
Wayne State University

Wayne State University Dissertations

1-1-2016

System Support For Energy Efficient Mobile
Computing
Youhuizi Li
Wayne State University,

Follow this and additional works at: https://digitalcommons.wayne.edu/oa_dissertations

Part of the Computer Sciences Commons

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in
Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Li, Youhuizi, "System Support For Energy Efficient Mobile Computing" (2016). Wayne State University Dissertations. 1459.
https://digitalcommons.wayne.edu/oa_dissertations/1459

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1459&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1459&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1459&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1459&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1459&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_dissertations/1459?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1459&utm_medium=PDF&utm_campaign=PDFCoverPages

SYSTEM SUPPORT FOR ENERGY EFFICIENT MOBILE COMPUTING

by

YOUHUIZI LI

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2016

MAJOR: COMPUTER SCIENCE

Approved By:

Advisor Date

DEDICATION

To my beloved family.

ii

ACKNOWLEDGMENTS

I wish to express my sincere appreciation to those who supported and encouraged me in

one way or another during the last five years.

First of all, I would like to give the deepest gratitude to my advisor, Dr. Weisong Shi, who

has provided me with valuable guidance and endless patience. Dr. Shi taught me how to find

interesting research problems and how to come out solutions step by step. During tough times

in the Ph.D. pursuit, I faced huge challenges and couldn’t move on. Dr. Shi always kindly gave

me suggestions and encouraged me to keep working. He is not only a knowledgeable professor

in academia, but also a kind and wise elder who impacts my life a lot. I cannot succeed without

his support and guidance.

I also want to extend my thanks to Dr. Nathan Fisher, Dr. Caisheng Wang and Dr. Hongwei

Zhang for serving as my committee members. Their professional suggestions on the prospectus

are very valuable for me to improve my work. They also showed me how to be an excellent

researcher and educator.

Moreover, I would like to thank former and present MIST and LAST group members that

I have had the pleasure to work with or alongside of. Especially for Shinan and Hui, who

mentored me in this field, and Pradeep, who assisted me to setup and use the ThermoStream

device. With these brilliant people, we had many exciting discussions in the laboratory.

Last but not least, I deeply appreciate the support, encourage and love from my mother

Chunfang You and my father Xinhua Li. They have been a constant source of strength and

always there for me through the good times and bad times.

iii

TABLE OF CONTENTS

DEDICATION . i

ACKNOWLEDGMENTS . iii

TABLE OF CONTENTS . iv

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER 1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Objectives . 4

1.3 Our Approach . 5

1.3.1 User Behavior Learning . 6

1.3.2 Power Profiling on Mobile Devices 7

1.3.3 Runtime Energy Efficient Scheduling 8

1.3.4 Energy-based Thermal Control . 9

1.4 Contributions . 10

1.5 Outline . 11

CHAPTER 2 RELATED WORK . 13

2.1 User Behavior Analysis . 13

2.2 Power Profiling . 14

2.3 Energy Saving Approaches . 15

2.4 Thermal Control Management . 17

CHAPTER 3 USER BEHAVIOR BASED BATTERY PREDICTION 18

3.1 Introduction . 18

3.2 Battery LifeTime Prediction Model . 19

3.2.1 Assumptions . 20

3.2.2 Lifetime Prediction Model . 20

3.3 Model Analysis . 21

iv

3.3.1 Experiment Setup . 21

3.3.2 Application Power Stability . 23

3.3.3 Application Power Accuracy Analysis 25

3.3.4 Error of the Lifetime Prediction Model 27

3.3.5 User Behavior Analysis . 28

3.3.6 Prediction Model Verification . 30

3.4 Applications of Prediction Model . 32

3.4.1 The Theoretical Battery Lifetime . 33

3.4.2 Hardware Component Improvement 36

3.5 Summary . 38

CHAPTER 4 POWER PROFILING ON MOBILE DEVICES 43

4.1 Introduction . 43

4.2 System Design . 44

4.2.1 The Bugu Server . 45

4.2.2 The Bugu Client . 46

4.3 Implementation . 48

4.3.1 The Bugu Server . 48

4.3.2 Power Profiler . 49

4.3.3 Event Monitor . 51

4.4 Evaluation . 51

4.4.1 Experiment Setup . 52

4.4.2 Bugu Case Studies . 53

4.4.3 Applications Power Information Analysis 58

4.4.4 Bugu Accuracy . 65

4.4.5 Bugu Overhead . 66

4.5 Implications . 67

v

4.5.1 Radio Service . 67

4.5.2 Hardware Interrupts . 68

4.5.3 Energy-efficient Applications . 68

4.5.4 System Power Management Design 69

4.6 Summary . 69

CHAPTER 5 HETEROGENEOUS PLATFORM ENERGY EFFICIENCY ANALYSIS 71

5.1 Introduction . 71

5.2 Experiment Setup . 73

5.3 Case Studies . 73

5.3.1 Active Idle Power . 74

5.3.2 Benchmarks . 75

5.3.3 Impact of Scheduling . 79

5.3.4 Migration Cost . 80

5.4 Insights . 83

5.5 Summary . 85

CHAPTER 6 FALCON: TEMPERATURE AWARE THERMAL CONTROL POLICY 86

6.1 Introduction . 86

6.2 Ambient Temperature Aware Thermal Control 89

6.2.1 Thermal Prediction Model . 89

6.2.2 Thermal Control Policy Falcon . 91

6.3 Evaluation . 93

6.3.1 Experimental Setup . 93

6.3.2 Model Parameter Identification and Validation 94

6.3.3 Thermal Control and Power Evaluation with Fan 95

6.3.4 Thermal Control in High Ambient Temperature Environment 98

6.4 Summary . 101

vi

CHAPTER 7 CONCLUSIONS . 103

CHAPTER 8 FUTURE WORK . 106

REFERENCES . 107

ABSTRACT . 125

AUTOBIOGRAPHICAL STATEMENT . 127

vii

LIST OF TABLES

3.1 The power models for main hardware components. 20

3.2 The specification of Google Nexus 4. 23

3.3 Applications used in the analysis. 24

3.4 An overview of the two datasets. 29

3.5 The application usage information for each user type. 40

3.6 The category power and the summary of potential battery extended for each
user type (T1 to T6). 41

3.7 The detailed power and time information for applications tested in the ex-
periment. 42

3.8 Life time improvement for different users and cases. (T1 to T6 are user types.) 42

4.1 The energy models. 45

4.2 Experiment platforms. 53

4.3 Summary of selected applications. 53

4.4 The comparison of applications power consumptions. (The power unit is
mW.) . 54

5.1 The specifications of the two platforms. 72

5.2 Migration cost for CPU benchmark. 83

6.1 The specifications of Odroid-XU+E. 94

6.2 The benchmarks. 94

6.3 The power savings compared with the default fan configuration under dif-
ferent ambient temperature. 97

viii

LIST OF FIGURES

1.1 The overview of a general user-device interaction scenario. 4

1.2 The overview of our approaches. 5

3.1 The experiment platform. 22

3.2 The device power variation of Gallery. 25

3.3 The power behavior of playing TempleRun2. 25

3.4 The power variation of answering a phone call. 26

3.5 The power comparison for Pandora. 26

3.6 The power comparison for Facebook. 27

3.7 The distribution of estimated power error for popular applications. 27

3.8 The relationship of battery prediction error and application power estima-
tion error. 29

3.9 The cluster within error for different cluster size. 31

3.10 The data distribution for six user types. 32

3.11 User cluster type changes with time. 33

4.1 The overview of Bugu. 45

4.2 The resource file in Android system. 49

4.3 The comparison of YouTube event and power information. 54

4.4 The power comparison of seven video applications. 56

4.5 The power comparison of seven games. 56

4.6 The comparison of devices event information under “sleep” mode with no
application running. 57

4.7 The comparison of devices power information under “sleep” mode with
background applications. 58

4.8 The comparison of applications background and foreground power con-
sumption. 58

4.9 The comparison of applications power consumption in foreground, active
background and idle background. 60

4.10 The system and CPU power information of Pandora. 62

ix

4.11 The system and CPU power information of iHeartRadio. 62

4.12 The information of wakelock and audio time for Pandora and iHeartRadio. . 63

4.13 The system and CPU power variation of Facebook. 64

4.14 The part of the system resource usage information when playing with Face-
book. 65

4.15 The system power and packets information of Firefox browser. 66

4.16 The comparison of measured power and estimated power for popular ap-
plications. 66

5.1 The active idle power of the two platforms under each frequency. 74

5.2 The component level energy information of mobile applications on A7
Only, A15 Only and XUE platforms (left to right). 76

5.3 The component level energy information of NPB benchmarks on the plat-
forms. The frequencies (left to right) are 1200, 1000, 500 MHz on A7 Only
platform and 1600, 1200, 800 MHz on A15 Only platform. The frequen-
cies (left to right) for big core and LITTLE core on XU3 are 2000&1400,
2000&1200, 2000&1000, 1600&1400, 1600&1200, 1600&1000, 1200&1400,
1200&1200, 1200&1000 MHz. 77

5.4 The energy consumption of LU.A and UA.A under different configurations,
big core frequency is 1600 MHz and LITTLE core frequency is 1200 MHz.
b and L represent big core and LITTLE core respectively. 80

5.5 The energy consumption of BBench under different configurations with
default scheduling. b and L represent big core and LITTLE core respectively. 81

5.6 The energy and performance information of sysbench CPU benchmark in
different migration interval cases. 82

6.1 The CPU temperature of MistBench in different ambient temperature cases. 88

6.2 The Falcon overview. 92

6.3 Experimental setup. 93

6.4 The comparison of model prediction value and sampling value. 95

6.5 The relationship of CPU temperature and ambient temperature in idle state. 96

6.6 The power of the CPU and fan under each fan speed. 96

x

6.7 The fan speed distribution and thermal information of BBench. The dash
line is average temperature and solid line is maximum temperature. De
refers the default fan configuration. 98

6.8 The comparison of CPU temperature in different ambient temperature cases.
We show the three benchmarks to keep the figure readable. The 35 25
refers to the case that in the 35◦C ambient temperature environment, the
CPU temperature is cooled down to the same as the initial temperature in
the 25◦C case, then the benchmarks start to run. 99

6.9 The CPU temperature comparison of default fan configuration and modi-
fying Tre f for MistBench and BBench in 28◦C environment. In this experi-
ment, the Tre f is 8◦C smaller than default configuration. 100

6.10 The CPU temperature comparison under different Tre f value for MistBench
in 28◦C environment. For example, T ref-3 refers the threshold is 3◦C
smaller than default configuration. 101

6.11 The comparison of CPU temperature of AndEBench under default config-
uration, modifying Tre f (8◦C smaller) and controlling CPU frequency in
33◦C environment. 102

xi

1

CHAPTER 1 INTRODUCTION

Mobile devices are developed rapidly, from PDAs (personal digital assistant) to current

smartphones and wearable devices. They greatly improve our daily life and make things easier

and convenient. However, the battery drain problem is a critical issue that hurts user expe-

rience and restricts device’s functionality. Previous researchers mainly focused on reducing

power dissipation of hardware components and avoiding software energy bugs, they did not

successfully satisfy the users’ battery usage demand. In this dissertation, we propose system

support for energy efficient mobile computing, which includes user behavior learning, online

power profiler, energy efficient runtime scheduling and energy-based thermal control policy.

All of the modules work together can greatly improve system energy efficiency and extend

battery life.

1.1 Motivation

Mobile computing has been an integrated part of our daily lives and will be more involved in

the future. Mobile device serves as our wallet, our notebook, our timer and our most important

tool to connect with people. The number of industries and activities being transformed by

mobile will only continue to grow [1]. The number of Android applications already over 1.8

million [2]. The application downloads in the App Store has passed 100 billion as announced

in the Apple Worldwide Developer Conference this year [3] and the predicted downloads will

over 250 billion in 2017 [4]. We leverage modern mobile devices to do all kinds of things,

such as monitoring health status and activity data from smartband, augmented reality from

HoloLens [5] and so on. In addition, the emerging of Internet of Things (IoT) will greatly

change our living environment. Smart home, smart building and smart traffic management

system start to step into our daily life. There will be 25 billion permanently connected things

(objects that can connect to the internet) and 200 billion intermittently connected things by

2020, the connected device in households will be doubled [6]. Based on a report presented by

Business Insider [7], the number of IoT devices will increase with a compound annual growth

rate of 35% from 2015 to 2019.

2

The huge number of mobile devices and users shows the fact that mobile computing really

improves people’s life. To provide better service, develops and vendors work hard on every

aspect. From processor aspect, engineers employ several techniques, such as increasing core

operating frequency and voltage, using larger on-die caches, leveraging symmetrical multipro-

cessing and heterogeneous multi-core computing [8, 9]. These technologies are applied by

most manufacturers. On the wireless communication aspect, which builds the foundation of

mobile computing, the faster network speed is always wanted. Compared to 75 Mbps of 4G

LTE service, Samsung has achieved 5G speeds in the range of 1 Gbps in the lab, and the com-

pany expects that the technology could eventually provide speeds in the tens of gigabits per

second [10]. Moreover, modern smartphones are equipped with high-end cameras which can

capture Quad HD video, more sensors that monitors your all day activity, and bigger screen in

a lighter body to provide users better performance.

All of the high performance functionality requires more power support. However, a battery

for a thin mobile device cannot provide enough energy. The battery life of Google Glass only

lasts about three hours [1]. The battery drain issue is the single main gripe of today’s mobile

phone user [11]. 33% users choose better battery life as the most wanted feature [12]. Battery

life seriously affects the user experience and stops them enjoying the mobility. Many places,

like airports and restaurants, provide power sources for clients to charge their devices. One

of the main reasons is the slow development of battery, it is far behind the demands. Take

iPhone as an example, battery capacities of the various models have grown about 15% since its

introduction while computing power grows exponentially [13].

Several approaches are proposed to extend battery life. From hardware’s perspective, recent

hardware components support different power states so that they can stay in the low power

state when they are not busy [14]. As the diversity of the mobile applications, heterogeneous

architecture (CPU-GPU [15], CPU-DSP [16], ARM big.LITTLE) is applied to satisfy different

levels of requirements so that we can achieve better performance and high energy efficiency.

3

From operating system viewpoint, Advanced Configuration and Power Interface (ACPI) [17]

are commonly applied to manage the power usage. From the simple way of setting screen

off time to complicated methods, like bundle IO activity [18] which delays short transfers and

batches them with delay-sensitive transfers [19], users try every way to increase battery life.

However, the battery drain issue is still not well solved.

In addition, due to the small size and high power density of mobile devices, thermal man-

agement also becomes the design bottleneck [20, 21, 22, 23, 24]. Motivated by the close re-

lationship of thermal and power, we should also consider the thermal effects when improving

system energy efficiency. For instance, we cannot put the CPU on the highest frequency be-

cause the high power may cause temperature overs the predefined critical threshold, although

the running time can be greatly reduced which leads to less energy consumption.

Since the battery resource is very limited, we need to pay more attention to how to use it

efficiently. Figure 1.1 describes a general process of what happens when a user plays with a

mobile device. First, the user interacts with applications and select one to run. Then, the oper-

ating system schedules the application and allocates its required resources which include CPU,

memory, network and so on. When the application is running, the generated heat will influence

the device’s temperature and the thermal management system should take action. To save en-

ergy in such a typical scenario, the first focus should be the user behavior. Which application

the user plays? How long it lasts? Are there any patterns can be found? How much energy

saving space is available? Mobile devices are developed to serve humans, and the usability

should always be the first priority. With the user’s preference, we can put more effort on the

“frequently used” parts. Besides, the application’s power behavior should be analyzed so that

we know where does the power go and if the hardware is used properly and efficiently. Take

advantage of the system’s characteristics, we can propose energy-motivated scheduling and

thermal management in operating system level. Since users care about the energy consump-

tion of whole device, particular applications normally do not have as much influence as system

4

CPU

Screen

GPU

Memory

. . .

Hardw
are

Com
ponents

App1

App2

App3

AppN
User

Mobile Device

. . .

Scheduling

. . .

OS

Scheduling

Thermal
Management

Figure 1.1: The overview of a general user-device interaction scenario.

services. In a word, single optimization approach cannot reach the optimal results. All the

modules should work together to eventually improve the system energy efficiency and extend

battery life.

1.2 Objectives

Given the challenges and opportunities discussed above, this dissertation aims to provide

system support for energy efficient mobile computing so that we can systematically improve

the energy efficiency of each part along the process and cooperate them as a whole to achieve

the optimal energy saving.

Specifically, this dissertation will accomplish the following objectives:

1. With smartphone as an example of mobile device, analyze the user interaction behavior to

figure out the potential energy saving space and usage patterns which provide directions

to improve system energy efficiency and user experience.

2. Develop a low overhead power profiling tool to obtain the power dissipation informa-

tion of applications and systems so that we know where does the power go and how to

evaluate the energy difference.

3. Take heterogeneous platform as an example, analyze the influence of system features on

energy consumption and take advantages from them to improve energy efficiency.

5

System Support for Energy Efficient
Mobile Computing

User Behavior
Learning

Runtime
Energy
Efficient
Scheduling

Online Power
Profiling

Energy-based
Thermal
Control

Figure 1.2: The overview of our approaches.

4. With fan as an exemplary cooling method, develop an energy-based thermal control pol-

icy.

1.3 Our Approach

As presented in Figure 1.2, our system support includes four main components: user be-

havior learning, online power profiling, runtime energy efficient scheduling and energy-based

thermal control. User behavior learning module monitors user-device interactions and analyzes

usage patterns. After that, the potential battery extended time can be estimated and we know

more about users’ preference which helps improve user experience and provides energy sav-

ing directions. For example, the system can schedule or suspend proper processes based on

usage patterns. To improve energy efficiency, we first need to figure out where does the power

go. Online power profiler collects different hardware components’ status to calculate system

and application level power dissipation. As heterogeneous platforms become the trend of the

future mobile devices, the scheduling module decides which hardware component the system

will use, e.g. which CPU core to use in the big.LITTLE platform. The power information can

be treated as an important factor for system to schedule applications to the right processor so

that we can actually leverage the low power feature of heterogeneous platforms. In addition,

6

high temperature is another key issue for mobile devices, which is closely related to power

dissipation. On one hand, the cooling method fan itself needs to consume amount of energy

that may influence system energy efficiency. On the other hand, to maintain the thermal con-

straint, thermal management system can restrict some of the system functions which include

scheduling workload to a low frequency core. Its strategy directly affects the system’s power

behavior. In the following, we will generally describe each part.

1.3.1 User Behavior Learning

Mobile devices have become an integral part of our daily life, people use them to check

emails, watch videos, send instant messages, and so on. There are several previous works

[25, 26, 27, 28] that studied the user behavior from application usage perspective. Generally

speaking, the application usage is diversity, which is presented on interactions per day, data

received/sent per day, most popular applications and so on. The diversity directly contributes

to the different battery life for different users.

Understand user interaction behavior is very important. On one hand, it helps developers

build more “smart” applications and services which take further action before user asks, for

instance, pre-loading the applications user will use. On the other hand, it points the direction to

save energy from user behavior aspect. For example, turning off the unimportant applications

when the battery is low so that the basic functions like making a phone call and receiving/send-

ing a message can work. Based on the diversity of the usage of applications, the same energy

saving method may have different results for different users. The approach that increase GPU

energy efficiency gets better results from users who play games a lot than users that prefer

using office applications.

In this part of the dissertation, we built a model to predict the battery life, which considers

the influence of both user behavior and hardware components. Assuming the application power

is relatively stable and the user behavior pattern is known, we can analyze the influence of each

hardware component on the device’s battery life. The model provides a mechanism to evaluate

7

various energy saving methods for different users. We verified the assumption conditions by

analyzing the application power and logged user behavior data. At last, several aspects that

may affect prediction results are discussed, for instance, the sleep frequency will cause the

“tail energy” overhead for some users.

1.3.2 Power Profiling on Mobile Devices

To improve the energy efficiency, the first step is to figure out where does the power go.

There are two categories of power profiling approaches: hardware-based power profiling and

software-based power profiling. The straightforward method is attaching power meters or

power sensors to directly measure the power dissipation. However, hardware-based power

profiling needs extra components to measure the power data, which is not convenient to use on

mobile devices and the built-in power sensors are not always supported. Hence, researchers

are more interested in software-based power profiling. Basically, the software-based method

calculates the power according to a series of power models. The accuracy of the power models

depends on the power indicators of the model and the way we get the indicators’ value. Asides

from the accuracy, another important metric of profiling is the overhead. Our goal is to save

the energy, so the profiler itself cannot be a power hungry process. Besides, the effects to the

system performance should also be considered since we analyze the power data online and do

not want to delay other applications which may hurt user experience.

Both the system level and application level power information are critical to saving devices’

energy. System level power information presents the overview of the energy consumption. It

directly influences the battery life. The system level power information is one of the standards

to evaluate the performance of different energy saving approaches. For application level power

information, it is the key to figure out the underlying reasons of energy wasting. Software is

the biggest energy consumer, all the resources are responsible to satisfy its demands. Some

applications abuse the resources (e.g. CPU) and lead to the waste of energy, which also ex-

plains why the energy efficiency of the applications with the same functionality are different.

8

Moreover, some of them even become energy hungry malwares. System level power profil-

ing is hard to find out the specific power hungry applications as well as which resources the

application overused. Hence, the system level power information and application level power

information are both needed to be considered.

In these situations, we designed and built a power profiler, Bugu, to understand power

behavior of mobile systems. It supports application level and system level power profiling

as well as detailed component usage information includes CPU, memory, GPS, sensors, etc.

Besides, it monitors system events, such as wakelock requiring and releasing, Wi-Fi on and

off, so that these resource abuse can be easily detected. We provide comparing service for

applications with the same functionality which helps users to design and choose more energy

efficient applications. Moreover, in this dissertation, we analyzed 100 popular applications’

power behavior and revealed the root causes of high power consumption for some of them.

From the result we observed several aspects that can be improved to save both application and

system energy, such as sensors and video module energy efficiency, phone service rild.

1.3.3 Runtime Energy Efficient Scheduling

Heterogeneous platforms usually appear in server clusters [29, 30, 31, 32, 33] as the hard-

ware configuration and performance of new servers are different with old servers. With more

and more researchers work in this field, the heterogeneity is introduced to multi-core architec-

ture area to improve performance and power efficiency. Kumar et al. [34] proposed the po-

tential power reduction on their single-ISA heterogeneous multi-core architectures during an

application’s execution. It built the foundations for the following energy aware task scheduling

research [35, 36, 37]. The advantages of heterogeneity on performance increasing and power

reduction bring it into the mobile field. Some researchers proposed to move part of the com-

putational work to DSP or GPU [16, 15, 38], some people preferred to offload tasks to the

cloud [39, 40]. ARM big.LITTLE processor enhanced its position in the mobile area. The

heterogeneity is the trend of the coming future. Hence, we propose energy efficient scheduling

9

as one of the system supports which focuses on the heterogeneous platform.

The first step to take the advantage of heterogeneity is runtime migration and scheduling.

There are several choices in front of us, the critical problem is using the right part at the right

time. Take the big.LITTLE platform as an example, the issues we need to solve include which

core is the proper one to run the applications, when is the right time to change the core from

the big (little) core to the little (big) core and how to migrate the current workload.

To solve these problems, we first compared the heterogeneous platform with homogeneous

platform on the aspects of performance and energy to figure out the benefits we may get.

Then we evaluated the overhead of migration and penalty of wrong scheduling. We found

that heterogeneous platform indeed has great potential for energy saving, but the penalty for

wrong scheduling is also high (up to 30% more energy). There are several aspects need to be

improved to leverage the heterogeneity, such as fine-granularity power control and thread level

parallelism.

1.3.4 Energy-based Thermal Control

The reliability of electronic hardware components is closely related to their operation tem-

perature. For example, the processor failure rate exponentially depends on the temperature [41].

Thermal control normally is a critical issue for data centers as they need to guarantee perfor-

mance and reduce the cooling cost at the same time. Several approaches were proposed, such

as phase change materials [42] and chilled water tanks [43, 44, 45], to absorb the generated

heat. As the mobile devices become more and more powerful, the high performance and power

density also lead to thermal issue. Currently, when the temperature reaches the trip point, the

system performance will greatly decrease as a result of thermal throttling or the device will

directly shut down.

To avoid hurting the performance a lot, we can apply a cooling method to dissipate heat. We

take fan as an exemplary cooling method since it is commonly used in computers. Comparing

with phase change materials that require hardware redesign, the cost of fan is low. We can

10

experimentally analyze its cooling performance and other influence on the system.

Low power is the advantage of SoC platforms, however, the power of fan can reach 40%

(0.8 W) of the experimental board (Odroid-XU+E [46])’s idle power when the fan runs at full

speed. Although we need to control the temperature, we also cannot sacrifice energy effi-

ciency. In addition, comparing with servers which stay in an air conditional room, the devices

involved in mobile computing mostly in outdoor environments, such as IoT gateways. So, the

thermal control policy should adapt to various environments. Hence, we built a thermal predic-

tion model that considers components’ power dissipation, temperature history and the ambient

temperature. Based on that, we proposed an energy-based thermal control policy Falcon. It is

a hybrid approach. On one hand, it uses fan as active cooling method and proactively tunes

the fan speed to satisfy the thermal constrain with low power dissipation in room temperature

or lower. On the other hand, it adjusts CPU frequency to restrict the generated heat in high

ambient temperature environment.

1.4 Contributions

The contributions of this dissertation include:

1. We monitored smartphone user interaction behavior data, analyzed the usage patterns

and classified the users into six user types. Based on the usage information, we proposed

a prediction model that estimates battery life according to user behavior and hardware

usage. We studied the influence of user interaction habit on the energy consumption of

mobile devices. The potential battery life can be extended from 1.03 to 2.24 times for

different user type.

