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ABSTRACT
We study transformational computational creativity in the context
of writing songs and describe an implemented system that is able
to modify its own goals and operation. With this, we contribute
to three aspects of computational creativity and song generation:
(1) Application-wise, songs are an interesting and challenging tar-
get for creativity, as they require the production of complementary
music and lyrics. (2) Technically, we approach the problem of cre-
ativity and songgeneration using constraint programming.We show
how constraints can be used declaratively to define a search space of
songs so that a standard constraint solver can then be used to gen-
erate songs. (3) Conceptually, we describe a concrete architecture for
transformational creativity where the creative (song writing) system
has some responsibility for setting its own search space and goals.
In the proposed architecture, a meta-level control component does
this transparently by manipulating the constraints at runtime based
on self-reflection of the system. Empirical experiments suggest the
system is able to create songs according to its own taste.
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1. Introduction

Computational creativity is a subfield of artificial intelligence that studies and simulates
creative behaviour by computational means. Colton and Wiggins (2012) have formulated
a definition of computational creativity as “the philosophy, science and engineering of
computational systems which, by taking on particular responsibilities, exhibit behaviours
that unbiased observers would deem to be creative”. Thus computationally creative sys-
tems should not only generate novel and interesting results but also have some creative
responsibility, so that the produced results have qualities that cannot be traced back to the
designer of the system.How tobuild a system that has such responsibilities is a keyquestion
in computational creativity research.

In this paper, we study this issue in the context of automated song writing. Conceptu-
ally, our framework is so-called transformational creativity. Boden (1998, 2004) identifies
three general categories of (computational) creativity: combinational, exploratory and
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transformational. These categories differ in the level of abstraction on which the system
operates and in the types of creative responsibilities the system possesses.

• A system that exhibits combinational creativity operates on the concrete level of arte-
facts, putting together existing objects or ideas in novel ways. For instance, a combina-
tional approach to generation ofmelodies could take fragments fromexisting songs and
combine them to form a new one. Combinationally generated artefacts are composed
of such familiar components.

• A system that exhibits exploratory creativity carries out search in some space of possible
artefacts, using more abstract search mechanisms than just combinations or modifica-
tions of existing artefacts. For melodies, the search space could be defined by rules such
as “notesmust be on the chromatic scale” (the typical Western 12-note scale) and “notes
must fall within a given range of pitches”. An exploratory method is thus not limited to
familiar components, but has the potential of generating artefacts consisting of novel
components.

• Finally, a system that exhibits transformational creativitymodifies the search space, i.e. it
operates on a meta-level with respect to pure exploratory creativity. A transformational
melody generation system could change its rules, e.g. modify the admissible range of
pitches. In an extreme case this allows the system to generate artefacts it was not able
to generate before, e.g. if the new range of pitches contains new notes.

In this work, we study themost complex of these, transformational creativity. For us, the
defining characteristic of transformational creativity is the system’s ability to modify its own
search space or goals. We argue that this an important form of creative responsibility that a
system can take.

We describe the technical architecture of an implemented system for generation of
songs, i.e. pieces ofmatchingmusic and lyrics. The proposed architecture aims for transfor-
mational creativity in the sense that itmodifies its own search space and its ownpreferences
within that search space. Thedesignof the system is basedonusing a constraint program to
specify the search space and allowing the system to manipulate the constraints to modify
that space.

In a nutshell, the main components of our architecture are the following: (a) a genera-
tor of lyrics and music, effected by describing the task as a constraint satisfaction problem,
allowinguseofoff-the-shelf constraint solvers togenerate songs. The constraints includean
interaction model for the correspondence between musical and linguistic features, allow-
ing the complete problem of composing a coherent song to be modelled as a constraint
satisfaction problem. (b) A set of musical feature extractors used to analyse the generated
songs, inorder toprovide system-internal feedbackon its ownperformance independentof
the constraints. (c) Ameta-level control layer, in which the system uses this system-internal
feedback to modify its own constraints, making the system transformationally creative.

While this paper revolves around the transformationally creative architecture outlined
above, it makes scientific contributions on three different levels of abstraction:

• Application-wise, songs are an interesting and challenging target for creativity, as they
require theproductionof complementarymusic and lyrics. Insteadofmimickingexisting
tastes, transformational creativity allows the system to develop some of its own.
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• Technically, we approach theproblemof creativity and songgenerationusing rule-based
constraint programming paradigm of answer set programming. We show how it can be
used not only for the task of generation but also in implementing transformationally
creative systems by manipulation of the constraints at runtime.

• Conceptually, we describe an implemented software architecture for transformational
creativity where the creative (song writing) system takes creative responsibility by
adapting its own search space and goals at runtime.

This paper is structured as follows. The context and background for this work is provided
in Sections 2 and 3, where we review the theoretical basis of transformational creativity
and the related work on the topics to which we contribute, respectively. The system and
its architecture are described in Sections 4–6: first the ground-level generation of songs,
including the use of constraint programming for the task (Section 4); then the ability of
the system to assess its own productions, which is an integral part of creative autonomy
(Section 5) and finally, the way the system exercises its creative autonomy and achieves
transformational creativity by meta-level operations (Section 6). Results are presented and
discussed in Sections 7–9. We first give some examples of generated songs so readers can
form their subjective opinions of the quality of the results (Section 7). We then present
results of a qualitative evaluation, where we assess both the quality of the songs and the
transformationality of the system (Section 8). Finally, we discuss the work and the results
and draw conclusions (Section 9).

2. Theoretical and conceptual setting

We use Wiggins’ formalisation of creativity as search (Wiggins, 2006) as our theoretical
framework to discuss creative systems and transformational creativity. Wiggins’ framework
covers all three types of creativity as characterised by Boden, as all of them can actually be
seen as search.We give a brief overview of the formalism here, sufficient to discuss howour
approach is creative; for the full formulation, see Wiggins (2006).

When viewing creativity as search, there are three central components that can be used
to characterise a creative system. First, the search space of the system is definedby some set
of rulesR. In the case of a song generation system, the search space consists of everything
the system considers structurally valid as a song. Second, the value of artefacts (songs) is
determined by an evaluation function E , essentially telling if a given artefact is good or not.
To findgoodelements in the spacedefinedbyR, the systemuses some traversal functionT
to perform the actual search.

This formulation has a direct correspondence to Boden’s exploratory creativity. Combi-
national creativity, in turn, is characterised by a search function T that takes two existing
artefacts and recombines them to produce a new one. The (reachable) search space is
implicitly defined by the pool of available artefacts and the combination/modification
operations available to the agent.

Transformational creativity can nowbe achieved bymodifying the conceptual space (i.e.
rules R), the evaluation function E or the search function T . By changing its own rulesR
and evaluation function E , a creative system is able to adjust its goals and to exercise cre-
ative autonomy, while modification of the search function T may affect how effective and
efficient the system is with respect to reaching its goals.
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Figure 1. Generation and evaluation components of the system. Constraint programming allows the
meta-level to manipulate the search space, specified by constraints to the constraint solver. The evalu-
ation component is based on a pool of features and target values for them. These can also be modified
from the meta-level.

Wiggins intended his framework as a conceptual tool, not as a software architec-
ture (Wiggins, 2006). In this paper, however, we specifically construct an architecturewhere
R, E and T have direct counterparts and where explicit representation ofR and E allows
their manipulation during runtime. A system’s capability to adjust its own rules suggests
that it also has a meta-level component which carries out such changes. We denote such
a component explicitly byM. (Wiggins has no separate notation for it since search on the
meta-level can also be described by extendingR, E and T .)

In this paper we study, in the context of song generation, the question whether a
practical, generic architecture for transformational creativity could be formulated. The
architecture we propose is characterised by the following properties (Figure 1).

(1) We have a modular separation between
(a) ground-level search spaceR,
(b) ground-level search T ,
(c) ground-level evaluation E and
(d) meta-level control module M capable of modifying ground-level search space

and evaluation.
(2) Constraint programming is used for the implementation of ground-level generation

(the Generate step of Figure 1). This allows declarative specification of the search space
using a setR of constraints and application of an off-the-shelf constraint solver as the
traversal function T to generate artefacts according to the given constraints.

(3) The evaluation function E considers of a variety of features and their target values (the
Evaluate step of Figure 1). The internal architecture of the Evaluation step can be seen
as an analog of the Generation step. They both have two subcomponents: a declar-
ative specification that can be manipulated by the meta-level M and an operational
component that implements the specification.

(4) The meta-level component M controls the generation and evaluation components.
It receives evaluations of songs from the evaluation function E , and based on them
decides how to modify constraints R or the target values of the individual features
evaluated by E .
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An interesting view to what can be considered creative is provided by Jennings (2010).
He argues that the greatest challenge for computational creativity researchers is to show
that their systems arenot just extensions of their owncreativity but instead capable of some
creative autonomy. In his work, Jennings focuses on the system’s creative responsibility in
setting its own goal.

Jennings’ criteria for creative autonomy are that (1) the agent is capable of indepen-
dently evaluating artefacts it produces, and that (2) the agent can adjust its standards
without explicit directions for when and how to do so. (Additionally, both should not be
purely random.) The first criterion of creative autonomy can bemapped to the system hav-
ing an evaluation function E enabling self-reflection, a crucial component of the notion
of transformational creativity (Boden, 2004). The second condition corresponds, broadly
taken, to the idea of transformationality and is in our case manifested in the meta-level
componentM adjustingR and E .

