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Abstract 21 

When lifting novel objects, individuals’ fingertip forces are influenced by a variety of cues such as 22 

volume and apparent material. This means that heavy-looking objects tend to be lifted with more 23 

force than lighter-looking objects, even when they weigh the same amount as one another.  24 

Expectations about object weight based on visual appearance also influence how heavy an object 25 

feels when it is lifted. For instance, in the ‘size-weight illusion’ small objects feel heavier than 26 

equally-weighted large objects. Similarly, in the ‘material-weight illusion’ objects which seem to be 27 

made from light-looking materials feel heavier than objects of the same weight which appear to be 28 

made from heavy-looking materials. Here, we investigated these perceptual and sensorimotor 29 

effects in IW, an individual with peripheral deafferentation (i.e., a loss of tactile and proprioception 30 

feedback). We examined his perceptions of heaviness and fingertip force application over repeated 31 

lifts of objects which varied in size or material properties. Despite being able to report real weight 32 

differences, IW did not appear to experience the size- or material-weight illusions. Furthermore, he 33 

showed no evidence of sensorimotor prediction based on size and material cues. The results are 34 

discussed in the context of forward models and their possible influence on weight perception and 35 

fingertip force control. 36 

  37 
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Introduction 38 

Although vision plays an important role in guiding our actions, other sensory modalities also 39 

contribute to the successful completion of goal-directed tasks. Our sense of touch, for example, is 40 

critical for a range of behaviours, from simple manual localization (Rao and Gordon, 2001) to 41 

complex object interaction. Indeed, recent work has even suggested that haptic feedback might 42 

underpin the apparent skill with which the famous visual form agnosic patient DF grasps objects 43 

which she cannot visually distinguish (Schenk, 2012; see Whitwell and Buckingham, 2013 for 44 

discussion). It is clear that the role of haptic feedback in sensorimotor control is complex and 45 

relatively understudied. In the context of object interaction, it is known that haptic feedback plays a 46 

role beyond guiding our behaviour online. Lifting objects, even when they are new to us, tends to be 47 

a predictive process, with fingertip force parameters reflecting the apparent, rather than actual, 48 

weight of what is being lifted. Because of the feed-forward nature of object lifting behaviours, slight 49 

errors in the parametrization of fingertip forces are commonplace. In this context, fingertip afferents 50 

signal object contact and, if necessary, automatically trigger corrective responses when too much or 51 

too little force is applied (for review, see Johansson and Flanagan, 2009). Similar mechanisms also 52 

guide trial-by-trial corrective processes, ensuring that subsequent lifts are undertaken with more 53 

appropriate grip and load forces. Vision also appears to play a role in this so-called fingertip force 54 

adaptation (Buckingham and Goodale, 2010a; Buckingham et al., 2011a), although it is far from clear 55 

what information is provided by vision and touch when detecting and correcting these grip and load 56 

force errors. 57 

For many, the sense of touch is more associated with the conscious perception of object properties 58 

than it is with the control of action. Indeed, humans are quite skilled at identifying a range of 59 

properties with their fingertips (e.g., surface compliance - Drewing and Ernst, 2006; shape - 60 

Lederman and Klatzky, 2009). A perceptual property which can only be detected through tactile cues 61 

is an object’s weight. Interestingly, even though an object weight’s weight can only be experienced 62 
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by interacting with it, the conscious experience of how heavy an object feels can be influenced by a 63 

variety of factors. The subjective nature of weight perception is most dramatically demonstrated in 64 

the ‘size-weight’ illusion (SWI), where small items feel heavier than equally-weighted large items 65 

(Charpentier, 1891; Nicolas et al., 2012). This robust, unchanging, and cognitively impenetrable 66 

misperception of object weight is thought to reflect the role of cognitive expectations on subsequent 67 

perception of heaviness (Flanagan et al., 2008). Due to a lifetime of experiencing the positive 68 

correlation between size and mass, lifters expect large objects to outweigh small objects and 69 

therefore experience large objects as feeling lighter than expected, and vice versa (for review, see 70 