2. We developed a power profiler Bugu which provides both system and application level

power information. Our experiments show that Bugu is accurate enough (95%) with a

low overhead (2.52% of foreground application’s power on average). In addition, we

analyzed the power behavior of 100 popular mobile applications on different platforms.

The energy consumption of applications with same functionality varies a lot. Several

11

implications are derived based on the observations. For examples, some power manage-

ment APIs (like wakelock) are not used properly, which leads to huge amount of energy

waste. Radio service and interrupts generated by sensors cause system cannot enter the

deep sleep state.

3. We investigated the ARM big.LITTLE heterogeneous platforms. Comparing with ho-

mogeneous platforms, most of the energy savings in heterogeneous platforms come from

idle time and there is no much benefit for sustained heavy workloads. We analyzed the

impact of scheduling and migration on the ARM big.LITTLE devices from the perfor-

mance and energy aspects. The improper scheduling can consume 5% - 30% more en-

ergy. We derived a list of insights to fully leverage heterogeneity, such as fine-granularity

power control and thread level parallelism, related to hardware, application and operating

system design.

4. We built a runtime thermal prediction model based on temperature history and compo-

nents’ power dissipation. We proposed Falcon, an ambient temperature aware fan control

policy for smart gateways. Take Odroid-XU+E as an example platform, we experimen-

tally showed that Falcon can save 4.85% total system power and reduce noise in 34% of

the time on average. In addition, the two environment adaptive mechanisms applied in

Falcon help us achieve the same thermal control ability in different ambient temperature

environment.

1.5 Outline

The rest of this dissertation is organized as follows: Chapter 2 reviews the related work.

Chapter 3 analyzes the user device interaction behavior and presents the battery life prediction

model based on the user behavior and hardware usage information. It estimates the poten-

tial battery savings we can achieve if users change their behavior a little bit as well as the

influence of hardware improvement. Chapter 4 introduces the power profiler Bugu which illus-

trates where the power goes for both applications and systems. The power behavior analysis of

12

100 applications indicates several energy saving directions. To figure out the energy influence

of system features and the advance in modern hardware architecture, Chapter 5 describes the

comparison of homogeneous platform and ARM big.LITTLE heterogeneous platform. The ex-

perimental results reveal the importance of the scheduling and opportunities to improve energy

efficiency from heterogeneity. Following that, Chapter 6 takes fan as an exemplary cooling

method, discusses the energy cost of thermal control and demonstrates an energy-based con-

trol policy Falcon. Finally, Chapter 7 concludes this dissertation and Chapter 8 presents the

future work.

13

CHAPTER 2 RELATED WORK

As described in the last chapter, we aim at providing system support for energy efficient

mobile computing. In this chapter, we describe related work in several areas: user behavior

analysis, power profiling, energy saving approaches and thermal control management.

2.1 User Behavior Analysis

User behavior is very important for developers, it reveals more information about users and

points the directions that improve the user experience. Several previous works [25, 26, 27, 28]

studied the user behavior from application usage behavior perspective. Yan et al. [47] leveraged

context information to pre-launching applications which improves the user experience. Huang

et al. [48] proposed the framework that can intelligently control home devices based on the

history of user behavior.

In addition to improve performance and user experience, user behavior data is also valuable

in energy saving field. Falaki et al. [25] collected two user groups’ information to analyze the

usage of the smartphones. The heaviest users drain close to 250 mAh, while the lightest of

users drain only 10 mAh. The huge energy consumption difference is caused by different

usage habit. Shen et al. [16] proposed an energy efficient video downloading strategy which is

determined progressively during the playback process with the consideration of user demand

that is predicted from user behavior.

Generally speaking, different people have different preference and their habit can be illus-

trated in threefold. First, their favorite applications are different. For example, businessmen

like checking the stocks all the time, while students prefer refresh social network applications

in case they miss some news of their friends. Second, same person prefers different applica-

tions based on the time and location information. Usually we open work related applications,

like email, more frequently on Monday to Friday, while we prefer to play with entertainment

related applications, such as games and video players, in the weekends. Similar situations for

the workplace and home, which is classified from the location perspective. Third, users have

different interaction habit, even for the same applications. Take Facebook as an example, some

14

people like refreshing news to know others’ situation, while some users prefer post their status.

2.2 Power Profiling

To save the energy, the first step is figuring out how much energy it consumes. As the

foundation of energy/power related research, there are a lot of power profiling approaches

are proposed. These approaches can be classified to two categories: hardware-based power

profiling and software-based power profiling.

Using hardware to measure the current and voltage is the straightforward way to get power

data. It is also commonly used to verify the accuracy of software-based profiling. The proto-

type version of PowerScope [49] uses a digital multi-meter to sample the current drawn of the

profiling computer and records system activity at the same time. As a result, it generates an

energy profile for later analysis. PowerPack [50] also uses digital meter to measure, while it fo-

cuses on each hardware component (CPU, disk, memory, etc.). Joseph et al. [51, 52] measure

the power dissipation on a high performance processor . They tested a bunch of microbench-

marks to evaluate performance and power tradeoff. Normally, a system current is calculated

through the resistor. Most mobile devices are measured directly by the power meters, such as

Monsoon power meter [53] and BK Precision power supply [54]. The power meter is the power

supply for the device, it provides stable voltage and records the current. Most software-based

power profiling methods use power meters to verify the accuracy [55, 56, 57, 58], so as our

Bugu. Moreover, there are some servers that have built-in sensors that can directly get power

information [59, 60], while the power sensors are not implemented on mobile devices.

Compare with hardware-based power profiling which needs extra devices/sensors to mea-

sure the power consumption, software-based power profiling is more convenient and flexible.

Dempsey [61] extracts power parameters to model the disk drive power consumption. Bertran

et al. [62] took advantage of performance counters to build power models and provided per

component power consumption. Quanto[63] system addresses network communication power

model in embedded system, the key parameter is network event. Dong and Zhong [64] pro-

15

vided a self-constructive approach to build system energy model for mobile systems by using

the smart battery interface to get enough information. Generally speaking, the critical part

of software-base power profiling is power models. System level and application level power

models are built according to different power states of hardware components, the trigger of the

state change and the approach to get the trigger information. Zhang et al. [55] collected power

traces for hardware components and built power meter based and battery based power mod-

els. Pathak et al. [58] proposed system-call-based fine-grained power estimation by modeling

power state using Finite State Machines (FSM). Yoon et al. [65] monitored kernel activities

of hardware component requests to get usage statistics for component models. Furthermore,

the software-based power profiling can be applied to fine-grained level. Wang et al. [66] pro-

posed Safari which provides function-level power information. Li et al. [67] took advantage of

program analysis and statistical modeling to calculate source line level energy information.

2.3 Energy Saving Approaches

After given a brief introduction of power measurement and profiling, we will discuss exist-

ing energy saving approaches in this section. As we all know, energy is becoming a bottleneck

for mobile devices. Researchers proposed different energy saving approaches from system

level and component level.

As early as 2002, energy has been treated as a first-class resource in ECOSystem [68]

which contains a currentcy model and allocate the energy to different tasks according to user

preferences to extend battery lifetime. Besides, Koala [69] predicts the performance and energy

consumption and dynamically control frequency to save energy. In mobile field, researchers

also did a lot of work to improve energy efficiency so that the battery life can be extended

[70, 71]. For example, Cinder [72] also leverage the idea and treat energy as a resource, but

it allocates energy directly to each process and uses a hierarchical structure to control the

resource, which avoiding the competing between parent and child processes. Roy et al. [73]

implemented Cinder and showed the good performance even with malicious applications.

16

Aside from modifying operating system to decrease energy consumption, some researchers

pay more attention to specific components. EnTracked [74] uses dynamically changing con-

text to schedule GPS so that it is energy-efficient as well as keep the performance. MAUI [75]

saves energy through fine-grained code offload after evaluating energy consumption under con-

nectivity constraints. Duan and Bi [76] proposed a hybrid approach which leverages mobile

RAM and phase change memory to achieve memory energy optimization. Pathak et al. [18]

presented an energy accounting approach on application level and proposed saving energy by

optimizing I/O bundle. Pering et al. [77] proposed CoolSpots which helps mobile devices to

automatically switch between multiple radio interfaces, such as WiFi and Bluetooth to improve

communication energy efficiency. Rozner et al. [78] leveraged access point virtualization and

developed a fair scheduling algorithm that reduces retransmissions so that they can save the

Wi-Fi energy of mobile side. Priyantha et al. [79] focused on continuous sensing applications,

they developed a sensing architecture to offload part of sampling and processing work to the a

low power processor.

Heterogeneous platform appears in clusters, high performance multi-core computers. With

the increasing demanding of mobile computing, it is the trend for mobile platforms so that they

can provide high performance with low power dissipation. Kumar et al. [34] proposed single-

ISA heterogeneous multi-core architecture and discussed the potential power saving. Awan

and Petters [35] proposed a energy-aware partitioning of tasks on a heterogeneous multicore

system, which saves energy through choosing the proper sleep states of cores. For mobile

field, Lin et al. [80] designed and implemented a operating system for heterogeneous coher-

ence domains. It has two kernels running on top of the two coherence domains and it can

greatly improve the energy efficiency of light OS workloads. Carroll and Heiser [81, 82] build

a Linux frequency governor medusa which leverages DVFS and offlining to save energy of mo-

bile system. Zhu and Reddi [83] improved performance and energy efficiency of mobile web

browsing on the big/little system by estimating webpage load time and energy consumption

17

and scheduling webpages to proper core and frequency.

2.4 Thermal Control Management

As the power density becomes more and more higher, thermal issue is treated as one of

the system design bottlenecks. The reliability of hardware components are greatly affected

by operating temperature. For example, the processor failure rate exponentially depends on the

temperature [41]. Researchers are working hard to solve the thermal issue. Generally speaking,

there are two kinds of approaches: restricting heat generation and acceleration heat dissipation.

From the heat generation viewpoint, several papers [84, 85, 86, 87, 88] discussed the influ-

ence of task scheduling that dynamically turns on/off servers based on workload behavior and

cooling efficiency, balances the workload to avoid local hot spot. In the aspect of cooling ap-

proaches, phase change materials [42], chilled water tanks [43, 44, 45] are proposed to absorb

the generated heat during workload executing. In addition, free cooling [89, 90] is also applied

to reduce energy cost in many geographical locations.

Due to the nature of SoC platforms, workload scheduling and phrase change materials are

not applicable. ARM developed Intelligent Power Allocation thermal framework [91] which

estimates power budget based on current and reference temperature and allocates it to CPU and

GPU based on performance requirements. Kim et al. [92] proposed migration-based dynamic

thermal management for heterogeneous processors that migrates applications to the little cores

instead of decreasing frequency of the big cores. However, the drawback is the performance

loss. Hence, we propose Falcon, a hybrid method, which only adjusts frequency when neces-

sary.

18

CHAPTER 3 USER BEHAVIOR BASED BATTERY PREDICTION

For mobile devices, battery energy is the most precious resource. In the last decade, re-

searchers have proposed various energy saving strategies from the aspect of system and par-

ticular hardware components. In this chapter, we explored how the user interaction behavior

influences the battery usage. We first developed a battery lifetime prediction model that con-

siders the influence of both user behavior and hardware components. Through experiments

we analyzed the assumptions and the accuracy of the prediction model. To analyze the impact

generated by user behavior, we classified users into six types based on their application usage

pattern. The theoretical battery life and potential extended battery time for each user type, with

and without hardware improvement, have been illustrated.

The remainder of the chapter is organized as follows: Section 3.1 presents the motivation

and overview of our work. The prediction model is described in Section 3.2. Then applications’

power, user traces and model accuracy are analyzed in Section 3.3. Section 3.4 applies the

model to each user category and predicts the battery life based on hardware improvement.

3.1 Introduction

Mobile devices are becoming more and more intrinsic in our daily lives, and global smart-

phone users will reach 1.75 billion in 2014, which is roughly one quarter of the world’s popu-

lation, and more than half of the population in the United States have their own mobile devices

now [93]. However, the battery drain issue seriously influences the user experience and a sur-

vey shows that battery life is the single main gripe of today’s mobile phone user [11]. To solve

this problem, researchers have been trying to find optimization approaches to extend battery

life from system level [94, 73] and component level [76, 95, 56]. However, it is hard to eval-

uate the energy saving performance of these approaches. For instances, How to compare the

influence of memory saving with GPS saving? How long the battery lifetime can be extended

for each application after applying the approach? We are still missing a standard mechanism to

evaluate the effectiveness of the saving approaches from the perspective of real device usage.

Asides from saving energy from the device itself, user behavior also affects battery dis-

19

charging time seriously. Falaki et al. [25] collected two user groups’ information to analyze

the usage of the smartphones. They calculated the mean and standard deviation of energy that

users drain in an hour. The results show that the battery usage is very different from user to

user. The heaviest users drain close to 250 mAh, while the lightest of users drain only 10 mAh.

Hence, users can extend the battery lifetime by adjusting their behavior although they may not

like to. Moreover, the performance of energy saving approaches mentioned above are different

for each user. As a result, the user behavior needs to be considered as an important factor when

we improve battery life of mobile devices.

We undertake the following question: how close can one battery charge survive seven days

for normal smart phone users. We first developed a prediction model that calculates how long

the battery can be extended under various situations. The model takes both hardware com-

ponents information and user behavior into consideration, providing a mechanism to evaluate

various energy saving methods for different users. Assuming the application power is relatively

stable and the user behavior pattern is known, we can analyze the influence of each hardware

component to the device battery life. For some users, if the energy efficiency of the display

is doubled, the battery lifetime will increase by 18.57%. From the users’ point of view, the

possible maximum battery lifetime can be calculated as well. For example, compared with

the original 66h for users who rarely use their smartphone, we found that the battery life can

be extended to 147h (more than 6 days) when we only maintain applications in the top three

commonly used categories. Moreover, given a target battery discharging time, the prediction

model will provide the information for how much improvement we need to achieve.

3.2 Battery LifeTime Prediction Model

In this section, we listed the assumptions that our prediction model is based on. Following

that, we illustrated the power models that estimate average application power and the battery

lifetime prediction model.

20

3.2.1 Assumptions

To simplify the problem, the applications and devices that we focus on should satisfy the

following assumptions:

1. The average power of each hardware component is relatively stable and is linear to the

usage of the component.

2. User behavior has specific patterns and the pattern can be expressed by the user-interacted

applications’ running time.

3.2.2 Lifetime Prediction Model

To calculate the battery lifetime, it is important to estimate the average power. Since the

user behavior is represented by the application running time, the power should be calculated at

application level. Table 3.1 presents the power models for the average power of the four main

hardware components that we used to estimate application power. They are abstract formats

used to show that the power is linear to the average component’s usage. For CPU power, the

main indicator is the utilization which is calculated from user time, kernel time and sampling

interval. Since the power variation for different color is not very large for Google Nexus 4, we

only consider brightness in display power. The radio and Wi-Fi power is based on the signal

states and packets rate respectively. More details of the specific power models can be found

in [96]. In the average power models, all c are constants and u are the usage of each component.

Component Average Power Model
CPU mcpu = ccpu ∗ucpu + ccpuidle
Display mdisplay = cdisplay ∗udisplay + cdisplayidle
Radio mradio = cradioscan ∗urs + cradioon ∗uro + cradioidle ∗uri + cradioactive
Wi-Fi mwi f i = cwi f ilow ∗ulow + cwi f ihigh ∗uhigh + cwi f iidle

Table 3.1: The power models for main hardware components.

We denote

~M = (mcpu,mdisplay,mradio,mwi f i)

21

as component power vector of one application, then the whole average power of the application

is a = sum(~M). Now, suppose there are n applications, the average power of the ith application

is ai. Let

~A = (a1,a2, ...,an)

be the application power vector, and let

~B = (b1,b2, ...,bn)

be the percentage of time that application is used by a user, then the average power for this user

is

p = ~A∗~BT .

Further, suppose the battery energy is E, then the life time is:

t =
E

~A∗~BT
(3.1)

If the energy efficiency of the ith component can increase xi times, the battery energy be-

comes E ′. Let si =
1
xi

, and let

~M′ = (s1 ∗mcpu,s2 ∗mdisplay,s3 ∗mradio,s4 ∗mwi f i)

be the new component power vector and let ~A′ be the new application power vector, then the

whole life time can increase

r =
timproved

toriginal
=

E ′ ∗~A∗~BT

E ∗~A′ ∗~BT
(3.2)

3.3 Model Analysis

In this section, we analyzed the assumptions of the prediction model and presented the

relationship of application power estimation error rate and lifetime prediction model accuracy.

3.3.1 Experiment Setup

For power related experiments, we set up the measuring environment as Figure 3.1 shows.

The mobile device is a Google Nexus 4, and its specification is listed in Table 6.1. We use a

22

Figure 3.1: The experiment platform.

BK Precision programmable power supply [54] to power up the smartphone, which provides

a constant voltage of 3.8V and a maximum current of 3A. It samples the current four times

per second, and sends the data to the computer. To reduce the interference, we installed the

target application on a clear OS and stopped all unnecessary services, such as Google Plus

and Google Play services. Thus, the device power fluctuation is mainly caused by the target

application. Table 4.3 lists the applications used in the rest of the chapter. Some of them are

among the top 10 most popular apps in Android Market.

For user behavior monitoring, we modified the ActivityStack class in the Android OS to

log the Pause and Resume state with the time of each activity to get the application usage

information [97]. In addition, the battery capacity was recorded when each time the screen

was off. It presented the total energy consumption for the interactive session. We gave two

Google Nexus 4 phones to 14 students who were randomly picked throughout the university.

The device was their primary smartphone during the one week experiment time, they were free

23

Component Specification
OS Android 4.3; kernel version 3.4.0
Chipset Qualcomm Snapdragon APQ8064 S4 Pro
Processor Quad-core Krait; 384 - 1512 MHz; L0: 4 KB +

4 KB, L1: 16 KB + 16 KB, L2: 2 MB;
RAM 2G ; Dual-channel 533 MHz LPDDR2
Display 4.7 in diagonal IPS; 1280768 px; 320 dpi
GPU Adreno 320
Radio Integrated 3G/4G World/multimode
Wi-Fi Integrated digital core 802.11n (2.4/5GHz)

Table 3.2: The specification of Google Nexus 4.

to install applications and modify the system configurations.

3.3.2 Application Power Stability

To build an accurate battery time prediction model, one of the assumptions we make is that

the application power is relatively stable. We classify users into different types according to

their application usage which leads to various user power behavior. Generally speaking, to

finish the same task, the application power should be the same. We run several applications to

do the repeated tasks and monitor the device power variation. Figure 3.2 presents the device

power variation when we played with Gallery application. After viewing two photos, we mod-

ified them by adding filters, cropping it, rotating it and saving it. As the figure shows, there

are power peaks at the beginning of viewing. They are usually caused by the user interaction

like touch, click etc. and display rending. The power trend in the two viewing and editing

are in similar manners respectively and the differences of average power are 18 mW and 32

mW. Compared with the 900 mW viewing power and 1850 mW editing power, the Gallery

tasks’ power are relatively stable. To further prove application power stability, we randomly

chose applications in each category and repeated the experiments. Playing games is one of the

main uses of mobile devices, and it consumes a large amount of energy. The power behavior

of TempleRun2 is described in Figure 3.3. When the application is loading, the power stays

around 1800 mW for several seconds then decreases. Although the real time power fluctuated,

the average power is around 1400 mW. Figure 3.4 illustrates the power information when an-

24

Category Application Description
Photography Gallery View and edit photo.

Business
Amazon Go over the popular items, choose
Dealmoon several items to see the detailed info.

News
BBC

Go over the popular news.
SinaNews

Travel Yelp Search near restaurants, see the photo.

Games
CandyCrush

Complete the first two levels.Temple Run
AngryBirds

Phone Phone Call Make and answer phone call.

Media
YouTube

Search a MV and play several mins.
Youku

Music
Pandora Random choose a channel,
Douban listen for several mins.

Email
Gmail Read 10 latest emails,
Default Email send one email out.

Weather
WeatherChannel Search two city weather,
YahooWeather check detailed info.

Social Networking
QQ Communicate through instant massage.
Facebook Go over several new states,
Twitter then post news.

Navigation Map Search road info from local to mall.
Utility Calculator Multiply and divide random number.

Table 3.3: Applications used in the analysis.

swering a phone call, which is the very basic function of a mobile phone. The average power

of ringing and communication are 1690 mW and 1270 mW respectively. The communication

real time power is more stable than the ringing part. The power difference of the two phone

calls is less than 15 mW.

As the results show, the power behavior of applications is relatively stable when they per-

form the same tasks. Thus, it is reasonable to predict the battery time according to the user

application usage. For the same user, the applications’ power are stable since the usage sce-

narios are the same. The user evolution problem, for example, some users may like viewing

photos first several months while later they may prefer to edit their photos, is out of the scope.

25

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

1	
 13	
 25	
 37	
 49	
 61	
 73	
 85	
 97	
 109	
 121	
 133	
 145	
 157	
 169	
 181	
 193	
 205	
 217	
 229	
 241	
 253	

Po
w
er
(m

W
)	

Time	
 (s)	

Photo	
 View	
 Photo	
 Edit	

Figure 3.2: The device power variation of Gallery.

0	

500	

1000	

1500	

2000	

2500	

3000	

1	
 16
	

31
	

46
	

61
	

76
	

91
	

10
6	

12
1	

13
6	

15
1	

16
6	

18
1	

19
6	

21
1	

22
6	

24
1	

25
6	

27
1	

28
6	

30
1	

31
6	

33
1	

34
6	

36
1	

37
6	

39
1	

40
6	

42
1	

43
6	

45
1	

46
6	

48
1	

49
6	

51
1	

Po
w
er
(m

W
)	

Time(s)	

Figure 3.3: The power behavior of playing TempleRun2.

3.3.3 Application Power Accuracy Analysis

After presenting the application power is relatively stable, the next step is how to conve-

niently get the power. Similar with previous work [55], we leverage power models which are

based on the resource usage information to calculate applications’ power. From the prediction

model, we can see that the accuracy of application power directly influences the prediction ac-

curacy. We evaluated the power models by comparing the estimated power with the measured

power. The experiments are done on the popular applications listed in Table 4.3. The power

error is defined as Equation 3.3, which is different for each category. Figure 3.5 illustrates

the comparison of the estimated power and measured power of Pandora. The total experiment

time is about nine minutes, we paused the music after playing it for a while and then resumed

26

Figure 3.4: The power variation of answering a phone call.

it. The red line represents the estimated power, which is higher than real power when playing

the music. When Pandora was paused, the measured power and the estimated power were

the same.The error of the whole process is as high as 11.73%. For social applications, the

estimated power is much more accurate. The power comparison for Facebook is described in

Figure 3.6. We first viewed the news of friends and then posted a status without photos. The

power trend for estimated and measured are similar while the estimated power is a little bit

lower than measured power. The Facebook power error is about 4.72%.

error =
|estimated−measured|

measured
(3.3)

Since the diversity in applications usage [25], we took the average error of all application

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

1	
 13
	

25
	

37
	

49
	

61
	

73
	

85
	

97
	

10
9	

12
1	

13
3	

14
5	

15
7	

16
9	

18
1	

19
3	

20
5	

21
7	

22
9	

24
1	

25
3	

26
5	

27
7	

28
9	

30
1	

31
3	

32
5	

33
7	

34
9	

36
1	

37
3	

38
5	

39
7	

40
9	

42
1	

43
3	

44
5	

45
7	

46
9	

48
1	

49
3	

50
5	

51
7	

52
9	

54
1	

Po
w
er
(m

W
)	

Time(s)	

Measured	
 Power	
 Es3mated	
 Power	

Figure 3.5: The power comparison for Pandora.

27

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

4500	

5000	

1	
 21
	

41
	

61
	

81
	

10
1	

12
1	

14
1	

16
1	

18
1	

20
1	

22
1	

24
1	

26
1	

28
1	

30
1	

32
1	

34
1	

36
1	

38
1	

40
1	

42
1	

44
1	

46
1	

48
1	

50
1	

52
1	

54
1	

56
1	

58
1	

60
1	

62
1	

64
1	

66
1	

68
1	

70
1	

72
1	

74
1	

Po
w
er
(m

W
)	

Time(s)	

Measured	
 Power	
 Es3mated	
 Power	

Figure 3.6: The power comparison for Facebook.

categories as the power models’ error. Figure 3.7 shows the error information for the part of

the popular applications. The red part is the estimated power subtracts the measured power,

so it may be negative for some applications. For Media and Games, the estimated power is

usually greater than measured power and the error is around 10%. For Social and Business

applications, for example, Amazon, the error is much smaller and it is about 2%. As a result,

the average application power error of the power models is 7.31%.

-­‐500	

0	

500	

1000	

1500	

2000	

Yo
utu
be
	

Pa
nd
ora
	

Do
ub
an
	

Yo
uk
u	

Ph
oto
	

Am
azo
n	

De
alm

oo
n	

BB
C	

Sin
aN
ew
s	

Ye
lp	

Ca
nd
yC
rus
h	

Te
mp
le	

Ru
n	

An
gry
Bir
d	

Ph
on
e	
 A
ns
we
r	

Gm
ail
	

Em
ail
	

W
ea
the
rCh
an
ne
l	

Ya
ho
oW

ea
the
r	

QQ
	

fac
eb
oo
k	

Tw
iF
er	

Ma
p	

Ca
lcu
lat
or	

Po
w
er
(m

W
)	

Measured	
 Power	
 EsJmated	
 Power-­‐	
 Measured	
 Power	

Figure 3.7: The distribution of estimated power error for popular applications.

3.3.4 Error of the Lifetime Prediction Model

After analyzing the application power accuracy, we illustrated its influence on the battery

lifetime prediction model in this section.