Grace and Maher (2015), in turn, draw from design literature and argue that a cycle of
intentionality and exploration is important for creativity: a creative system can be surprised
also by its own output if it externalises and then re-perceives its creations. Surprises can
then lead to specific curiosity, i.e. the agent intentionally directs its search and attention
to areas close to the surprising artefact. Our work will utilise similar ideas for adjusting the
system’s goals.

3. Related work

We next briefly review related work in the three topics of this paper: (1) song generation,
including the separate melody and lyrics generation, (2) use of constraint programming in
creative systems and (3) architectures for transformational creativity.

3.1. Song generation

Automated music composition has received a lot of attention in the past (Roads, 1996).
Many methods for generating different aspects of music have been developed, including
various statistical methods (Simon, Morris, & Basu, 2008), L-systems (Prusinkiewicz, 1986),
fractals (Sukumaran & Dheepa, 2003) and constraint satisfaction approaches (see next
subsection for more information, Boenn, Brain, De Vos, & Ffitch, 2008). Automated music
generation has also been rooted in many different kinds of seed information. For instance,
music has been generated tomatch a target emotion (Monteith, Martinez, & Ventura, 2010)
or sleep data measurements (Tulilaulu, Paalasmaa, Waris, & Toivonen, 2012).

Likewise, poetry generation, closely related to lyrics generation, has received a lot
of attention in the field of computational creativity (Colton, Goodwin, & Veale, 2012;
Gervás, 2001;Manurung, 2003; Toivanen, Toivonen, Valitutti, &Gross, 2012). Here,many dif-
ferent methods have been used as well. However, few systems combine music and lyrics.
We next briefly review such systems.

One line of research generates music based on text. For instance, Monteith, Martinez,
andVentura (2012) havegeneratedmusical accompaniments for given lyrics. This approach
concentrates on the extraction of linguistic stress patterns and composition of a melody
with matching note lengths and fulfilment of certain aesthetic metrics for musical and
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linguistic match. Monteith, Francisco, Martinez, Gervás, and Ventura (2011) have also gen-
erated musical accompaniments for stories, targeting emotive labels that match musical
affect to emotional story content.

On the other hand, lyrics have been generated based on music. For instance, Oliveira,
Cardoso, and Pereira (2007) have generated text based on rhythm, and Ramakrishnan,
Kuppan, and Devi (2009) have generated lyrics for given melodies automatically.

Some systems combinemusic and lyrics in an interestingway but are not generative. For
instance, Mihalcea and Strapparava (2012) use both music and lyrics to classify songs into
different emotion categories.

Finally, there are a fewexisting systems that generate both themusic and lyrics for songs.
Toivanen, Toivonen, and Valitutti (2013) have generated simple songs by reducing the
problem to a sequence of two tasks: first writing lyrics and then composingmusic tomatch
the lyrics. Since both tasks are carried out by the same system, information from the lyrics
writingprocess canbe transferred to themusic compositionmodule, informing the latter of
choices made, intended sentiment, etc. Sridhar, Gladis, Ganga, and Prabha (2014) generate
lyrics in a number of ways, one of which is combined with also producing a melody. Here,
the tune is composed first and then Tamil lyrics are generated from the tune. Scirea, Barros,
Shaker, and Togelius (2015) have generated songs based on real world data, in particular
academic papers. This system composes lyrics of the song by extracting important words
from a given academic paper and using them in templates. Then the system composes a
melody by using a Markov chain evolution method.

The method of this paper generates music and lyrics simultaneously. It makes them
match by using declarative constraints that specify which lyrical and musical features
should coincide and how. Since the aim is to produce songs as a whole, simultaneous
generation of music and lyrics should produce better results than their sequential genera-
tion, which may result in partial songs (music or lyrics) which are very difficult to complete
satisfactorily (with matching lyrics or music, respectively). We return to this in Section 9 .

3.2. Constraint programming in creative systems

Constraint logic programming is anefficient declarativeprogrammingparadigm for solving
computational problems withmany interacting components. The goal of the computation
is described declaratively and the intermediary steps for reaching that goal are left unspeci-
fied. Finding the optimal solution can thenbeperformedwith a general-purpose constraint
solver. In our work, we utilise Answer Set Programming (ASP), a programming paradigm
rooted in logic programming and non-monotonic reasoning (Gelfond & Lifschitz, 1988;
Niemelä, 1999; Simons, Niemelä, & Soininen, 2002).

In the area of computational creativity, constraint solvers have been used to gener-
ate both music and poems. However, we are not aware of any transformationally creative
systems based on constraint programming.

Boenn et al. (2008) and Boenn, Brain, De Vos, and Ffitch (2011) have developed an exten-
sive music composition system, Anton, using ASP to represent the musical knowledge and
the rules of the system. Anton describes a model of musical composition as a collection of
interacting constraints. The system can be used to compose short pieces ofmusic as well as
to assist the composer with suggestions, completions and verification. For other examples
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of music composition using constraint programming, see Anders’ survey (Anders, 2011) on
the subject.

In recent years, many different systems for producing poetry with constraint satisfaction
methods have beendeveloped. For instance, Toivanen, Järvisalo, and Toivonen (2013) have
developed a system that utilises ASP to automatically produce poems that satisfy various
poetic and linguistic features. Tobing and Manurung (2015) have used logic programming
to generate topicalmetrical poetry, and El Bolock andAbdennadher (2015) generate poetry
with constraint handling rules.

In a different line of work, Papadopoulos, Pachet, Roy, and Sakellariou (2015) suggest
methods combining regular and Markov constraints for imitating the style of a musical
or textual corpus. These methods can efficiently sample sequences that satisfy the regu-
lar constraints and obey the distribution defined by the probabilistic Markov constraints.
Such methods could potentially be used in a transformational architecture similar to ours,
where a meta-level component can control the constraints under which the methods then
operate, but to our knowledge this has not been done.

In contrast to the work reviewed above, in this paper we propose that constraint pro-
gramming is a paradigm that lends itself to transformational creativity: declarative con-
straints are relatively easy to manipulate for the system itself, while the generation step
(finding a solution) can be left to an off-the-shelf constraint solver.

3.3. Transformationally creative systems

Early examples of transformational systems in the field of artificial intelligence include
Lenat’s Automated Mathematician and Eurisko (Lenat, 1983; Lenat & Brown, 1984). They
both are discovery systems consisting of heuristic rules, including heuristics about chang-
ing their own heuristics. They are clearly transformational in the sense of Boden (2004)
andWiggins (2006) as theymanipulate their own search space. AutomatedMathematician
and Eurisko have inspired several successors; for instance, the HR system (Colton, 2001;
Colton, Bundy, & Walsh, 1999) automatically forms mathematical theories using a higher
level theory that contains concepts and conjectures about the lower level concepts and
conjectures.

Transformational creativity is foundational in computational creativity research, and
numerous systems can be argued to be transformational in one sense or another. How-
ever, even though well-known examples of transformational architectures exist, e.g. in the
discovery systems mentioned above, we are not aware of implemented transformational
architectures for computational creativity. We are here interested in explicit representa-
tions of the search space (essentially rules R) and of the evaluation function E and of
their manipulation by the system itself. In this paper, we propose such an architecture for
transformational creativity, using song writing as the example application.

Ritchie (2006) discusses various possible meanings of transformational creativity in
depth. He also mentions constraints as a means to formalise the conceptual space of a
creative system in a manner that affords changes in that conceptual space, i.e. potential
transformational creativity. Ritchie, however, is primarily interested in empirical evaluation
and observation of transformational creativity, based on generated artefacts. Our evalu-
ation goes slightly in this direction, but our emphasis is on describing an implemented
architecture that allows the system to transform its own internal conceptual space.
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4. Ground-level generation of songs

We now move on to the architecture of our system. In this section, we describe how the
system generates songs, and in Section 5 we outline the component that evaluates them.
The meta-level component is then described in Section 6.

A central challenge in computational song writing is to produce a coherent, matching
pair of music and lyrics – a problemwithmany interacting components and properties and
thus well-suited for modelling as a declarative ASP program. In the present system, ASP is
used to model the process of composing the song melody and lyrics together.

In this section, we give an overview of our song generation component in general and
describe the use of constraint programming for composing songs with matching musical
and textual features in some more detail, as an enabler of transformational creativity in
our architecture. In our implementation, the overall song structure, chord progressions and
lyrical phrase candidates are generated procedurally, while the melody and lyrics are com-
posed using ASP under the procedurally generated constraints. The procedural parts are
not linked to transformational creativity in this paper, so they are intentionally kept simple.

4.1. Overview of song generation

The system aims to produce songs that are easy to sing and play. In addition, the results
should be versatile and aesthetically pleasant to human listeners. More importantly, how-
ever, the system should be able tomodify its preferences and to direct its attention to those
subspacesofpossible songs it finds interesting. Theviewpoint here is purely technical; emu-
lation of the process used by humans to write and to perceive songs is not in the scope of
this work.

The system produces simple songs with a fixed number of bars and a simple over-
all structure. The output consists of music notation with the melody, lyrics and chords
for accompaniment. Chords are presented with chord symbols, i.e. the system does not
produce full-scale accompaniments. For output, we use Lilypond notation (Nienhuys &
Nieuwenhuizen, 2003) that can be easily converted into pdf sheet music or transformed
automatically into audio with MIDI synthesis if needed.