Buckingham, 2014). Indeed, a single object can be made to feel substantially different weights if an 71 

individual is primed to expect to be lifting something heavier or lighter than the object they 72 

eventually interact with (Buckingham and Goodale, 2010a; Buckingham et al., 2011b). Similar illusory 73 

weight differences can also be induced by varying the surface material properties of sets of objects, 74 

such that a cube of low-density material will feel heavier than an identically-weighted cube of 75 

apparently higher-density material – the so-called ‘material-weight’ illusion (Seashore, 1899; Ellis 76 

and Lederman, 1999).  77 

Despite over 100 years of research on this effect, little is known about the physiological mechanisms 78 

underpinning these weight illusions (Ernst, 2009). Even though a wide range of peripheral factors 79 

can also influence weight perception (e.g., surface friction, grip aperture - Flanagan and Bandomir, 80 

2000), the magnitude of these illusions are is related to grip and load force rates on a trial by trial 81 

basis (Flanagan and Beltzner, 2000; Mon-Williams and Murray, 2000; Grandy and Westwood, 2006; 82 

Buckingham et al., 2009). Furthermore, the SWI does not appear to interact with or influence the 83 

lifter’s level of fatigue in the context of exercise behaviour (Buckingham et al., 2014).  84 

In order to shed light on how central factors interact with peripheral factors to drive weight 85 

perception, we examined the perception of heaviness and fingertip force control in IW – an 86 

individual with long-term peripheral deafferentation who has been living without tactile feedback or 87 
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proprioception for the past three decades. IW has been studied at great length, and his 88 

contributions have been fundamental to understanding the role of haptic feedback in a variety of 89 

tasks, and a model for the degree to which visual feedback can replace these cues (for an informal 90 

review, see Cole and Paillard, 1995). Some of the earliest studies on IW have already gone some way 91 

to determining his capacity and methods used for weight discrimination. This work has shown that 92 

when permitted to lift an object with visual feedback of his action, he is able discriminate weights 93 

with surprising skill - at a similar threshold to control subjects (Cole and Sedgwick, 1992; for similar 94 

findings with a different deafferented individual, see Fleury et al., 1995). He is, unsurprisingly, 95 

substantially worse than controls when making these judgements with his eyes closed, being able to 96 

distinguish 100% changes in weight only. It is thought that he is able to use visual cues to report 97 

object weight, by lifting each object with a set force pulse, and then using relative velocity and 98 

distance of movement as a cue to mass; a lighter weight will lead to a faster arm lift, in which the 99 

object moves further. When lifting without vision, his ability to detect gross changes in object weight 100 

may arise from a number of sensory signals, such as subtle associated movements in the head and 101 

vestibular apparatus (his impairments in touch and proprioception are below the neck) which cannot 102 

be isolated completely from his arm movements (Cole and Sedgwick, 1992; Miall et al., 2000).   103 

To better understand how weight illusions are related to the discrimination of real object mass, as 104 

well as to examine a novel aspect of IW’s perceptual and sensorimotor repertoire, we examined 105 

fingertip forces and perceptions of heaviness over repeated lifts of various stimuli which varied in 106 

mass and surface material. When lifting such stimuli, unimpaired individuals will initially lift the 107 

objects with forces that reflect how heavy they look, meaning that large objects will be lifted at a 108 

higher rate of force than small objects and dense-looking objects will be lifted at a higher rate of 109 

force than less dense-looking objects, regardless of their mass (Buckingham et al., 2009; Buckingham 110 

and Goodale, 2010b). When reporting how heavy these objects feels, normal populations also 111 

experience size and material-weight illusions, reporting that small objects feel heavier than 112 

identically-weighted larger objects in the case of the former, and materials which appear to be high 113 
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density as feeling lighter than identically-weighted objects which appear to be made from low-114 

density materials. Given IW’s well-established reliance on vision for controlling his movement, we 115 

would expect him to give a particularly strong weighting to visual cues to object mass. Thus, it is 116 

likely that he will show normal, or supra-normal levels of sensorimotor prediction, lifting the heavy-117 

looking stimuli at a far higher rate of force than the light-looking stimuli in the size- and material-118 

weight conditions. Furthermore, although less is known about IW’s perceptual capabilities, given 119 

that he is able to distinguish object weight when watching himself lift – a process mediated by visual 120 

feedback - we predict that the visual cues to object mass will influence his perception of heaviness to 121 

an even greater degree than unimpaired individuals, and he will experience larger-than-average size 122 

and material-weight illusions.  123 
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Methods 124 

