2,451 research outputs found

    Thermal analysis of lithium ion battery-equipped smartphone explosions

    Get PDF
    Thermal management of mobile electronics has been carried out because performance of the application processor has increased and power dissipation in miniaturized devices is proportional to its functionalities. There have been various studies on thermal analyses related to mobile electronics with the objectives of improving analysis methodologies and cooling strategies to guarantee device safety. Despite these efforts, failure to control thermal energy, especially in smartphones, has resulted in explosions, because thermal behaviors in the device under various operating conditions have not been sufficiently conducted. Therefore, several scenarios that caused the failure in thermal management of smartphone was analyzed to provide improved insight into thermal design deducing the parameters, that affect the thermal management of device. Overcurrent in battery due to malfunction of battery management system or immoderate addition of functionalities to the application processor are considered as reliable causes leading to the recent thermal runaways and explosions. From the analyses, it was also confirmed that the heat generation of the battery, which have not been considered importantly in previous literature, has significant effect on thermal management, and heat spreading could be suppressed according to arrangement of AP and battery. The heat pipe, which is utilized as a cooling device in mobile electronics, was also included in the thermal analyses. Although the heat pipes have been expected to improve the thermal management in mobile electronics, it showed limited heat transfer capacity due to its operating conditions and miniaturization. The demonstrated results of our analysis warn against vulnerabilities of smartphones in terms of safety in design

    A Home Security System Based on Smartphone Sensors

    Get PDF
    Several new smartphones are released every year. Many people upgrade to new phones, and their old phones are not put to any further use. In this paper, we explore the feasibility of using such retired smartphones and their on-board sensors to build a home security system. We observe that door-related events such as opening and closing have unique vibration signatures when compared to many types of environmental vibrational noise. These events can be captured by the accelerometer of a smartphone when the phone is mounted on a wall near a door. The rotation of a door can also be captured by the magnetometer of a smartphone when the phone is mounted on a door. We design machine learning and threshold-based methods to detect door opening events based on accelerometer and magnetometer data and build a prototype home security system that can detect door openings and notify the homeowner via email, SMS and phone calls upon break-in detection. To further augment our security system, we explore using the smartphoneā€™s built-in microphone to detect door and window openings across multiple doors and windows simultaneously. Experiments in a residential home show that the accelerometer- based detection can detect door open events with an accuracy higher than 98%, and magnetometer-based detection has 100% accuracy. By using the magnetometer method to automate the training phase of a neural network, we find that sound-based detection of door openings has an accuracy of 90% across multiple doors

    Characterizing Everyday Objects using Human Touch: Thermal Dissipation as a Sensing Modality

    Get PDF
    We contribute MIDAS as a novel sensing solution for characterizing everyday objects using thermal dissipation. MIDAS takes advantage of the fact that anytime a person touches an object, it results in heat transfer. By capturing and modeling the dissipation of the transferred heat, e.g., through the decrease in the captured thermal radiation, MIDAS can characterize the object and determine its material. We validate MIDAS through extensive empirical benchmarks and demonstrate that MIDAS offers an innovative sensing modality that can recognize a wide range of materials - with up to 83% accuracy - and generalize to variations in the people interacting with objects.Peer reviewe

    System Support For Energy Efficient Mobile Computing

    Get PDF
    Mobile devices are developed rapidly and they have been an integrated part of our daily life. With the blooming of Internet of Things, mobile computing will become more and more important. However, the battery drain problem is a critical issue that hurts user experience. High performance devices require more power support, while the battery capacity only increases 5% per year on average. Researchers are working on kinds of energy saving approaches. For examples, hardware components provide different power state to save idle power; operating systems provide power management APIs to better control power dissipation. However, the system energy efficiency is still low that cannot reach usersā€™ expectation. To improve energy efficiency, we studied how to provide system support for mobile computing in four different aspects. First, we focused on the influence of user behavior on system energy consumption. We monitored and analyzed usersā€™ application usages information. From the results, we built battery prediction model to estimate the battery time based on user behavior and hardware componentsā€™ usage. By adjusting user behavior, we can at most double the battery time. To understand why different applications can cause such huge energy difference, we built a power profiler Bugu to figure out where does the power go. Bugu analyzes power and event information for applications, it has high accuracy and low overhead. We analyzed almost 100 mobile applicationsā€™ power behavior and several implications are derived to save energy of applications and systems. In addition, to understand the energy behavior of modern hardware architectures, we analyzed the energy consumption and performance of heterogeneous platforms and compared them with homogeneous platforms. The results show that heterogeneous platforms indeed have great potential for energy saving which mostly comes from idle and low workload situations. However, a wrong scheduling decision may cause up to 30% more energy consumption. Scheduling becomes the key point for energy efficient computing. At last, as the increased power density leads to high device temperature, we investigated the thermal management system and developed an ambient temperature aware thermal control policy Falcon. It can save 4.85% total system power and more adaptive in various environments compared with the default approach. Finally, we discussed several potential directions for future research in this field

    Power Consumption Analysis, Measurement, Management, and Issues:A State-of-the-Art Review of Smartphone Battery and Energy Usage

    Get PDF
    The advancement and popularity of smartphones have made it an essential and all-purpose device. But lack of advancement in battery technology has held back its optimum potential. Therefore, considering its scarcity, optimal use and efficient management of energy are crucial in a smartphone. For that, a fair understanding of a smartphone's energy consumption factors is necessary for both users and device manufacturers, along with other stakeholders in the smartphone ecosystem. It is important to assess how much of the device's energy is consumed by which components and under what circumstances. This paper provides a generalized, but detailed analysis of the power consumption causes (internal and external) of a smartphone and also offers suggestive measures to minimize the consumption for each factor. The main contribution of this paper is four comprehensive literature reviews on: 1) smartphone's power consumption assessment and estimation (including power consumption analysis and modelling); 2) power consumption management for smartphones (including energy-saving methods and techniques); 3) state-of-the-art of the research and commercial developments of smartphone batteries (including alternative power sources); and 4) mitigating the hazardous issues of smartphones' batteries (with a details explanation of the issues). The research works are further subcategorized based on different research and solution approaches. A good number of recent empirical research works are considered for this comprehensive review, and each of them is succinctly analysed and discussed
    • ā€¦
    corecore