A song is generated in three phases, gradually adding detail (Figure 2). First, an overall
section structure (e.g. ABAB) is selected. Then chord progressions are generated for each
section type (and repeated in all sections of the same type). Finally, melody and lyrics are
generated using constraint programming, in two steps: generation of so-called candidate
data consisting of possible notes and segments of lyrics, and application of ASP to compose
songs out of this data using the current constraints.

In the next subsections, we first describe elements produced procedurally (section
structure, harmony, segments of lyrics) and then elements produced with constraint pro-
gramming (melody, lyrics). Our focus will be on the latter.

4.2. Procedural generation of section structure, harmony and lyrical phrase
candidates

Section structure, harmony and lyrical phrase candidates are generated with simple
methods and they are not central to our research questions. We here briefly outline the
generation methods used.
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Figure 2. Ground-level song composition architecture (see Section 4.3 for constraint programming).

Section structure. The system uses simple section structures, such as ABBA or AABB, where
letters A and B denote different musical sections. Their main function here is to provide
musical coherence to the songs by means of repetition. In the current setting, the struc-
tural simplicity makes it easier to concentrate on the interaction of musical and textual
features in the ASP program (and their transformationality). More elaborate musical struc-
tures and detailed information of the qualities of conventional musical elements, such as
introduction, verse, pre-chorus and chorus, are outside the scope of this work but could be
incorporated into the system to improve the results.

Harmony. The harmony is composed either in a major or minor scale based on user input
or system’s own choice. The system database contains different sets of harmonic patterns
regularly found in diatonic Western music for major and minor keys. The construction
of harmony is based on selecting harmonic patterns from this set and expressing these
as chord sequences in a given key. A typical harmonic pattern is, for instance, the chord
sequence I, IV, V. When dealingwithminor keys, harmonicminor scale is used. In the end of
the music sections, the last chord is constrained to be the first scale degree chord in order
to provide harmonic resolution. The harmony generation procedure also assigns time val-
ues for each of the chords in a probabilistic manner. The chord progressions could easily be
learned from a corpus to be imitated.

Lyrical phrases. The constraint program composes the lyrics of the song from a set of
lyrical phrase candidates. We here describe how the phrase candidates are generated
procedurally.

Initial phrases are first extracted automatically from text corpora based on specific pat-
terns, such asbeing a full sentence, having a trocheemeter (ametrical footwhich consists of
a stressed syllable followed by an unstressed syllable), or starting with the word “I”. These
phrases are then modified in order to provide more variability and novelty to the results.
The modification is carried out by substituting words in the original phrases. In the word
substitution process, the goal is to roughly keep the original meaning of the phrase by
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replacing, for instance, nouns or verbs in the phrases by nouns or verbs that occur in similar
contexts.

The word substitution process is based on mining word co-occurrences from large text
corpora and utilising word associations of two kinds. Syntagmatic relations refer to words
that co-occur in the text. For example, the phrase “yellow moon” forms a syntagmatic
expression.On theotherhand, aparadigmatic relation refers towords that occur in the same
context and can be technically substitutedwith each other. For instance, “moon” is paradig-
matic to “sun” because these words can be used in similar contexts. Word substitution
process preserves the original patterns of the phrases.

For coherence of the lyrics, a set of phrases is selected as follows. One phrase is first
selected at random. Then a collection of semantically most similar phrases with respect to
that seed phrase is selected. As a measure of similarity between two phrases, we utilise
a modified Hausdorff distance (Dubuisson & Jain, 1994), where phrase similarity is the
average distance over shortest word distances between phrases. For measuring the dis-
tance between two words, we utilise the Word2Vec method (Mikolov, Chen, Corrado, &
Dean, 2013) trained with paradigmatic word similarity.

The set of phrases generated in the above manner is given to the constraint solver that
selects and combines the phrases based on all the constraints defined for the music and
lyrics.

4.3. Constraint-based generation ofmelody and lyrics

We continue by describing our constraint satisfaction formulation for generating melody
and lyrics. Solutions to the constraint formulation, found by calling an off-the-shelf con-
straint solver, correspond to pieces of melody and lyrics that “match” together, as specified
by the constraints.

Answer set programming. As the constraint programming paradigm of choice, we use
answer set programming (ASP). While we here rely on ASP due to the high-level, data-
driven declarative language it offers, together with relatively efficient optimisation solver
technology available for the language, we acknowledge that other constraint optimisation
paradigms could be alternatively applied.

Answer set programming (Gelfond & Lifschitz, 1988; Niemelä, 1999; Simons et al., 2002)
is a rule-based, data-driven constraint satisfaction paradigm. The conceptual separation
between rules and data is important for understanding the approach. Rules are the generic
part of the constraint program, used for any problem instance, while each specific instance
is represented by input datagiven to the rules. In our case, the procedurally generated parts
described in the previous subsections serve to specify a problem instance. This instance
specification includes candidate phrases for lyrics and candidate notes generated based
on the harmonic progression.

In ASP, input data is represented as first-order predicates that express the problem
instance; the constraint declaration (the actual ASP program) is expressed in terms of first-
order rules over the input predicates. The rules formalise how additional knowledge can
be inferred from the input data, to be expressed via output predicates, and the rules also
define constraints over the solutions of interest. In our system, input predicates express
basic properties of the form of the composed songs, and the computational problem of
generating a song is expressed via the generic rule-based constraint declaration.
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After the generic constraint declaration is designed, state-of-the-art generic ASP solvers,
such as Clingo (Gebser, Kaminski, Kaufmann, & Schaub, 2014), provide an efficient way of
finding solutions to problem instances (different input data) under the constraint decla-
ration. Such solvers are complete: given enough computational resources they are guaran-
teed to find the solutions to any input given that solutions exist or toprove that no solutions
exist in the negative case.

We will not provide formal details on answer set programming and its underlying
semantics; the interested reader is referred to other sources (Gelfond & Lifschitz, 1988;
Niemelä, 1999; Simons et al., 2002) for a detailed account. Instead, we will in the follow-
ing provide a step-by-step intuitive explanation on how the task of song generation can
be expressed in the language of ASP. For more hands-on examples on how to express dif-
ferent computational problems in ASP, we refer the interested reader to Gebser, Kaminski,
Kaufmann, and Schaub (2012).

Input predicates. Below, we briefly describe the central input predicates used to specify the
input data to the ASP program. Following the data-driven view, the idea is that possible
modifications to the generation process are controlled by changing the input via changing
the parameters of the input predicates.

• bars/1: bars(b) represents the fact that a song consists of b bars.
• units/1: units(u) represents the fact that each bar in a song consists of u atomic

units.
• note_candidate/5:note_candidate(i,j,p,d,c) represents the fact that a notewith

pitch p, duration d units and consonance c is a note candidate at unit j of bar i, i.e. such
a note may be selected to begin at unit j of bar i in a song.

• phrase_candidate/2:phrase_candidate(p,b) represents the fact that phrase p,
spanning b bars, is a phrase candidate for the lyrics of the song.

• syllable/4: syllable(p,i,s,b) represents the fact that the ith syllable of phrase
candidate p is s and has stress b ∈ {0, 1} (0 =unstressed, 1 =stressed).

• phrase_should_start_at/1: phrase_should_start_at(b) represents the
fact that a phrase should start at the beginning of the bth bar.

• interval/2: interval(l,u) represents the fact that the sum of intervals of the
melody, i.e. the sum of differences of pitches between consecutive notes, should be at
least l and at most u.

• max_duration_unstressed/1:max_duration_unstressed(d) represents the
fact that each unstressed note should have a maximum duration of d units.

• min_duration_stressed/1: min_duration_stressed(d) represents the
fact that each stressed note should have a minimum duration of d units.

• consonance/2: consonance(l,u) represents the fact that the total consonance, i.e.
the sum of the consonances of notes, should be at least l and at most u.

Since the approach is declarative, the set of input predicates can be easily extendedwith
further predicates to obtain even tighter control over the generation process.

Output predicates. Next we describe the output predicates of the ASP program. The ASP
rules specified in the following subsections use these predicates to encode the generated
melody and lyrics.
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• phrase_starts_at/2: phrase_starts_at(p,b) represents the fact that phrase p
begins at (the beginning of) bar b. The ASP program rules will enforce that songs with
overlapping phrases are not generated.

• syllable_at/4 provides the syllable positions of the selected phrases, syllable_
at(p,i,b,u) representing the fact that the ith syllable of phrase p takes place at unit u of
bar b of a song.

• pluck/5: pluck_at(b,u,p,d,c) represents the fact that a note with pitch p, duration d
and consonance c takes places at unit u of bar b in a song.

Projections. We start the description of the ASP program rules with useful projections of
the input predicates (Figure 3) to be used as auxiliary predicates in rules described later
on. Rule r1 infers the set of pitches available in the note candidates, represented via the
pitch/1 predicate. Similarly, Rules r2—r5 infer the set of note consonances, bars, units
and phrases available in the input data.

Constraint declaration for generating lyrics. We now continue with detailing the rules that
form the central computational problem at hand, starting with phrase selection (Figure 4).
Rule r6 expresses that for each bar from which a phrase should start (as specified via
the input predicate phrase_should_start_at/1), exactly one phrase from the set of
phrase candidates (as specified via the input predicate phrase_candidate/1) should
be selected to start at the beginning of the bar. The phrase selected to start at the
position is represented via the output predicate phrase_starts_at/2. In order to
prevent overlapping phrases to be selected, Rule r7 infers the bars occupied by each
selected phrase, expressed via the auxiliary predicate phrase_at/2. Using this knowl-
edge, Rule r8 enforces that phrase_at/2 should be true at each bar for exactly one
phrase candidate.