Participant 125 

IW is a left-handed male who suffered a complete large myelinated fibre sensory peripheral 126 

neuronopathy aged 19 due to an illness. He has no sense of proprioception or light touch below 127 

spinal level C3, and little or no sense of haptic feedback. He is able to experience thermal cues and 128 

pain, and has normal motor nerve and muscle function as assessed through electromyography. 129 

Following a lengthy period of rehabilitation, he has regained his ability to move, albeit slowly, which 130 

requires a high degree of attention and constant visual supervision. A more complete case 131 

description can be found from earlier work by Cole and Sedgwick (1992). At the time of testing, IW 132 

was 62 years old. IW’s perceptual reports and lifting performance was compared to a group of seven 133 

right-handed control participants (5 male, mean age: 59.3 years, range: 55 - 63), all of whom were 134 

members of staff at Heriot-Watt University. IW and the control participants undertook all 135 

procedures with their dominant hand, as previous work has shown no difference in this task 136 

between left- and right-handed individuals (Buckingham et al., 2012). All participants gave informed 137 

consent prior to testing, and all procedures were approved by the local ethics board. 138 

 139 

Materials and Procedure  140 

Size-weight illusion 141 

IW gripped and lifted a series of six black plastic cylinders which varied in size and weight (Figure 142 

1A). Three of the cylinders (the heavy set) weighed 550-g and the other three (the light set) weighed 143 

400-g. All cylinders were 10 cm tall, and the large cylinders had a diameter of 10 cm, the medium 144 

cylinders had a diameter of 7.5 cm, and the small cylinders had a diameter of 5 cm. These objects 145 

were designed to induce the SWI, and unimpaired individuals will usually report that the small 146 

cylinder feels substantially heavier than the large cylinder (for review, see Buckingham, 2014). The 147 
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cylinders had small rubber feet attached to their bottom surface, and a plastic mount attached to 148 

their top surface. This mount facilitated the quick attachment and removal of an aluminium and 149 

plastic handle containing a pair of ATI Nano17 force transducers, which IW used to lift with object 150 

using a precision grip on textured grasp pads (Figure 1C). These transducers recorded forces in 3 151 

dimensions at 1000Hz. Grip force was defined as the force applied orthogonal to the transducer’s 152 

surface, whereas load force was the vector sum of the remaining forces. These forces were filtered 153 

with a 14Hz 4th order Butterworth filter and differentiated using a 5-point central difference 154 

equation to yield grip force rate and load force rate. The peak value of the rates of change served as 155 

the dependent variables reflecting sensorimotor prediction (peak grip force rate and peak load force 156 

rate). 157 

With full visual feedback, IW lifted and judged the weight of the SWI-inducing cylinders at his home 158 

in front of a large dining table while seated in a comfortable chair. Following a series of practice 159 

trials with non-experimental objects, IW was asked to rate how heavy he expected each cylinder to 160 

be based on its visual appearance using an arbitrary numerical scale, with larger numbers indicating 161 

heavier-looking objects (i.e., an absolute magnitude estimation - Zwislocki and Goodman, 1980). He 162 

then rested his dominant left hand on the table surface and closed his eyes while one of the 163 

cylinders was placed directly in front of him. On each trial, an auditory cue signalled him to open his 164 

eyes and lift the cylinder a short distance off the table surface with a thumb and forefinger precision 165 

grip on the grasp handle in a smooth, controlled, and confident fashion. He was asked to keep the 166 

object still at the apex of his lift until a second cue (five seconds after the first) signalled for him to 167 

gently place the object back on the table. Once he had released the object, he then gave the 168 

numerical rating of how heavy the object felt on that trial. These values were normalized to a Z 169 

distribution to remove individual variability in the range of their arbitrary scale, and the average of 170 

these values for each cylinder served as the dependent variable reflecting perceptions of heaviness.  171 
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In order to explicitly examine the effects of sensorimotor prediction on his initial lifts, a specifically-172 

designed trial order was used. First, he lifted the 400-g medium-sized cylinder 5 times in a row (the 173 

‘lead-in phase’). He then lifted the large 400-g cylinder, followed by the small 400-g cylinder. 174 