Suppose the error of ai (average application power) is e, which means

∀i = 1,2, ...,n. |aiReal−aiEstimate|< e∗ |aiReal|

28

Then, because
n

∑
i=1

bi = 1

, and

∀i = 1,2, ...,n. 0≤ bi ≤ 1

So

| ~Areal ∗~BT − ~Aestimate ∗~BT |< e∗ | ~Areal ∗~BT |

Then the error of estimated life time is:

|testimate− treal

treal
|=

E
~Aestimate∗~BT −

E
~Areal∗~BT

E
~Areal∗~BT

=
| ~Areal ∗~BT − ~Aestimate ∗~BT |

~Aestimate ∗~BT
<

e∗ ~Areal ∗~BT

~Aestimate ∗~BT

<
e

1− e

Since we can measure the current lifetime, and

r =
timproved

toriginal

so the error of r is also e
1−e .

Figure 3.8 illustrates the trend of the battery life prediction error. When the application

power estimation error is within 10%, the battery life prediction error is almost the same as

the estimation error. When it is greater than 20% (battery prediciton error 25%), the predic-

tion error is much larger than power estimation error. Generally speaking, the error of battery

prediction is less than 10% since we chose a more accurate application power estimation ap-

proach.

3.3.5 User Behavior Analysis

User behavior is one of the important factors that affect battery lifetime. There are two

datasets used in the dissertation to analyze user behavior. Dataset1 is the subset of the LiveLab

29

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

0	
 0.1	
 0.2	
 0.3	
 0.4	
 0.5	

Li
fe
%m

e	

Pr
ed

ic
%o

n	

Er
ro
r	

Applica%on	
 Power	
 Error	

Figure 3.8: The relationship of battery prediction error and application power estimation error.

trace [98], which contains 34 iPhone 3GS users’ application usage, phone call and sleep data

from October 2010 to January 2011. Dataset2 was collected by ourselves, it has 14 students’

usage information for one week. Table 3.4 summarizes the two datasets.

#Users Platform Duration #Apps #Categories
Dateset1 34 iPhone 3GS 12 weeks 2400 26
Dateset2 14 Google Nexus 4 1 week 135 21

Table 3.4: An overview of the two datasets.

Dataset1 was used as training data and we classified dataset2 users into different types

according to their application usage. Phone call, SMS and Sleep were treated as normal appli-

cations for consistency. Since there are 2400 applications, we preferred to choose application

categories as the cluster metrics. To identify natural groupings of the user behavior data, we ap-

plied Fuzzy C-Means (FCM) clustering algorithm [99], which gives best result for overlapped

dataset and comparatively better than k-means algorithm. The centroid of a cluster is the mean

of all points in the dataset weighted by their degree of belonging to the cluster. The weight is

updated every iteration as Equation 3.4 shows, and the distance we used was Euclidean dis-

tance (Equation 3.5). The level of cluster fuzziness m was set to 2. All the data are normalized

30

before clustering.

weightk(x) =
1

∑
ClusterSize
j=1

(
d(centerk,x)
d(center j,x)

) 2
m−1

(3.4)

distance(k,x) =

(
FeatureSize

∑
i=1

(ki− xi)
2

) 1
2

(3.5)

Figure 3.9 illustrates the within error of cluster under different cluster sizes. The classification

becomes more accurate as the size of cluster increase. We chose the size 6 because the improve-

ment after 6 clusters is not as much as before. The data distribution among clusters is presented

in Figure 3.10 and corresponding application usage information is demonstrated in Table 3.5.

We listed major application categories in the table, each data is the average percentage of the

running time of all applications in the category over the total logging time per day. Most time

the devices were in the sleep state, except for user type T2 which usage was dominated by

phone call. Cluster 2 only has 1.7% items, its data is generated mainly by one user who made

phone calls a lot and barely played with other applications. Asides from Sleep, users spent

more time on social networks, browsers, games, media and photograph applications. After

applying the cluster information to dataset 2, the result show it covers four user types and each

user belongs to two types on average during the one week. To further explore user behavior

information, Figure 3.11 illustrates the user type variation of one randomly picked user during

12 weeks. Hence, the user behavior in application usage has patterns that can be predicted but

it is not simply fixed. Most of the time the user belonged to T3, but he also changed to T1,

T2, T5, T6 sometimes. We can use recent history to predict or take a weighted average value

as usage information. Figuring out an accurate user behavior prediction mechanism is not the

focus of the dissertation. For simplicity, we assume user behavior information is known.

3.3.6 Prediction Model Verification

To verify the prediction model can accurately calculate the battery lifetime, we simulated

the normal usage cases under a controllable environment and compared the estimated battery

31

0	

0.01	

0.02	

0.03	

0.04	

0.05	

0.06	

0	
 2	
 4	
 6	
 8	
 10	
 12	

Cl
us
te
r	
 W

ith
in
	
 E
rr
or
	

Cluster	
 Size	

Figure 3.9: The cluster within error for different cluster size.

time with the real discharging time. In the experiments, all the parameters were logged twice

per second so that the real time application power can be calculated. The running time of each

application was predefined, and the user behavior monitoring tool also ran in the background to

make sure the schedule was followed. The detailed experiment information is illustrated in Ta-

ble 3.7. As we mentioned above, the application power is relatively stable while different tasks

consume different power. We took the average power as the application power, for example,

we did not distinguish video playing power and video searching power for YouTube. Accord-

ing to the logged information, the average power of applications and their running time were

calculated. Multiplying the applications power and their running time percentage, the result

1206.1 mW was the average power in this experiment. The battery capacity was also recorded

with the same frequency, it decreased from 72% to 40% and the full capacity is 2097 mAh.

The battery voltage is 3.8V, so the energy consumed was 2549.95 mWh. According to the

prediction model, this amount of energy should support 126.85 minutes. Compared with 118

minutes, the error of the prediction model is 7.5%. In reality, we cannot log the parameters in

the background all the time since the monitoring program itself is energy consuming. At least,

32

T"

T"

T"

T"

T"

T"

1

2

3

4

5

6

Figure 3.10: The data distribution for six user types.

there is no such low overhead service that provides application real time power information. So

another option is leveraging history average applications’ power rather than calculating power

from real time parameters. The result shows the error was less than 1% in the same experiment.

The prediction model error is less than we calculated since the battery capacity is not very

accurate. The voltage decreases as the battery capacity decreases [100], and in our calculation

the voltage is 3.8V all the time. So the real battery capacity is less than 2549.95 mWh. Besides,

the granularity of battery capacity is 1%. There was at most 209 mAh that we did not know if

it was used or still reserved, which depends on the battery capacity update policy. Moreover,

part of the error is caused by the power models that are used to estimate application power as

Section 3.3.4 demonstrated. Hence, the prediction model is reasonably accurate to calculate

the potential battery lifetime.

3.4 Applications of Prediction Model

After validating the battery life prediction model, we analyzed the potential battery ex-

tended time for different user types according to the model and the future trend with the im-

provement of hardware components.

33

1"

2"

3"

4"

5"

6"

0" 20" 40" 60" 80" 100"

Cl
us
te
r/
U
se
r*T

yp
e*

Day*

T

T

T

T

T

T

Figure 3.11: User cluster type changes with time.

3.4.1 The Theoretical Battery Lifetime

For the same device, battery lifetime for different user are also different. We presented

the theoretical battery lifetime for the six user types based on the typical application usage

information and calculated the corresponding potential battery extended ratio by changing the

user behavior.

Although the power of each application is different whether they are in the same category

or not, it is impossible to gather every application’s power and analyze the battery time for

every combination. For our experiment, we classified users according to the time they spend

on each application category. We used the average power of applications we tested to represent

“category power”, such as 1591 mW for Games, 1081 mW for News. In the specification for

Google Nexus 4 [101], the battery capacity is 2100 mAh, the standby time, talk time, video

playback and web browsing time are 250 h, 10 h, 8 h and 7 h respectively. Hence, we can

calculate the corresponding power. For all other applications which do not belong to categories

listed in Table 3.5, we use 1000 mAh to represent their power. The summary of each category

34

power is presented in the first row of Table 3.6. Hence, we have the value of ~A and ~B illustrated

in prediction model in Section 3.2. The second row of Table 3.6 is battery discharging time if

the system only has the corresponding applications running. It gives the intuitive impression

of the category power. The time varies from 5 hours to 10 hours except Sleep.

Since making phone calls and sending messages are the basic functions for a phone, we

did not modify their usage information in the following analysis. For the T1 type of users,

the estimated battery time was 17.56h based on the application usage. The users spent nearly

the same time on Browser and Social Networking applications, following that was the Media

applications which occupy 3.89% of total time. If we only keep these top three categories as

well as Phone Call and SMS and count other applications time on Sleep, the battery can last

29.6h. For users in type T2, they treated the device as a basic phone and spent over 95% time

on Phone Call. So there is not much time that can be extended for this kind of user. After

allocation the rest 2.91% time to Sleep, the battery time increased to 10.27h which is 1.9%

longer than before. Compared with over 50% increase for user type T1, it is too small to make

a difference. Similar with user type T2, user type T3 also contains a category, Sleep, that is

responsible for over 90% time. The battery time for the typical T3 type of users is 66.28h

since most of the time the device is in sleep state. If the user does not play any applications

except Phone Call and SMS, the battery time will be extended to 147.3h. It is because the Sleep

power is much lower than other applications and the Sleep power also dominated the energy

consumption in the original case , the battery can last much longer by increasing 5.73% time

for Sleep.

For user type T4, the top categories were Social Networking, Browser and Media. The time

spent on Social Networking is 7.89%, while the other two occupied almost the same amount of

time which is around 4.5%. After maintaining these three categories, the estimated battery life

time was 23.43h. Compared with the former 10.45h, it doubled the battery lifetime. Similarly,

users in type T5 also preferred the three categories, while the percent is around 3.42%. The

35

potential battery life was 13h longer than the typical case. At last, for user type T6, there is

one more category that should be considered asides from the top three since Photography and

Media have the same percentage. The battery life can be increased up to 40%.

The summary of the potential extended battery life for each user type is also presented in

Table 3.6. The r is the increased battery time over the corresponding original time as defined

in Equation 3.2. Based on the results showed in the table, we conclude several implications as

follows:

(1) The battery life for users who prefer one specific application category is difficult to increase.

For example, users in type T2 like Phone Call and the ratio r is only 1.03. We can not sacrifice

the most preferred applications while others only have small influence on the device power.

(2) The Sleep time decides the battery time since the power in sleep state is too small compared

with other applications. For T4 users, the Sleep time increased by 40% and the battery life

doubled. The ratio was over 1.6 in user type T1 and T5 as the corresponding time in sleep state

increased to over 10%.

(3) The battery life can be extended up to 40% if users adjust application usage rather than

put the device into sleep state. The difference of category power usually is around 500 mW.

In some extreme cases, the difference can be 1000 mW. The time spent on each application

category is less than 10% in most cases. Hence, if a user gives up a high power application and

puts the saved time on another low power application, the difference of average power is about

100 mW. If the device average power decreases from 350 mW to 250 mW, the battery lifetime

is 40% longer. With the increase of the original average power, the potential extended battery

life is decreased, 10% for 1050 mW.

For mobile devices energy saving, the proposed strategies need to be more personalized.

Users can set proper system and application configurations to extended battery life. For ex-

ample, the pull option for email synchronization is more energy efficient than push for users

who receive a lot of emails everyday. Besides, same energy optimization approaches will have

36

different influence for different users. Users who like playing games will enjoy the energy

savings on the GPU and CPU, while for the users who usually use the device to listen to the

music probably will not notice the battery lifetime increased.

3.4.2 Hardware Component Improvement

As more and more researchers work on mobile devices energy saving field, a lot of opti-

mization approaches are proposed for the system and various hardware components. We dis-

cussed the influence of the five main component improvements, which includes battery, CPU,

radio, display and Wi-Fi, on the battery lifetime for each user type .

The hardware improvements correspond to the parameter si (and thus ~M′and~A′) illustrated

in the prediction model in Section 3.2. For example, if the energy efficiency of CPU improves

10 times then s1 is 1/10, and if the energy efficiency of radio improves 2 times, then s3 is

1/2. Hence, the primary inputs are the power consumptions of each component for every kind

of applications and the improved energy efficiency of hardware components. We can use the

Equation 3.2 to obtain the extended ratio of battery lifetime for each user type.

We logged the power consumptions of each component in previous experiments in Sec-

tion 3.3. For component improvement, the increased times of energy efficiency are demon-

strated in Table 3.8. According to the Moore’s law, the performance should be doubled in 18

months. So the improvement should be 23, nearly 10 times, in the next five years. However,

the components are not all energy proportional. CPU, as the most important component in the

mobile devices, is used by all applications, its energy efficiency may increase up to 10 times.

Battery capacity is hard to increase as its developing history suggests, but with the emerging

of the wearable devices, the industry is stimulated to develop new technology to satisfy the

demand, which may help the battery increase up to 10 times in the next five years. Similar

situations for display, asides from the big improvement (10 times), the energy efficiency may

also increase a little because its performance is acceptable and the appearance of new technol-

ogy is hard to predict. We also considered two potential improvement for Wi-Fi as it supports

37

the favorite function, wireless, of mobile devices. The characteristics of radio make it need

to monitor phone calls and messages all the time and they are basic functions of a phone. We

think its energy efficiency may be doubled in the future. Hence, we calculate the four cases

listed in Table 3.8 that describe the trend of energy efficiency improvement for mobile device

components in the next five years.

The rest of information in the Table 3.8 presents the results of how many times that the

battery life can be extended for each user type in each of the four cases. The extended ratio

is grows linearly to the battery improvement, the results are at least greater than 10. If the

improvements of all the components are the same, the result is also a linear function which

is not related to user behavior, but this situation is very rare. We can see that the results for

case 1 and case 2 are around 30, while the results for case 3 and case 4 vary between 40 to 58

(except for users in T3). The difference between the two groups is the display improvement.

Because the average power of the display of all application categories is almost 40% of the

device power, its influence can double the battery extended ratio at most. For users in type T3

who put their device in the sleep state for most time, the impact is not as great as in other cases.

In case 4, T4 users can enjoy 58.7 times battery life time extension, which is about 2 times more

than T3 users. The results show that user behavior can affect the battery life time a lot even for

the same hardware improvement.

Next, we look at how much the hardware should be improved to achieve a target battery life,

such as seven days, for different types of users. The average power of the main components

for each application category is known as shown above. We can calculate the user power

demand for each component according to the application usage. Suppose we want to improve

the battery life by r times, the capacity of the battery can improve x0 times, and denote

N = (~M′1; ~M′2; ...; ~M′n)

, then we can calculate how much should be improved the by solving a linear equation

sum(N ∗~BT) =
x0

r

38

Note that N is a matrix and since ~M′i is just si times each elements in ~Mi, so the variables in the

linear equation are si. For example, assume the current battery life of users in type T2 is about

6.29 hours, which is calculated by using the measured average power. The standard battery

capacity for the Google Nexus 4 is 2100mAh (7980mWh). The current average power of the

CPU, Radio, Wi-Fi and display for users in T2 are 479.5 mW, 391.1 mW, 0.6 mW and 397.6

mW respectively. To extend it to seven days, the lifetime should be improved by 26.7 times.

Intuitively, it can be achieved by increasing the battery capacity by 26.7 times. Assuming the

capacity of the battery can improve by 10 times, then the energy efficiency of CPU, radio, and

display should all improve 2.67 times. The improvement of components can vary greatly. For

T4 users to enjoy a one week experience, if we assume that the capacity of the battery can only

improve 2 times, then we need to improve the energy efficiency of CPU by 7.6 times, display

by 6 times, Wi-Fi by 1.45 times and radio by 3 times.

Generally speaking, the optimization approaches for components which are required by

most applications have more impact, such as battery, CPU and display. For different users,

the improvement of the “most used” components which are inferred from user behavior is

more effective for them. Moreover, we discussed the theoretical influence of components’

improvement, while the actual results should also consider the software interference.

3.5 Summary

In this chapter, we investigated the influence of user behavior on the energy consumption

of smartphones. We built a prediction model estimates the battery lifetime based on user be-

havior and usage information of hardware components. In order to analyze the influence of

user behavior, we classified users into six groups according to their application usage pattern

and estimated the theoretical maximum battery life they can achieve. We presented the poten-

tial time that battery can be extended if the user behavior evolves as well as improving main

hardware components. Besides, we also analyzed how much work needs to be done if we want

to extend battery life to reach a certain goal from the two aspects.

39

In the next chapter, we will introduce how to estimate application and system power dissi-

pation based on their hardware usage. The power profiling information is used to evaluate the

energy efficiency of different system configurations and energy saving approaches.

40

a

U
se

r
Ty

pe
U

til
iti

es
N

ew
s

an
d

M
ag

-
az

in
es

E
m

ai
l

G
am

es
M

ed
ia

Ph
ot

o-
gr

ap
hy

B
ro

w
se

r
So

ci
al

N
et

-
w

or
k-

in
g

W
ea

th
er

Ph
on

e
C

al
l

Sl
ee

p
SM

S

T 1
1.

08
%

0.
49

%
1.

18
%

1.
75

%
3.

89
%

2.
56

%
4.

08
%

4.
69

%
0.

58
%

5.
27

%
59

.0
1%

6.
47

%
T 2

0.
12

%
0.

05
%

0.
08

%
0.

08
%

0.
25

%
0.

16
%

0.
21

%
0.

21
%

0.
09

%
96

.2
7%

0.
60

%
0.

82
%

T 3
0.

34
%

0.
06

%
0.

34
%

0.
62

%
0.

60
%

0.
73

%
0.

89
%

1.
12

%
0.

30
%

1.
21

%
91

.7
0%

1.
36

%
T 4

2.
29

%
0.

94
%

1.
49

%
1.

69
%

4.
39

%
2.

08
%

4.
83

%
6.

57
%

0.
78

%
7.

89
%

26
.8

5%
8.

22
%

T 5
0.

93
%

0.
32

%
0.

89
%

1.
71

%
3.

09
%

2.
23

%
3.

65
%

3.
53

%
0.

55
%

4.
12

%
68

.8
2%

5.
07

%
T 6

0.
68

%
0.

20
%

0.
67

%
1.

30
%

1.
74

%
1.

75
%

2.
32

%
2.

41
%

0.
45

%
2.

71
%

79
.2

1%
3.

52
%

Ta
bl

e
3.

5:
T

he
ap

pl
ic

at
io

n
us

ag
e

in
fo

rm
at

io
n

fo
re

ac
h

us
er

ty
pe

.

a

41

a

U
til

iti
es

N
ew

s
an

d
M

ag
-

az
in

es

E
m

ai
l

G
am

es
M

ed
ia

Ph
ot

og
ra

ph
y

B
ro

w
se

r
So

ci
al

N
et

-
w

or
k-

in
g

W
ea

th
er

Ph
on

e
C

al
l

Sl
ee

p
SM

S
r

Po
w

er
(m

W
)

10
32

10
81

12
01

15
91

99
7

14
07

11
40

11
63

10
57

79
8

32
98

1

Ti
m

e
(h

)
7.

73
7.

38
6.

65
5

8
5.

67
7

6.
86

7.
55

10
24

9.
37

8.
13

T 1
X

X
X

X
X

X
1.

68
T 2

X
X

X
1.

03
T 3

X
X

X
2.

22
T 4

X
X

X
X

X
X

2.
24

T 5
X

X
X

X
X

X
1.

61
T 6

X
X

X
X

X
X

X
1.

39

Ta
bl

e
3.

6:
T

he
ca

te
go

ry
po

w
er

an
d

th
e

su
m

m
ar

y
of

po
te

nt
ia

lb
at

te
ry

ex
te

nd
ed

fo
re

ac
h

us
er

ty
pe

(T
1

to
T 6

).

a

42

Application Estimated Aver-
age Power(mW)

History Average
Power (mW)

Duration (mins) Percentage

Temple Run 2 1541.69 1593.86 14 11.87%
Dealmoon 1281.06 1053.33 26 22.03%
YouTube 1233.44 1419.68 48 40.68%
Weather 924.88 974.47 2 1.69%
Twitter 1147.97 1125.48 4 3.39%
Photo 867.00 1440.71 9 7.63%
BBC News 875.65 1012.94 15 12.71%

Table 3.7: The detailed power and time information for applications tested in the experiment.

Battery CPU Radio Wi-Fi Display T1 T2 T3 T4 T5 T6
Case 1 10 10 2 2 2 29.77 28.66 21.32 31.29 28.81 26.75
Case 2 10 10 2 10 2 30.42 28.67 21.59 32.02 29.42 27.25
Case 3 10 10 2 2 10 50.24 44.73 27.68 56.32 46.92 40.56
Case 4 10 10 2 10 10 52.12 44.76 28.13 58.73 48.55 41.71

Table 3.8: Life time improvement for different users and cases. (T1 to T6 are user types.)

43

CHAPTER 4 POWER PROFILING ON MOBILE DEVICES

To deal with the battery drain problem, we first need to understand the power/energy behav-

ior of applications and systems. We designed and implemented Bugu which aims to analyze

power and event information and providing users with detailed energy behavior data. We ana-

lyzed popular applications’ power behavior on different platforms. The results showed several

interesting observations that indicate the potential energy optimization for both applications

and systems. We further revealed the underlying reason of different power consumption for

several applications.

In the following sections of this chapter, we give brief introduction in Section 4.1. The Bugu

service and the implementation of its components are presented in Section4.2 and Section 4.3

respectively. Then, we demonstrate our experiments results in Section 4.4 and propose four

critical implications for energy-efficient mobile application and system design in Section 4.5.

4.1 Introduction

Nowadays, mobile devices, such as tablets and smart phones, have become an important

part of our daily life. According to a statistical report of Cisco[102], by the end of 2014, the

number of mobile-connected devices will exceed the number of people on earth, and there will

be nearly 1.4 mobile devices per person in the near future. At the same time, the development

of mobile devices also stimulates the application market. The number of Android applications

increased 50% in last year, which is over 1,200,000 [2].

There is no doubt that these applications make our life more convenient and colorful, but

they are also big energy consumers on mobile devices and significantly influence battery life-

time and user experience [103]. As an end user, we want to know “For the same functionality,

which application is more energy-friendly?” Except the battery issue, energy efficient appli-

cations are more competitive on the market. In a green software awareness survey [104], data

shows about 70% people believe that optimizing software is an effective way to save energy

and 58% of respondents would select software applications which have energy level labels on

them. Application developers often ask the question: “Why do my applications consume such

44

amount of power?” especially for mobile devices. System developers focus on the whole sys-

tem, not just some components or specific applications. Answering the question “How to save

and effectively control system power?” is the final goal of system developers. However, the

first step to answer these questions is to understand the energy consumption of the system and

applications.

We design and implement the Bugu service, which is an application level power profiler

and analyzer. As Figure 4.1 illustrates, the Bugu server returns related applications’ power

information to end users and gives them more suggestions when they choose applications.

For application developers, aside from the similar applications’ power information gathered

from the server, the Bugu client also shows the event information of their applications, so

that application power problems can be easily distinguished. From the viewpoint of system

developers, detailed system power information provided by the Bugu client is helpful for them

to adopt power saving mechanisms. Leveraging Bugu, we analyzed 100 popular applications

and revealed the root causes of high power consumption for some of them in case studies.

From the result we observed several aspects that can be improved to save both application and

system energy, such as sensors and video module energy efficiency, phone service rild.

4.2 System Design

The Bugu service is mainly designed for system designers, mobile application developers

and end users. Thus, the Bugu service not only presents the application-level power consump-

tion on a single device, but also supplies a group of REST (Representational State Transfer)

style APIs for users to share and compare power data. It also supplies event information that

may help them to understand the underlying reasons that cause the power consumption.

As Figure 4.1 describes, the Bugu service includes two parts: the Bugu server and the

Bugu client. The Bugu server collects applications’ power information on each device and

supports the Bugu client with these data. The Bugu client is used to monitor application power

consumption, monitor events and analyze these information. The results are presented in tables

45

WŽǁĞƌ�
WƌŽĨŝůĞƌ

�ǀĞŶƚ�
DŽŶŝƚŽƌ

WŽǁĞƌ�ĂŶĚ��ǀĞŶƚ�
�ŶĂůǇǌĞƌ

^ĞƌǀĞƌ�ůŝĞŶƚ

�ŶĚ�hƐĞƌ
^ǇƐƚĞŵ�

�ĞǀĞůŽƉĞƌ

�ƉƉůŝĐĂƚŝŽŶ�
�ĞǀĞůŽƉĞƌ

�ƉƉůŝĐĂƚŝŽŶƐ͛
/ŶĨŽƌŵĂƚŝŽŶ

Figure 4.1: The overview of Bugu.

Table 4.1: The energy models.

Components Energy Models

CPU
ECPU = ∑

NumberO f Steps
i=1 Timei ∗ (IdlePower+MaxPower ∗U)

U = (∆Tsys +∆Tuser)/(∆T ∗CoreNumber)
Wi-Fi Ewi f i = Wi f iOnAvgPower ∗ Wi f iOnTime + Wi f iActiveAvgPower ∗

Wi f iActiveTime
Screen EScreen = ∑

NumO f Brightness
i=1 (Timei ∗ (i/NumO f Brightness ∗

ScreenFullPower))
Bluetooth Ebluetooth = BtOnAvgPower ∗ BtOnTime + BtAvgPowerAtCMD ∗

BtPingTime

Radio
Eradio = ∑

NumO f SignalBin
i=1 (SignalTimei ∗ SignalAvgPoweri) +

RadioScanAvgPower
∗RadioScanTime+PhoneOnTime∗RadioActiveAvgPower

and figures for easy understanding and comparison.

4.2.1 The Bugu Server

The Bugu server has two functions: collecting application power information from the

Bugu client and supplying these power information to users. Users can contribute their data to

46

the Bugu server by uploading their profiling records, which will help future customers. With

the first function, we maintain a large database of application power consumption information

on different types of mobile devices. After ranking these applications, users can get better

understanding before installing them. The building of this database requires users’ contribution

so we can cover as much applications and devices as possible. It is a huge and continuous work.