In our formulation, the atomic elements of phrases are syllables, and theywill be aligned
with notes of the melody. Rules for inferring the positions of syllables are given in Figure 5.
Rule r9 declares for each selected phrase that each syllable in the phrase must be posi-
tioned at exactly one position within the bars that the phrase occupies. Rules r10 and r11
enforce that the syllables are positioned in the right order, following the phrase. Rule r10

Figure 3. Useful projections of the input predicates.

Figure 4. Selecting phrases.
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Figure 5. Selecting syllable positions.

Figure 6. Matching melody and lyrics.

enforces that any two consecutive syllables in a phrase, if positioned to a same bar, must
be ordered according to the phrase. Ruler11 declares analogously that, if two consecutive
syllables are not positioned in the same bar, the latter syllables must not be positioned to
a bar before the bar to which the former syllable is positioned.

Constraints for matching lyrics and notes. A key part of the constraint formulation are con-
straintswhich align syllables of the lyricswithnotes of themelody. They ensure that for each
syllable, a note occurs at the same position, and vice versa. In our formulation, the positions
and lengthsof notes are inferred from thepositionsof syllable anddistancesbetween them,
respectively (Figure 6). Rule r12 ensures that a note will take place exactly when a syllable
occurs. Rulesr13–r14 infer the lengths of notes by computing the distance to the syllable
that occurs next within the song, which may be either within the same bar (Rule r13) or
in the following bar (Rule r14). Finally, Rule r15 enforces that exactly one concrete note
(with a specific pitch and consonance, and of the correct duration) is selected from the set
of note candidates given as input.

Constraint declarations for controllingmelody.Wemove on to describing further constraints
which allow for obtaining tighter control of properties of the generated songs.

As a first example, we consider controlling the matching of stressed (unstressed) syl-
lables with longer (shorter) notes (Figure 7). To this end, Rule r16 enforces that the
duration of a node associated to a stressed (stress = 1) syllable should not be below the
value controlled via the input predicate min_duration_stressed. Rule r17 analo-
gously enforces amaximumduration for notes associatedwith unstressed syllables. Finally,
Rule r18 ensures that syllables declared as unstressed in the input data should not be
considered stressed.

Rules r19–r21 in Figure 8 enforce a global constraint on the consonance of the
song. The consonance of each selected note is represented via the auxiliary predicate
pluck_consonance and inferred by Rule r19. Rules r20 and r21 then enforce a
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Figure 7. Controlling stress.

Figure 8. Controlling note consonance.

Figure 9. Rules for enforcing a continuous melody.

Figure 10. Controlling changes in note pitch.

global lower and upper bound of song consonance, here considered as the sum of the
consonances of individual notes in the generated melody.

In order to enforce a continuous melody as well as to obtain global control of pitch
changes within the melody, Rules r22 and r23 infer the positions at which some note
is sounding, represented via the auxiliary predicate sound/2, from the actual notes and
their durations. Rule r24 then enforces a continuous melody, declaring that there should
not be a bar and a unit at which there is no sound.

Finally, Rulesr25–r28 in Figure 10 control the global cumulative absolute pitch change
within a generated melody. Rules r25 and r26 infer the absolute difference between
pitches of consecutive notes, should they occur in the same bar (Rule r25) or consecu-
tive bars (Ruler26), represented via the auxiliary predicatepitch_change/3. Rulesr27
and r28 then enforce that the cumulative sum of pitch changes in the whole melody
should be bounded according to the lower and upper bounds provided as input via the
interval/2 input predicate.

Together, the rules in Figures 3–10 constitute the ASP program that produces songs
when providedwith the procedurally generated input data described earlier in this section.
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5. Ground-level evaluation of songs

Each generated song is passed to the evaluation function E (cf. Figure 1) which makes an
aesthetic judgement of the song using a number of musical and lyrical features. These fea-
tures are normalised to compute values in the range [0, 1] and are selected from a pool
of features that cover a range of musical and lyrical characteristics (largely adopted from
Murray and Ventura, 2012).

For example, the percentage of melody notes that are in the jth key is given by feature

KeyPrevalencej(I) =
|Kj|
|I| , (1)

where I is the sequence of notes in the melody, Kj = {i ∈ I | i ∈ Keyj} and Keyj is the set of
notes in the jth key.1 An example feature for lyrics is

PositiveLyricsSentiment(W) = 1
|W|

∑

w∈W
σ(w), (2)

which computes the average positive sentiment over individual wordsw in given lyricsW.
The other features in our system are based on self-similarity of the melody and of the

rhythm, on linearity and pitch range of the melody, on interval class prevalences, on vari-
ability of rhythm, on average duration of a note, on variability of harmony, on phoneme
structure of the lyrics, on rarity of the words in the lyrics, on correspondence of note dura-
tion to syllable stress and on average consonance value of melody notes with respect to
the song chords. Appendix gives definitions of all features implemented in the system.

Given these features, an aesthetic value could be assigned in many ways. Our system
uses a linear combination

∑
i αifi, where fi are the features and αi are non-negative coef-

ficients (weights) such that
∑

i αi = 1. A feature i with weight αi = 0 is ignored, and the
evaluation focuses on those features with (high) weights. For example, given a sequence of
notes I representing the melody, a simple and highly focused song aesthetic is

E(I) = 2
5KeyPrevalence1(I)+ 3

5 (1− SelfSimilarMelody(I)). (3)

This aesthetic only considers two features: all other features have zero weights and are
excluded for clarity. When the system now aims to maximise E , it effectively values songs
that are in G Major, that are not melodically self-similar (i.e. they have complex melodies),
and where melodic similarity is somewhat more important than the key.2

In thisway, the systemcan represent a large variety ofmusical aesthetics by linear combi-
nations of subsets ofmusicallymeaningful features. As a result, the systemhas thepotential
to change its aesthetic, which has been identified as a necessary condition for autonomy
in a computationally creative system (Jennings, 2010). At the same time, new aesthetics
developed by the systemwill be defensible (at least at some level, even by the system itself)
because they are always composed as combinations of musically meaningful features. This
level of system autonomy is unusual in state-of-the-art computational creativity systems. It
also supports transformational creativity, as will be discussed in Section 6.

The goal here is not to justify a particular musical aesthetic, which would be difficult
under any circumstances. Rather, the goal is to provide the system with autonomy to
explore not only the space of possible songs but also a space of (arguably justifiable) musi-
cal aesthetic eventually necessary for any autonomous creative system. In future work, it
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would be interesting to have the system not only explore this space (which we believe is
already a significant advance compared to currentmusic creation systems) but also be able
to provide framing information to justify its decisions.

6. Meta-level control

The previous sections explained how songs are generated using constraint programming
(see Section 4) and outlined the evaluation process (see Section 5). We now move on to
discuss the system’s meta-level control M over song generation and evaluation, i.e. the
transformational aspects of the architecture.

On an abstract level, the constraintsRdefine the search spacewhile the evaluation func-
tionE assesses thequality of songs found in the search space; themeta-level componentM
receives evaluations and then decides how to modify the constraints as well as the targets
for evaluation (cf. Figure 1). We outline below the interactions of the meta-level with the
other components: use of evaluations of songs, setting target values for features of songs
and modification of constraints. The techniques are intentionally kept relatively simple so
that the internalworkingof themeta-level component is transparent andalso easy to adjust
if needed.More elaborateoptimisation techniques couldbeemployed for higher efficiency;
these are outside the scope of this paper.

Overview. The systemworks iteratively: it generates a songor several songs, evaluates them,
adjusts its goal and constraints, then generates new songs using the new constraints and
the new goal, evaluates them, etc. The goal, specified using features and their target val-
ues, is adjusted in each iteration depending on the results achieved; the changes in the
constraints aim to help the system better reach its new goal.

The operation is initialised by generating a single song using a default setup of the
constraints. Since song generation is stochastic, different runs of the system will produce
different songs. The first song will then be used as the seed for setting the goal of the sys-
tem. This can be compared to a human who starts composing music by humming a tune,
apparently randomly but actually strongly influenced by all the background information
and knowledge she has, and then works from this initial tune towards better and more
interesting ones. However, our system does not evolve a single song during its process,
it rather works on the level of characteristics of songs.

Evaluation of songs and setting the target. Each song is evaluated using a pool of features as
described in Section 5 and the appendix. The result of the evaluation on all of the features
is transmitted to the meta-level component.

For the first song produced (Algorithm 1, Line 2), the meta-level component analyses
the feature vector and looks for combinations of features that appear specific to the song
(Line 4). It considers features which have extreme values in the song, i.e. values close to 0
or 1, and picks a small set of such features to constitute the goal for song generation, with
the aim of further emphasising the already extreme values in the next generation of songs.
This operation canbe seen as specific curiosity (Grace&Maher, 2015) thatmakes the system
adapt its search space (see below for details).

In later iterations, the system already has a specific goal in mind. Songs produced
by different constraint configurations (Lines 6–8) are evaluated with respect to the goal
(Line 10), and the configuration that produces best results is selected for the next iteration
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(Lines 12–13). The meta-level component also studies the best individual song among the
ones produced by the best configuration (Line 14). If, despite the goal-oriented selection
of the song, the song actually exhibits a combination of extreme features different from
the goal, then the goal is adjusted to reflect those features (Line 4). This decision reflects
the system’s capabilities in reaching its own goal – if it finds a goal too difficult to reach, it
chooses a related goal that looks more feasible.