Typically-behaving participants would, under such circumstances, grip and lift the large object with a 175 

higher rate of force than the medium object and grip and lift the small object with lower rate of 176 

force than the other two objects. The rest of the objects were then presented 10 times apiece in a 177 

pseudo-random order for a total of 65 lifts over the course of approximately 45 minutes. Control 178 

participants undertook exactly the same procedure, with the same lifting order, in a laboratory at 179 

Heriot-Watt University. 180 

 181 

Material-weight illusion 182 

In the second experiment, IW gripped and lifted three cubes which appeared to be made from 183 

polystyrene, wood, and stone (Figure 1B). All cubes were the same size (10 × 10 × 10 cm) and weight 184 

(700-g). The polystyrene cube was formed from a hollow plywood cube surrounded with ~1 cm thick 185 

expanded polystyrene, whereas the wood and stone cubes were plywood cubes covered in thin 186 

sheets of countertop veneer (stained oak and granite effect, respectively). All cubes were centrally-187 

weighted with lead shot to their target weight, and provided convincing simulacra of solid cubes 188 

made from their apparent materials. 189 

The procedure for this second experiment was identical to the first. In terms of stimulus 190 

presentation, a similar trial order was utilized. IW first lifted the wooden object 5 times in a row, 191 

followed by the polystyrene cube, then the stone cube. A typical participant would, under such 192 

circumstances, use lower grip and load force rates to pick up the polystyrene cube than the wooden 193 

cube, and higher rates to grip and lift the stone cube than the rest of the set. Following these initial 3 194 

trials, the objects were presented in a pseudo-random order 10 times apiece (35 lifts in total) over 195 
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the course of approximately 20 minutes. Again, control participants also undertook this task in the 196 

laboratory, immediately after they had completed the SWI task. 197 

 198 

Figure 1. The six size-weight illusion inducing objects used in Experiment 1 (A), the three material-199 

weight illusion inducing objects used in Experiment 2 (B), and the handle used to lift the objects in 200 

both experiments (C).  201 
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Results  202 

Size-weight illusion  203 

Prior to lifting, IW reported that he expected the large cylinders to outweigh the medium cylinders, 204 

which he in turn expected to outweigh the small cylinders. In terms of his perception of how heavy 205 

the objects felt after lifting, IW clearly reported that the heavy objects felt, on average, heavier than 206 

the light objects. However, his perception of object weight was apparently unaffected by object 207 

volume – he experienced the small, medium, and large objects in each set as having similar weights 208 

to one another when collapsed across object mass (Figure 2A). In other words, even though he 209 

readily reported a real 150g weight difference, IW did not experience the SWI. By contrast, our 210 

control sample appeared to experience the illusory weight difference as being approximately the 211 

same magnitude as the real weight difference (Figure 2B). We confirmed this observation by 212 

comparing his perception illusory and real weight differences to our control sample. To do this, we 213 

first calculated a metric of the perceived magnitude of the illusion by averaging the small-large 214 

difference score for the light and heavy objects. Next, we calculated a metric of the perceived 215 

magnitude of the real 150-g weight difference by averaging the heavy-light difference scores for the 216 

small, medium, and large objects. We then compared the magnitude of IW’s real and illusory weight 217 

perception with that of our control sample using Crawford’s modified significance test (Crawford et 218 

al., 2010), which is designed to test whether an individual case’s score is significantly different from a 219 

small control sample while controlling for inflated type-1 error rate. These tests confirmed that IW 220 

experienced a significantly smaller SWI than the control participants (0.06 vs 0.82, t(6) = 3.21, 221 

p=.018), whereas his perception of a real 150-g weight difference was approximately the same as 222 

the control participants (0.90 vs 1.11, t(6) = 1.14, p=.31; Figure 2C). 223 
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 224 

Figure 2. The average heaviness ratings given across the 10 lifts of each of the objects lifted in this 225 

task, following the lead in trials reported by (A) IW and (B) our control sample. Error bars in the left 226 

panel show IW’s standard error of the mean, and on the right panel show the average control 227 

standard error of the mean. The perceived magnitudes of the real and illusory weight differences 228 

