198,923 research outputs found

    System-Level Modeling, Analysis and Code Generation: Object Recognition Case Study

    Get PDF
    International audienceOne of the most important challenges in complex embedded systems design is developing methods and tools for modeling and analyzing the behavior of application software running on multi-processor platforms. We propose a tool-supported flow for systematic and compositional construction of mixed software/hardware system models. These models are intended to represent, in an operational way, the set of timed executions of parallel application software statically mapped on a multi-processor platform. As such, system models will be used for performance analysis using simulation-based techniques as well as for code generation on specific platforms. The construction of the system model proceeds in two steps. In the first step, an abstract system model is obtained by composition and specific transformations of (1) the (untimed) model of the application software, (2) the model of the platform and (3) the mapping between them. In the second step, the abstract system model is refined into concrete system model, by including specific timing constraints for execution of the application software, according to chosen mapping on the platform. We illustrate the system model construction method and its use for performance analysis and code generation on an object recognition application provided by Hellenic Airspace Industry. This case study is build upon the HMAX models algorithm [RP99] and is looking at significant speedup factors. This paper reports results obtained on different system model configurations and used to determine the optimal implementation strategy in accordance to hardware resources

    An integrated platform for design and numerical analysis of shield tunnelling processes on different levels of detail

    Get PDF
    Building and construction information modelling for decision making during the life cycle of infrastructure projects are vital tools for the analysis of complex, integrated, multi-disciplinary systems. The traditional design process is cumbersome and involves significant manual, time-consuming preparation and analysis as well as significant computational resources. To ensure a seamless workflow during the design and analysis and to minimise the computation time, we propose a novel concept of multi-level numerical simulations, enabling the modelling on different Levels of Detail (LoDs) for each physical component, process information, and analysis type. In this paper, we present SATBIM, an integrated platform for information modelling, structural analysis and visualisation of the mechanised tunnelling process for design support. Based on a multi-level integrated parametric Tunnel Information Model, numerical models for each component on different LoDs are developed, considering proper geometric as well as material representation, interfaces and the representation of the construction process. Our fully automatic modeller for arbitrary tunnel alignments provides a high degree of automation for the generation, the setup and the execution of the simulation model, connecting the multi-level information model with the open-source simulation software KRATOS. The software of SATBIM is organized in a modular way in order to offer high flexibility not only for further extensions, but also for adaptation to future improvements of the simulation software. The SATBIM platform enables practical, yet flexible and user-friendly generation of the tunnel structure for arbitrary alignments on different LoDs, supporting the design process and providing an insight into soil-structure interactions during construction

    PROARTIS: Probabilistically analyzable real-time systems

    Get PDF
    Static timing analysis is the state-of-the-art practice of ascertaining the timing behavior of currentgeneration real-time embedded systems. The adoption of more complex hardware to respond to the increasing demand for computing power in next-generation systems exacerbates some of the limitations of static timing analysis. In particular, the effort of acquiring (1) detailed information on the hardware to develop an accurate model of its execution latency as well as (2) knowledge of the timing behavior of the program in the presence of varying hardware conditions, such as those dependent on the history of previously executed instructions. We call these problems the timing analysis walls. In this vision-statement article, we present probabilistic timing analysis, a novel approach to the analysis of the timing behavior of next-generation real-time embedded systems. We show how probabilistic timing analysis attacks the timing analysis walls; we then illustrate the mathematical foundations on which this method is based and the challenges we face in the effort of efficiently implementing it. We also present experimental evidence that shows how probabilistic timing analysis reduces the extent of knowledge about the execution platform required to produce probabilistically accurate WCET estimations. © 2013 ACM.Peer Reviewe

    SmartUnit: Empirical Evaluations for Automated Unit Testing of Embedded Software in Industry

    Full text link
    In this paper, we aim at the automated unit coverage-based testing for embedded software. To achieve the goal, by analyzing the industrial requirements and our previous work on automated unit testing tool CAUT, we rebuild a new tool, SmartUnit, to solve the engineering requirements that take place in our partner companies. SmartUnit is a dynamic symbolic execution implementation, which supports statement, branch, boundary value and MC/DC coverage. SmartUnit has been used to test more than one million lines of code in real projects. For confidentiality motives, we select three in-house real projects for the empirical evaluations. We also carry out our evaluations on two open source database projects, SQLite and PostgreSQL, to test the scalability of our tool since the scale of the embedded software project is mostly not large, 5K-50K lines of code on average. From our experimental results, in general, more than 90% of functions in commercial embedded software achieve 100% statement, branch, MC/DC coverage, more than 80% of functions in SQLite achieve 100% MC/DC coverage, and more than 60% of functions in PostgreSQL achieve 100% MC/DC coverage. Moreover, SmartUnit is able to find the runtime exceptions at the unit testing level. We also have reported exceptions like array index out of bounds and divided-by-zero in SQLite. Furthermore, we analyze the reasons of low coverage in automated unit testing in our setting and give a survey on the situation of manual unit testing with respect to automated unit testing in industry.Comment: In Proceedings of 40th International Conference on Software Engineering: Software Engineering in Practice Track, Gothenburg, Sweden, May 27-June 3, 2018 (ICSE-SEIP '18), 10 page

    Context constraint integration and validation in dynamic web service compositions

    Get PDF
    System architectures that cross organisational boundaries are usually implemented based on Web service technologies due to their inherent interoperability benets. With increasing exibility requirements, such as on-demand service provision, a dynamic approach to service architecture focussing on composition at runtime is needed. The possibility of technical faults, but also violations of functional and semantic constraints require a comprehensive notion of context that captures composition-relevant aspects. Context-aware techniques are consequently required to support constraint validation for dynamic service composition. We present techniques to respond to problems occurring during the execution of dynamically composed Web services implemented in WS-BPEL. A notion of context { covering physical and contractual faults and violations { is used to safeguard composed service executions dynamically. Our aim is to present an architectural framework from an application-oriented perspective, addressing practical considerations of a technical framework

    Automatic Test Generation for Space

    Get PDF
    The European Space Agency (ESA) uses an engine to perform tests in the Ground Segment infrastructure, specially the Operational Simulator. This engine uses many different tools to ensure the development of regression testing infrastructure and these tests perform black-box testing to the C++ simulator implementation. VST (VisionSpace Technologies) is one of the companies that provides these services to ESA and they need a tool to infer automatically tests from the existing C++ code, instead of writing manually scripts to perform tests. With this motivation in mind, this paper explores automatic testing approaches and tools in order to propose a system that satisfies VST needs
    corecore