At present, we provide power information for most popular applications on several Android

devices that we have.

Based on the type of device and the type of application the user wants to compare, the

Bugu server finds the related power information and delivers it to the Bugu client. Then, end

users know the comparison results of these applications, they can choose an energy-friendly

one to install. For application developers, they can compare the power consumption with the

application they developed to evaluate their products.

4.2.2 The Bugu Client

The Bugu client has three main functions: estimating application-level power consump-

tion, monitoring system and application events and displaying the information to the user in a

meaningful way. It is composed by power profiler, event monitor, power and event analyzer

and user interface module. The procedure is as follows: the power profiler and event monitor

record the raw data they need; and the analyzer extracts the data and sends application level

power and event information to UI module which displays the data including other applica-

tions’ information obtained from the Bugu server to users in a meaningful way.

Power Profiler: Power profiler is responsible for estimating the system and application

power consumption. It uses a group of energy models, which are listed in Table 4.1, to estimate

energy consumption based on how much of each hardware resource was utilized by each ap-

plication. With the time information, we calculate the average power consumption. The power

profiler considers the following components: CPU, Wi-Fi, 3G, GPS, sensors, bluetooth, screen,

radio, and so on. We leverage some energy models from our former paper [105], and tune the

47

parameters for mobile platform. For components like sensors, we build the energy models

according to their different power states. Aside from application’s power, we also record the

power of hardware components in the system. So far, we do not consider screen power for each

application, while it is available on system level. The reasons are as follows: from research

of Dong et al. [106], we know that for OLED screen, different color presented can affect

screen power. While the applications’ user interface is part of their design style, it will affect

user experience if the color is changed. For LCD display, the screen power is determined by

brightness level, applications themselves can not save much on screen part. The optimization

approaches we want to find are from a functionality aspect, not appearance. Although we can

get application level screen power according to the time that an application is in foreground

and pixel information, it is not very suitable and it increases overhead of Bugu.

The power profiler saves the power information in a formatted log file, which includes the

utilization information of all the active applications on each component. The data is recorded

once per second. With this information, system designers could analyze the underlying reasons

that cause the energy consumption.

Event Monitor Aside from just monitoring the power consumption, Bugu can also monitor

the events of system and applications. Those events include: wakelock, Wi-Fi state change,

bluetooth state change, audio and video state change and different sensors on/off state. For

example, we could know when an application acquired or released a wakelock. In the Android

operating system, there are six types of wakelock, which represent the privilege to use several

hardware devices. All of them make the processor keep in active state. Many applications drain

battery so quickly because of misusing the wakelocks. Thus, those events are helpful for us to

understand how the applications cause the power consumption.

For each event, we log the time, type and related information, such as the level of bright-

ness, sensor states. The system developers use the information to deeply analyze the system

power consumption problem.

48

Power and Event Analyzer The power and event analyzer is used to process the result

recorded by the power profiler and the event monitor. The most important function of this

module is to calculate the average power of each application. We write the algorithm to cal-

culate application average power. First, we need to filter the effective data by detecting the

longest active period of each application. We define application inactive state as its energy

consumption does not change in N successive calculation points. The interval between two

calculation points is one second. According to our experiments log, most of the applications

are paused or went to background if we can not detect their energy variation after three times.

Sometimes, energy kept the same because of the sampling delay. Hence, in our experiment,

N equals three. Then based on the time period and the logged energy information with usage

data to calculate the average power. The analyzing process is done off-line in order to lower

the overhead of the Bugu client.

One of the challenges we faced is that the power monitor cannot accurately run periodically,

that’s because Android is not a realtime operating system. Thus, we improve our algorithm that

when we compute the power during two time intervals, the record will be skipped if the time

interval is smaller than the threshold. Otherwise, we may get abnormal power results because

there is a delay before we obtain the utilization information.

4.3 Implementation

To implement the Bugu service, we not only developed the server program and the Android

client application, but also modified and compiled the Android system to monitor the events. In

this section, we describe how we implement the Bugu server, the power profiler and the event

monitor

4.3.1 The Bugu Server

The Bugu server maintains application power information, gathers the information from

users and provides comparison results to end users and application developers. When users

send a request, the Bugu server returns the same category applications list and each item de-

49

<?xml version="1.0" encoding="utf-8"?>
<device name="Android">

 <item name="screen.on">49</item>
 <item name="bluetooth.active">142</item>
 <item name="bluetooth.on">0.3</item>
 <item name="dsp.video">88</item>
 <item name="radio.active">185</item>
 <item name="gps.on">50</item>
 <item name="cpu.idle">1.4</item>
 <item name="cpu.awake">44</item>
 <array name="cpu.active">
 <value>55.4</value>
 <value>82.1</value>
 <value>113.7</value>
 <value>205.4</value>
 <value>259.0</value>
 </array>
</device>

Figure 4.2: The resource file in Android system.

scribes the application name and its power consumption. There are two ways for users to

contribute their data to the Bugu server. They can choose the upload option on their records, or

write results on the submission page. We use REST [107] to implement our server, the request

URI describes the parameters of the type of device, the type of application and the limit of

returned results. The server interprets the request and send back the corresponding results.

4.3.2 Power Profiler

The power profiler is implemented as a service running in the background periodically. It

requires the base power of hardware components and their utilization for each application to

estimate the power. We get the base power information from the PowerProfile class of An-

droid, which reads power values from a resource file (as Figure 4.2 presents). For example, we

could get the power of the CPU when it is working on each power step, and the value under

cpu.active corresponding to power consumption of different CPU frequencies. For the com-

ponents that are not reachable from the PowerProfile class, we did some experiments that

described in Section 4.4 to get their base power. In addition, we get most the application level

resource utilization from the BatteryStats class. For each application running in the system,

50

their statistic information can be achieved from batteryStats.getUidStats(). Then the compo-

nents utilization information is obtained by calling corresponding method: getSensorStats(),

getProcessStats(), getWakelockStats() and so on. The audio and video time are achieved by

modifying Android source code since the logging part have not implemented and the original

results in BatteryStats are all 0. Some data are read from Linux file system, for example,

the transmission packets for each process. All the results are already logged for each process,

so it can be used directly in the real scenario. The List 4.1 presents the segment of code that

describes how we use the information to estimate the energy consumption of each process.

private void processCPUPower(Uid.Proc ps)

{

long userTime = ps.getUserTime(statsType);

long systemTime = ps.getSystemTime(statsType);

appPowerInfo.foregroundTime += ps.getForegroundTime(statsType) / 1000;

appPowerInfo.cpuTime += (userTime + systemTime) * 10;

int totalTimeAtSpeeds = 0;

for (int step = 0; step < speedSteps; step ++) {

cpuSpeedStepTimes[step] = ps.getTimeAtCpuSpeedStep(step , statsType);//

microseconds

totalTimeAtSpeeds += cpuSpeedStepTimes[step];

}

if(totalTimeAtSpeeds > 0)

{

for (int step = 0; step < speedSteps; step ++) {

double ratio = (double) cpuSpeedStepTimes[step] * 1.0 /

totalTimeAtSpeeds;

appPowerInfo.cpuPower += ratio * appPowerInfo.cpuTime *

speedStepAvgPower[step]; // milli joule * 1000

}

}

}

Listing 4.1: The example of CPU power calculation.

With the base power and utilization information, the power profiler computes the accumu-

lated power consumption of each hardware component. The application power is the sum of

51

all components’ power since the components’ usage information is recorded for each process

in BatteryStats. The detailed power and utilization data are logged for further analysis.

4.3.3 Event Monitor

The implementation of the event monitor requires Android system’s support, so that we can

monitor all the events information. We implement this function by modifying the BatteryStatsService

class (as List 4.2 shows), which collects all the system and application events that related with

battery usage. For each event noted in BatteryStatsService, we log its states and make it

visible to users. When BatteryStatsService receives an event, it will broadcast an Intent

message, which could be received and logged by the Bugu client.

public void noteStartWakelock(int uid , int pid , String name , int type) {

enforceCallingPermission ();

synchronized (mStats) {

mStats.noteStartWakeLocked(uid , pid , name , type);

}

if(enableEventListen){

synchronized(helper)

{

helper.noteStartWakelock(uid , pid , name , type);

}

}

}

Listing 4.2: The example of logging wakelock event.

In addition, we also use the event monitor to trigger energy-optimization actions by sending

some special Intent messages to energy-aware services of the Android system. One message

we sent is Wi-Fi tail, which will be generated when the Wi-Fi enters the tail stage. As far as the

message is received, the system could leverage the tail stage to piggyback some asynchronous

data, such as a post of twitter cached before.

4.4 Evaluation

In this section, we evaluate our work on tablet and smart phone. We present how the Bugu

service works for three groups of users: end user, application developer and system developer.

52

After collecting 100 applications power data, we did some analysis and found several obser-

vations. Moreover, we analyze the overhead of Bugu and summarize the implications we got

from the experiments.

4.4.1 Experiment Setup

As we described above, Bugu acquires system information from two classes, PowerProfile

and BatteryStats, and calculate application power consumption based on our power models.

To verify the accuracy of data read from PowerProfile class, we first compared the resource

file between different Android OS versions. We found that the file is corresponding to mobile

phone models, not the Android operating system. It is the same when we updated from An-

droid 2.3 to Android 4.0. Besides, we wrote our own testing benchmarks to see if the results

are consistent with the data recorded in the file. We mainly tested brightness, CPU, socket con-

nection and file input/output. In our experiments, the benchmark applications run foreground

and other applications were terminated to keep the accuracy. We connected a resistor between

battery and phone, then attached the National Instruments devices [108] to record the voltage

of the resistor and the phone. Hence, we got the current of the phone based on the resistor.

After that we can calculate power as well as energy information. The resource file contains

power data of different state of screen, wifi, cpu, bluetooth and so on. We run our benchmarks

to compare the data we collected with the information in the file. Besides, we calculated file

I/O data and put it in our power calculating system, which is not supplied in the resource file.

The mobile devices we used for these experiments are Google Nexus S and Motorola

Xoom. Their hardware parameters are presented in Table 4.2 that includes sensors information.

Both of these devices use Android 4.0.4 OS. According to AndroLib’s statistics [109], there are

640,000 android applications in the market. To ensure representative results, the applications

we choose cover most categories. They have over one million installs and ranked in Top-100

as claimed by Google Play. Table 4.3 lists the information and representative applications.

53

Hardware Components Nexus S Xoom
CPU ARMv7 Processor rev 2 ARMv7 Processor rev 0
Frequency (MHz) 100 - 1000,5 steps 216 - 1000, 8 steps
RAM (MB) 335 718

Sensor
KR3DM Accelerometer KXTF9 Accelerometer
GP2A Light Sensor Ambient Light Sensor
AK8973 Magnetic Sensor AK8975 Magnetic Sensor

Table 4.2: Experiment platforms.

Category Applications
Business Documents To Go, UPS Mobile, Pocket Cloud Remote, etc.
Game Fruit Ninja, Temple Run 2, Talking Tom Cat, etc.
Finance Google Finance, Expense Manager, TurboTax SnapTax, etc.
Health and Fitness Instant Heart Rate, Workout Trainer, Lose It, etc.
Media and Video YouTube, RealPlayer, Movies by Flixster, etc.
Music and Audio iHeartRadio, Amazon MP3, Google Play Music, etc.
Education Kids Animal Piano Free, How to Draw, Aldiko Book Reader, etc.
Tools PicsArt, Barcode Scanner, Tiny Flashlight, etc.

Table 4.3: Summary of selected applications.

4.4.2 Bugu Case Studies

We introduce three case studies here to illustrate how different kinds of users can take

advantage of the Bugu service.

End User Scenario An end user usually wants battery work longer without frequently

charging. Aside from saving energy by operating system or shutting down unused devices,

this goal can also be achieved through installing energy-friendly applications. The Bugu server

maintains a lot of applications’ power data with the hardware platform information. End users

can request these information and search the category of the application they want to install,

the data returned is ranked by the power consumption of applications. Except the application’s

characteristics, such as UI and special functionality that improve user experience, end users

can also take power consumption into consideration.

Take browser as an example, assume users want to install Opera on their device. They can

simply send the type of device and application name Opera to the Bugu server. Table 4.4 lists

several applications’ data stored in the server, and the browser part will be returned to the users.

54

Browser Application Game Application Health Application Reading Application
Power Power Power Power

Opera 123.42 NinJump 141.73 Instant
Heart Rate 65.96 Kindle 86.34

Dolphin 162.15 Temple Run 142.75 Lose Tt 83.55 Daily Bible 131.23
Firefox 304.63 Cut the Rope 149.12 Cardiograph 92.26 Audible 158.95

Table 4.4: The comparison of applications power consumptions. (The power unit is mW.)

(a) Event information of YouTube running on Nexus
S.

0

200

400

600

800

1000

1200

1400

1600

39.99 90.01 140.00 190.04 239.97

P
o

w
e

r
(m

W
)

Time (s)

irq/308-mxt224_ surfaceflinger mediaserver

youtube rild

(b) The power variation information on Nexus S.

(c) Event information of YouTube running on Mo-
torola Xoom.

0

500

1000

1500

2000

2500

30.66 61.29 91.82 122.12 152.58 183.06 213.48 243.88

P
o
w
e
r(
m
W
)

Time (s)

/init systemui mediaserver youtube

(d) The power variation information on Motorola
Xoom.

Figure 4.3: The comparison of YouTube event and power information.

Noted that the power data is calculated under the general usage situation. In this experiment,

we chosen six popular websites including cnn, espn, amazon, opened them one by one and each

time scrolled down to see all the information. We can see that Opera consumes less power than

Fire f ox, which makes it more competitive. To figure out the behind reasons, we analyzed the

event information and raw power log data of Opera and Fire f ox, the results show that their

CPU power has big difference. Fire f ox may do more processing and calculation to improve

user experience, further analysis about their power behavior can be found in Section 4.4.3.

Application Developer Scenario On one hand, the Bugu server provides related applica-

tions’ power data for application developers to compare. On the other hand, developers can

55

get event information from the Bugu client, which gives the optimization direction from power

consumption aspect. In this section, we use video application as an example to show how Bugu

works. In our experiment, the new application developed is YouTube.

To include the influence that application may bring to the system, the Bugu server not only

provides each applications’ information, but also gives other four most power consumption

processes of each application and compares the union of them. Thus, there are six processes

compared in Figure 4.4. The data is collected from Nexus S, and we can see that system pro-

cesses which support our applications consume much more power than the application itself.

For instances, systemui is responsible for drawing the user interface, mediaserver provides

sound and other support for media. From the perspective of the target application, YouTube is

in a good situation, its power is lower than others. Figure 4.3 presents the event information and

power variation of YouTube on both Nexus S and Xoom. These information helps developers

deeply understand the power issue. For event information, the x-axis is time; the y-axis is the

processes that generate these events. The recorded events includes wakelock, sensor, screen,

etc. We only found wakelock information in this scenario, the mediaserver process appeared in

both devices, and rild, sur f ace f linger occupy wakelock on Nexus S while systemui on Xoom

side. YouTube also occupies the wakelock for a long time as showed in Figure 4.3a and 4.3c,

developers can analyze their code to improve the wakelock utilization, for instance, release

wakelock in app pause state. Figure 4.3band 4.3d demonstrate power variation of processes

which occupy the event or has high power consumption, YouTube consumes high power when

we start the application, while mediaserver periodically reached the high point. After analyzed

the resource usage information in the beginning of YouTube, we found it transmitted network

packets and dealt with user inputs (e.g. touch, click). No other abnormal data detected. An-

other reason for such high power consumption is the preparation system did for starting new

activity. So if the developers want to optimize YouTube, they should focus more on handling

user inputs efficiently and balancing data downloaded.

56

0

100

200

300

400

500

600

700

Flixster IMBD Moviefone PPStream Qqlive DirectTV Youtube

P
o
w
e
r
(m

W
)

com.android.launcher irq/38 sec_head com.android.systemui

TargetApp mediaserver android.process.media

Figure 4.4: The power comparison of seven video applications.

Ϭ
ϱϬ
ϭϬϬ
ϭϱϬ
ϮϬϬ
ϮϱϬ
ϯϬϬ
ϯϱϬ
ϰϬϬ
ϰϱϬ

�ŶŐƌǇ
�ŝƌĚƐ

�Ƶƚ dŚĞ
ZŽƉĞ

�ŽŽĚůĞ
:ƵŵƉ

EŝŶ:ƵŵƉ ^ŚĂƌŬ ^ƉŝĚĞƌ dĞŵƉůĞ
ZƵŶ

WŽ
ǁ
Ğƌ
;ŵ
t
Ϳ

ŝƌƋͬϯϬϴ ŵǆƚϮϮϰ ǌǇŐŽƚĞ ŵĞĚŝĂƐĞƌǀĞƌ
ƐǇƐƚĞŵƵŝ ƐƵƌĨĂĐĞĨůŝŶŐĞƌ dĂƌŐĞƚ�ƉƉ

Figure 4.5: The power comparison of seven games.

System Developer Scenario

System developers care more about the whole system power consumption, not a particular

application or hardware component. Bugu provides power information of all processes running

in the system, which exactly helps them to know the whole picture. From previous experiments,

we observed that system processes consume much more power than target application itself.

To show it is a common issue, we did another experiment on game applications. We evaluated

7 popular games: Angry Birds, Cut The Rope, NinJump and so forth. Figure 4.5 demonstrates

the power consumption of each game and several corresponding system processes on Nexus S.

We can see that system processes, such as irq/308-mxt224, mediaserver and zygote, consumed

much power, they were not negligible comparing with our target applications.

57

(a) The event information on Nexus S. (b) The event information on Xoom.

Figure 4.6: The comparison of devices event information under “sleep” mode with no applica-
tion running.

Except active applications, background applications are also a main concern for system de-

signers. We did several experiments to show how applications and the system behave in sleep

mode. In the experiments, we first tested the situation that only system processes exist and no

applications opened. From Figure 4.6 we notice that sur f ace f linger occupied the wakelock al-

most all the time on Xoom, while systemui and rild dominated on the Nexus S. sur f ace f linger

and systemui work on the user interface drawing and rendering part, rild is responsible for the

phone service. These processes acquired and released wakelock continuously, which make

the processor can hardly get the chance to work in C states. Comparing with Nexus S, Xoom

can last much more longer after one fully charge. To present the real case when users use

these devices, We did the experiments with applications running in the background. The most

common situation it represents is when users go to sleep, their mobile devices are in sleep

state without exiting all opened applications. Figure4.7 shows the power variation of top three

power consuming processes of Nexus S and Xoom under “sleep” mode with unclosed appli-

cations. Before we put the devices into “sleep” mode, we opened f acebook, twitter, youtube,

angrybird and pandora, and played with each of them for a few minutes. From the figure we

know that most applications’ power are low, while system processes still consume a lot. Hence,

system developers should focus more on optimizing these background processes and services.

58

0

100

200

300

400

500

600

700

1204.23 2133.41 3473.57 4815.17 5841.09

P
o
w
e
r
(m

W
)

Time (s)

loop7 com.android.systemui com.pandora.android

(a) The power variation on Nexus S.

0

100

200

300

400

500

600

700

800

2495.35 4229.20 5815.06 6013.00

P
o
w
e
r
(m

W
)

Time (s)

/init

com.android.systemui

com.twitter.android

(b) The power variation on Xoom.

Figure 4.7: The comparison of devices power information under “sleep” mode with back-
ground applications.

0
100
200
300
400
500
600
700
800

Do
cu
me
nts
	
 To
	
 Go
	
 	

Offi
ce
Su
ite
	

Po
ck
etC
lou
d	
 R
em
ote
	
 	

Ol
ive
	
 O
ffic
e	
 P
rem

ium
	
 	

Ho
w	

to	

Dr
aw
	

NO
OK
	

ba
bb
el	

My
Ta
xR
efu
nd
	
 	

Go
og
le	

Fin
an
ce
	

Ex
pe
ns
e	
 M

an
ag
er	

Cu
rre
nc
y	
 C
on
ve
rte
r	

Mo
ne
y	
 L
ov
er	

	

Su
bw
ay
	
 Su
rfe
rs	

iTr
iag
e	
 H
ea
lth
	

No
om
	
 W
eig
ht	

Lo
ss	

Co
ac
h	

Pe
rio
d	
 C
ale
nd
ar	

Ru
nta
sJ
c	

Le
TV
	

Cra
ck
le	

Th
e	
 C
W
	
 Ne
tw
ork
	

Po
w

er
(m

W
)

Foreground Background

Figure 4.8: The comparison of applications background and foreground power consumption.

4.4.3 Applications Power Information Analysis

In this section, we analyze mobile applications’ power data in both foreground and back-

ground situation. For each case, we describe applications’ total power and distribution among

main hardware components.

Apps Run in Foreground: We first introduce foreground scenario. In the experiments of

100 applications, their power ranges from 20 mW to over 700 mW. 10% of them consumes

less than 50 mW, 50% is less than 200 mW. The average power is 227 mW, and 20% is greater

than 335 mW in our dataset. It is reasonable that the power varies so much. Pdf reader will run

longer than Angry Bird with the same battery capacity. Intuitively, the power consumption of

applications in the same category should be in the same level. To further prove the statement,

aside from video and game applications presented above, we also took the Education, Health

59

and Fitness applications’ data into consideration. In these four categories, Education apps con-

sume less power than the other three categories; only the power of NYTimes greater than 200

mW. Most of Media and Health apps power are within 300 mW and 200 mW respectively. In

a specific category, the applications’ power also varies. The power difference between Temple

Run 2 and Speed Skater is as high as 300 mW. For applications produced by the same company,

the difference is smaller as “Talking” series (Talking Angela 320 mW, Talking Ben 350 mW,

Talking Tom Cat 410 mW) suggest.

To figure out where the power goes, we analyzed the detailed power information logged

by the Bugu client which contains main hardware components’ power dissipation for each ap-

plication. We summarize two metrics which are important factors to reflect component power

information: Numbero f Appearance, it is defined as number of applications use the component

over total number of applications, and PowerRatio, which equals the percentage of the com-

ponent consumed power over total application power. According to our experiment results,

CPU is used in all applications and its average PowerRatio is the highest in the components

we considered. This means most of the time the CPU dominates the applications’ power. 13%

and 20% applications use GPS and Audio respectively, and they contribute nearly 20% power

to the applications. Although there are only 14% applications in our dataset play with Video

module, the average PowerRatio is as high as 61%. After focusing on high video power ration

application, we found that video power is much higher than CPU power except two applica-

tions that their video power and CPU power are almost equal. Hence, when applications play

video, its main power dissipation very likely transfers from CPU to Video.

Apps Run in Background: For background applications, we classify them as two cate-

gories: idle background and active background. The former represents the applications that

will stop working and enter suspend status when in background. Active background means the

applications that still have activities even in background, such as download applications and

music applications.

60

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

Po
w

er
 (m

W
)

Foreground Active background
Idle background

Figure 4.9: The comparison of applications power consumption in foreground, active back-
ground and idle background.

Idle Background: The idle background situation is common for most applications, espe-

cially for media apps and games. Figure 4.8 demonstrates background power and foreground

power of 21 applications in our dataset. 60% of the applications, their background power is

less than 50 mW, and two of them are over 100 mW. The background power varies from 1.5

mW to 190 mW. The applications are listed by their category. Similar with the foreground case,

the background power of applications which are in the same category also varies; Office Suite

background power is 20 mW while Olive Office Premium reaches 80 mW. For applications

with high ratio of background power to foreground power, like Expense Manager, we found

their power is dominated by CPU power consumption.

When applications go to idle background state, users move their focus to the new fore-

ground application. Except maintaining the status in case they will run again in a short time,

they should occupy resources as less as possible. Hence, an energy efficient application should

reduce their background power consumption and maintain the ratio of background power to

foreground power in a relatively small range.

Active Background: Some applications still active and function normally when they are

61

in background. For example, we open Pandora to listen to music and at the same time we

check emails or read news in foreground. In that situation, we claim that Pandora is in

ActiveBackground state. For this kind of applications, they complete most of their work in

active background situation.

In the experiments, we choose five popular applications from Music and Audio category:

Pandora, iHeart Radio, Amazon MP3, TuneIn Radio and Spotify, and four download appli-

cations: Download Manager, tTorrent Lite, uTorrent and aTorrent. Amazon MP3 randomly

played local songs and radio applications played several stations, four download applications

downloaded a 325 M video file. Figure 4.9 describes their power dissipation in foreground,

active background and idle background situations. When the applications enter active back-

ground situation, their power dissipation is less than foreground case and most of them only

decrease a little. The power consumption of uTorrent in the two cases are almost the same,

Pandora’s power reduce 20 mW which is about 5% of total power. For idle background situa-

tion, six of their power are less than 5 mW, aTorrent’s idle background power is also less than

6% of total foreground case power. Spotify and aTorrent decrease around half of the power

when enter active background case, the user experience of the two applications did not change,

there was no visible delay to play music and download the video. The possible explanation

may relate to other functionality suspended in background.

Real Apps Case Studies

We analyzed several applications’ power information, which includes: Pandora, iHeartRa-

dio, Facebook, Firefox, by tracking resource usage information through Bugu. With the con-

sideration of system processes and the comparison of similar applications’ data, we revealed

some underlying reasons of high power situations. In the experiments, we installed target ap-

plications in a clean OS and the logged power is the whole system power. Since we only run the

target application in foreground and suspend all background processes (e.g. Google Services),

any system power variation is mainly caused by the target application.

62

0	

500	

1000	

1500	

2000	

2500	

3000	

1	
 21	
 41	
 61	
 81	
 101	
 121	
 141	
 161	
 181	
 201	
 221	
 241	
 261	
 281	
 301	
 321	
 341	
 361	
 381	
 401	

Po
w
er
	
 (m

W
)	

Time	
 (s)	

CPU	
 System	

Figure 4.10: The system and CPU power information of Pandora.