(small-large and heavy-light, respectively) for IW and the control sample are shown in (C). * indicates 229 

a significant difference at p<.05. 230 
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In addition to perceptions of heaviness, we also examined IW’s gripping and lifting force rates on the 231 

initial lift of each object, and compared his behaviour to our control sample. One control 232 

participant’s lifting data was lost due to experimental error, so the control group for this analysis 233 

contains six individuals. First, we examined whether he initially lifted in an unusual fashion by 234 

comparing the magnitude of his initial fingertip forces used on the first lift of each cylinder to our 235 

control sample. Here, we found no differences between IW and controls average fingertip forces, 236 

either in terms of GFR (35.6N vs. 65.1N; t(5) = 1.3, p=.26) or LFR(15.3N vs. 27.6N; t(5) = 0.8, p=.46), 237 

suggesting that IW gripped and lifted in a broadly normal fashion. IW’s raw grip and load force 238 

profiles, and the associated force rates, are shown in Figure 3. 239 

 240 

Figure 3. The (A) grip force, (B) load force, (C) grip force rates and (D) load force rates IW used to 241 

initially lift the medium, large, and small cylinders. The arrows indicate the peak values used for the 242 

analysis of sensorimotor prediction, shown in Figure 4. NB the initial blue spike in LFR (D) was likely a 243 

consequence of IW accidentally bumping the transducer with his fingers prior to picking up the 244 

object (clearly visible in B), and was thus not analysed. 245 
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With regards to sensorimotor prediction, our control participants showed the expected behaviour, 246 

initially gripping and lifting the large cylinder with a higher rate of force than the small cylinder 247 

(Figure 4, right panels). Qualitatively, IW showed little evidence of sensorimotor prediction based on 248 

volume cues with his gripping behaviour (Figure 4A, left panel), but some evidence of sensorimotor 249 

prediction from volume cues in terms of his load force rates (Figure 4B, left panel). To directly 250 

compare the effect of object size on initial sensorimotor prediction, we subtracted the force rate 251 

used to initially life the small cylinder from the force rate used to lift the large cylinder, and 252 

compared IW to the control sample with Crawford’s modified significance test, finding no statistical 253 

difference between IW and the controls in term of GFR prediction (-0.9N vs. 13.5N; t(5) = 0.43, 254 

p=.68) or LFR prediction (5.8 vs. 5.1; t(5) = 0.06, p=.96). 255 

 256 

Figure 4. Peak grip force rates (A) and peak load force rates (B) used during the initial lift of the large 257 

light, medium light, and small light cylinders following the lead-in trials for IW and the control 258 

participants. A greater application of force for the large object than the small object would be 259 



15 
 

evidence of the utilization of volume cues in guiding fingertip forces. Error bars indicate standard 260 

error of the mean of the control group.  261 
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Material-weight illusion 262 

Prior to lifting, and based on visual appearance alone, IW reported that he expected the polystyrene 263 

cube to be the lightest of the three objects, and that he expected the wooden and stone cubes to 264 

weigh the same amount as one another. When lifting the cubes and judging their weight, IW 265 

reported that the polystyrene cube felt slightly heavier than the wooden cube, which in turn felt 266 

slightly heavier than the stone cube. On a trial by trial basis, however, he only reported that the 267 

polystyrene cube outweighed the stone cube on 4 out of 10 instances. To examine whether IW’s 268 

perception of the magnitude of the MWI differed from that experienced by our control sample, we 269 

calculated a metric of the MWI by subtracting the average ratings given to the stone cube from the 270 

average ratings given to the polystyrene cube. We then compared the magnitude of the illusion 271 

experienced by IW and the control group with the same Crawford’s statistical procedure outlined 272 

above, finding no difference (0.49 vs 0.29, t(7) = 0.29, p=.79).  273 

 274 

Figure 5. The average normalized heaviness ratings given across the 10 lifts of the identically-275 

weighted polystyrene, wood, and stone cubes following the lead-in trials. Error bars in the left panel 276 

show IW’s standard error of the mean, and on the right panel show the average control standard 277 

error of the mean. 278 

279 
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In terms of the initial fingertip force application in this experiment, we first confirmed IW did not 280 

grip and lift these objects with inappropriately low or high force rates, by comparing IW’s average 281 

first trial forces with the control group using Crawford’s t tests. One control participant was excluded 282 

from these analyses due to levels of sensorimotor prediction lower than two standard deviations 283 

above or below the mean, leaving a sample of 6 controls. No differences between IW and the 284 

control group were observed in terms of GFR (40.2N vs. 82.1N; t(5) = 1.0, p=.36) or LFR (15.0N vs. 285 