Algorithm 1 Outline of the meta-level algorithm
1: R← default constraint configuration
2: generate one song s← GENERATESONG(R)

3: repeat
4: F← set of features that have extreme values in song s
5: for i = 1 to n do
6: randomly generate a variantRi of the current constraint configurationR
7: for j = 1 tom do
8: generate song sj ← GENERATESONG(Ri)

9: end for
10: compute averages of the features in F over set Si = {sj | 1 ≤ j ≤ m} of songs
11: end for
12: select the constraint configurationRi that produced best results w.r.t. F on average
13: R← Ri

14: select s← the best song in Si w.r.t. F
15: until stopping condition
16: return song s

Modification of constraints. After the system has set its goal (in terms of features which
shouldhaveextremevalues), it aims toproduce anewset of songs that go in thedirectionof
the goal. This is achieved bymodifying the constraints and their parameters (Line 6). Few of
the constraints are directly related to the featuresmeasured in songs, so direct optimisation
is not feasible. Instead, we resort to simple stochastic optimisation, randomly producing
a number of variants of the current constraint configuration, i.e. constraint satisfaction
problems.

The constraints are modified in several different ways. The simplest form of modifica-
tion is changing parameters of the constraints, e.g. the required consonance values for
the melody notes with respect to the underlying chords. Also, some constraints can be
ignored altogether. For instance, in some songs a constraint might rule all the melody
notes to belong to a certain musical key whereas in some other songs this rule can be
left out.

Next, all the generated constraint configurations are fed to the constraint solver (Line 8).
If the corresponding constraint satisfaction problem is satisfiable, a set of new songs is pro-
duced using it, and the songs are evaluated (Line 10). The constraint configuration that has
improved the results most with respect to the chosen features (Line 12) is then selected as
the basis for the next generation of constraint configurations (Line 13).
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7. Examples

We have implemented a system according to the description in Sections 4–6 . Some prac-
tical choices need to be made when applying it; we here give the specifics. In the rest of
this section, we then give example songs produced by the system. Some example songs
with midi synthesis in mp3 format and respective music sheets can be found as electronic
supplemental material (see footnote on the first page).

In experiments for this paper, we used the following settings. (1) In ground-level gener-
ation, the pitch rangewas constrained to two octaves in order tomaintain singability of the
songs. For the same reason, note durationwas always at least a 16th note. The songmelody
and lyrics were composed in chunks of four bars in order to limit the size of the constraint
problem. (2) In the meta-level algorithm (cf. Algorithm 1), a constant number of three fea-
tures were selected to be maximised and another three features to be minimised, i.e. the
number of features in set F was always 6. This method was selected in order to have sev-
eral different features to be optimised but also to keep themeta-level optimisation process
simple. In each iteration of the algorithm, five different constraint configurations were con-
sidered (n=5), and with each constraint configuration five songs were generated (m=5).
Finally, the number of iterations of themain algorithmwas two. These valueswere selected
in order to allowmonitoring of all steps and choices, as well as to keep the running time of
the algorithm in reasonable limits (fewdayswith adesktop computer having an Intel E8500,
3.16MHz CPU with a 6MB L2 cache and 4 GM of RAM ).

Example songs produced by one run of the system can be seen in Figures 11 and 12. The
initial song in Figure 11was evaluated as relatively high in the following features: note pitch
consonance (with respect to the underlying chord), pitch range of the melody and usage
of the prime interval. In contrast, the song was evaluated as relatively low in the following
features: prevalence of a fifth interval, prevalence of a major ninth interval and prevalence
of the note B. These six most extreme features were selected by the system to guide the
next iteration of song creation: it set itself the goal of further strengthening the three high-
scoring features and further weakening the low-scoring ones.

The best song from the next iteration of the system run can be seen in Figure 12. In
this song, five of the six features were improved; the system was unsuccessful only in its

Figure 11. An example initial song generated by the system. A synthesised midi version in mp3 format
can be listened to online (song number 6 in the electronic supplemental material).

https://doi.org/10.1080/09540091.2018.1443320
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Figure 12. Example of a song generated using the specific goal to further strengthen features of the
song of Figure 11: to increase the consonance of themelody notes w.r.t. the underlying chord, the width
of the pitch range, and the use of the prime interval, and to reduce the prevalence of the fifth andmajor
ninth intervals and the note B. A synthesisedmidi inmp3 format can be listened to online (song number
7 in the electronic supplemental material).

attempt to further reduce the prevalence of note B. For the next iteration, the system could
then adjust its goal, possibly selecting another extreme feature of the song to replace the
subgoal of minimising the number of Bs. The example illustrates how the system decides
on its own goal, tries to reach it and adjusts the goal if it seems too challenging.

In our experiments, the song generation process usually converged in few iterations in
the sense that the system did not improve the results anymore with respect to its goal.
However, its constantmodification of the constraints guarantees that it keeps on exploring
different spaces of songs as long as it is allowed to run.

8. Empirical evaluation

The evaluation of computationally creative systems is inherently difficult (Jordanous, 2009).
The appreciation of the songs is subjective, even emotional, it is context dependent and
can change with the mood of the listener. Our focus is especially on potentially creative
properties of the system, not so much on creativity of the results. Analysis of the results
alone can bemisleading since impressive results could be produced by trivial, non-creative
systems: a system that has been provided with 100 highly creative songs by its developer
could appear very creative by just randomly outputting one of them at a time. Hence,
for computational creativity research, creativity of the generative processes is of special
importance, in addition to the quality of the generated results (Colton, 2008).

We evaluate the song-writing system empirically with qualitative methods, using them
to answer the following questions:

(1) Are the songsproducedby the systemofgoodquality (recognisableas songs, singable, even
fun)? This is an elementary requirement for a system creating songs.

(2) Is the system able to produce a range of novel songs? Since the system sets its own goal
at runtime, we are particularly interested to evaluate if the songs produced in different
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runs are novel with respect to other runs, i.e. if the system develops different “tastes”
at different runs.

(3) Is the dynamic adjustment of the system’s goal observable in the results? Here we look
at results during one run of the system, asking if the transformation of the goal is
observable to the audience.

In the rest of this section, we address these questionswith a qualitative user studywhere
five people (two males and three females, mean age 28.0 years, all native Finnish speak-
ers) assessed examples produced by the system with the parameters given in Section 7. In
these experiments,we ran the system for two full iterations after thegenerationof the initial
song.

In the evaluation, the subjects listened to midi synthesised versions of the songs. They
were alsoprovided sheetmusicwith lyrics. All of the subjects evaluating the songshadyears
of experience and formal training in music theory and playing some instrument. However,
most of them were not professional musicians.

Quality of the produced songs. Subjects were asked to evaluate themusical qualities, textual
qualities and singability of the songs with open-ended questions. The songs for the eval-
uation were produced with varying constraint parameters and with lyrics in Finnish. In the
first part of the tests, each subject evaluated three different songs. The subjects were asked
(1) what the song sounds like, (2) what the song text looks like and (3) how singable the
song is.

The songs were described with adjectives ranging from fun, surprising, interesting, and
dramatic tomonotonous andpeculiar. Some subjects said that the songs are singablewhile
others were more critical. For instance, in some songs the high variance in note durations
was criticised, and sowere short notes in someendsof phrases. Overall, the conclusion from
the feedback is that the products of the system are recognisable as songs, they are singable
(with some reservations) and at best they are even fun and interesting.

Variability of the generated songs. Creativity is often characterised as the ability to produce
novel and valuable results. Above, we already addressed quality as a proxy for value. Now,
as a proxy for novelty, we consider variation between songs produced by the system. (This
also relates to transformationality, as the system sets its own objective during runtime and
therefore aims to different kinds of results each time.)

In the second part of the evaluation, the subjects were asked if and how the previous
three songs, produced by different runs of the system, are different. The general consensus
of the subjects was that there is considerable variation in the music and lyrics of the pro-
duced songs. Themost notable differenceswere seen in the building and release of tension
in the music, as well as in the rhythm of the melody. We can thus conclude that the gener-
ated songs have novelty not only in the sense of being new songs but also having a good
degree of variability between the songs generated.

Visibility of transformationality in the results. In the third part of the user study, we asked
the subjects to take a look at two different pairs of sequentially produced songs where the
second song has been produced tomaximise features that alreadywere extreme in the first
song.

With these questions we wished to find out whether the differences between the two
songs were also observable to humans. We addressed this first by asking the subjects to
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report differencesbetween the two songs,without any indicationof thegenerationprocess
and its goal. A positive result is that the consensus of the subjects was that there were
notable differences between the two songs in both song pairs.

We then listed the system’s subgoals (features to be maximised/ minimised) when gen-
erating the second song and askedhowwell the systemhadmanaged to fulfil these specific
goals. The subjects reported that the system had managed to fulfil its internal goals well,
i.e. the shift of the goals in song productionwas visible in the results. However, the subjects
paid attention to the low-level nature of the features and noted that perhaps it could be
more interesting to have more abstract, higher level features such as moods and emotions
that would be composed of many low-level ones.

In summary, the evaluation confirms that the songs have a good quality, that they are
diverse, and that transformationality of the system is visible in the results. For the purposes
of this paper, the two first results are prerequisites for being successful in the last andmost
important point: transformational creation of songs.

9. Discussion and conclusion

We have presented an approach for automatic, transformational generation of songs, i.e.
of coherent pieces of music and lyrics. The architecture of the system is based on the
use of constraint programming as a song generation method. A separate component is
included in the system for self-evaluation of the produced songs. A meta-level compo-
nent is in control of transforming the constraints, i.e. transforming song generation, based
on the evaluations obtained. In its implementation, the system relies on an off-the-shelf
constraint solver.