0	

500	

1000	

1500	

2000	

2500	

3000	

1	
 21	
 41	
 61	
 81	
 101	
 121	
 141	
 161	
 181	
 201	
 221	
 241	
 261	
 281	
 301	
 321	
 341	
 361	
 381	
 401	

Po
w
er
(m

W
)	

Time	
 (s)	

CPU	
 System	

Figure 4.11: The system and CPU power information of iHeartRadio.

In the Music and Audio category, the most popular applications are Pandora and iHeartRa-

dio. Figure 4.10 and 4.11 demonstrate their CPU and system power variation when listen

to music. By comparing the two applications’ system power, we noticed that the power of

iHeartRadio was higher than Pandora’s when playing music. The CPU power in the two ap-

plications was reasonable as the high power situations were caused by handling user input, such

as changing channel/song, and network transmission. To find the root cause that lead to high

63

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

1000	

1	
 21	
 41	
 61	
 81	
 101	
 121	
 141	
 161	
 181	
 201	
 221	
 241	
 261	
 281	
 301	
 321	
 341	
 361	
 381	
 401	

Ti
m
e	

(m

s)
	

Time	
 (s)	

Pandora	
 Audio	
 Pandora	
 Par1al	
 Wakelock	

iHeartRadio	
 Audio	
 iHeartRadio	
 Par1al	
 Wakelock	

Figure 4.12: The information of wakelock and audio time for Pandora and iHeartRadio.

system power of iHeartRadio, we first detailed compared the resource usage information which

includes audio, video, wakelock, CPU time and network packets of the two applications. Fig-

ure 4.12 shows their audio and wakelock time, the audio time of iHeartRadio was all 0. Hence,

when we calculate the application power, the result of iHeartRadio was less than Pandora’s

(showed in Section 4.4.3) as the audio power and wakelock power of iHeartRadio were almost

0. However, it did not illustrate the high system power of iHeartRadio. Next, we analyzed the

information of all processes running in the system. Aside from Bugu, system (uid:1000) and

the target application, the active process was mediaserver (uid:1013) in both cases. Because

the audio time is logged in MediaPlayer.java in Android OS, we think iHeartRadio did not use

build-in player program to communicate with mediaserver, which causes high system power

consumption when playing music. The resource usage information of Douban Artists further

proved the statement since the trend of audio time and system power were similar with Pan-

dora’s. The wakelock data of iHeartRadio and Douban Artists was almost the same, and the

high wakelock usage in Pandora was mainly the result of frequent advertising.

Social network application becomes the main platform that keeps people in touch in to-

day’s society. In our experiments, we checked the latest news of friends and posted the status

with and without photo. The power variation of Facebook and resource usage information are

64

0	

500	

1000	

1500	

2000	

2500	

3000	

1	
 21	
 41	
 61	
 81	
 101	
 121	
 141	
 161	
 181	
 201	
 221	

Po
w
er
(m

W
)	

Time	
 (s)	

CPU	
 System	

Figure 4.13: The system and CPU power variation of Facebook.

demonstrated in Figure 4.13 and Figure 4.14 respectively. At the starting of the application and

dealing with the user inputs, CPU power dominated the whole system power. There is a high

power period from 81s to 115s, and it is caused by taking a photo as showed in Figure 4.14

(Facebook Full Wakelock and Facebook Accelerometer overlapped). When we prepared to post

status, the location process became active for several seconds and it used Particial Wakelock

and GPS. Users may share their location in the posted status. As the result, the corresponding

system power was increased a little bit. The same situation can be also found in Twitter, the lo-

cation process appeared and the system power increased. When we posted a status with photo,

Twitter delegated the job to Android default application Gallery while Facebook handled by

itself. On the aspect of the system power, the two approaches are similar although the wakelock

and accelerometer were used by different processes.

For browser applications, we analyzed Firefox and compared its data with Opera’s as the

high power consumpsion of Firefox demonstrated in the previous section. We opened several

popular webpages. On the perspective of system processes, the situations of the two applica-

tions were similar. The particial wakelock’s time of mediaserver and location process occa-

sionally increased, they were not actually in active state. The wakelock time of Google Search

65

0	

200	

400	

600	

800	

1000	

1	
 21	
 41	
 61	
 81	
 101	
 121	
 141	
 161	
 181	
 201	
 221	

TI
m
e	

(m

s)
	

Time	
 (s)	

Facebook	
 Full	
 Wakelock	
 Facebook	
 Accelerometer	
 	

Loca7on	
 Par7cial	
 Wakelock	
 Loca7on	
 GPS	

Figure 4.14: The part of the system resource usage information when playing with Facebook.

Box also increased, which was more frequent than in other applications, such as YouTube and

TempleRun. For application itself, CPU power dominated the whole power. Aside from user

inputs, network activity also causes high CPU usage. Figure 4.15 illustrates the system power

and packets information when Firefox was in foreground. The peak points of high packets

transmission correspond to high power consumption. There are a lot of times that packets were

over 10000, while the situation happened much less in Opera’s case. Hence, we think it is the

main reason for high power consumption of Firefox. For download applications, high packets

transmission may help save energy since the system can go to sleep state after the job is done.

However, it is not hold for frequent user interactive applications as the interval time between

two tasks (user inputs) is not always longer enough for system to switch to the sleep state.

4.4.4 Bugu Accuracy

There is no ground truth for application level power consumption. Hence, to analyze the

accuracy of Bugu, we focused on the whole system power. Figure 4.16 demonstrates the mea-

sured power and estimated power for several popular applications. We used a BK Precision

programmable power supply [54] to power up the smartphone, which provides a constant volt-

age of 3.8V and records current data. We calculated the system power, which is listed as

measured power, based on the current information. The estimated power is calculated and

66

0	

5000	

10000	

15000	

20000	

25000	

30000	

0	

500	

1000	

1500	

2000	

2500	

3000	

1	
 31	
 61	
 91	
 121	
 151	
 181	
 211	
 241	
 271	
 301	
 331	
 361	
 391	

Pa
ck
et
s	

Po
w
er
(m

W
)	

Time	
 (s)	

System	
 Power	
 Packets	

Figure 4.15: The system power and packets information of Firefox browser.

0	

500	

1000	

1500	

2000	

2500	

Te
mp
leR
un
	

Ca
nd
yC
rus
h	

An
gry
Bir
d	

Yo
uT
ub
e	

Fli
xst
er	

IM
DB
	

Pa
nd
ora
	

iHe
art
Ra
dio
	

Do
ub
an
	

W
eC
ha
t	

Tw
iF
er	

Fa
ce
bo
ok
	

Ye
lp	

Dr
op
bo
x	

Ca
me
ra	

Ga
lle
ray
	

BB
CN
ew
s	

W
ea
the
rCh
an
ne
l	

Ne
ws
W
ea
the
r	

Gm
ail
	

Em
ail
	

Am
azo
n	

Po
w
er
(m

W
)	

Measured	
 Power	
 EsOmated	
 Power	

Figure 4.16: The comparison of measured power and estimated power for popular applications.

logged by Bugu. For game, music and video applications, the estimated power is greater than

hardware measured power; for social and utility applications, the most results from Bugu is

equal or less than the measured power. The average error rate of Bugu for total system power

is 5%.

4.4.5 Bugu Overhead

The overhead of Bugu is mainly caused by the power profiler and event monitor. The

data processing is done when the user wants to read an experiment record. When we did

experiments described above, we also recorded the power consumption of Bugu. The power

67

consumption of Bugu is around 5mw to 10mw, which accounts for 2.52% of the foreground

application power consumption on average. Moreover, we compared the system power with

and without Bugu. The power results were calculated by attaching the power meter to the

battery. For the situation that no active foreground application exists, Bugu causes 200mW

extra system power. Because Bugu samples resource usage information once per second, it

stops the CPU and system to stay in a low power state and lead to such amount of system

power overhead. In real measuring cases, there is always a “target” application running, the

average extra power Bugu generated on the system level is around 100mW. Compare with

1000mW to 1500mW whole system power, the overhead is acceptable.

4.5 Implications

4.5.1 Radio Service

Our experiments show that rild, which is the daemon of Android radio service, generates

a lot of wakelocks even when the device is not active. Even though the power consump-

tion of this service is not high, it keeps the processor active and consumes a large amount

of energy. These wakelocks are generated during processing unsolicited commands, such as

network status change, SMS notify, USSD (Unstructured Supplementary Service Data) no-

tify and signal strength or time changed. Among these unsolicited commands, some of them,

such as SMS notify, are important to users. However, we do noticed that a large amount of

unsolicited commands, such as signal strength change, received are not highly required. To

design an energy-efficient Android radio layer interface, we should reevaluate the structure of

unsolicited command processing part by filtering part of the commands. In this way, we can

increase the chance of making the device work in the “real sleep mode”. Another approach is

putting the long lasting service to a low power coprocessor, so that the coprocessor can handle

part of the data processing without waking up whole system.

68

4.5.2 Hardware Interrupts

In addition, we observed that several processes, such as irq/308-mx224 and irq/38-sec head

consumes a large amount of energy when we ran several applications. irq/308-mxt224 is the

threaded interrupt handler for the touchscreen controller. Different with traditional cell phones

and normal computer systems, current mobile devices have much more sensors to supply var-

ious functionality to users. These sensors generate a large amount of hardware interrupts and

consume a large amount of energy. Aside from rild, the sensor related processing can also be

delegated to the low power coprocessor. We argue that we should revisit the design of interrupt

handling part for current mobile operating systems since the design of hardware platform is

totally different now.

4.5.3 Energy-efficient Applications

As our experiments in Section 4.4.3 show, applications’ power consumption varies a lot.

In low battery status, users can stop some unnecessary applications to save energy for phone

service. Besides, the power consumption of applications in the same category can be very dif-

ferent even though the functionality of them are the same. That means, it is possible to develop

energy efficient applications without influencing user experience. In detail, there are two di-

rections that we can look into. Aside from the main hardware components, other parts such as

DSP, sensors are also needed to be used in an energy-efficient way. For example, video appli-

cations may use video module more than CPU since video module power consumption domi-

nates the whole application’s power. Another direction is to improve applications’ background

situation. From the experiment results, some applications in the background are not really sus-

pended. Considering the user behavior that they usually put applications in background rather

than kill them, these applications may generate big influence on the system energy. Hence,

when the developers implement applications, they should reevaluate the background case and

decrease the power consumption as much as possible.

69

4.5.4 System Power Management Design

One important goal that we design operating system is to protect the hardware from misuse

by applications. However, some power management APIs, like wakelock, are not used effi-

ciently and they can cause big energy issue. We think the APIs for application design should

be reevaluated from energy saving angle.

The energy consumption of screen, processor, radio and wifi accounts for about 95% of

the whole system energy consumption. Among these devices, it is hard to decrease the power

of screen, which accounts for about 50%, through many kinds of system level energy-efficient

strategies. In addition, the space to decrease the power of radio and wifi is low if the users

need to use them. Even if we could filter some of the unsolicited commands, we cannot make

radio work in low power mode. Thus, it is nearly inevitable to design an energy-efficient

strategy that can drop the energy consumption of the system significantly. So, we claim that

there is no chance to solve the power problem for mobile devices with a single energy-efficient

strategy. The mobile operating system needs a group of energy-efficient design strategies to

work together to accomplish this goal.

4.6 Summary

In this chapter, we built a power profiler Bugu and analyzed almost 100 mobile appli-

cations power behavior using it. Bugu is composed of a server side which provides power

information of different applications, and a client side that analyzes power and event informa-

tion for specific applications. We implemented Bugu on Android platform and evaluated its

accuracy (95%) and overhead. We showed the case studies of finding the root causes of large

power consumption, for example, the overuse of wakelock. The analysis of applications power

information is useful for many energy/power related researches on mobile devices, and the

implications derived from the observations point out several potential optimization directions.

In the next chapter, we focus on studying the potential energy benefit from modern hetero-

geneous platforms which are the trend of future mobile devices. Specifically, we will compare

70

heterogeneous platform and homogeneous platform and figure out how to take advantage of

heterogeneity.

71

CHAPTER 5 HETEROGENEOUS PLATFORM ENERGY

EFFICIENCY ANALYSIS

Heterogeneous multi-core platforms, e.g., ARM’s big.LITTLE, are a promising trend to

improve the performance and energy efficiency of future mobile systems. However, the im-

mediate benefits and the challenges to take advantage of the heterogeneity are still not clear.

In this chapter, we present our experiences about the energy efficiency of the two big.LITTLE

heterogeneous platforms: ODROID XU+E and ODROID XU3. We quantified compared them

with homogeneous platforms through multiple benchmarks. We analyzed the scheduling im-

pact on the energy consumption of the heterogeneous platforms as well as the migration cost.

Based on the results, several insights related to hardware, application and system design are

derived.

The remainder of the chapter is organized as follows: Section 5.1 presents the motivation

and introduction. We illustrate the two heterogeneous platforms and our experiment setup

in Section 5.2. The detailed case studies are demonstrated in Section 5.3, which compared

the heterogeneous and homogeneous platforms and analyzed the impact of scheduling and

migration cost. Following that, we discuss a list of insights in Section 5.4.

5.1 Introduction

As the result of the dark silicon issue and increasing demand of specialized components,

heterogeneity becomes more and more important and leads the trend of future devices’ de-

velopment, especially for mobile platforms. Heterogeneity is a general concept that may re-

fer to CPU/GPU computing architecture, mixed types of accelerators and so on. The advan-

tage of heterogeneous platforms is that they can improve energy efficiency while maintaining

performance[34, 110]. To evaluate their benefits, previous work usually leverages DVFS to

simulate different types of CPUs [111]. With the emerging of the ARM big.LITTLE processor

and Samsung Exynos 5 Octa system-on-chip (SoC) [112], we have the opportunity to explore

and exploit real heterogeneous hardware platforms.

In this chapter, we undertake the following questions:(1) Compared with homogeneous

72

Table 5.1: The specifications of the two platforms.

ODROID XU+E (XUE) ODROID XU3 (XU3)
Generation The first generation The second generation
SoC Samsung Exynos 5410 Samsung Exynos 5422
big CPU quad-core Cortex-A15 CPU (800

MHz to 1600 MHz)
quad-core Cortex-A15 CPU (1200
MHz to 2000 MHz)

LITTLE CPU quad-core Cortex-A7 CPU (500
MHz to 1200 MHz)

quad-core Cortex-A7 CPU (1000
MHz to 1500 MHz)

L1 Cache 32 kB/ 32 kB 32 kB/ 32 kB
L2 Cache 2 MB on big CPU, 512 KB on LIT-

TLE CPU
2 MB on big CPU , 512 KB on LIT-
TLE CPU

Memory 2 GByte 2 GByte
Key Features CPU hotplug, Cluster switching CPU hotplug, Heterogeneous

multi-processing (HMP)

platforms, how much energy can be saved in heterogeneous platforms? We want to know the

capability of heterogeneous platforms. (2) what is the impact of scheduling from energy aspect?

As the different types of processor exist, the scheduling algorithm takes the responsibility of

choosing proper processor for different workloads. Both of the benefits can be gained from the

correct scheduling and penalty of the improper scheduling are important. And finally (3) what

is the migration overhead on performance and energy? Applications have different phrases

(e.g. loading content, waiting user input, etc.) and scheduler needs dynamically migrate work-

load to proper cores in runtime. In this situation, migration overhead is one of the key factors

to decide when and which core to migrate. All of the three questions directly influence the

benefits we can get from heterogeneous platforms.

To answer these questions, we picked the two ARM big.LITTLE platforms, ODROID

XU+E (XUE) and ODROID XU3 (XU3) [113], as experimental platforms to study. Both

XUE and XU3 have heterogeneous cores but provide different control strategies. XUE of-

fers cluster switching and XU3 supports heterogeneous multi-processing [112]. The system

and component level power information are collected to analyze their energy behavior under

various cases. By analyzing the results, we can further understand the characteristics of the

big.LITTLE platforms and wisely use them.

73

5.2 Experiment Setup

To practically investigate heterogeneous platforms, we did experiments on two generations

of ARM big.LITTLE platforms produced by Hardkernel [113]. Their specifications are pre-

sented in Table 6.1. ARM’s big.LITTLE processor is a single-ISA heterogeneous multi-core

processor which contains two types of cores: Cortex-A15 and Cortex-A7. Data is shared be-

tween the clusters via the CCI-400 cache coherent interconnect to achieve seamless migration.

The first generation, denoted as XUE, provides only cluster switching mode, that is, either the

big cluster or the LITTLE cluster is active. The cluster switching is achieved by modifying

the CPU frequency. On the contrary, XU3, the second generation, supports heterogeneous

multi-processing (HMP) which is a core level migration and all the eight cores can be active

at the same time. We can dynamically set the CPU affinity using taskset command to migrate

thread between the different cores. For homogeneous platforms, we disable the cluster migra-

tion on XUE and control the platform runs on big (LITTLE) cores only to simulate A15 (A7)

platform. Both of XUE and XU3 feature four separated current sensors to measure the power

consumption of big core cluster, LITTLE core cluster, GPU and memory in realtime. To get

the system power data, we use a BK Precision programmable power supply [54] to power up

the platforms, which provides a constant voltage of 5 V and a maximum current of 5 A. It logs

the current at a sample frequency of 4 Hz.

5.3 Case Studies

In this section, we investigated the two big.LITTLE platforms by comparing their power

and energy consumption with homogeneous platforms’ results under various applications. The

experimental benchmarks include mobile applications and high-performance synthetic bench-

marks. Moreover, we analyzed the scheduling impact and migration overhead of heterogeneous

platforms to study how to get the benefits of heterogeneity.

74

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Po
w
er
 (W

)

Frequency (MHz)

XUE LITTLE core XUE big core XU3 LITTLE core XU3 big core

Figure 5.1: The active idle power of the two platforms under each frequency.

5.3.1 Active Idle Power

The short battery life of mobile devices is one of the main motivations that lead to the

development of big.LITTLE architecture which promise to deliver peak-performance capacity

at significantly lower average power. The energy is saved by running on LITTLE (energy

efficient) cores when the system is in idle state. Most time mobile devices, like smartphones,

are in sleep state, so we first investigate the active idle power difference between homogeneous

and heterogeneous platforms to see how much we can save. Here the active idle represents the

situation that system is awake but no application is running.

Figure 5.1 presents the active idle power of the big and LITTLE cores at each frequency

in the Android OS. The power refers to the whole device’s power, not the core level power.

The LITTLE core power of XU3 is measured when all the big cores are disabled. At the same

frequency, the big core active idle power is always greater than LITTLE core power, and the

difference is around 0.1 W for XUE and 0.25 W for XU3. The range of LITTLE cores’ power is

very small, less than 0.2 W. While the big cores are sensitive to frequency change, so that it can

provide corresponding high performance. Assume a smartphone’s idle time is 8h, the battery

voltage is 4 V. Compared with A15 Only homogeneous platforms, the heterogeneous platform

75

with LITTLE core can save as much as 200 mAh. The system power difference of XUE and

XU3 mainly caused by other components on the boards, not the result of the heterogeneous

cores, GPU or memory which we can measure power directly.

One of the well-known power saving approaches in multi-core systems is core offlining

[81]. We evaluated the influence of disabling CPU cores on the two platforms. Due to the page

limit, we illustrated XU3’s results here and the behavior of XUE is similar. The offlining did

not work well within CPU clusters. The power was always 3.18 W when we disabled 1 to 3

big cores. Then, the power decreased sharply from 3.18 W to 2.68 W since all the big cores

were disabled and the package was idle. For LITTLE core cluster, the system power decreased

slightly (from 2.68 W to 2.64 W) when the number of active cores decreased.

5.3.2 Benchmarks

As we presented previously, heterogeneous platforms improve system energy efficiency in

the active idle case. Next we will investigate their performance and energy information under

various workloads.

We first analyze mobile applications since heterogeneous platforms already appear in the

mobile market. Six mobile applications/benchmarks are chosen: YouTube and Castle Master

represent the two popular application categories: Video Player and Game. RAR is a compres-

sion program and PhotoShop (PS) is a photo editing tool. They are “heavy” workloads that

appear on mobile devices. The last two applications are BBench [114] and GFXBench, they are

browser and GPU benchmarks used to stress the system and are not commonly used in daily

life.

Figure 5.2 shows their component level energy consumption. “Other” refers to the power

used by components rather than CPU, GPU and memory. Its value is total system power minus

the measured five parts (A7, A15, memory, GPU, active idle). The heterogeneous platform

data were collected from XUE, because XU3 has higher CPU frequency which may interfere

comparison results. To keep the figure readable, we proportionally adjusted the time within

76

0

100

200

300

400

500

600

Youtube Castle Master RAR PS Bbench GFX

En
er
gy
 (J
)

A7 A15 Memory GPU Other Active Idle

Figure 5.2: The component level energy information of mobile applications on A7 Only, A15
Only and XUE platforms (left to right).

each application. From the viewpoint of energy, A7 Only platform consumes the least energy

in most cases. However, with the consideration of user experience, which is an important

factor for mobile devices, not all the energy optimal configurations are suitable. There is an

obvious delay when PhotoShop and Castle Master run on A7 cores. Except YouTube, XUE

leveraged A15 cores in all the applications. The A7 energy in XUE is not obvious due to its

low power and less active time, but compare the total system energy of XUE and A15 Only

platform, the contribution of A7 is identifiable. From the results, we argue that performance

sensitive applications merely contribute to the energy efficiency improving due to performance

constrains, while light workloads benefit most on heterogeneous platform. For applications

that stress a specific component, like GFX which GPU power consumptions are similar in

the three platforms, the heterogeneous CPU cores are not very helpful. However, as most of

mobile workloads are periodical [110], there is still considerable energy saving potential on

heterogeneous platforms.

Nowadays, multi-core architecture is widely-used in computer systems and it improves

parallel applications’ performance a lot. Both XUE and XU3 contain quad-core CPU, so we

focus on the parallel benchmarks in the following examples, such as sysbench and NAS Parallel

77

0

500

1,000

1,500

2,000

2,500

LU.A MG.B UA.A LU.A MG.B UA.A LU.A MG.B UA.A

En
er
gy
 (J
)

A7 A15 Memory GPU Other Active Idle

A7 Only A15 Only XU3

Figure 5.3: The component level energy information of NPB benchmarks on the platforms.
The frequencies (left to right) are 1200, 1000, 500 MHz on A7 Only platform and 1600, 1200,
800 MHz on A15 Only platform. The frequencies (left to right) for big core and LITTLE core
on XU3 are 2000&1400, 2000&1200, 2000&1000, 1600&1400, 1600&1200, 1600&1000,
1200&1400, 1200&1200, 1200&1000 MHz.

Benchmarks (NPB) [115], to evaluate their performance and energy behaviors.

As we mentioned above, the XUE platform allows four cores (big or LITTLE cores cluster)

to be active, while the XU3 platform supports all eight cores working concurrently. Hence, we

tested the energy consumption of the sysbench CPU benchmark which calculates the prime

numbers that are smaller than 10000 on the two platforms with 1 to 8 threads. The core fre-

quency is fixed (big:1200 MHz and LITTLE:1000 MHz) to eliminate the potential interference

from DVFS. From the perspective of the total system energy consumption, XUE consumed

less energy than XU3 in 1 to 4 threads cases. As the number of threads increased, the XU3

platform became more energy efficient because it can leverage the four more LITTLE cores.

The execution time on the two platforms is almost the same and the average difference is 0.6 s

when we ran 1 to 4 threads. After that, XU3’s time continually decreased until reaching eight

threads. Although the active idle power of XU3 is greater than XUE’s, its system energy be-

comes smaller as the result of the decreased time. Hence, similar with homogeneous multi-core

systems, the number of active threads should match the number of cores to take advantage of

multi-core architecture.

Parallel benchmarks usually run on highest frequency to get better performance, but the

78

high frequency usually is not the energy optimal configuration. To analyze the parallel bench-

marks’ energy behavior on heterogeneous cores, we measured the energy consumption of the

NPB benchmarks under several frequency settings. Figure 5.3 lists three representative bench-

marks’ results. During the benchmarks’ running time, there is no migration exist in XUE,

so we leverage XUE to get homogeneous platforms’ results and the compared heterogeneous

platform in the examples is XU3. We used 4 threads to run on XUE and 8 threads to run on

XU3 so that we can leverage all the available cores. On the homogeneous platforms, the energy

optimal setting is 800 MHz in A15 Only platform and 1200 MHz in A7 Only platform. For the

heterogeneous platform, the optimal configuration is always the smallest frequency on the big

core, while the optimal LITTLE core frequency depends on the programs (LU.A prefers high

frequency, UA.A has no obvious preference). Since the active idle power is varied a lot based

on the big core frequency, which can not be compensated by the speedup, the smallest fre-

quency on the big core is always the optimal energy choice in both platforms. For component

level energy consumption, the “Other” part increased with the increase of frequency, especially

on big cores. Besides, we can see that there is a trade off between CPU energy and memory

energy, the memory energy consumption increases with the decreasing of CPU frequency.

From the perspective of performance, all benchmarks’ execution time decreased with the

frequency increase on the homogeneous platforms, while the results varies on XU3. For LU.A

and MG.B cases, their running time mainly depended on the LITTLE core frequency. The time

of UA.A was decided by both big and LITTLE cores. Hence, there is an obvious energy dif-

ference caused by the LITTLE core when the big core frequency is fixed for LU.A and MG.B,

while the same situation was not found in UA.A. Compared with the homogeneous platforms,

the performance on heterogeneous platform is not directly proportional to the frequency since

it has two types of cores working at the same time which makes the synchronization issue be-

comes more significant.

79

5.3.3 Impact of Scheduling

With the more components we can control, the potential to achieve better energy efficiency

becomes higher, while the complexity to find the optimal configurations also increases [116].

Multiple applications can run concurrently, the scheduling becomes the crucial part that di-

rectly influences the performance and energy efficiency. Assuming that there are two processes

running in the system, is it better to put them on the same core or different cores?