28.1N; t(5) = 1.0, p=.35). IW’s forces and force rates for his initial lifts of each object are presented in 286 

Figure 6.  287 

 288 

Figure 6. The (A) grip force, (B) load force, (C) grip force rates and (D) load force rates used by IW to 289 

initially lift the Wood, Polystyrene, and Stone cubes. The arrows indicate the peak values used for 290 

the analysis of sensorimotor prediction, shown in Figure 7. 291 

 292 
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In terms of initial sensorimotor prediction based on visual material cues, our control sample gripped 293 

the  MWI-inducing cubes with force rates which reflected their material properties, such that the 294 

heaviest-looking cube was gripped at a higher rate of force than the lightest-looking cube (see also 295 

Buckingham et al., in press, 2009, 2011b; Buckingham and Goodale, 2013). IW, by contrast, showed 296 

no evidence that visual material cues influenced his initial fingertip forces (Figure 7).  297 

However, when comparing IW’s level of sensorimotor prediction with that of the control group, we 298 

observed no statistical difference in this measure (-1.3N vs. 24.8N; t(5) = 1.25, p=.27), presumably 299 

due to the high level of variability in the control group’s sensorimotor prediction. Interestingly, as 300 

was the case with IW, we found no evidence that material cues influenced the control sample’s load 301 

force rates, and thus no difference in LFR sensorimotor prediction (-1.6N vs. 4.1N, t(5) = 0.36, p=.73).  302 

 303 

 304 



19 
 

 305 

Figure 7. IW and the control group’s (A) peak grip force rates and (B) peak load force rates of the 306 

initial lift of the identically-weighted polystyrene, wood, and stone cubes following the lead-in trials. 307 

A greater application of force for the stone cube than the other objects would be evidence of the 308 

utilization of material cues in guiding fingertip forces. Error bars indicate standard error of the mean 309 

of the control group.  310 
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Discussion 311 

In the current work, we examined how an individual with long-term peripheral sensory 312 

deafferentation, but intact motoric output, interacted with and perceived the weight of a variety of 313 

stimuli which varied in mass, volume, and surface material. Prior to lifting objects, IW showed intact 314 

cognitive expectations about how heavy he thought each of the objects would be in relation to one 315 

another, to such a degree that he (correctly) assumed that the stone cube was ‘imitation granite’, 316 

rather than a solid block of stone. 317 

In terms of his perceptual abilities, we replicated earlier work showing that, with full vision, IW was 318 

able to discriminate between objects which actually varied in weight to approximately the same 319 

degree as a small group of age-matched controls (Cole and Sedgwick, 1992). By contrast, he did not 320 

appear to experience size- or material-weight illusions; his perceptual judgements of object 321 

heaviness were largely unaffected by visual cues to volume or material properties. This finding 322 

stands in stark contrast to multiple studies showing how size and material cues can influence the 323 

conscious perception of object weight in a wide range of clinical populations (Buckingham et al., in 324 

press, 2015; Ellis and Lederman, 1993; Rabe et al., 2009; Li et al., 2011). Indeed, to our knowledge, 325 

this is only the second reported example in a clinical context of an individual who does not report 326 

experiencing the SWI – the other being an individual with a large lesion to the left parietal lobe when 327 

lifting with his ipsi-lesional hand (Li et al., 2007). This dissociation between the ability to detect real 328 

and illusory weight differences is, to our knowledge, a novel finding which provides the first 329 

indication that the mechanisms underpinning weight illusions may be fundamentally different to 330 

those underpinning normal weight perception – a proposition in line with neuroimaging work 331 

showing left ventral premotor adaptation to manipulations of illusory, but not real, object mass 332 

