3,150 research outputs found

    Software engineering and middleware: a roadmap (Invited talk)

    Get PDF
    The construction of a large class of distributed systems can be simplified by leveraging middleware, which is layered between network operating systems and application components. Middleware resolves heterogeneity and facilitates communication and coordination of distributed components. Existing middleware products enable software engineers to build systems that are distributed across a local-area network. State-of-the-art middleware research aims to push this boundary towards Internet-scale distribution, adaptive and reconfigurable middleware and middleware for dependable and wireless systems. The challenge for software engineering research is to devise notations, techniques, methods and tools for distributed system construction that systematically build and exploit the capabilities that middleware deliver

    Parallel discrete event simulation: A shared memory approach

    Get PDF
    With traditional event list techniques, evaluating a detailed discrete event simulation model can often require hours or even days of computation time. Parallel simulation mimics the interacting servers and queues of a real system by assigning each simulated entity to a processor. By eliminating the event list and maintaining only sufficient synchronization to insure causality, parallel simulation can potentially provide speedups that are linear in the number of processors. A set of shared memory experiments is presented using the Chandy-Misra distributed simulation algorithm to simulate networks of queues. Parameters include queueing network topology and routing probabilities, number of processors, and assignment of network nodes to processors. These experiments show that Chandy-Misra distributed simulation is a questionable alternative to sequential simulation of most queueing network models

    HeTM: Transactional Memory for Heterogeneous Systems

    Full text link
    Modern heterogeneous computing architectures, which couple multi-core CPUs with discrete many-core GPUs (or other specialized hardware accelerators), enable unprecedented peak performance and energy efficiency levels. Unfortunately, though, developing applications that can take full advantage of the potential of heterogeneous systems is a notoriously hard task. This work takes a step towards reducing the complexity of programming heterogeneous systems by introducing the abstraction of Heterogeneous Transactional Memory (HeTM). HeTM provides programmers with the illusion of a single memory region, shared among the CPUs and the (discrete) GPU(s) of a heterogeneous system, with support for atomic transactions. Besides introducing the abstract semantics and programming model of HeTM, we present the design and evaluation of a concrete implementation of the proposed abstraction, which we named Speculative HeTM (SHeTM). SHeTM makes use of a novel design that leverages on speculative techniques and aims at hiding the inherently large communication latency between CPUs and discrete GPUs and at minimizing inter-device synchronization overhead. SHeTM is based on a modular and extensible design that allows for easily integrating alternative TM implementations on the CPU's and GPU's sides, which allows the flexibility to adopt, on either side, the TM implementation (e.g., in hardware or software) that best fits the applications' workload and the architectural characteristics of the processing unit. We demonstrate the efficiency of the SHeTM via an extensive quantitative study based both on synthetic benchmarks and on a porting of a popular object caching system.Comment: The current work was accepted in the 28th International Conference on Parallel Architectures and Compilation Techniques (PACT'19

    Turning Futexes Inside-Out: Efficient and Deterministic User Space Synchronization Primitives for Real-Time Systems with IPCP

    Get PDF
    In Linux and other operating systems, futexes (fast user space mutexes) are the underlying synchronization primitives to implement POSIX synchronization mechanisms, such as blocking mutexes, condition variables, and semaphores. Futexes allow one to implement mutexes with excellent performance by avoiding system calls in the fast path. However, futexes are fundamentally limited to synchronization mechanisms that are expressible as atomic operations on 32-bit variables. At operating system kernel level, futex implementations require complex mechanisms to look up internal wait queues making them susceptible to determinism issues. In this paper, we present an alternative design for futexes by completely moving the complexity of wait queue management from the operating system kernel into user space, i. e. we turn futexes "inside out". The enabling mechanisms for "inside-out futexes" are an efficient implementation of the immediate priority ceiling protocol (IPCP) to achieve non-preemptive critical sections in user space, spinlocks for mutual exclusion, and interwoven services to suspend or wake up threads. The design allows us to implement common thread synchronization mechanisms in user space and to move determinism concerns out of the kernel while keeping the performance properties of futexes. The presented approach is suitable for multi-processor real-time systems with partitioned fixed-priority (P-FP) scheduling on each processor. We evaluate the approach with an implementation for mutexes and condition variables in a real-time operating system (RTOS). Experimental results on 32-bit ARM platforms show that the approach is feasible, and overheads are driven by low-level synchronization primitives

    Architecture independent environment for developing engineering software on MIMD computers

    Get PDF
    Engineers are constantly faced with solving problems of increasing complexity and detail. Multiple Instruction stream Multiple Data stream (MIMD) computers have been developed to overcome the performance limitations of serial computers. The hardware architectures of MIMD computers vary considerably and are much more sophisticated than serial computers. Developing large scale software for a variety of MIMD computers is difficult and expensive. There is a need to provide tools that facilitate programming these machines. First, the issues that must be considered to develop those tools are examined. The two main areas of concern were architecture independence and data management. Architecture independent software facilitates software portability and improves the longevity and utility of the software product. It provides some form of insurance for the investment of time and effort that goes into developing the software. The management of data is a crucial aspect of solving large engineering problems. It must be considered in light of the new hardware organizations that are available. Second, the functional design and implementation of a software environment that facilitates developing architecture independent software for large engineering applications are described. The topics of discussion include: a description of the model that supports the development of architecture independent software; identifying and exploiting concurrency within the application program; data coherence; engineering data base and memory management

    Requirements for implementing real-time control functional modules on a hierarchical parallel pipelined system

    Get PDF
    Analysis of a robot control system leads to a broad range of processing requirements. One fundamental requirement of a robot control system is the necessity of a microcomputer system in order to provide sufficient processing capability.The use of multiple processors in a parallel architecture is beneficial for a number of reasons, including better cost performance, modular growth, increased reliability through replication, and flexibility for testing alternate control strategies via different partitioning. A survey of the progression from low level control synchronizing primitives to higher level communication tools is presented. The system communication and control mechanisms of existing robot control systems are compared to the hierarchical control model. The impact of this design methodology on the current robot control systems is explored

    Multi-Threaded Actors

    Get PDF
    In this paper we introduce a new programming model of multi-threaded actors which feature the parallel processing of their messages. In this model an actor consists of a group of active objects which share a message queue. We provide a formal operational semantics, and a description of a Java-based implementation for the basic programming abstractions describing multi-threaded actors. Finally, we evaluate our proposal by means of an example application.Comment: In Proceedings ICE 2016, arXiv:1608.0313

    Protection and Synchronization in Actor Systems

    Get PDF
    This paper presents a unified method [called ENCASING] for dealing with the closely related issues of synchronization and protection in actor systems [Hewitt et al. 1973a, 1973b, 1974a; Greif and Hewitt 1975]. Actors are a semantic concept in which no active process is ever allowed to treat anything as an object. Instead a polite request must be extended to accomplish what the activator [process] desires. Actors enable us to define effective and efficient protection schemes. Vulnerable actors can be protected before being passed out by ENCASING their behavior in a guardian which applies appropriate checks before invoking the protected actor. Protected actors can be freely passed out since they work only for actors which have the authority to use them where authority can be decided by an arbitrary procedure. Synchronization can be viewed as a [time-variant] kind of protection in which access is only allowed to the encased actor when it is safe to do so.MIT Artificial Intelligence Laborator
    • ā€¦
    corecore