4,470 research outputs found

    Unearthing Tree Symbolism in Song: A Sentiment Analysis

    Get PDF
    How societies communicate about nature can shape the way that they interact with it. Messages contained in music are especially interesting to study because of the unique ability of sound and language to alter moods and/or induce physiological reactions. Research on cultural values in music is growing but studies on environmental themes are scarce despite pervasive natural symbolism in songs. Historically, most species of tree have gained a symbolic meaning in part based on their physical characteristics and the various ways they are used by humans (e.g., for construction or for medicine). The overall goal of this thesis was to understand the emotional sentiment associated with tree symbolism in English-language songs. To quantitatively investigate these associations, I assembled a corpus of 1335 songs that use common North American tree names in lyrics. Songs were categorized into two groups based on the evolutionary history of the tree used in lyrics. Trees are either angiosperms (typically flowering, fruiting, and deciduous) or gymnosperms (typically cone-producing and evergreen). I extracted lyrical sentiment (e.g., positive words) and musical qualities (e.g., tempo) of each song for analyses. Lyrically, I found that angiosperm songs were more likely to contain positive words and less likely to contain negative words than gymnosperm songs. Additionally, angiosperm songs were more likely to contain words of anticipation, joy, and trust, while gymnosperm songs were more likely to contain words of anger, fear, and sadness. Musically, gymnosperm songs had higher energy and tempo than angiosperm songs. Exploring these data further at other levels of taxonomy would likely provide higher resolution of thematic content. These results provide support for the idea that the sentiments we associate with trees are related to the tree’s evolutionary history which is important because our sentiments have the potential to affect how we connect to and interact with environments

    The Cinderella Complex: Word Embeddings Reveal Gender Stereotypes in Movies and Books

    Full text link
    Our analysis of thousands of movies and books reveals how these cultural products weave stereotypical gender roles into morality tales and perpetuate gender inequality through storytelling. Using the word embedding techniques, we reveal the constructed emotional dependency of female characters on male characters in stories

    Text-based Sentiment Analysis and Music Emotion Recognition

    Get PDF
    Nowadays, with the expansion of social media, large amounts of user-generated texts like tweets, blog posts or product reviews are shared online. Sentiment polarity analysis of such texts has become highly attractive and is utilized in recommender systems, market predictions, business intelligence and more. We also witness deep learning techniques becoming top performers on those types of tasks. There are however several problems that need to be solved for efficient use of deep neural networks on text mining and text polarity analysis. First of all, deep neural networks are data hungry. They need to be fed with datasets that are big in size, cleaned and preprocessed as well as properly labeled. Second, the modern natural language processing concept of word embeddings as a dense and distributed text feature representation solves sparsity and dimensionality problems of the traditional bag-of-words model. Still, there are various uncertainties regarding the use of word vectors: should they be generated from the same dataset that is used to train the model or it is better to source them from big and popular collections that work as generic text feature representations? Third, it is not easy for practitioners to find a simple and highly effective deep learning setup for various document lengths and types. Recurrent neural networks are weak with longer texts and optimal convolution-pooling combinations are not easily conceived. It is thus convenient to have generic neural network architectures that are effective and can adapt to various texts, encapsulating much of design complexity. This thesis addresses the above problems to provide methodological and practical insights for utilizing neural networks on sentiment analysis of texts and achieving state of the art results. Regarding the first problem, the effectiveness of various crowdsourcing alternatives is explored and two medium-sized and emotion-labeled song datasets are created utilizing social tags. One of the research interests of Telecom Italia was the exploration of relations between music emotional stimulation and driving style. Consequently, a context-aware music recommender system that aims to enhance driving comfort and safety was also designed. To address the second problem, a series of experiments with large text collections of various contents and domains were conducted. Word embeddings of different parameters were exercised and results revealed that their quality is influenced (mostly but not only) by the size of texts they were created from. When working with small text datasets, it is thus important to source word features from popular and generic word embedding collections. Regarding the third problem, a series of experiments involving convolutional and max-pooling neural layers were conducted. Various patterns relating text properties and network parameters with optimal classification accuracy were observed. Combining convolutions of words, bigrams, and trigrams with regional max-pooling layers in a couple of stacks produced the best results. The derived architecture achieves competitive performance on sentiment polarity analysis of movie, business and product reviews. Given that labeled data are becoming the bottleneck of the current deep learning systems, a future research direction could be the exploration of various data programming possibilities for constructing even bigger labeled datasets. Investigation of feature-level or decision-level ensemble techniques in the context of deep neural networks could also be fruitful. Different feature types do usually represent complementary characteristics of data. Combining word embedding and traditional text features or utilizing recurrent networks on document splits and then aggregating the predictions could further increase prediction accuracy of such models