We next briefly discuss our results and experiences from the point of views of the appli-
cation (song generation) and the technology (constraint programming for creativity), and
then focus more on transformational creativity. We then wrap up with future work.

9.1. Application: song generation

In many existing generative systems that combine language and music, the process is
inherently sequential, i.e. either music or language is generated or extracted first and then
matching language ormusic is generated respectively. In our approach, both the lyrics and
melody are generated together without one of them being a starting point for generating
the other. Also, since the constraint programming framework is declarative, it can directly
be used to complement a given melody with lyrics or given lyrics with a melody. Like-
wise, the constraint programming framework can be used to complete the missing parts
of a song based on certain fixed musical or lyrical fragments. These capabilities offer inter-
esting opportunities, e.g. for interactive song-writing systems (but require substantial user
interface development work).

According to the user evaluation, the present system is able to produce songs with a
reasonably good match between the text and music. In the current system, the basic idea
has been to fit longer note durationswith stressed syllables and shorter note durationswith
unstressed syllables. Also, stressed beats are generally accompanied by stressed syllables.
Durations of both stressed and unstressed syllables in the songs can be easily constrained
further to improve the fit between melody and lyrics.
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9.2. Technology: constraint programming for (transformational) creativity

Wehave proposed constraint programming as a tool for composing songs flexibly in differ-
ent forms. The immediate benefit of the present approach is that this technology makes it
easy to describe and control many interacting characteristics of a given creative domain,
songs in our case. Also the match between the linguistic and musical characteristics of
songs can be achieved using constraints.

The main benefit of the constraint programming approach for computational creativity
is that it enables an easy transformation of the system’s internal goal. As the search space is
described explicitly by constraints, the shape of the search space can be directly modified
by changing the constraints. We will return to transformationality of the architecture in the
next subsection.

When running our system, we noticed thatmany constraint combinations lead to unsat-
isfiable constraint satisfaction problems. A related issue is that there are few direct relations
between constraints and song features, and the search for interesting new conceptual
spaces is essentially blind and based on trial and error.

9.3. Transformational creativity

A transformationally creative system does not only produce artefacts but it also gener-
ates or modifies the structures that are used to produce these artefacts (Boden, 2004). The
present system achieves this transformationality as follows.

First, the system has an explicit representation, as constraints, of its ground-level search
space for generating songs, corresponding to the rules R of Wiggins (2006). Then there
is a separate module E for evaluating qualities of the songs. Finally, a meta-level control
moduleMmodifies the search space (the constraints) and the evaluation function based
on the system’s own evaluation of the results.

This architecture clearly is transformational, as defined by Boden (2004), since it trans-
forms its own search space. In the terms of Wiggins (2006), it achievesR-transformational
creativity. In addition, it can be described as E-transformational since it also modifies its
own evaluation function.

Creativity of the meta-level. Transformations in creative systems can take many forms and
some forms can be argued to be more transformational or more creative than others.
An interesting question is what is transformed. In our case, modifications to the set of
constraints transform the search space of songs. These transformations are based on self-
reflection and involve reasoning about the generation process on ameta-level, a condition
under which “real creativity” may arise (Bundy, 1994).

A possible follow-up question is how novel or creative the modifications themselves
are, where they come from, how they are evaluated, and so on – in a sense asking how
creative the meta-level is. Our system works with a set of constraints written by the
developers, allowing the meta-level to choose which constraints to use, and to mod-
ify their parameters in foreseen ways. One can argue that the meta-level operations
are simple. However, we emphasise the importance of operating on different concep-
tual levels, from the ground-level generation to declarative constraints and then further
to the meta-level control of these constraints, over the complexity of the meta-level
operations.
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There are obvious ways tomake themeta-level more autonomous. We could add a con-
straint generator,making the system less dependent on its developers, and thus potentially
more creative in some sense. However, as mentioned before, already now our modifica-
tions to the constraints can lead to unsatisfiable combinations; obviously, generation of
new constraints would have even higher risk for this.

Creativeautonomy.Apossible dependence of the systemon its developers is closely related
to the concept of creative autonomy (Jennings, 2010). The current system can be argued to
exercise creative autonomy: (1) it can evaluate its likingwithout an outside source using the
evaluationmodule. (2) It carries out changes to its standards (the constraints and evaluation
function) without being explicitly directed when and how to do so. (3) The evaluation and
changes above are not purely random.

The requirement of changing the standards without being told how to do it deserves
further discussion. During runtime, no external agent has control over how the system
changes its standards, supporting the argument that the system is autonomous. However,
the way standards are changed is based on our specification and the systemworks without
external influence. It can therefore be argued that what the system produces is implic-
itly present in its initial set of instructions and, in some sense, the results could be traced
back to the programmer. The solution to this issue, promoted by Jennings (2010), is social
interaction and influence between creative agents.

Inspired by this, we can envision a number of mechanisms to affect the program’s exe-
cution in the approach that we have proposed. Thesemechanismsmay include interaction
with users or other computational systems, for instance in the form of receiving criticism
from other agents (giving grounds for adjusting the system’s own preferences), observa-
tion of songs others have produced (giving grounds to change the evaluation function) or
possibly even exchange of constraints between agents.

Intentionality and transparency. Finally, intentionality is a property often associated to intel-
ligence or creativity. The intention of the system is modelled by a combination of the
selected features and their target values. The system sets this intention and adjusts it during
the process, based on its observations of the songs it has produced.

Given the design of the system, its intent to maximise or minimise certain features can
also be presented to the user, as we did in the final part of the empirical evaluation. This
aspect clearly raised the interest of the subjects and modified their views of the songs and
probably also of the system, but this was not assessed in the evaluation. Making the system
more transparent by showing the users the intent of the system is a form of framing, i.e.
background information about the created artefact that helps put it into context (Charnley,
Pease, & Colton, 2012). Transparency and framing are potentially very important factors in
the appreciation of results of creative systems. At best, they can help users understand how
andwhy an artefact was produced, andwhat kind of creative responsibilities the computer
had in the process.

The transparent architecture proposed in this paper provides lot of information that
could be used beneficially for framing. The rules and evaluation function are represented
explicitly and declaratively, easing their communication (but the readability of constraints
admittedly is arguable). Perhaps more interestingly, the system can describe its intent, as
mentioned above, itsmotivation for choosing the intent (the system observed a song with
an interesting combination of features and wanted to explore other songs where these
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features areemphasised), aswell as theprocessof trying tomeet the intent (bymanipulation
of certain constraints).

9.4. Future work

Ground-level song generation can obviously be improved ad infinitum with better lyrics
and music production procedures and constraints. In particular, the match between music
and lyrics could take advantage of more fine-grained alignment of stresses and lengths of
music and lyrics. The set of feature extractors could also be extended to cover even a larger
variety of aspects.

The constraint programming framework is effective, but with our set of constraints it is
unfortunately not feasible to generate large numbers of songs in the meta-level algorithm
to explore a large part of the search space. Modification of constraints at runtime can
also lead to unsatisfiable settings. One option to tackle these problems would be to apply
constraint optimisation, readily available in ASP, instead of hard constraints.

On the transformational or meta-level, there are several fundamental aspects that
deserve further research. Regarding the artefacts generated, the features used by themeta-
level component to direct the search and generation of songs should be on amore abstract
level, such as moods, emotions and tones. This requires setting or learning mappings
between these more abstract features and the lower detail features that can be evaluated
fromsongs.Once thegoal is set, heuristicswouldbeuseful for choosing suitable constraints
to optimise the relevant features; machine learning could possibly be used here to help
automate the process. A more challenging setting would be to let the system modify the
constraintsmore freely, even generate new ones. In another direction, to reach full creative
autonomy (Jennings, 2010), interaction with the user or other agents would help the sys-
tem cultivate its own taste even more independently of the developers; this should also
happen across sessions. Finally, the architecture would allow generation of better framing
information for the produced songs to increase their appreciation by the audience of the
system.

Notes

1. Keys are identified by j as the number of sharps in a given key signature. Key signatures of seven
or more sharps are treated as their enharmonic equivalents, e.g. Db major is an enharmonic
equivalent of C# major.

2. Note that here we construct aesthetic objective functions that seek to maximise or minimise the
included features, using extreme targets of 0 and 1. This is done intentionally to decrease the
degrees of freedom of the system and to help the system overcome competing objectives. How-
ever, because the objective functions are typically multi-objective, the resulting musical artifacts
will rarely exhibit such extremes. Also, it is possible to generalise the approach to incorporate
non-binary targets into the objective function as in Murray and Ventura (2012).

3. Baccianella, S., Esuli, A., & Sebastiani, F. (2010). Sentiwordnet 3.0: An enhanced lexical resource for
sentiment analysis and opinion mining. In LREC (Vol. 10, pp. 2200–2204).

4. Carnegie Mellon University, “The CMU pronunciation dictionary”, 2000, http://www.speech.cs.
cmu.edu

Disclosure statement

No potential conflict of interest was reported by the authors.

http://www.speech.cs.cmu.edu
http://www.speech.cs.cmu.edu


CONNECTION SCIENCE 25

Funding

This work has been supported by the European Commission under the FET grant 611733 (ConCreTe)
and the Academy of Finland under grants 276897 (CLiC), 293411, 1293348 (DLT), 251170 (COIN),
276412, 284591 and 312662.

