immersive virtual reality.

    Get PDF
    This is the author accepted manuscript. The final version is available from SAGE Publications via the DOI in this record.When we experience our environment, we do so by combining sensory inputs with expectations derived from our prior knowledge, which can lead to surprising perceptual effects such as small objects feeling heavier than equally weighted large objects (the size-weight illusion (SWI)). Interestingly, there is evidence that the way in which the volume of an object is experienced can affect the strength of the illusion, with a SWI induced by exclusively haptic volume cues feeling stronger than a SWI induced with only visual volume cues. Furthermore, visual cues appear to add nothing over and above haptic size cues in terms of the strength of the induced weight illusion-findings which are difficult to reconcile with work using cue-conflict paradigms where visual cues usually dominate haptic cues. Here, virtual reality was used to place these senses in conflict with one another. Participants ( N = 22) judged the heaviness of identically weighted cylinders across three conditions: (1) objects appeared different sizes but were physically the same size, (2) objects were physically different sizes but appeared to be the same size, or (3) objects which looked and felt different sizes from one another. Consistent with prior work, haptic size cues induced a larger SWI than that induced by visual size differences. In contrast to prior work, however, congruent vision and haptic size cues yielded a larger still SWI. These findings not only add to our understanding of how different modalities combine to influence our hedonic perception but also showcase how virtual reality can develop novel cue-conflict paradigms

    Perceiving and acting upon weight illusions in the absence of somatosensory information

    Get PDF
    This is the author accepted manuscript. The final version is available from the American Physiological Society via the DOI in this record.When lifting novel objects, individuals’ fingertip forces are influenced by a variety of cues such as volume and apparent material. This means that heavy-looking objects tend to be lifted with more force than lighter-looking objects, even when they weigh the same amount as one another. Expectations about object weight based on visual appearance also influence how heavy an object feels when it is lifted. For instance, in the "size-weight illusion," small objects feel heavier than equally weighted large objects. Similarly, in the "material-weight illusion," objects that seem to be made from light-looking materials feel heavier than objects of the same weight that appear to be made from heavy-looking materials. In this study, we investigated these perceptual and sensorimotor effects in IW, an individual with peripheral deafferentation (i.e., a loss of tactile and proprioception feedback). We examined his perceptions of heaviness and fingertip force application over repeated lifts of objects that varied in size or material properties. Despite being able to report real weight differences, IW did not appear to experience the size- or material-weight illusions. Furthermore, he showed no evidence of sensorimotor prediction based on size and material cues. The results are discussed in the context of forward models and their possible influence on weight perception and fingertip force control

    A Systematic Review of Weight Perception in Virtual Reality: Techniques, Challenges, and Road Ahead

    Get PDF
    Weight is perceived through the combination of multiple sensory systems, and a wide range of factors – including touch, visual, and force senses – can influence the perception of heaviness. There have been remarkable advancements in the development of haptic interfaces throughout the years. However, a number of challenges limit the progression to enable humans to sense the weight in virtual reality (VR). This article presents an overview of the factors that influence how weight is perceived and the phenomenon that contributes to various types of weight illusions. A systematic review has been undertaken to assess the development of weight perception in VR, underlying haptic technology that renders the mass of a virtual object, and the creation of weight perception through pseudo-haptic. We summarize the approaches from the perspective of haptic and pseudo-haptic cues that exhibit the sense of weight such as force, skin deformation, vibration, inertia, control–display ratio, velocity, body gestures, and audio–visual representation. The design challenges are underlined, and research gaps are discussed, including accuracy and precision, weight discrimination, heavyweight rendering, and absolute weight simulation. This article is anticipated to aid in the development of more realistic weight perception in VR and stimulated new research interest in this topic

    Task Dynamics of Prior Training Influence Visual Force Estimation Ability During Teleoperation

    Full text link
    The lack of haptic feedback in Robot-assisted Minimally Invasive Surgery (RMIS) is a potential barrier to safe tissue handling during surgery. Bayesian modeling theory suggests that surgeons with experience in open or laparoscopic surgery can develop priors of tissue stiffness that translate to better force estimation abilities during RMIS compared to surgeons with no experience. To test if prior haptic experience leads to improved force estimation ability in teleoperation, 33 participants were assigned to one of three training conditions: manual manipulation, teleoperation with force feedback, or teleoperation without force feedback, and learned to tension a silicone sample to a set of force values. They were then asked to perform the tension task, and a previously unencountered palpation task, to a different set of force values under teleoperation without force feedback. Compared to the teleoperation groups, the manual group had higher force error in the tension task outside the range of forces they had trained on, but showed better speed-accuracy functions in the palpation task at low force levels. This suggests that the dynamics of the training modality affect force estimation ability during teleoperation, with the prior haptic experience accessible if formed under the same dynamics as the task.Comment: 12 pages, 8 figure
    corecore