We took LU.A and UA.A as examples. The benchmarks were compiled as one thread

program, and each time we run two instances (e.g. LU.A.1 and LU.A.2) under different core

configurations. The results are shown in Figure 5.4, the most energy efficient choice is putting

the two processes on two big cores and the second optimal option is using one big core. It

is reasonable as the big core consumes less energy than the LITTLE core when there is only

one process. The energy consumption of leveraging both big and LITTLE core is similar

with running on two LITTLE cores. The energy difference between the two settings and the

optimal configuration is as high as 30% of the 1b+1L case. From application’s viewpoint, the

LU.A benchmark is more sensitive to the LITTLE core. Compared with UA.A, the energy

consumption of LU.A is very different under cases with and without LITTLE core. One of the

reasons is that LU.A uses the CPU more intensively than UA.A.

From previous synthetic benchmark examples, we can see that the key factors of schedul-

ing are the number of threads, the number of cores as well as workload preferred core char-

acteristics. Next, we analyze the scheduling impacts of application benchmarks with different

phrases.

The scenario included BBench which simulates user web browser behavior and music

player that run on the background. There was a two-second pause after each page loaded

to mimic reading behavior. Hence, two phrases exist in the example: the loading phrase which

requires big core and the pausing phrase which prefers run on LITTLE core. The music player

should always run on LITTLE core based on its requirement. The default scheduling method

80

0

1000

2000

3000

4000

5000

6000

LU.A UA.A

En
er
gy
 (J
)

2b 1b 1b+1L 2L 1L

Figure 5.4: The energy consumption of LU.A and UA.A under different configurations, big
core frequency is 1600 MHz and LITTLE core frequency is 1200 MHz. b and L represent big
core and LITTLE core respectively.

was indirectly controlled by offline CPU cores, so the workload is forced to run on the available

cores. Figure 5.5 presents the energy consumption under different configurations. The homo-

geneous A7 Only case consumes the least energy since its power consumption was small and

there was no much speedup in other cases. In the heterogeneous cases, the energy difference

of XU3 Default and XUE Default are mainly caused by the difference in their idle power. The

5% difference of XU3 Default and XU3 2b+2L is the results of the workload’s demands on big

cores. We omited the XU3 1b+1L case in the figure, because its time was twice of others which

leads to the highest energy consumption and no comparability.

The principle of scheduling is providing enough resources to workloads. The consequence

of improper scheduling depends on workload’s characteristics. Compared with synthetic bench-

marks, the phrase-based applications are more tolerant.

5.3.4 Migration Cost

The advantage of the ARM big.LITTLE architecture is that we can choose the proper type

of cores to use in the runtime to save energy. In this section, we investigated the migration cost

81

0

100

200

300

650	

700	

750	

800	

850	

900	

950	

XU3	Default XUE	 Default XU3 2b+2L A15 Only A7	Only XUE	2 core

Ti
m
e	
(s
)

En
er
gy
	(J
)

Energy Time

8	cores 4	cores 2	cores

Figure 5.5: The energy consumption of BBench under different configurations with default
scheduling. b and L represent big core and LITTLE core respectively.

from the aspects of performance and energy.

To evaluate the migration cost, the basic approach is to compare the results with the ground

truth which does not include migration overhead. However, the ground truth is almost impos-

sible to measure on real devices. Hence, we take the theoretical value as the baseline, which

is calculated as follows: Assume migration overhead is zero, the whole workload W running

only on big (LITTLE) core requires TbW (TLW) time and EbW (ELW) energy. Then the workload

completed in the unit time is: wb = W
TbW

for big core, and wL = W
TLW

for LITTLE core. Sup-

pose in the migration enable case, the workload is migrated after running on big core for tb

seconds or running on LITTLE core for tL seconds. So the time ratio of running on big core

and LITTLE core is tb : tL. Assume the total big core running time is tb ∗ k,k ∈ R, then

W = wb ∗ tb ∗ k+wL ∗ tL ∗ k =
W

TbW
∗ tb ∗ k+

W
TLW
∗ tL ∗ k

So k = TbW ∗TLW
tb∗TLW+tL∗TbW

, and the theoretical running time is:

tT h = tb ∗ k+ tL ∗ k =
(tb + tL)∗TbW ∗TLW

tb ∗TLW + tL ∗TbW

82

-35.00%

-30.00%

-25.00%

-20.00%

-15.00%

-10.00%

-5.00%

0.00%

0

100

200

300

400

500

600

700

800

900

1	ms 5	ms 25	ms 50	ms 100	ms 500	ms

Re
la
tiv

e
Pe
rfo

rm
an

ce

En
er
gy

(J)

Migration Interval

XU3	Energy XUE	Energy XU3	Performance XUE	Performance

Figure 5.6: The energy and performance information of sysbench CPU benchmark in different
migration interval cases.

Similarly, the theoretical energy is:

ET h =
EbW

TbW
∗ tb ∗ k+

ELW

TLW
∗ tL ∗ k

=
EbW ∗ tb ∗TLW +ELW ∗ tL ∗TbW

tb ∗TLW + tL ∗TbW

Figure 5.6 illustrates the migration impact on energy consumption and performance for

sysbench CPU benchmark. The workload is migrated every x milliseconds, with x varying

from 1 ms to 500 ms. It belongs to the tb : tL = 1 : 1 case. We can see that there is obvious

energy and performance cost for XUE and energy cost for XU3 with the migration interval

decreases. The potential reason for the different performance trend of XUE and XU3 is the

cache coherence issue on XUE which leads to cache miss after cluster migration. Hence, we

make the big cores offline/online after each migration on XU3 to redo the experiments. This

time the relative performance is similar with the XUE’s results. With the migration interval

becomes longer, the energy and performance of the two platforms are more and more stable.

83

Table 5.2: Migration cost for CPU benchmark.

Type tb : tL XUE T (s) XUE E (J) XU3 T (s) XU3 E (J)
TypM 1:0 94.89 379.56 94.31 386.67
TypM 0:1 219.41 548.52 219.16 727.61
TypT h 1:1 132.48 430.57 131.87 489.24
TypM 2:2 132.67 443.12 132.11 507.3
TypM 6:6 133 434.91 132.25 493.29
TypT h 1:2 152.64 457.92 152.06 544.37
TypM 2:4 153.52 463.63 152.54 562.87
TypT h 2:1 117.03 409.6 116.42 447.04
TypM 4:2 117.56 420.86 116.91 460.62

Table 5.2 presents the results in different tb : tL cases with larger migration intervals. TypM

stands for measured value and TypT h represents theoretical value. The first two rows that

represents the situations that we only run the benchmark on big core (first row) and LITTLE

core (second row). As Table 5.2 reports, the time delay is negligible since the theoretical time

and measured time are very close, while the energy is different to some extent. Compare the

two platforms, the energy consumptions of XU3 are greater than XUE’s as the result of high

active idle power. The same situation on the energy overhead aspect, take the 4:2 case as an

example, the cost for one migration is 0.56 J in XUE and 0.68 J in XU3. In the two cases that

the time ratio is 1:1, the results indicate the 6:6 case consumed less energy than the 2:2 case

since the migration times is less in the 6:6 case. In a word, there is an energy cost to migrate

between big and LITTLE cores. It is not always good to choose the optimal setting since the

migration may not worth the price if the workload changes frequently.

5.4 Insights

Based on the results from case studies, we derived a list of implications and grouped them

into the following three categories:

Hardware Design: Provide fine-granularity power control to further decrease idle power.

Based on the comparison of homogeneous and heterogeneous platforms, low idle power is the

key factor that improves the energy efficiency on heterogeneous platforms. To save more en-

ergy, devices should provide fine-granularity power control and decrease components’ power

84

coupling so that each component can stay in low power mode freely. For example, CPU of-

flining in the platforms does not impact the system power very much unless all the cores in the

package are idle. We can provide independent power supply to each core to effectively reduce

CPU power.

Extend heterogeneity to multiple components. ARM big.L-ITTLE provides heterogeneity

in CPU level, while the power dissipation of CPU only occupies part of the mobile system’s

power. The heterogeneity can be applied to other components to better serve users’ require-

ments for different applications and save the energy at the same time.

Application Design: Increase the usage of thread level parallelism while pay attention to

synchronization. Similar with homogeneous multi-core platforms, to benefit from the increas-

ing number of cores, applications should improve their thread level parallelism. Most of the

popular mobile applications only use one or two cores and there is little chance that they can

leverage four cores. Comparing the XU3 platform with XUE, there is no obvious performance

improvement in CPU intensive phrase, so as energy since the speedup cannot compensate the

increased power. Compared with homogeneous platforms, the synchronization issue in multi-

thread applications are more significant since the heterogeneous cores have different capabili-

ties and the performance may easily be influenced by the workload runs on the LITTLE core.

Take LU.A as an example, the execution time of a four-thread case on the A15 Only platform

with big cores at 1200 MHz is smaller than a eight-thread case that runs on XU3 with big cores

at 1200 MHz and LITTLE cores at 1000 MHz.

Operating Systems Design: Schedule tasks to the right core at the right time. The schedul-

ing algorithm directly affects the energy consumption and performance of systems. On the ap-

plication level, we found that different applications have different optimal configurations, for

example, LU.A prefers big core at 800 MHz while UA.A works better on LITTLE core at 1200

MHz. If the workload is scheduled to a wrong type of core, the energy difference can be as

high as near 30%. On the system level, there are usually multiple applications running concur-

85

rently. The system needs to detect non-CPU intensive phrases and schedules them to LITTLE

cores with the consideration of migration cost, so that the total system energy is saved. More-

over, the energy consumption is not the only aspect that we care about during scheduling, user

experience should also be considered.

5.5 Summary

Heterogeneous platforms lead the trend of future devices, especially in the mobile market.

We found that heterogeneous platforms indeed have great potential for energy saving which

mostly comes from idle and low workload situations, however, there are several steps that

should be taken seriously by the community, including hardware vendors, application develop-

ers, and operating systems designers, to maximize the potential of heterogeneous platforms.

With the mobile devices become more and more powerful, the power density increased

sharply, which makes the thermal control becomes one of the design bottlenecks. In the next

chapter, we will discuss the energy-based thermal control policy Falcon. It decreases cooling

energy within the same thermal constrain and adapts to various ambient temperature.

86

CHAPTER 6 FALCON: TEMPERATURE AWARE THERMAL

CONTROL POLICY

With the development of the devices, thermal control becomes the issue that limits the hard-

ware design since the reliability of electronic hardware components is closely related to their

operation temperature. Besides, the blooming of the Internet of Things (IoT) requires devices

work properly in different environment, which makes the thermal control even harder. System

designers normally rely on fans to cool the system because it is cheap and easy to implement.

Hence, in this chapter, we take IoT smart gateway with fan as our example to discuss the ther-

mal control policy in modern devices. The problem of fan is that the over cooling will waste

energy and cause noise. So, we propose Falcon, an ambient temperature aware thermal con-

trol policy for smart gateways. Falcon leverages a runtime thermal prediction model and takes

the ambient temperature into the consideration to tune the fan speed proactively. In addition,

the two environment adaptive mechanisms applied in Falcon help us achieve the same ther-

mal control ability in different ambient temperature environment, especially in high ambient

temperature cases.

The outline of this chapter is as follows: Section 6.1 gives a brief introduction. Then, we

describe the thermal prediction model and Falcon in Section 6.2. Following that, Section 6.3

presents the model validation and the evaluation of Falcon. Finally, Section 6.4 summarizes

the chapter.

6.1 Introduction

We are entering the Internet of Things (IoT) era. According to the prediction of the Inter-

national Data Corporation [117], the global IoT market will grow from $655.8 billion in 2014

to $1.7 trillion in 2020 with an annual growth rate of 16.9%. Connectivity is the key in IoT,

which makes gateways become important components. Intel has announced its IoT Gateway

platform which provides seamlessly data transmission [118]. With more and more devices

connected, we need intelligent gateways that can offload the computation and communication

tasks of IoT equipments. We envision that smart gateways will be the trend in the near future.

87

Gateways can run their own operating system with suitable computation capability. Hence,

in this dissertation, we take Odroid-XU+E [46], ARM big.LITTLE platform, as the reference

smart gateway and evaluate our ideas on it.

The reliability of gateways is very important. The devices connected to it will be “missing”

from the Internet if the gateway is down. However, the processor failure rate exponentially

depends on the operation temperature [41]. When the temperature reaches the trip point, the

system performance will decrease by thermal throttling or the device directly shut down. To

avoid hurting the performance, we think a CPU fan will be applied on gateways as the cooling

method.

Gateways can be deployed indoor for smart home or outdoor for collecting environmental

sensor data. For indoor gateways, fan noise is an inevitable issue, which we have not paid

enough attention. Since it is proportional to the fifth power of the fan speed, a lower speed will

be very helpful. Besides, lower speed also saves a lot of power as fan power is a cubic function

of fan speed [119, 89]. For example, the total system active idle power of the reference gateway

is 2.83 W when the fan runs at 50% speed, while the fan power occupies 16.5%.

Compared to servers which are located in air conditioning rooms, the ambient tempera-

ture of gateways varies a lot. A good cooling approach should be feasible in most situations.

However, the current default fan control policy does not work well in high ambient tempera-

ture cases. Figure 6.1a demonstrates the CPU temperature variation of MistBench (See Sec-

tion 6.3.1) under 25◦C, 28◦C, 30◦C and 33◦C cases. The fan was set to full speed when the

CPU temperature reaches 63◦C and idle in other cases. There is an obvious temperature in-

creasing in the 25◦C and 28◦C cases, while in 30◦C and 33◦C cases, the temperature reached

the maximum value at the beginning. The ambient temperature greatly influences the device’s

thermal behavior. To clearly illustrate the fan cooling efficiency in each experimental case, we

compare the CPU temperature decreasing phrases in Figure 6.1b. We can see that to reach the

low temperature 56◦C, the fan working time was very different (from 61 s to 181 s) and the

88

40

45

50

55

60

65

1 31 61 91 121 151 181 211 241 271 301 331 361 391

CP
U
 T
em

pe
ra
tu
re
 (C

)

Time (s)

25 C 28 C 30 C 33 C

(a) The comparison of CPU temperature variation.

40

45

50

55

60

65

1 31 61 91 121 151 181

CP
U
 T
em

pe
ra
tu
re
 (C

)

Time (s)

25 C 28 C 30 C 33 C

(b) The comparison of fan cooling effects.

Figure 6.1: The CPU temperature of MistBench in different ambient temperature cases.

33◦C case did not make it. For high ambient temperature, the fan cooling efficiency decreased

a lot. The default fan control policy which set the same threshold without considering ambient

temperature can not effectively cool the device.

To reduce the noise and apply a lower fan speed under the same thermal constraints for

indoor gateways, we first built a thermal prediction model based on the previous CPU tem-

perature, the ambient temperature and the power dissipation of the four main components (big

cores, small cores, memory and GPU) of the reference gateway. We proposed Falcon, a thermal

control policy, according to the model and compared its performance with the default fan con-

89

figuration. Our evaluation result shows that Falcon can save 4.85% of the total system power

and reduce fan speed in 34% of the time on average. Moreover, to address the high temper-

ature environment thermal control issue, we first experimentally illustrated the impact of the

different ambient temperature from the temperature and power dissipation aspects. The active

idle power increased 6% in the 40◦C case compared with the 10◦C case and the CPU peak

temperature is proportional to the ambient temperature. Then we proposed a refined ambient

temperature aware thermal control policy which improves fan cooling effect by modifying the

temperature threshold and restrics generated heat through decreasing CPU frequency. The ther-

mal control ability is evaluated. Compared to the default fan configuration, Falcon can reduce

average temperature in 2.7-10 ◦C in high temperature environment.

6.2 Ambient Temperature Aware Thermal Control

In this section, we illustrate the thermal prediction model that estimates the CPU temper-

ature. Based on the model, the ambient temperature aware thermal control policy (Falcon) is

proposed to reduce the power dissipation and noise under the same thermal constraints. In

addition, comparing with default fan configuration, Falcon provides better cooling effects in

high ambient temperature situations. Note that we use degrees Celsius (◦C) when discuss tem-

perature in this section.

6.2.1 Thermal Prediction Model

Fan cooling is one of the forced convection approaches to transfer heat. In the heat transfer

theory [120], thermal resistance measures the ability to transfer the heat, thermal capacitance

refers the heat an object can store. Based on the energy balance [41], the thermal model is

described as:

C
dT
dt

+
T −Tamb

R
= Q

where C is the thermal capacitance (J/◦C), R is the system thermal resistance (◦C/W), T is

the CPU temperature (◦C), Tamb is the ambient temperature and Q is the total generated heat

(W). In this dissertation, we assume forced convection (fan) is the main heat transfer method

90

and ignore other approaches such as natural convection and heat conduction. Heat transfer by

convection is expressed by Newtons law of cooling:

Qconv = hA(Ts−T∞) (6.1)

where h is the convective heat transfer coefficient (W/(m2 ·◦C)), A is the surface area (m2).

Fan’s thermal resistance R f an = 1
hA . h measures how effectively a fluid transfers heat and it

is determined by many factors include fluid density, viscosity, velocity and so on. Theoreti-

cally, h can be estimated from Nusselt number (Nu), Reynolds number(Re) and Prandtl number

(Pr) [120].

Nu =
hL
k
, Re =

ρV L
µ

, Pr =
µCp

k

where parameters are: characteristic length L (m); fluid thermal conductivity k (W/m·◦C);

mass density ρ (kg/m3); velocity V (m/s); viscosity µ (N·s/m2); and specific heat capacity Cp

(J/kg·◦C). In the fan convection case, Nu = αRe1/2Pr1/3, α is a constant. Since the ambient

temperature influences the air density and our goal is to choose a proper fan speed, we keep

these two variables and others can be treated as constants. So,

h = f (ρ,V) = β (ρV)1/2

where β is a constant. Hence, we can choose the proper fan speed based on the required heat

transfer coefficient value.

By leveraging the approximation that dT
dt ≈

T (k+1)−T (k)
∆t , where T (k) stands for the temper-

ature of the kth unit time, the discrete-time thermal model can be expressed as following:

T (k+1) = (1− ∆t
C

hA)(T (k)−Tamb)+
∆t
C

α
′P(k)+Tamb (6.2)

where ∆t is the sampling interval. Heat is generated by the power, so we use α ′P to repre-

sent the Q, where α ′ is constant. Under the same sampling rate, ∆t
C α ′ is constant, 1− ∆t

C hA

changes with h. In our reference platform Odroid-XU+E, there are thermal sensors to log big

cores temperature and four power sensors for little core cluster, big core cluster, memory and

91

GPU. Hence, we use matrix P = [Plittle,Pbig,Pmem,PGPU]
T in the thermal model. The simplified

version is:

T (k+1) = A′(T (k)−Tamb)+B′P(k)+Tamb

where A′ is a function of fan speed and air density (as A′ = 1− ∆t
C hA) and B′ is a matrix that

contains constant parameters.

6.2.2 Thermal Control Policy Falcon

Generally, assume the thermal constraint is referred as Tre f , our goal is to select a proper

fan speed under the situation that T (k+1)≤ Tre f , ∀k ∈N. According to the thermal prediction

model, we can estimate future temperature. One of the important parameters is Tamb. Since

gateways may be deployed in different environments, we cannot assume Tamb is constant. For-

tunately, the ambient temperature value can be calculated from build-in CPU thermal sensor. In

the idle steady state, dT
dt = 0, so Tamb = T −RQ. The heat generated in the system idle state are

the same since the idle power does not change much. Besides, the system thermal resistance

is also fixed without enabling the fan. Hence, the value of RQ is irrelevant with environmen-

tal temperature. The system just needs input ambient temperature once, then it calculates and

stores the RQ value which can be used to estimate Tamb next idle time.

The current default fan configuration is monitoring thermal sensor data and operating at

specific speed (20%, 50% or 100% of full speed) if the temperature is over the pre-defined

thresholds. However, it does not work very well for IoT gateways. For indoor gateways, noise

is a key factor that needs to be considered. With our dynamic fan speed control policy Falcon,

the thermal prediction helps reduce fan overuse cases. In addition, the default fan configuration

is not suitable in high ambient temperature environment as presented in Section 6.3. Falcon

addresses the issue through two approaches. First, we decrease the Tre f to improve fan cooling

effect. Falcon adopts Tre f
′ as

Tre f
′ = Tre f − f (Tamb)

92

Ambient Temperature Estimation Thermal Prediction

Fan Speed & CPU Frequency

Thermal History

T(k), P(k)

𝑇"#$

Figure 6.2: The Falcon overview.

From equation 6.1 we see that if we use the same temperature threshold, the transferred heat

decreases in high ambient temperature cases since the ∆T is smaller. Hence, to maintain the

temperature difference, the threshold temperatures should be decreased accordingly. Another

approach to deal with the high ambient temperature environment is controlling generated heat.

Fan cooling effect is bound by the heat it can transfer in full speed case. So if the fan reaches

its limitation, we should consider reducing generated heat to maintain the thermal constraint.

Specifically, we adjust CPU frequency to reduce power, thereby controlling generated heat.

Figure 6.2 illustrates the basic flow of Falcon. The Ambient Temperature Estimation mod-

ule calculates current ambient temperature every time when the system is in idle state. Thermal

History is used to help decide which cooling approach will be used in high ambient tempera-

ture environment. If the CPU temperature quickly reaches the threshold Tre f , we should adjust

frequency to control generated heat. On the contrary, if there is an obvious temperature increas-

ing process, we can reduce the temperature threshold to enable fan early so that the previous

accumulated heat can be transferred before it contributes to increasing CPU temperature. In

that way, the system performance will not be influenced too much. Based on the thermal and

power data, the proper fan speed and CPU frequency (if possible) are estimated. To simplify

the calculation and decrease the overhead, we prefer to identify the parameters A′ and B′. Be-

sides, a table of discrete fan speed vi and its corresponding value of Ai
′ is kept in the system as

a reference. In Falcon, the T (k+1) is calculated from the lowest fan speed to the highest fan

speed, the one that satisfy T (k+1)≤ Tre f is chosen.

93

Figure 6.3: Experimental setup.

6.3 Evaluation

In this section, we first describe the experimental methodology and benchmarks. Then

the parameters in the thermal prediction model are identified followed by model validation.

Moreover, Fan speed control based on prediction model is first evaluated in different ambient

temperature cases on the aspect of thermal control and power dissipation. After presenting the

issue in high ambient environment, Falcon with refined approaches is evaluated.

6.3.1 Experimental Setup

In the experiments, we take Odroid-XU+E [46] as the reference smart gateway platform. Its

OS is Android 4.2 and the detailed specification is listed in the Table 6.1. The platform provides

power information of little core cluster, big core cluster, memory and GPU. The BK Precision

programmable power supply [54] is connected to power up the platform, which provides a

constant voltage of 5 V and a maximum current of 5 A. It records the current at a sample

frequency of 4 Hz. As Figure 6.3 shows, the ThermoStream ATS air forcing system [121] is

applied to control the ambient temperature and the platform board is in the sealed box under

94

SoC Samsung Exynos 5410
CPU Quad-core Cortex-A15, Quad-core Cortex-A7
Memory 2 GByte
Storage 16 GB eMMC flash
Fan 40*40*10 mm, 4000 RPM

Table 6.1: The specifications of Odroid-XU+E.

Benchmark Description Workload
BBench An automatic web page rendering tool, browser benchmark. High CPU usage
Vellamo Benchmark suits. Multi-core bench(parsec and sysbench) are

used.
multi-core CPU usage

MistBench A set of micro benchmarks to stress each hardware compo-
nent. Cache benchmark is used.

single core CPU usage

GFXBench An OpenGL benchmark for measuring graphics performance,
render quality and 3D graphics technologies.

High GPU usage

AndEBench Pro Comprehensive embedded system benchmark, the memory
and storage read/write benchmark are used.

High CPU usage, I/O

Table 6.2: The benchmarks.

the controlled environment.

We first choose the three ambient temperatures, 25◦C (77◦F), 15◦C (59◦F) and 35◦C (95◦F),

to evaluate their influence on the thermal control so that we get a general idea. The room

temperature normally is 25◦C. To include outdoor situations, we run experiments in 15◦C and

35◦C. In addition, to pay more attention on high ambient temperature environment in which

the default fan configuration works poorly, we also present the thermal control comparison in

28◦C (82◦F), 30◦C (86◦F) and 33◦C (91◦F) environment. The benchmarks [122, 123] used

in the experiments are presented in the Table 6.2. CPU is the critical hot spot for thermal

control, so the most benchmarks involve CPU test. Besides, smart gateways deal with data

communication, the memory and storage system are essential. Webpage normally is the UI.

Hence, we do the experiments on the five benchmarks.

6.3.2 Model Parameter Identification and Validation

As illustrated in Section 6.2, the unknown parameters are Ai for each fan speed vi and

matrix B which is the coefficient of the four components’ power. The T (k) and P(k) are read

directly from the corresponding sensors. In the implementation, the fan speed step is 10%

95

Figure 6.4: The comparison of model prediction value and sampling value.

(400 RPM) from 0% to 100%. The training benchmark is Super PI, which calculates π to a

specified number of digits. To measure the influence of different power inputs, the CPU and

GPU frequency are modified every thirty seconds when the application is running. The logged

data and the thermal prediction model are fed to the Matlab regression tool to identify the

parameters. The value of B is the average of all test runs. Figure 6.4 presents the difference

of the model predicted value and the sensor logged temperature of MistBench, the ambient

temperature is 25◦C. The average prediction error of the five benchmarks is 4% of the measured

value, which is acceptable.

To validate the ambient temperature estimation process, we recorded the CPU temperature

in different ambient temperature cases. Figure 6.5 illustrates the temperature information in

system idle state. There is a linear relationship of CPU temperature and ambient temperature.