ORCID

JukkaM. Toivanen http://orcid.org/0000-0001-7297-2501
Matti Järvisalo http://orcid.org/0000-0003-2572-063X
Dan Ventura http://orcid.org/0000-0002-3111-2238
Martti Vainio http://orcid.org/0000-0003-2570-0196
Hannu Toivonen http://orcid.org/0000-0003-1339-8022

References

Anders, T. (2011). Constraint programming systems for modeling music theories and composition.
ACMComputing Surveys, 43(4), Article 30.

Boden, M. A. (1998). Creativity and artificial intelligence. Artificial Intelligence, 103(1–2), 347–356.
Boden, M. A. (2004). The creativemind: Myths andmechanisms (2nd ed.). London: Psychology Press.
Boenn, G., Brain, M., De Vos, M., & Ffitch, J. (2008). Automatic composition of melodic and harmonic

music by answer set programming. InM. Garcia de la Banda & E. Pontelli (Eds.), Logic programming,
24th International Conference (Lecture Notes in Computer Science Vol. 5366, pp. 160–174). Udine,
Italy: Springer.

Boenn, G., Brain, M., De Vos, M., & Ffitch, J. (2011). Automatic music composition using answer set
programming. Theory and Practice of Logic Programming, 11(2–3), 397–427.

Bundy, A. (1994). What is the difference between real creativity and mere novelty?. Behavioral and
Brain Sciences, 17(03), 533–534.

Charnley, J., Pease, A., & Colton, S. (2012). On the notion of framing in computational creativity. InM. L.
Maher, K. J. Hammond,A. Pease, R. Pérez yPérez,D. Ventura, &G.A.Wiggins (Eds.),Proceedingsof the
third international conference on computational creativity (pp. 77–81). Dublin, Ireland: Association
for Computational Creativity.

Colton, S. (2001). Experiments inmeta-theory formation. In A. Cardoso & G. A. Wiggins (Eds.), Proceed-
ings of AISB symposium on artificial intelligence and creativity in arts and science (pp. 100–109). York,
UK: Society for the Study of Artificial Intelligence and Simulation of Behaviour.

Colton, S. (2008). Creativity versus theperceptionof creativity in computational systems. InD. Ventura,
M. L.Maher&S. Colton (Eds.),Proceedingsof theAAAI springsymposiumoncreative intelligent systems
(pp. 14–20). Stanford, CA: AAAI.

Colton, S., Bundy, A., & Walsh, T. (1999). Automatic concept formation in pure mathematics. In T.
Dean (Ed.), Proceedings of the 16th international joint conference on artificial intelligence (Vol. 2, pp.
786–791). Stockholm, Sweden: Morgan Kaufmann.

Colton, S., Goodwin, J., & Veale, T. (2012). Full-FACE poetry generation. In M. L. Maher, K. J. Hammond,
A. Pease, R. Pérez y Pérez, D. Ventura, & G. A. Wiggins (Eds.), Proceedings of the third international
conference on computational creativity (pp. 95–102). Dublin, Ireland: Association for Computational
Creativity.

Colton, S., & Wiggins, G. A. (2012). Computational creativity: The final frontier? In L. D. Raedt, C.
Bessière, D. Dubois, P. Doherty, P. Frasconi, F. Heintz, & P. J. F. Lucas (Eds.), Proceedings of the
European conference on artificial intelligence (pp. 21–26). Montpellier, France: IOS Press.

Dubuisson, M.-P., & Jain, A. K. (1994). Amodified Hausdorff distance for object matching. In S. Peleg &
S. Ullman (Eds.), Proceedings of the 12th IAPR international conference on pattern recognition (Vol. 1,
pp. 566–568). Jerusalem, Israel: IEEE.

El Bolock, A., & Abdennadher, S. (2015). Towards automatic poetry generation using constraint han-
dling rules. In R. L. Wainwright, J. M. Corchado, A. Bechini, & J. Hong (Eds.), Proceedings of the 30th
annual ACM symposium on applied computing (pp. 1868–1873). Salamanca, Spain: ACM.

http://orcid.org/0000-0001-7297-2501
http://orcid.org/0000-0003-2572-063X
http://orcid.org/0000-0002-3111-2238
http://orcid.org/0000-0003-2570-0196
http://orcid.org/0000-0003-1339-8022


26 J. M. TOIVANEN ET AL.

Gebser, M., Kaminski, R., Kaufmann, B., & Schaub, T. (2012). Answer set solving in practice. San Rafael,
CA: Morgan & Claypool Publishers.

Gebser,M., Kaminski, R., Kaufmann, B., & Schaub, T. (2014). Clingo = ASP+ control: Preliminary report.
CoRR, abs/1405.3694.

Gelfond, M., & Lifschitz, V. (1988). The stable model semantics for logic programming. In R. A. Kowal-
ski & K. A. Bowen (Eds.), Proceedings of the fifth international conference and symposium on logic
programming (pp. 1070–1080). Seattle, WA: MIT Press.

Gervás, P. (2001). An expert system for the composition of formal Spanish poetry. Journal of
Knowledge-Based Systems, 14(3–4), 181–188.

Grace, K., & Maher, M. L. (2015). Specific curiosity as a cause and consequence of transformational
creativity. InH. Toivonen, S. Colton,M.Cook,&D.Ventura (Eds.),Proceedingsof thesixth international
conference on computational creativity (pp. 260–267). Park City, UT: Association for Computational
Creativity.

Jennings, K. E. (2010). Developing creativity: Artificial barriers in artificial intelligence. Minds and
Machines, 20(4), 489–501.

Jordanous, A. K. (2009). Evaluating machine creativity. In N. Bryan-Kinns, M. D. Gross, H. Johnson, J.
Ox, & R. Wakkary (Eds.), Proceedings of the seventh ACM conference on creativity and cognition (pp.
331–332). Berkeley, CA: ACM.

Lenat, D. B. (1983). Eurisko: A program that learns new heuristics and domain concepts. Artificial
Intelligence, 21(1–2), 61–98.

Lenat, D. B., & Brown, J. S. (1984). Why AM and EURISKO appear to work. Artificial Intelligence, 23(3),
269–294.

Manurung, H. M. (2003). An evolutionary algorithm approach to poetry generation (Doctoral disserta-
tion). University of Edinburgh, College of Science and Engineering, School of Informatics.

Mihalcea, R., & Strapparava, C. (2012). Lyrics, music, and emotions. In J. Tsujii, J. Henderson, & M.
Pasca (Eds.), Proceedings of the conference on empirical methods in natural language processing (pp.
590–599). Jeju Island, South Korea: ACL.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in
vector space. arXiv preprint arXiv:1301.3781.

Monteith, K., Francisco, V., Martinez, T., Gervás, P., & Ventura, D. (2011). Automatic generation of
emotionally-targeted soundtracks. In D. Ventura, P. Gervás, D. F. Harrell, M. L. Maher, A. Pease, &
G. A. Wiggins (Eds.), Proceedings of the second international conference on computational creativity
(pp. 60–62). Mexico City, Mexico: Association for Computational Creativity.

Monteith, K., Martinez, T., & Ventura, D. (2010). Automatic generation of music for inducing emotive
response. In D. Ventura, A. Pease, R. Pérez y Pérez, G. Ritchie & T. Veale (Eds.), Proceedings of the first
international conferenceoncomputational creativity (pp. 140–149). Lisbon, Portugal: Association for
Computational Creativity.

Monteith, K., Martinez, T., & Ventura, D. (2012). Automatic generation ofmelodic accompaniments for
lyrics. InM. L.Maher, K. J. Hammond,A. Pease, R. Pérez y Pérez, D. Ventura, &G. A.Wiggins (Eds.),Pro-
ceedingsof the third international conferenceoncomputational creativity (pp. 87–94). Dublin, Ireland:
Association for Computational Creativity.

Murray, S. J., & Ventura, D. (2012). Algorithmically flexible style composition through multi-objective
fitness functions. In P. Pasquier, A. Eigenfeldt, & O. Bown (Eds.), Proceedings of the first international
workshop onmusical metacreation (pp. 55–62). Stanford, Palo Alto, CA: AAAI Press.

Niemelä, I. (1999). Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence, 25(3–4), 241–273.

Nienhuys, H. W., & Nieuwenhuizen, J. (2003). Lilypond, a system for automated music engraving. In
N. Bernardini, F. Giomi, & N. Giosmin (Eds.), Proceedings of the XIV colloquiumonmusical informatics
(pp. 167–172). Florence, Italy: AIMI.

Oliveira, H. G., Cardoso, F. A., & Pereira, F. C. (2007). Tra-la-lyrics: An approach to generate text based
on rhythm. In A. Cardoso & G. A. Wiggins (Eds.), Proceedings of fourth international joint workshop
on computational creativity (pp. 47–55). London, UK: Goldsmiths, University of London.



CONNECTION SCIENCE 27

Papadopoulos, A., Pachet, F., Roy, P., & Sakellariou, J. (2015). Exact sampling for regular and Markov
constraints with belief propagation. In G. Pesant (Ed.), Principles and practice of constraint pro-
gramming (Lecture Notes in Computer Science Vol. 9255, pp. 341–350). Springer International
Publishing.

Prusinkiewicz, P. (1986). Score generationwith L-systems. In P. Berg (Ed.), Proceedings of the 1986 inter-
national computer music conference (pp. 455–457). Den Haag, Netherlands: Michigan Publishing.