    Assistive Technology and Biomechatronics Engineering

    Get PDF
    This Special Issue will focus on assistive technology (AT) to address biomechanical and control of movement issues in individuals with impaired health, whether as a result of disability, disease, or injury. All over the world, technologies are developed that make human life richer and more comfortable. However, there are people who are not able to benefit from these technologies. Research can include development of new assistive technology to promote more effective movement, the use of existing technology to assess and treat movement disorders, the use and effectiveness of virtual rehabilitation, or theoretical issues, such as modeling, which underlie the biomechanics or motor control of movement disorders. This Special Issue will also cover Internet of Things (IoT) sensing technology and nursing care robot applications that can be applied to new assistive technologies. IoT includes data, more specifically gathering them efficiently and using them to enable intelligence, control, and new applications

    Music emotion recognition: a multimodal machine learning approach

    Get PDF
    Music emotion recognition (MER) is an emerging domain of the Music Information Retrieval (MIR) scientific community, and besides, music searches through emotions are one of the major selection preferred by web users. As the world goes to digital, the musical contents in online databases, such as Last.fm have expanded exponentially, which require substantial manual efforts for managing them and also keeping them updated. Therefore, the demand for innovative and adaptable search mechanisms, which can be personalized according to users’ emotional state, has gained increasing consideration in recent years. This thesis concentrates on addressing music emotion recognition problem by presenting several classification models, which were fed by textual features, as well as audio attributes extracted from the music. In this study, we build both supervised and semisupervised classification designs under four research experiments, that addresses the emotional role of audio features, such as tempo, acousticness, and energy, and also the impact of textual features extracted by two different approaches, which are TF-IDF and Word2Vec. Furthermore, we proposed a multi-modal approach by using a combined feature-set consisting of the features from the audio content, as well as from context-aware data. For this purpose, we generated a ground truth dataset containing over 1500 labeled song lyrics and also unlabeled big data, which stands for more than 2.5 million Turkish documents, for achieving to generate an accurate automatic emotion classification system. The analytical models were conducted by adopting several algorithms on the crossvalidated data by using Python. As a conclusion of the experiments, the best-attained performance was 44.2% when employing only audio features, whereas, with the usage of textual features, better performances were observed with 46.3% and 51.3% accuracy scores considering supervised and semi-supervised learning paradigms, respectively. As of last, even though we created a comprehensive feature set with the combination of audio and textual features, this approach did not display any significant improvement for classification performanc

    Towards Transformational Creation of Novel Songs

    Get PDF
    We study transformational computational creativity in the context of writing songs and describe an implemented system that is able to modify its own goals and operation. With this, we contribute to three aspects of computational creativity and song generation: (1) Application-wise, songs are an interesting and challenging target for creativity, as they require the production of complementary music and lyrics. (2) Technically, we approach the problem of creativity and song generation using constraint programming. We show how constraints can be used declaratively to define a search space of songs so that a standard constraint solver can then be used to generate songs. (3) Conceptually, we describe a concrete architecture for transformational creativity where the creative (song writing) system has some responsibility for setting its own search space and goals. In the proposed architecture, a meta-level control component does this transparently by manipulating the constraints at runtime based on self-reflection of the system. Empirical experiments suggest the system is able to create songs according to its own taste.Peer reviewe
    • …
    corecore