So after each idle state phrase, we can adjust current ambient temperature.

6.3.3 Thermal Control and Power Evaluation with Fan

In Falcon, one of the goals is to use fan efficiently to reduce noise and power. The de-

creasing of fan speed leads to noise reduction, however, it may also cause temperature increas-

ing which influences leakage power. To analyze the total effect on the system power, we run

MistBench with different fan speeds and record the power information as showed in Figure 6.6.

Different with server case which system power mainly depends on CPU power in low fan speed

situations [119], the increase of the fan power dominates the total power on SoC platform. The

96

30
35
40
45
50
55
60
65
70
75

10 15 20 25 28 30 33 35 40 50

CP
U
Te
m
pe

ra
tu
re

(C
)

Ambient Temperature (C)

Temperature Linear	Trendline

Figure 6.5: The relationship of CPU temperature and ambient temperature in idle state.

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

10% 20% 40% 60% 80% 100%

Po
w
er
 (W

)

Fan Speed

Fan CPU Fan+CPU

Figure 6.6: The power of the CPU and fan under each fan speed.

difference of the CPU power in 10% and 100% fan speed case is less than 0.1 W. Hence, the

decreasing of fan power saves the total system power. For the leakage power, compared with

the 10◦C ambient temperature case , the system power increased 0.15 W which is 6% more in

the 40◦C case. The leakage power will be obvious if the temperature varies too much. In our

experiments, the temperature difference of default fan configuration and Falcon is normally

less than 10◦C. Hence, the influence caused by the leakage power can be ignored.

To evaluate Falcon, we compare its thermal control ability and total system power dissipa-

tion with the platform’s default fan configuration. In the default configuration, the fan runs at

97

Benchmark 15◦C 25◦C 35◦C
BBench 4.87% 2.17% 1%
Vellamo 4.1% 5.6% 3.2%
MistBench 6.1% 7.7% 2.9%
GFXBench 2.4% 4.88% 2.27%
AndEBench Pro 5.1% 3.9% 2.08%

Table 6.3: The power savings compared with the default fan configuration under different
ambient temperature.

20% speed when the CPU’s temperature passes 57◦C, the speed is increased to 50% and 100%

if the temperature is over 63◦C and 68◦C respectively. So, in the experiments, the Tre f was set

to 68◦C and the fan will run at full speed when the temperature is higher.

As the gateways are deployed in different environments, the performance in three ambient

temperature: 15◦C, 25◦C and 35◦C are evaluated. Table 6.3 demonstrates the power savings

compared with the default configuration for each benchmark. The power saving is the smallest

in the 35◦C case since the ambient temperature is high and there is no much space for fan

to reduce speed. It is very easy to pass the Tre f . For BBench and AndEBench, their power

savings in the 15◦C are the maximum among the three cases. The potential reason is that

their workloads are heavy and the fan is activated a lot even in low ambient temperature. The

average power saving in room temperature (25◦C) is 4.85%.

The power saving and noise reducing mainly come from decreasing fan speed. Next, we

illustrate the influence of Falcon on the thermal side. We take BBench as an example, other

benchmarks’ result are similar. Figure 6.7 presents the fan speed information, average tem-

perature and maximum temperature of BBench in different environments. The left y-axis is

the percentage of the total running time that each fan speed was activated. The right y-axis is

the CPU temperature. Aside from the default configuration, the No Fan data was measured

as the upper limit. With the ambient temperature increase, the 100% speed time increased to

adjust the temperature. The major saving comes from 50% and 20% speed time of the default

configuration. In our control policy Falcon, most of the time the fan is full speed or idle. When

there was other fan speeds appeared (as the 25◦C case), they are also less than 50% or 20%.

98

0

10

20

30

40

50

60

70

80

90

0%

20%

40%

60%

80%

100%

120%

140%

160%

No_Fan De Falcon No_Fan De Falcon No_Fan De Falcon

CP
U
 T
em

pe
ra
tu
re
 (C

)

Pe
rc
en

ta
ge
 o
f t
im

e

100% 100%‐50% 50% 50%‐20% 20%
20%‐0% 0% Avg Max

15 ° 25 ° 35°C CC

80

Figure 6.7: The fan speed distribution and thermal information of BBench. The dash line is
average temperature and solid line is maximum temperature. De refers the default fan config-
uration.

The noice reduction time is about 34% on average, and the 35◦C case has the least contribu-

tion. The consequence of fan speed decreasing is that the average and maximum temperature

of Falcon are higher than default configuration, range from 1◦C to 3◦C. Assuming 80◦C is the

critical point, Falcon is better than the default fan configuration and can reduce noise safely

within the thermal threshold.

6.3.4 Thermal Control in High Ambient Temperature Environment

As we see in the Figure 6.8, fan cannot provide the same cooling effects in different envi-

ronment. The default fan configuration and prediction model based approach both work poorly

in high ambient temperature case. The CPU max temperature is almost proportional to the

ambient temperature. One potential reason is that the initial temperatures are not the same in

different environments. To validate it, we include 35 25 case that represents the situation that

the benchmark runs in 35◦C environment with the initial temperature same with the 25◦C case.

The result shows the CPU temperature is still higher than the data in the 25◦C case, so the rea-

son that the higher initial CPU temperature leads to the cooling effect difference is excluded.

The high CPU temperature results are mainly caused by the ambient temperature.

In Section 6.2, Falcon adopts two approaches to address high ambient temperature situa-

99

40

50

60

70

80

90

15 25 35 35_25

CP
U
 Te

m
pe

ra
tu
re
 (C

)

Ambient Temperature (C)

Bbench Mist GFX ‐‐‐‐ Avg —Max

Figure 6.8: The comparison of CPU temperature in different ambient temperature cases. We
show the three benchmarks to keep the figure readable. The 35 25 refers to the case that in the
35◦C ambient temperature environment, the CPU temperature is cooled down to the same as
the initial temperature in the 25◦C case, then the benchmarks start to run.

tions. Basically, Falcon improves cooling effect by enabling fan early or restricts generated heat

through adjusting CPU frequency. The enhanced fan cooling effect is preferred since it does

not influence system performance. However, the approach does not always work well. Take

MistBench and Bbench as examples, Figure 6.9 demonstrates their CPU temperature compar-

ison of default fan configuration and modifying Tre f . Comparing with Bbench results, there

was an obvious temperature decrease in the Mist T ref’ case, and the average CPU tempera-

ture difference is 2.37◦C. For Bbench, the CPU temperature increased sharply at the beginning

and then fluctuated around 63◦C. Under the default configuration, the fan already run at 50%

speed and there is no obivious heat accumulation phrase. Hence, enabling fan early is not very

helpful for cooling purpose.

An important factor in the fan cooling approach is the value of the new threshold T ′re f . Fig-

ure 6.10 shows the MistBench thermal behavior under different T ′re f cases. We can see that the

low T ′re f makes the temperature increase slower. While with the benchmark continues running,

the temperature became steady around 56◦C and 54◦C. The T ref-3 and T ref-6 (T ref-9 and

T ref-12) cases had similar cooling effect in the long term. So far, the T ′re f value is decided

based on training experiments or experience, we have not found an effective way to choose

100

Figure 6.9: The CPU temperature comparison of default fan configuration and modifying Tre f
for MistBench and BBench in 28◦C environment. In this experiment, the Tre f is 8◦C smaller
than default configuration.

T ′re f .

For heavy workloads which generate a lot of heat from the beginning, Falcon maintains

system under the thermal constraints through controlling CPU frequency. In our experiment

platform Odroid-XU+E, there are two types of CPU cores: big core and LITTLE core. Their

power consumption are very different. To generate the least amount of heat with the consider

of performance loss, we chose largest frequency in LITTLE core (600 KHz) as the reduced fre-

quency value. So in our experiments, the CPU frequency was set to 600 KHz if the temperature

is over the threshold and set back if the temperature is less than the threshold.

We take AndEBenchPro as an example, it is a multi-thread benchmark. Figure 6.11 il-

lustrates the CPU temperature information under the default fan configuration, modifying Tre f

and controlling frequency approaches. As the figure shows, the CPU temperature sharply in-

creased from 62◦C to 75◦C, the modifying Tre f approach did not improve cooling effect as

the fan ran in full speed in the most time in both T ′re f and default cases. On the contrary, the

frequency controlling approach works well. Comparing with the average temperature of 76◦C

in default case, the average temperature was only 61.4◦C after restrict CPU frequency. How-

ever, the drawbacks of the approach is the performance loss, it took 50% more time to finish

101

44

46

48

50

52

54

56

58

60

1 31 61 91 121 151 181 211 241 271 301 331 361 391 421 451 481 511

CP
U	
Te
m
pe

ra
tu
re
	(C
)

Time	(s)

T_ref-3 T_ref-6 T_ref-9 T_ref-12

Figure 6.10: The CPU temperature comparison under different Tre f value for MistBench in
28◦C environment. For example, T ref-3 refers the threshold is 3◦C smaller than default con-
figuration.

the benchmark. Hence, when use the controlling frequency approach, we need to consider the

characteristics of the workload and workload history. If heavy workload only last a few sec-

onds, we do not need to enable control frequency approach. While if heavy workload continues

running, we should sacrifice the performance to avoide burnning the device.

In addition, we also evaluated how long to stay in high (low) frequency before checking the

current status. Similarly, it is a tradeoff between performance and temperature. The longer the

system stay in high (low) frequency, the higher the temperature increase (decrease). The CPU

temperature changes fast based on the power dissipation, so normally the temperature drops

below the threshold after 1s (Falcon temperature sensor sampling time) in low CPU frequency.

Hence, for simplicity, Falcon checks and modifies CPU frequency in its temperature sampling

rate.

6.4 Summary

In this chapter, we presented Falcon, an ambient temperature aware thermal control policy.

Compared with the default fan configuration, Falcon can reduce fan speed and save total sys-

tem power with no performance loss for indoor gateways. In addition, Falcon is more adaptive

in various environments. It works more effectively than the default configuration in high ambi-

102

40

45

50

55

60

65

70

75

80

85

1 21 41 61 81 101 121 141 161 181 201 221 241

CP
U	
Te
m
pe

ra
tu
re
	(C
)

Time	(s)

Default T_ref' Control	 Freq

Figure 6.11: The comparison of CPU temperature of AndEBench under default configuration,
modifying Tre f (8◦C smaller) and controlling CPU frequency in 33◦C environment.

ent temperature environment. To achieve that, we first built a thermal prediction model which

considers the ambient temperature to predict the CPU temperature at runtime and based on that

Falcon tunes the fan speed proactively under the thermal constraints. The evaluation shows

that the average power saving is 4.85%. Moreover, we experimentally illustrated the influence

of ambient temperature on the thermal control ability. Falcon addresses high ambient temper-

ature issue through improving fan cooling effect and restriction power dissipation. With the

modification of the reference temperature Tre f
′, fan is enabled early to transfer heat during the

CPU temperature increasing phrase. For heavy workloads, the CPU frequency is dynamically

modified to control the generated heat. The average temperature can be decreased as high as

10◦C with certain performance loss.

103

CHAPTER 7 CONCLUSIONS

Energy management is a very important issue for mobile devices. With the devices be-

come more and more powerful, their requirement for energy also greatly increases. However,

compared with the improvement of mobile hardware, the battery development is too slow. In

addition, as the result of high power density, the thermal control is another issue we need to

solve urgently. Hence, in this dissertation, we studied how to provide system support for en-

ergy efficient mobile computing. Basically, we analyzed main components during a general

user interaction scenario, which include user behavior, the power dissipation of hardware com-

ponents, operating system level scheduling and thermal control.

First, we analyzed the influence of user behavior on smartphone’s energy consumption.

We implemented user behavior monitoring application which logs the usage information of

applications and device state (WiFi on/off, battery level, charging state, etc.). With the collected

usage data and public LiveLab trace, we classified users into six types based on their application

usage pattern through Fuzzy C-Means clustering algorithm. A battery prediction model is

built to estimate the battery life based on user behavior and hardware usage information. The

theoretical battery life and potential extended battery time for each user type, with and without

hardware improvement, have been illustrated. The results show that we can double the battery

time for some users if they focus on top applications and suspend rarely used ones.

Then, to figure out why slightly usage change may cause considerable energy difference,

we built a power profiling tool Bugu to analyze where does the power go. Bugu analyzes power

and event information for specific applications and it also contains system level information.

We implemented Bugu on Android platform. It has high accuracy (95% on average) and low

overhead (2.52% on average), which make it a good online power profiler. We studied 100

applications’ power information using Bugu. The energy consumption of applications with

same functionality varies a lot. Several implications are derived based on the observations. For

examples, radio service and interrupts generated by sensors waste a lot energy since system

cannot enter a deep sleep state. The power management API wakelock is abused in several

104

applications. The observations are useful for many energy/power related mobile researchers

and developers.

Additionally, we investigated the energy saving opportunities in modern hardware design,

heterogeneous platform. Heterogeneous platform is a promising trend in the near future since

they can provide high performance with low power dissipation on average. We take ARM’s

big.LITTLE platforms Odroid-XU+E and Odroid-XU3 as experimental devices, both of them

contains two types of CPU cores (high performance big core and low power LITTLE core). We

compared their energy consumption with homogeneous platforms under different benchmarks

which include popular mobile applications (YouTube, PhotoShop, etc.) and NAS Parallel

Benchmarks (NPB). The results show that heterogeneous platforms indeed have great potential

for energy saving which mostly comes from idle and low workload situations. The migration

overhead is negligible. However, the scheduling is a big issue since the wrong core may cause

up to 30% more energy consumption. The situation is not restricted in ARM big.LITTLE plat-

form, it is also applied in other heterogeneous architectures including CPU-DSP, CPU-GPU,

etc. Whether we can obtain the energy saving benefit from heterogeneity is mainly depends on

the scheduling results and we also need to prepare for the penalty.

Finally, we studied thermal management system and developed an ambient temperature

aware thermal control policy Falcon. As the devices become more and more powerful, their

power dissipation also increases sharply which leads to the high temperature. The temperature

problem becomes even worse due to the small size of the devices. Hence, we focus on thermal

management system which is also closely related to system energy consumption. We take fan

as an exemplary cooling method since it is cheap and can be installed without hardware re-

design. Besides, with the blooming of Internet of Things (IoT), there is a great need for a smart

gateway that can handle part of computation tasks with higher requirements on temperature as

some are outdoor gateways. Hence, we take smart gateway with fan as our example platform to

develop thermal control policy. Falcon is a hybrid method which leverages fan to increase heat

105

dissipation and DVFS to restrict heat generation. The experiments show that cooling method

itself also consume a lot of energy. Hence, we built a thermal prediction model which consid-

ers components’ power dissipation, temperature history and ambient temperature to estimate

future temperature. Based on that, Falcon proactively tune the fan speed and it can save 4.85%

total system power and reduce noise in 34% of the time on average comparing with the default

fan configuration. In addition, the ability to adjust CPU frequency makes it more adaptive to

high ambient temperature environment.

106

CHAPTER 8 FUTURE WORK

In the future, it will be beneficial to investigate how to extend and improve our approaches

to further increase energy efficiency of modern mobile devices from the system level.

First, we should pay more attention to user behavior. The final goal of developing kinds

of devices and saving energy is to better serve users. Hence, we can from the user side to

figure out what improvement we prefer. In the dissertation, we built user behavior monitoring

application and collected more than ten students’ usage information. One improvement is

to collect diversity users’ data in a longer period, so that we may find more and finer usage

patterns that provide energy saving possibilities. In addition, our current analysis process is

done offline. After mining the users’ data, we give suggestions that can increase battery life.

As one extension, the process can be finished online if we carefully control the overhead. In

this situation, it will build a record for each user and becomes more personal so that we can

have better performance. Besides, the data can also be used to study the user behavior evolving

process and make devices more smart.

Second, the scheduling algorithm in heterogeneous platforms should be well-studied. In

the dissertation, we took ARM big.LITTLE as an example to investigate the benefits of hetero-

geneity. With more and more specialized mobile devices are developed, such as game hamlet,

health monitoring wearable devices and so on, heterogeneous platforms will dominate the mar-

ket. CPU will be released from kinds of small tasks which should be the responsibility of other

processors. Hence, we need to figure out how to improve the system level energy efficiency

in modern hardware architectures. Intuitively, we can compare the energy consumption of all

possible scheduling options and apply the optimal one. However, it will not always be feasible

due to the size of the options and the overhead. How to find good scheduling indicators that

satisfy our requirements should be solved soon.

Third, the thermal control policy Falcon we proposed in the dissertation can also be applied

to other cooling methods and devices with enough training experiments. Falcon is based on a

thermal prediction model to tune the fan proactively. The model also works for other cooling

107

approaches, e.g. water cooling. Training experiments or empirical data should be needed to

estimate the cooling efficiency of the cooling method. Besides, for high ambient temperature

environment, new feasible frequency should be evaluated for different devices. In summary,

Falcon can be used in general situations, but the value of the parameters should be re-evaluated.

We can extend it to popular cooling methods and devices.

Last, we can work on the cooperation of the operating system and upper layer applications

to save system energy. In the dissertation, our approaches mainly focus on how the system

adjusts itself to satisfy the applications and users’ requirements. From another viewpoint, the

system can do better if it knows more internal things about applications rather than monitoring

their behavior. Hence, it will be very helpful if we can provide some APIs to enhance the coop-

eration of operating system and applications. System can correctly predict future information

and smoothly configure itself without wasting energy.

108

REFERENCES

[1] Rebecca Borison. Battery life a growing issue as more activities go mobile. http:

//www.mobilemarketer.com/cms/news/software-technology/17080.html, Jan

2014.

[2] Number of android applications. http://www.appbrain.com/stats/

number-of-android-apps.

[3] Nathan Ingraham. Apple’s app store has passed 100 billion app down-

loads, June 2015. http://www.theverge.com/2015/6/8/8739611/

apple-wwdc-2015-stats-update.

[4] The Statistics Portal. Number of mobile app store downloads worldwide

from 2011 to 2017. http://www.statista.com/statistics/271644/

worldwide-free-and-paid-mobile-app-store-downloads/.

[5] Microsoft. Microsoft hololens. https://www.microsoft.com/

microsoft-hololens/en-us.

[6] Rob Chandhok. The future of wireless networking, 2014. Keynote.

[7] Internet of things market statistics c 2015. http://www.ironpaper.com/webintel/articles/internet-

things-market-statistics-2015/.VmiPoXarSUk.

[8] NVIDIA. The benefits of multiple cpu cores in mobile de-

vices. http://www.nvidia.com/content/PDF/tegra_white_papers/

Benefits-of-Multi-core-CPUs-in-Mobile-Devices_Ver1.2.pdf.

[9] Nikola Pucovic. Cpu alternatives for future high-performance systems.

http://web.cse.ohio-state.edu/~panda/6422/class_slides/BSC_CPU_

alternatives.pdf. Barcelona Supercomputing Center.

[10] Steven Sande. A glimpse of the future: 5g wireless technology

109

in the labs now, May 2013. http://www.tuaw.com/2013/05/13/

a-glimpse-of-the-future-5g-wireless-technology-in-the-labs-now.

[11] Daniel P. battery life to be the single main gripe of today’s mo-

bile phone user, Nov 2013. http://www.phonearena.com/news/

Survey-shows-battery-life-to-be-the-single-main-gripe-of-/

todays-mobile-phone-user\textunderscoreid49818.

[12] Alan Murray. What do consumers want? better bat-

teries, not wearables. http://fortune.com/2015/01/07/

what-do-consumers-want-better-batteries-not-wearables/, Jan 2015.

[13] Matthew Gast. Battery technology is not keeping pace with com-

puting power demands. http://radar.oreilly.com/2014/03/

battery-technology-is-not-keeping-pace-with-computing-/

power-demands.html, Mar 2014.

[14] Greg Semeraro, Grigorios Magklis, Rajeev Balasubramonian, David H. Albonesi, Sand-

hya Dwarkadas, and Michael L. Scott. Energy-efficient processor design using multiple

clock domains with dynamic voltage and frequency scaling. In Proceedings of the 8th In-

ternational Symposium on High-Performance Computer Architecture, HPCA ’02, pages

29–, Washington, DC, USA, 2002. IEEE Computer Society.

[15] Yi-Chu Wang and Kwang-Ting Cheng. Energy and performance characterization of

mobile heterogeneous computing. In Signal Processing Systems (SiPS), 2012 IEEE

Workshop on, pages 312–317, Oct 2012.

[16] Chenguang Shen, Supriyo Chakraborty, Kasturi Rangan Raghavan, Haksoo Choi, and

Mani B. Srivastava. Exploiting processor heterogeneity for energy efficient context in-

ference on mobile phones. In Proceedings of the Workshop on Power-Aware Computing

and Systems, HotPower ’13, pages 9:1–9:5, New York, NY, USA, 2013. ACM.

110

[17] ACPI. Advanced Configuration Power Interface. http://www.acpi.info/.

[18] Abhinav Pathak, Y.Charlie Hu, and Ming Zhang. Where is the energy spent inside my

app?: fine grained energy accounting on smartphones with eprof. In Proceedings of the

7th ACM european conference on Computer Systems, EuroSys ’12, pages 29–42, New

York, NY, USA, 2012. ACM.

[19] Feng Qian, Zhaoguang Wang, Alexandre Gerber, Zhuoqing Mao, Subhabrata Sen, and

Oliver Spatscheck. Profiling resource usage for mobile applications: A cross-layer ap-

proach. In Proceedings of the 9th International Conference on Mobile Systems, Appli-

cations, and Services, MobiSys ’11, pages 321–334, New York, NY, USA, 2011. ACM.

[20] Onur Sahin and Ayse K. Coskun. On the impacts of greedy thermal management in

mobile devices. Embedded Systems Letters, IEEE, 7(2):55–58, June 2015.

[21] Qing Xie, Jaemin Kim, Yanzhi Wang, Donghwa Shin, Naehyuck Chang, and Massoud

Pedram. Dynamic thermal management in mobile devices considering the thermal cou-

pling between battery and application processor. In Proceedings of the International

Conference on Computer-Aided Design, ICCAD ’13, pages 242–247, Piscataway, NJ,

USA, 2013. IEEE Press.

[22] Luca Benini. Iis-projects, thermal control of mobile devices. http://iis-projects.

ee.ethz.ch/index.php/Thermal_Control_of_Mobile_Devices.

[23] Broadcom Corp. Krishna Sekar. Power and thermal challenges in mo-

bile devices, 2013. http://www.sigmobile.org/mobicom/2013/MobiCom2013_

IndustrialTalks_KrishnaSekar.pdf.

[24] Mohammad Mosharraf Ali. Yu team launches yu thermal control to tackle heating issues

with yureka, yuphoria and yureka plus. http://www.yurekasupport.com/2015/09/

yu-thermal-control-app-to-fix-overheating-issues.html.

[25] Hossein Falaki, Ratul Mahajan, Srikanth Kandula, Dimitrios Lymberopoulos, Ramesh

111

Govindan, and Deborah Estrin. Diversity in smartphone usage. In Proceedings of the

8th International Conference on Mobile Systems, Applications, and Services, MobiSys

’10, pages 179–194, New York, NY, USA, 2010. ACM.

[26] Qiang Xu, Jeffrey Erman, Alexandre Gerber, Zhuoqing Mao, Jeffrey Pang, and Shobha

Venkataraman. Identifying diverse usage behaviors of smartphone apps. In Proceedings

of the 2011 ACM SIGCOMM Conference on Internet Measurement Conference, IMC

’11, pages 329–344, New York, NY, USA, 2011. ACM.

[27] Earl Oliver. The challenges in large-scale smartphone user studies. In Proceedings

of the 2Nd ACM International Workshop on Hot Topics in Planet-scale Measurement,

HotPlanet ’10, pages 5:1–5:5, New York, NY, USA, 2010. ACM.

[28] Ahmad Rahmati, Chad Tossell, Clayton Shepard, Philip Kortum, and Lin Zhong. Ex-

ploring iphone usage: The influence of socioeconomic differences on smartphone adop-

tion, usage and usability. In Proceedings of the 14th International Conference on

Human-computer Interaction with Mobile Devices and Services, MobileHCI ’12, pages

11–20, New York, NY, USA, 2012. ACM.

[29] Taliver Heath, Bruno Diniz, Enrique V. Carrera, Wagner Meira, Jr., and Ricardo Bian-

chini. Energy conservation in heterogeneous server clusters. In Proceedings of the

Tenth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,

PPoPP ’05, pages 186–195, New York, NY, USA, 2005. ACM.

[30] Jennifer Burge, Parthasarathy Ranganathan, and Janet L. Wiener. Cost-aware schedul-

ing for heterogeneous enterprise machines (cash’em). In Proceedings of the 2007 IEEE

International Conference on Cluster Computing, CLUSTER ’07, pages 481–487, Wash-

ington, DC, USA, 2007. IEEE Computer Society.

[31] Faraz Ahmad, Srimat T. Chakradhar, Anand Raghunathan, and T. N. Vijaykumar.

Tarazu: Optimizing mapreduce on heterogeneous clusters. SIGARCH Comput. Archit.

112

News, 40(1):61–74, March 2012.

[32] Christina Delimitrou and Christos Kozyrakis. Paragon: Qos-aware scheduling for het-

erogeneous datacenters. In Proceedings of the Eighteenth International Conference on

Architectural Support for Programming Languages and Operating Systems, ASPLOS

’13, pages 77–88, New York, NY, USA, 2013. ACM.

[33] Jason Mars and Lingjia Tang. Whare-map: Heterogeneity in ”homogeneous”

warehouse-scale computers. In Proceedings of the 40th Annual International Sympo-

sium on Computer Architecture, ISCA ’13, pages 619–630, New York, NY, USA, 2013.

ACM.