(Chouinard et al., 2009).  333 

Whereas unimpaired individuals lift heavy-looking objects at a higher rate of force than objects 334 

which they expect to feel lighter (Gordon et al., 1991; Buckingham et al., 2009; Baugh et al., 2012), 335 
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IW showed no such tendency in the context of either size of material cues, despite being able to 336 

appropriately rank order the objects in terms of expected weight prior to lifting. Although his levels 337 

of sensorimotor prediction did not differ from our control sample, we find this lack of feedforward 338 

behaviour particularly surprising in an individual who, presumably, would seem to be particularly 339 

reliant on visual cues. In other words, given the role visual supervision plays controlling all his 340 

actions, one might expect IW to show a very strong tendency to rely on vision when planning 341 

actions. Of course, given his reliance on vision, it might be possible that IW lifts objects in a 342 

qualitatively different way than unimpaired individuals. However, as can be seen in Figures 3 and 6, 343 

his force profiles over the initial trials evolve over a sufficiently short time course to suggest a 344 

predictive element in his lifting behaviour – an observation which is confirmed by the fact that his 345 

overall force rates are not significantly lower than unimpaired controls. However, his failure to use 346 

visual cues to guide his fingertip forces is particularly surprising because there is no a priori reason 347 

why haptic feedback should affect this feedforward process, which must be driven by a visual 348 

analysis of the object’s properties on the initial interaction. It is possible that IW shows a strong 349 

tendency for hysteresis-like effects seen when individuals lift objects which have no viable cues to 350 

mass (Chouinard et al., 2005; Loh et al., 2010), or a constant ‘safe’ range of grip and load force 351 

values to interact with all objects (see below). Regardless of the mechanism, the fact that IW is 352 

unable (or unwilling) to use size or material cues in order to guide his fingertip forces when lifting 353 

novel objects for the first time highlights that these initial action parameters should not be taken as 354 

a proxy for cognitive expectations (Chang et al., 2008; Cole, 2008).  355 

Given the single-case nature of the current investigation, and the length of time which has elapsed 356 

since IW’s initial pathology, the current findings do not allow us to make strong claims about the way 357 

in which various cues are combined in unimpaired populations. However, in addition to providing a 358 

valuable addition to the ongoing case description of patient IW, the current work adds to the debate 359 

on what might cause the size- and material-weight illusions. For example, our findings could be 360 

taken as evidence that an intact tactile/proprioception system is necessary to experience the size 361 
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and material weight illusions, indicating that these effects must stem from low-level, peripheral 362 

mechanisms. However, such a conclusion would appear to be at odds with the large body of work 363 

showing that the time-course of the illusion is distinct from the rapidly changing afferent feedback 364 

gained from lifting over repeated trials (Flanagan and Beltzner, 2000; Grandy and Westwood, 2006; 365 

Buckingham et al., 2009). Furthermore, peripheral explanations of the illusions are difficult to 366 

reconcile with work showing the high-level nature of these effects, such as demonstrations that 367 

manipulating an individual’s expectations of objects weight is sufficient to influence how heavy an 368 

object feels when it is lifted  (Flanagan et al., 2008; Buckingham and Goodale, 2010a; Buckingham et 369 

al., 2011b). Instead, we propose that IW does not use an adaptive forward model. An adaptive 370 

forward model is a concept put forward to reconcile the rapidity with which we undertake actions 371 

with the delay associated with sensory conductance. In short, it is thought likely that a typical 372 

sensorimotor repertoire involves a large degree of prediction, which is modified as we learn the 373 

dynamical properties of objects in the world, underpinned by a model which includes relevant 374 

properties of objects which we interact with. This hypothetical model not only allows movements to 375 

be completed more rapidly than they would if guided by online feedback, but also to determine 376 

whether the motor command yielded the desired results (for review, see Flanagan & Johansson, 377 

2011). A lack of such a forward model in IW explains both the perceptual and sensorimotor 378 

prediction findings, he would have no means to use size or material cues to guide his fingertip force 379 

rates when lifting novel objects, nor would he have his perceptions of object weight influenced by 380 

his prior expectations. This conclusion fits well with what is known about the parameterization of 381 

fingertip forces in the context of object lifting – individuals typically prepare to lift objects in a 382 

predictive manner using either information provided by visual cues to weight or, if such information 383 

is unavailable, the forces utilized in the previous lift (Forssberg et al., 1992; Loh et al., 2010; Baugh et 384 

al., 2012). Studies showing that IW modulated in grip forces in response to self-generated dynamic 385 

changes in load force suggest he can operate in a predictive fashion (Hermsdörfer et al., 2008), and 386 