Ramakrishnan, A., Kuppan, S., & Devi, S. L. (2009). Automatic generation of Tamil lyrics formelodies. In
A. Feldman&B. Lönneker-Rodman (Eds.),Proceedingsof theworkshoponcomputationalapproaches
to linguistic creativity (pp. 40–46). Boulder, CO: ACL.

Ritchie, G. (2006). The transformational creativity hypothesis. New Generation Computing, 24(3),
241–266.

Roads, C. (1996). The computer music tutorial. Cambridge, MA: The MIT Press.
Scirea, M., Barros, G. A., Shaker, N., & Togelius, J. (2015). SMUG: Scientific music generator. In H. Toivo-

nen, S. Colton, M. Cook, & D. Ventura (Eds.), Proceedings of the sixth international conference on
computational creativity (pp. 204–211). Park City, UT: Association for Computational Creativity.

Simon, I., Morris, D., & Basu, S. (2008). MySong: Automatic accompaniment generation for vocal
melodies. In M. Czerwinski, A. M. Lund, & D. S. Tan (Eds.), Proceedings of the SIGCHI conference on
human factors in computing systems (pp. 725–734). Florence, Italy: ACM.

Simons, P., Niemelä, I., & Soininen, T. (2002). Extending and implementing the stablemodel semantics.
Artificial Intelligence, 138(1), 181–234.

Sridhar, R., Gladis, D. J., Ganga, K., & Prabha, G. D. (2014). Automatic Tamil lyric generation based on
ontological interpretation for semantics. Sadhana, 39(1), 97–121.

Sukumaran, S., & Dheepa, G. (2003). Generation of fractal music with Mandelbrot set. Global Journal
of Computer Science and Technology, 1(1), 127–130.

Tobing, B. C., &Manurung, R. (2015). A chart generation system for topicalmetrical poetry. In H. Toivo-
nen, S. Colton, M. Cook, & D. Ventura (Eds.), Proceedings of the sixth international conference on
computational creativity (pp. 308–314). Park City, UT: Association for Computational Creativity.

Toivanen, J. M., Järvisalo, M., & Toivonen, H. (2013). Harnessing constraint programming for poetry
composition. In M. L. Maher, T. Veale, R. Saunders, & O. Bown (Eds.), Proceedings of the fourth inter-
national conference on computational creativity (pp. 160–167). Sydney, Australia: Association for
Computational Creativity.

Toivanen, J. M., Toivonen, H., Valitutti, A., & Gross, O. (2012). Corpus-based generation of content and
form in poetry. InM. L. Maher, K. J. Hammond, A. Pease, R. Pérez y Pérez, D. Ventura, & G. A. Wiggins
(Eds.), Proceedings of the third international conference on computational creativity (pp. 175–179).
Dublin, Ireland: Association for Computational Creativity.

Toivanen, J. M., Toivonen, H., & Valitutti, A. (2013). Automatical composition of lyrical songs. In M. L.
Maher, T. Veale, R. Saunders, & O. Bown (Eds.), Proceedings of the fourth international conference on
computational creativity (pp. 87–91). Sydney, Australia: Association for Computational Creativity.

Tulilaulu, A., Paalasmaa, J., Waris, M., & Toivonen, H. (2012). Sleep musicalization: Automatic music
composition from sleep measurements. In J. Hollmén, F. Klawonn & A. Tucker (Eds.), Advances in
intelligent data analysis XI (Lecture Notes in Computer Science Vol. 7619, pp. 392–403). Helsinki:
Springer.

Wiggins, G. A. (2006). A preliminary framework for description, analysis and comparison of creative
systems. Knowledge-Based Systems, 19(7), 449–458.

Appendix. Musical and lyrical feature extractors

Let I be the set of all possible sequences of note pitches, D be the set of all possible note dura-
tions,W be the set of all possible sequences of words and C the set of all possible chord sequences.
We can represent a song as the four-tuple (I,D,W , C) where I ∈ I , D ∈ D, W ∈W and C ∈ C repre-
sent the melody pitches, melody note durations, lyrics and chords, respectively. Then, for instance,
I = i1, i2, . . . , in, where ij is the pitch of an individual note, and W = w1,w2, . . . ,wm, where wj is an
individual word of the lyrics. An individual note i can take any pitch value in a 2 octave range, with
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note values represented by numbers in the range [0, 23], i.e. ij ∈ [0, 23], 1 ≤ j ≤ n. An individual word
w can be any member of the vocabulary V of words, sowj ∈ V , 1 ≤ j ≤ m.

An evaluation function E : I ×D ×W × C → [0, 1] can be constructed using a weighted linear
combination of the following 14 features to evaluate songs produced by the generation component.
See Sections 5 and 6 for how the features are used.

(1) Self-similarity of melody (Murray & Ventura, 2012). Measures how often repeating intervals occur
in sequence I.

SelfSimilarMelody(I) = μ− 1
|I| − 3

, (A1)

whereμ = (1/|S|) ∑
s∈S counts(I) and S is the set of all interval sequences of length 2 that appear

in I. counts(I) is the number of times interval sequence s occurs in I.
(2) Self-similarity of rhythm. Measures how often repeating patterns appear in a sequence of dura-

tions D.

SelfSimilarRhythm(D) = μ− 1
|D| − 2

, (A2)

where μ = (1/|S|) ∑
s∈S counts(D) and S is the set of all duration sequences of length 2 that

appear in D. counts(D) is the number of times duration sequence s appears in D.
(3) Note prevalence. Twelve different functions for each possible pitch class. Measures the propor-

tion of notes in I that represent a specific pitch class.

NotePrevalencej(I) = countj(I)

|I| , (A3)

where 0 ≤ j ≤ 11 denotes the notes C, C#, . . . , B, and countj(I) is the number of times pitch class
j appears in I (pitches above a one-octave range are reduced to their first-octave equivalents).

(4) Key prevalence (Murray & Ventura, 2012). Twelve different functions for each possible key centre.
Measures the proportion of notes in I that represent a specific key.

KeyPrevalencej(I) =
|Kj|
|I| , (A4)

where Kj = {i ∈ I | i ∈ Keyj}, 0 ≤ j ≤ 11, and j indicates the number of sharps in the key signature.
Key signatures with seven or more sharps are treated as equivalent enharmonic key signatures
with flats, e.g. C# major is an enharmonic equivalent of Db major. Thus Key0 is C Major, Key1 is G
Major, Key7 is Db major, etc.

(5) Pitch range. Measures how much of the possible pitch range (two octaves) is used by I, with 0
meaning none of the range is used and 1 meaning all of the range is used.

PitchRange(I) = |S|
24

, (A5)

where S denotes the set of unique pitches in I and 24 is the total number of notes in a two-octave
range.

(6) Interval class prevalence (Murray & Ventura, 2012). Measures the proportion of intervals in a pitch
sequence I = i1, i2, . . . , in that represent a particular interval class j. Thus there are 24 different
functions, 0 ≤ j ≤ 23.

IntClassPrevj(I) =
∑n−1

k=1 δ(j, ik+1 − ik)

n− 1
, (A6)

where δ() is the Kronecker delta function.
(7) Variability of rhythm. Measures the proportion of unique note duration pairs (di , di+1) in a note

duration sequence D = d1, d2, . . . , dn :

RhythmVariability(D) = 1
n− 1

n−1∑

j=1
δ(dj , dj+1), (A7)

where δ() is the Kronecker delta function.
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(8) Average duration of a note. For sequence of note durations D

AverageDuration(D) = 1
|D|

∑

d∈D
d. (A8)

(9) Variability of harmony. Measures the proportion of unique chords in a given chord sequence C.

HarmonyVariability (C) = |S||C| , (A9)

where |S| denotes the set of unique chords in C.
(10) Positive sentiment of lyrics. Computes the average sentiment value of individual wordswi in the

lyricsW based on SentiWordnet3.

PositiveLyricsSentiment(W) = 1
|W|

∑

w∈W
σ(w), (A10)

where σ(w) returns a value in the range [0, 1], with 0 meaning not at all positive and 1 meaning
completely positive.

(11) Phoneme structure of lyrics. Measures the proportion of consonant and vowel phonemes in the
lyrics using two different functions:

ProportionConsonants(W) = 1
|L|

∑

p∈L
con(p) (A11)

and

ProportionVowels(W) = 1
|L|

∑

p∈L
vow(p), (A12)

where L is the sequence of phonemes p1, p2, . . . , pn formed by the lyricsW, con() returns 1 if its
argument is a consonant and0otherwise, andvow() returns 1 if its argument is a vowel and0oth-
erwise. (In the case of English, the phonetic representation is formedwith theCMUpronunciation
dictionary.4)

(12) Word rarity. Computes the average frequency of the words in lyricsW.

Rarity(W) = 1
|W|

∑

w∈W
freq(w), (A13)

where freq() returns the frequency of its argument in Wikipedia (normalized to the range [0, 1]).
(13) Stressed note lengths. Computes the proportion of note durations associated with stressed lyric

syllables:

Stressed(D,W) =
∑

d∈D∧str(d)
d

∑
d∈D d

, (A14)

where str() is TRUE if its argument is associated with a stressed syllable inW.
(14) Melody consonance. Measures the average consonance of the melodic pitches w.r.t. the under-

lying chords.

Consonance(I, C) = 1
|I|

∑

i∈I
cons(i, ci), (A15)

where ci is the chord in C that holds during note i, and cons(i, c) returns a value in the range [0, 1]
based on consonance values of the intervals between i and the pitches constituting c.
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