[34] Rakesh Kumar, Keith I. Farkas, Norman P. Jouppi, Parthasarathy Ranganathan, and

Dean M. Tullsen. Single-isa heterogeneous multi-core architectures: The potential for

processor power reduction. In Proceedings of the 36th Annual IEEE/ACM International

Symposium on Microarchitecture, MICRO 36, pages 81–, Washington, DC, USA, 2003.

IEEE Computer Society.

[35] Muhammad A. Awan and Stefan M. Petters. Energy-aware partitioning of tasks onto a

heterogeneous multi-core platform. In Real-Time and Embedded Technology and Appli-

cations Symposium (RTAS), 2013 IEEE 19th, pages 205–214, April 2013.

[36] Jason Cong and Bo Yuan. Energy-efficient scheduling on heterogeneous multi-core

architectures. In Proceedings of the 2012 ACM/IEEE International Symposium on Low

Power Electronics and Design, ISLPED ’12, pages 345–350, New York, NY, USA,

2012. ACM.

[37] Rajiv Nishtala, Daniel Mossé, and Vinicius Petrucci. Energy-aware thread co-location in

heterogeneous multicore processors. In Proceedings of the Eleventh ACM International

Conference on Embedded Software, EMSOFT ’13, pages 21:1–21:9, Piscataway, NJ,

USA, 2013. IEEE Press.

113

[38] Guohui Wang, Yingen Xiong, J. Yun, and J.R. Cavallaro. Accelerating computer vision

algorithms using opencl framework on the mobile gpu - a case study. In Acoustics,

Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on, pages

2629–2633, May 2013.

[39] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and Ashwin Patti.

Clonecloud: Elastic execution between mobile device and cloud. In Proceedings of the

Sixth Conference on Computer Systems, EuroSys ’11, pages 301–314, New York, NY,

USA, 2011. ACM.

[40] Sokol Kosta, Andrius Aucinas, Pan Hui, Richard Mortier, and Xinwen Zhang. Thinkair:

Dynamic resource allocation and parallel execution in the cloud for mobile code offload-

ing. In INFOCOM, 2012 Proceedings IEEE, pages 945–953, March 2012.

[41] David Brooks, Robert P. Dick, Russ Joseph, and Li Shang. Power, thermal, and relia-

bility modeling in nanometer-scale microprocessors. Micro, IEEE, 27(3):49–62, May

2007.

[42] Matt Skach, Manish Arora, Chang-Hong Hsu, Qi Li, Dean Tullsen, Lingjia Tang, and

Jason Mars. Thermal time shifting: Leveraging phase change materials to reduce cooling

costs in warehouse-scale computers. In Proceedings of the 42Nd Annual International

Symposium on Computer Architecture, ISCA ’15, pages 439–449, New York, NY, USA,

2015. ACM.

[43] Yanwei Zhang, Yefu Wang, and Xiaorui Wang. Testore: Exploiting thermal and en-

ergy storage to cut the electricity bill for datacenter cooling. In Network and service

management (cnsm), 2012 8th international conference and 2012 workshop on systems

virtualiztion management (svm), pages 19–27, Oct 2012.

[44] Kai Ma Wenli Zheng and Xiaorui Wang. Exploiting thermal energy storage to reduce

data center capital and operating expenses. In Proceedings of the IEEE 19th Interna-

114

tional Symposium on High-Performance Computer Architecture, pages 132–141, Feb

2014.

[45] Doug Garday and Jens Housley. Thermal storage system provides emergency data center

cooling. In White Paper Intel Information Technology, Sep 2007.

[46] Hardkernel. Odroid xu+e. http://www.hardkernel.com/main/products/prdt_

info.php?g_code=G137463363079.

[47] Tingxin Yan, David Chu, Deepak Ganesan, Aman Kansal, and Jie Liu. Fast app launch-

ing for mobile devices using predictive user context. In Proceedings of the 10th Interna-

tional Conference on Mobile Systems, Applications, and Services, MobiSys ’12, pages

113–126, New York, NY, USA, 2012. ACM.

[48] Zhenqiu Huang, Bo-Lung Tsai, Jyun-Jhe Chou, Chun-Yuan Chen, Chun-Han Chen,

Ching-Chi Chuang, Kwei-Jay Lin, and Chi-Sheng Shih. Context and user behavior

aware intelligent home control using wukong middleware. In Consumer Electronics

- Taiwan (ICCE-TW), 2015 IEEE International Conference on, pages 302–303, June

2015.

[49] Jason Flinn and M. Satyanarayanan. Powerscope: A tool for profiling the energy usage

of mobile applications. In WMCSA ’99: Proceedings of the Second IEEE Workshop

on Mobile Computer Systems and Applications, page 2, Washington, DC, USA, 1999.

IEEE Computer Society.

[50] Rong Ge, Xizhou Feng, Shuaiwen Song, Hung-Ching Chang, Dong Li, and Kirk W.

Cameron. Powerpack: Energy profiling and analysis of high-performance systems and

applications. IEEE Trans. Parallel Distrib. Syst., 21(5):658–671, 2010.

[51] Russ Joseph, David Brooks, and Margaret Martonosi. Live, runtime power measure-

ments as a foundation for evaluating power/performance tradeoffs. In In Workshop on

Complexity Effectice Design WCED, held in conjunction with ISCA-28. Jun 2001, June

115

2001.

[52] Russ Joseph and Margaret Martonosi. Run-time power estimation in high performance

microprocessors. In Proceedings of the 2001 international symposium on Low power

electronics and design, ISLPED ’01, pages 135–140, New York, NY, USA, 2001. ACM.

[53] Monsoon Solution Inc. Power Monitor. http://www.msoon.com/.

[54] B&K Precision Corp. BP Precision. http://www.bkprecision.com/. Model 1785B.

[55] Lide Zhang, Birjodh Tiwana, Zhiyun Qian, Zhaoguang Wang, Robert P. Dick, Zhuo-

qing Morley Mao, and Lei Yang. Accurate online power estimation and automatic bat-

tery behavior based power model generation for smartphones. In Proceedings of the

eighth IEEE/ACM/IFIP international conference on Hardware/software codesign and

system synthesis, CODES/ISSS ’10, pages 105–114, New York, NY, USA, 2010. ACM.

[56] Justin Manweiler and Romit Roy Choudhury. Avoiding the rush hours: Wifi energy

management via traffic isolation. In Proceedings of the 9th International Conference on

Mobile Systems, Applications, and Services, MobiSys ’11, pages 253–266, New York,

NY, USA, 2011. ACM.

[57] Wonwoo Jung, Chulkoo Kang, Chanmin Yoon, Donwon Kim, and Hojung Cha. Devs-

cope: A nonintrusive and online power analysis tool for smartphone hardware compo-

nents. In Proceedings of the Eighth IEEE/ACM/IFIP International Conference on Hard-

ware/Software Codesign and System Synthesis, CODES+ISSS ’12, pages 353–362, New

York, NY, USA, 2012. ACM.

[58] Abhinav Pathak, Y. Charlie Hu, Ming Zhang, Paramvir Bahl, and Yi-Min Wang. Fine-

grained power modeling for smartphones using system call tracing. In Proceedings of

the sixth conference on Computer systems, EuroSys ’11, pages 153–168, New York, NY,

USA, 2011. ACM.

[59] Ravi A. Giri and Anand Vanchi. Increasing data center efficiency with server power

116

measurements. Technical report, Intel Information Technology, 2010.

[60] International Business Machines Corporation. IBM PowerExecutive. http:

//www-03.ibm.com/systems/management/director/about/director52/

extensions/powerexec.html.

[61] John Zedlewski, Sumeet Sobti, Nitin Garg, Fengzhou Zheng, Arvind Krishnamurthy,

and Randolph Wang. Modeling hard-disk power consumption. In FAST ’03: Proceed-

ings of the 2nd USENIX Conference on File and Storage Technologies, pages 217–230,

Berkeley, CA, USA, 2003. USENIX Association.

[62] Ramon Bertran, Marc Gonzalez, Xavier Martorell, Nacho Navarro, and Eduard

Ayguade. Decomposable and responsive power models for multicore processors us-

ing performance counters. In Proceedings of the 24th ACM International Conference on

Supercomputing, pages 147–158. ACM Press, 2010.

[63] Rodrigo Fonseca, Prabal Dutta, Philip Levis, and Ion Stoica. Quanto: tracking energy

in networked embedded systems. In Proceedings of the 8th USENIX conference on

Operating systems design and implementation, OSDI’08, pages 323–338, Berkeley, CA,

USA, 2008. USENIX Association.

[64] Mian Dong and Lin Zhong. Self-constructive high-rate system energy modeling for

battery-powered mobile systems. In Proceedings of the 9th international conference on

Mobile systems, applications, and services, MobiSys ’11, pages 335–348, New York,

NY, USA, 2011. ACM.

[65] Chanmin Yoon, Dongwon Kim, Wonwoo Jung, Chulkoo Kang, and Hojung Cha. App-

scope: Application energy metering framework for android smartphones using kernel

activity monitoring. In Proceedings of the 2012 USENIX Conference on Annual Tech-

nical Conference, USENIX ATC’12, pages 36–36, Berkeley, CA, USA, 2012. USENIX

Association.

117

[66] Shinan Wang, Youhuizi Li, Weisong Shi, Lingjun Fan, and Abhishek Agrawal. Sa-

fari: Function-level power analysis using automatic instrumentation. In Energy Aware

Computing, 2012 International Conference on, pages 1–6, Dec 2012.

[67] Tao Li and Lizy Kurian John. Run-time modeling and estimation of operating system

power consumption. SIGMETRICS Perform. Eval. Rev., 31(1):160–171, 2003.

[68] Heng Zeng, Carla S. Ellis, Alvin R. Lebeck, and Amin Vahdat. Ecosystem: managing

energy as a first class operating system resource. SIGPLAN Not., 37(10):123–132, 2002.

[69] David C. Snowdon, Etienne Le Sueur, Stefan M. Petters, and Gernot Heiser. Koala:

a platform for os-level power management. In Proceedings of the 4th ACM European

conference on Computer systems, EuroSys ’09, pages 289–302, New York, NY, USA,

2009. ACM.

[70] Jason Flinn and M. Satyanarayanan. Energy-aware adaptation for mobile applications.

In Proceedings of the seventeenth ACM symposium on Operating systems principles,

SOSP ’99, pages 48–63, New York, NY, USA, 1999. ACM.

[71] Narseo Vallina-Rodriguez and Jon Crowcroft. Erdos: achieving energy savings in mo-

bile os. In Proceedings of the sixth international workshop on MobiArch, MobiArch

’11, pages 37–42, New York, NY, USA, 2011. ACM.

[72] Stephen M. Rumble, Ryan Stutsman, Philip Levis, David Mazières, and Nickolai Zel-

dovich. Apprehending joule thieves with cinder. In Proceedings of the 1st ACM work-

shop on Networking, systems, and applications for mobile handhelds, MobiHeld ’09,

pages 49–54, New York, NY, USA, 2009. ACM.

[73] Arjun Roy, Stephen M. Rumble, Ryan Stutsman, Philip Levis, David Mazières, and

Nickolai Zeldovich. Energy management in mobile devices with the cinder operating

system. In Proceedings of the sixth conference on Computer systems, EuroSys ’11,

pages 139–152, New York, NY, USA, 2011. ACM.

118

[74] Mikkel B. Kjaergaard, Jakob Langdal, Torben Godsk, and Thomas Toftkjaer. Demon-

strating entracked a system for energy-efficient position tracking for mobile devices. In

Proceedings of the 12th ACM international conference adjunct papers on Ubiquitous

computing, Ubicomp ’10 Adjunct, pages 367–368, New York, NY, USA, 2010. ACM.

[75] Eduardo Cuervo, Aruna Balasubramanian, Dae ki Cho, Alec Wolman, Stefan Saroiu,

Ranveer Chandra, and Paramvir Bahl. Maui: Making smartphones last longer with

code offload. In Proceedings of the 8th international conference on Mobile systems,

applications, and services, MobiSys ’10, pages 49–62, New York, NY, USA, 2010.

ACM.

[76] Ran Duan, Mingsong Bi, and Chris Gniady. Exploring memory energy optimizations in

smartphones. In Green Computing Conference and Workshops (IGCC), 2011 Interna-

tional, pages 1 –8, Jul 2011.

[77] Trevor Pering, Yuvraj Agarwal, Rajesh Gupta, and Roy Want. Coolspots: Reducing

the power consumption of wireless mobile devices with multiple radio interfaces. In

Proceedings of the 4th International Conference on Mobile Systems, Applications and

Services, MobiSys ’06, pages 220–232, New York, NY, USA, 2006. ACM.

[78] Eric Rozner, Vishnu Navda, Ramachandran Ramjee, and Shravan Rayanchu. Napman:

Network-assisted power management for wifi devices. In Proceedings of the 8th In-

ternational Conference on Mobile Systems, Applications, and Services, MobiSys ’10,

pages 91–106, New York, NY, USA, 2010. ACM.

[79] Bodhi Priyantha, Dimitrios Lymberopoulos, and Jie Liu. Enabling energy efficient con-

tinuous sensing on mobile phones with littlerock. In Proceedings of the 9th ACM/IEEE

International Conference on Information Processing in Sensor Networks, IPSN ’10,

pages 420–421, New York, NY, USA, 2010. ACM.

[80] Felix Xiaozhu Lin, Zhen Wang, and Lin Zhong. K2: A mobile operating system for

119

heterogeneous coherence domains. SIGARCH Comput. Archit. News, 42(1):285–300,

February 2014.

[81] Aaron Carroll and Gernot Heiser. Mobile multicores: Use them or waste them. SIGOPS

Oper. Syst. Rev., 48(1):44–48, May 2014.

[82] Aaron Carroll and Gernot Heiser. Unifying dvfs and offlining in mobile multicores.

2014.

[83] Yuhao Zhu and Vijay Janapa Reddi. High-performance and energy-efficient mobile web

browsing on big/little systems. In Proceedings of the 2013 IEEE 19th International

Symposium on High Performance Computer Architecture (HPCA), HPCA ’13, pages

13–24, Washington, DC, USA, 2013. IEEE Computer Society.

[84] Ehsan Pakbaznia and Massoud Pedram. Minimizing data center cooling and server

power costs. In Proceedings of the 2009 ACM/IEEE International Symposium on Low

Power Electronics and Design, ISLPED ’09, pages 145–150, New York, NY, USA,

2009. ACM.

[85] Raid Ayoub, Shervin Sharifi, and Tajana Simunic Rosing. Gentlecool: Cooling aware

proactive workload scheduling in multi-machine systems. In Proceedings of the Con-

ference on Design, Automation and Test in Europe, DATE ’10, pages 295–298, 3001

Leuven, Belgium, Belgium, 2010. European Design and Automation Association.

[86] Zahra Abbasi, Georgios Varsamopoulos, and Sandeep K. S. Gupta. Thermal aware

server provisioning and workload distribution for internet data centers. In Proceedings

of the 19th ACM International Symposium on High Performance Distributed Computing,

HPDC ’10, pages 130–141, New York, NY, USA, 2010. ACM.

[87] Ehsan Pakbaznia, Mohammad Ghasemazar, and Massoud Pedram. Temperature-aware

dynamic resource provisioning in a power-optimized datacenter. In Proceedings of the

Conference on Design, Automation and Test in Europe, DATE ’10, pages 124–129, 3001

120

Leuven, Belgium, Belgium, 2010. European Design and Automation Association.

[88] R.K. Sharma, C.E. Bash, C.D. Patel, R.J. Friedrich, and J.S. Chase. Balance of power:

dynamic thermal management for internet data centers. Internet Computing, IEEE,

9(1):42–49, Jan 2005.

[89] Hiroshi Endo, Hiroyoshi Kodama, Hiroyuki Fukuda, Toshio Sugimoto, Takashi Horie,

and Masao Kondo. Cooperative control architecture of fan-less servers and fresh-air

cooling in container servers for low power operation. In Proceedings of the Workshop

on Power-Aware Computing and Systems, HotPower ’13, pages 4:1–4:5, New York, NY,

USA, 2013. ACM.

[90] Zhenhua Liu, Yuan Chen, Cullen Bash, Adam Wierman, Daniel Gmach, Zhikui Wang,

Manish Marwah, and Chris Hyser. Renewable and cooling aware workload management

for sustainable data centers. In Proceedings of the 12th ACM SIGMETRICS/PERFOR-

MANCE Joint International Conference on Measurement and Modeling of Computer

Systems, SIGMETRICS ’12, pages 175–186, New York, NY, USA, 2012. ACM.

[91] ARM. big.LITTLE Processing. http://www.arm.com/products/processors/

technologies/biglittleprocessing.php.

[92] Young Geun Kim, Minyong Kim, Jae Min Kim, and Sung Woo Chung. M-dtm:

Migration-based dynamic thermal management for heterogeneous mobile multi-core

processors. In DATE ’15, pages 1533–1538, San Jose, CA, USA, 2015. EDA Con-

sortium.

[93] John Cosley. In a mobile world, not all mobile performs equally for advertisers, Apr

2014. http://marketingland.com/mobile-world-mobile-equal-78561.

[94] Heng Zeng, Carla S. Ellis, Alvin R. Lebeck, and Amin Vahdat. Ecosystem: managing

energy as a first class operating system resource. SIGPLAN Not., 37(10):123–132, 2002.

[95] Kaisen Lin, Aman Kansal, Dimitrios Lymberopoulos, and Feng Zhao. Energy-accuracy

121

trade-off for continuous mobile device location. In Proceedings of the 8th International

Conference on Mobile Systems, Applications, and Services, MobiSys ’10, pages 285–

298, New York, NY, USA, 2010. ACM.

[96] Hui Chen, Youhuizi Li, and Weisong Shi. Application-level power profiling on mobile

devices: Lessons and experiences, Mar 2014. Technical Report http://mist.cs.

wayne.edu/MIST-TR-2014-001.pdf.

[97] Android. http://developer.android.com/reference/android/app/Activity.html. Android

Developer Guide, Activity.

[98] Clayton Shepard, Ahmad Rahmati, Chad Tossell, Lin Zhong, and Phillip Kortum. Live-

lab: Measuring wireless networks and smartphone users in the field. SIGMETRICS

Perform. Eval. Rev., 38(3):15–20, January 2011.

[99] James C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms.

Kluwer Academic Publishers, Norwell, MA, USA, 1981.

[100] Delyan Raychev, Youhuizi Li, and Weisong Shi. The seventh cell of a six-cell battery.

In third Workshop on Energy-Efficient Design, WEED, Jun 2011.

[101] Google nexus 4 specifications. https://support.google.com/nexus/\#topic=

3415518. Nexus Help Center.

[102] Global mobile data traffic forecast update. http://www.cisco.com/c/en/us/solutions/collateral/service-

provider/visual-networking-index-vni/white paper c11-520862.html.

[103] Abhinav Pathak, Y. Charlie Hu, and Ming Zhang. Bootstrapping energy debugging on

smartphones: a first look at energy bugs in mobile devices. In Proceedings of the 10th

ACM Workshop on Hot Topics in Networks, HotNets-X, pages 5:1–5:6, New York, NY,

USA, 2011. ACM.

[104] Green software awareness survey. http://www.sig.eu/blobs/Nieuws/2011/

Results\%20Survey-201109.pdf.

122

[105] Hui Chen, Bing Luo, and Weisong Shi. Anole: A case for energy-aware mobile applica-

tion design. In Proceedings of the 1st International Workshop on Power-Aware Systems

and Applications, Pittsburgh, PA, USA, September 2012.

[106] Mian Dong and Lin Zhong. Power modeling and optimization for oled displays. IEEE

Transactions on Mobile Computing, 11:1587–1599, 2012.

[107] Stefan Tilkov. A brief introduction to rest, Dec 2007.

http://www.infoq.com/articles/rest-introduction.

[108] Pxi platform: Industry leading, pc-based platform for test, measurement, and control.

National Instruments http://www.ni.com/pxi/.

[109] Accumulated number of application and games in the android market.

http://www.androlib.com/appstats.aspx.

[110] Felix Xiaozhu Lin, Zhen Wang, and Lin Zhong. Supporting distributed execution of

smartphone workloads on loosely coupled heterogeneous processors. In Proceedings of

the 2012 USENIX Conference on Power-Aware Computing and Systems, HotPower’12,

pages 2–2, Berkeley, CA, USA, 2012. USENIX Association.

[111] Sadagopan Srinivasan, Li Zhao, Ramesh Illikkal, and Ravishankar Iyer. Efficient in-

teraction between os and architecture in heterogeneous platforms. SIGOPS Oper. Syst.

Rev., 45(1):62–72, February 2011.

[112] Samsung. Heterogeneous multi-processing solution of exynos 5 octa with arm

big.little technology. http://www.arm.com/files/pdf/Heterogeneous_Multi_

Processing_Solution_of_Exynos_5_Octa_with_ARM_bigLITTLE_Technology.

pdf. white paper.

[113] Hardkernel. Odroid xu3, odroid xu+e. http://www.hardkernel.com/main/main.

php.

[114] A. Gutierrez, R.G. Dreslinski, T.F. Wenisch, T. Mudge, A. Saidi, C. Emmons, and

123

N. Paver. Full-System Analysis and Characterization of Interactive Smartphone Ap-

plications. In the proceedings of the 2011 IEEE International Symposium on Workload

Characterization (IISWC), pages 81–90, Austin, TX, USA, 2011.

[115] NASA Advanced Supercomputing Division. Nas parallel benchmarks. http://www.

nas.nasa.gov/publications/npb.html.

[116] Rizwana Begum, Guru Prasad Srinivasa, David Werner, Mark Hempstead, and Geof-

frey Challen. Energy-performance trade-offs on energy-constrained devices with multi-

component dvfs. In IEEE International Symposium on Workload Characterization

(IISWC), Oct 2015.

[117] Steven Norton. Internet of things market to reach $1.7 trillion by 2020: Idc,

June 2015. http://www.marketwatch.com/story/internet-of-things-market-to-reach-17-

trillion-by-2020-idc-2015-06-02-8103241.

[118] Intel. Intelligent gateways play a key role in the internet of things (iot).

http://www.intel.com/content/dam/www/public/us/en/documents/

solution-briefs/iot-gateway-solutions-brief.pdf.

[119] Marina Zapater, Jose L. Ayala, José M. Moya, Kalyan Vaidyanathan, Kenny Gross, and

Ayse K. Coskun. Leakage and temperature aware server control for improving energy

efficiency in data centers. In DATE ’13, pages 266–269, San Jose, CA, USA, 2013. EDA

Consortium.

[120] M. Necati uzisik. Heat transfer: A basic approach. 1985.

[121] Temptronic Corporation. Thermostream ats air forcing systems. http:

//www.intestthermal.com/products/thermostream-air-forcing-systems/

overview.

[122] Anthony Gutierrez, Ronald G. Dreslinski, Thomas F. Wenisch, Trevor Mudge, Ali Saidi,

124

Chris Emmons, and Nigel Paver. Full-System Analysis and Characterization of Interac-

tive Smartphone Applications. In IISWC, pages 81–90, Austin, TX, USA, 2011.

[123] Jason A. Poovey, Thomas M. Conte, Markus Levy, and Shay Gal-On. A benchmark

characterization of the eembc benchmark suite. IEEE Micro, 29(5):18–29, 2009.

125

ABSTRACT

SYSTEM SUPPORT FOR ENERGY EFFICIENT MOBILE COMPUTING

by

YOUHUIZI LI

May 2016

Advisor: Dr. Weisong Shi

Major: Computer Science

Degree: Doctor of Philosophy

Mobile devices are developed rapidly and they have been an integrated part of our daily life.

With the blooming of Internet of Things, mobile computing will become more and more im-

portant. However, the battery drain problem is a critical issue that hurts user experience. High

performance devices require more power support, while the battery capacity only increases

5% per year on average. Researchers are working on kinds of energy saving approaches. For

examples, hardware components provide different power state to save idle power; operating

systems provide power management APIs to better control power dissipation. However, the

system energy efficiency is still low that cannot reach users’ expectation.

To improve energy efficiency, we studied how to provide system support for mobile com-

puting in four different aspects. First, we focused on the influence of user behavior on system

energy consumption. We monitored and analyzed users’ application usages information. From

the results, we built battery prediction model to estimate the battery time based on user behav-

ior and hardware components’ usage. By adjusting user behavior, we can at most double the

battery time. To understand why different applications can cause such huge energy difference,

we built a power profiler Bugu to figure out where does the power go. Bugu analyzes power and

event information for applications, it has high accuracy and low overhead. We analyzed almost

100 mobile applications’ power behavior and several implications are derived to save energy of

applications and systems. In addition, to understand the energy behavior of modern hardware

126

architectures, we analyzed the energy consumption and performance of heterogeneous plat-

forms and compared them with homogeneous platforms. The results show that heterogeneous

platforms indeed have great potential for energy saving which mostly comes from idle and low

workload situations. However, a wrong scheduling decision may cause up to 30% more energy

consumption. Scheduling becomes the key point for energy efficient computing. At last, as the

increased power density leads to high device temperature, we investigated the thermal manage-

ment system and developed an ambient temperature aware thermal control policy Falcon. It

can save 4.85% total system power and more adaptive in various environments compared with

the default approach. Finally, we discussed several potential directions for future research in

this field.

127

AUTOBIOGRAPHICAL STATEMENT

YOUHUIZI LI

Youhuizi Li is a Ph.D. candidate in the Department of Computer Science at Wayne State

University. She joined the Ph.D. program in Sep 2010. She received her Masters degree in

Computer Science at Wayne State University in May 2013 and received her Bachelor degree in

Computer Science from Xidian University in Aug 2010. Her research interests include Energy-

aware application design and optimization, Heterogeneous platform energy management and

Edge computing. She has published several papers in workshops, conferences and journal,

such as SUSCOM, IGCC, WEED. She has also served as a peer reviewer for journals.

	Wayne State University
	1-1-2016
	System Support For Energy Efficient Mobile Computing
	Youhuizi Li
	Recommended Citation

	tmp.1462987893.pdf.rVopH