he appears to use a forward model when engaged in a mirror drawing task (Miall and Cole, 2007). 387 
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Here, however, there is no evidence that he engages on sensorimotor prediction based on external 388 

cues. And, although there is still some debate over exactly what information is used to drive the 389 

prediction underpinning the context of perception (Buckingham, 2014), there seems little doubt that 390 

analogous cognitive feed-forward processes drive the conscious perception of object heaviness in 391 

these weight illusion paradigms (Flanagan et al., 2008). Given that IW does not appear to experience 392 

weight illusions or apply forces in a predictive fashion, it is possible that he does not utilize a forward 393 

model when interacting with objects in the world around him, presumably due to his inability to use 394 

tactile/proprioceptive cues to adequately calibrate his forward model. Instead, IW appeared to 395 

initially use similar forces for all the objects he lifted, which is consistent with earlier work showing 396 

his strategy for distinguishing light from heavy objects is to lift all objects with approximately the 397 

same force, and judge their weight based on their visual kinematics (Cole and Sedgwick, 1992). This 398 

strategy would, of course, yield accurate and non-illusory perception of object weight. Thus, IW’s 399 

lack of illusion could be considered as a (somewhat paradoxical) enhanced perceptual skill, rather 400 

than a deficit in weight perception. Of course, due to the chronic nature of IW’s condition, the 401 

current work cannot shed light on whether this apparent change in the use of forward models is a 402 

natural consequence of losing haptic cues, or specific to IW’s reliance on visual feedback to control 403 

his actions. Future work can distinguish between these possible interpretations by examining the 404 

time course of any change in sensorimotor prediction following a transient sensory impairment, such 405 

as muscle vibration or the application of aesthetic to the digits. 406 
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Figure legends 521 

Figure 1. The six size-weight illusion inducing objects used in Experiment 1 (A), the three material-522 

weight illusion inducing objects used in Experiment 2 (B), and the handle used to lift the objects in 523 

both experiments (C). 524 

 525 

Figure 2. The average heaviness ratings given across the 10 lifts of each of the objects lifted in this 526 

task, following the lead in trials reported by (A) IW and (B) our control sample. Error bars in the left 527 

panel show IW’s standard error of the mean, and on the right panel show the average control 528 

standard error of the mean. The perceived magnitudes of the real and illusory weight differences 529 

(small-large and heavy-light, respectively) for IW and the control sample are shown in (C). * indicates 530 

a significant difference at p<.05. 531 

 532 

Figure 3. The (A) grip force, (B) load force, (C) grip force rates and (D) load force rates IW used to 533 

initially lift the medium, large, and small cylinders. The arrows indicate the peak values used for the 534 

analysis of sensorimotor prediction, shown in Figure 4. NB the initial blue spike in LFR (D) was likely a 535 

consequence of IW accidentally bumping the transducer with his fingers prior to picking up the 536 

object (clearly visible in B), and was thus not analysed. 537 

 538 

Figure 4. Peak grip force rates (A) and peak load force rates (B) used during the initial lift of the large 539 

light, medium light, and small light cylinders following the lead-in trials for IW and the control 540 

participants. A greater application of force for the large object than the small object would be 541 

evidence of the utilization of volume cues in guiding fingertip forces. Error bars indicate standard 542 

error of the mean of the control group.  543 
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Figure 5. The average normalized heaviness ratings given across the 10 lifts of the identically-544 

weighted polystyrene, wood, and stone cubes following the lead-in trials. Error bars in the left panel 545 

show IW’s standard error of the mean, and on the right panel show the average control standard 546 

error of the mean. 547 

 548 

Figure 6. The (A) grip force, (B) load force, (C) grip force rates and (D) load force rates used by IW to 549 

initially lift the Wood, Polystyrene, and Stone cubes. The arrows indicate the peak values used for 550 

the analysis of sensorimotor prediction, shown in Figure 7. 551 

 552 

Figure 7. IW and the control group’s (A) peak grip force rates and (B) peak load force rates of the 553 

initial lift of the identically-weighted polystyrene, wood, and stone cubes following the lead-in trials. 554 

A greater application of force for the stone cube than the other objects would be evidence of the 555 

utilization of material cues in guiding fingertip forces. Error bars indicate standard error of the mean 556 

of the control group. 557 

 558 
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