
Turning Futexes Inside-Out: Efficient and
Deterministic User Space Synchronization
Primitives for Real-Time Systems with IPCP
Alexander Zuepke
RheinMain University of Applied Sciences, Wiesbaden, Germany
alexander.zuepke@hs-rm.de

Abstract
In Linux and other operating systems, futexes (fast user space mutexes) are the underlying synchro-
nization primitives to implement POSIX synchronization mechanisms, such as blocking mutexes,
condition variables, and semaphores. Futexes allow one to implement mutexes with excellent per-
formance by avoiding system calls in the fast path. However, futexes are fundamentally limited
to synchronization mechanisms that are expressible as atomic operations on 32-bit variables. At
operating system kernel level, futex implementations require complex mechanisms to look up internal
wait queues making them susceptible to determinism issues. In this paper, we present an alternative
design for futexes by completely moving the complexity of wait queue management from the op-
erating system kernel into user space, i.e. we turn futexes “inside out”. The enabling mechanisms
for “inside-out futexes” are an efficient implementation of the immediate priority ceiling protocol
(IPCP) to achieve non-preemptive critical sections in user space, spinlocks for mutual exclusion, and
interwoven services to suspend or wake up threads. The design allows us to implement common
thread synchronization mechanisms in user space and to move determinism concerns out of the
kernel while keeping the performance properties of futexes. The presented approach is suitable
for multi-processor real-time systems with partitioned fixed-priority (P-FP) scheduling on each
processor. We evaluate the approach with an implementation for mutexes and condition variables in
a real-time operating system (RTOS). Experimental results on 32-bit ARM platforms show that the
approach is feasible, and overheads are driven by low-level synchronization primitives.

2012 ACM Subject Classification Computer systems organization → Real-time operating systems;
Software and its engineering → Mutual exclusion

Keywords and phrases Futex, Immediate Priority Ceiling Protocol, Critical Section, Monitor

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2020.11

1 Introduction and Motivation

A common technique to improve the performance of synchronization mechanisms is to
avoid unnecessary system calls [3, 4, 14, 18, 31]. Ousterhout [27] observed for processor
architectures of the 1980s that “[. . .] operating system performance does not seem to be
improving at the same rate as the base speed of the underlying hardware”. Today, the situation
has not changed much: system calls are an order of magnitude slower than atomic operations.
For current Intel CPUs, Al Bahra measures about 15 cycles for an atomic compare-and-swap
(CAS) operation on an Intel Core i7-3615QM [1], while Soares and Stumm describe a system
call overhead of around 150 cycles on an earlier Core i7 generation [33]. For the future, we can
assume that system calls remain expensive due to pipeline flushes [33] and mitigation against
processor design flaws such as Meltdown [21] and Spectre [19]. While we can assume that
processor design flaws like Meltdown will be fixed in future processor generations, Spectre-like
attacks on branch prediction by data cache side channels are expected to stay, along with
the corresponding measures of mitigation [23]. Therefore, avoiding unnecessary system calls
is still relevant today for efficient synchronization mechanism.

© Alexander Zuepke;
licensed under Creative Commons License CC-BY

32nd Euromicro Conference on Real-Time Systems (ECRTS 2020).
Editor: Marcus Völp; Article No. 11; pp. 11:1–11:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/343692392?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:alexander.zuepke@hs-rm.de
https://doi.org/10.4230/LIPIcs.ECRTS.2020.11
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Futexes Inside-Out: Efficient and Deterministic Synchronization Primitives

Futexes were originally conceived as a mechanism for fast mutexes in Linux [14]. The
idea behind futexes is to acquire and release uncontended mutexes by just using atomic
operations in the C library in user space. The kernel is only involved in handling blocking
and unblocking of threads on contention. This design omits system calls into the operating
system kernel in the fast path. Today, futexes are a generic compare-and-block mechanism in
Linux and used to implement almost all blocking POSIX thread synchronization primitives.
A further benefit of futexes is that no pre-registration of synchronization objects in the kernel
is needed. The Linux kernel creates in-kernel objects such as wait queues on demand.

From the design point of a real-time system, the basic idea of futexes as an optimization
of the common case also helps in mixed-criticality environments or when trying to improve
size, weight and power (SWaP) considerations. If a real-time task finishes early, it is a
desirable design goal to leave the remaining processing time to other non-real-time tasks, or
to enable power saving strategies earlier. This principle applies to all kinds of optimizations
such as processor caches, but only as long as an optimization also shows a deterministic
behavior and one can analytically derive a proper worst-case execution time (WCET).

However, design aspects that are important for the flexibility of futexes in Linux also
bring problems for their deterministic behavior. In the Linux kernel, blocked threads are
kept in a fixed-sized hash table, and previous research has shown that the futex hash table
is vulnerable to cause interference to otherwise unrelated processes due to inadvertent or
intentional hash collisions [38].

Alternative approaches to prevent this problem of undesired resource sharing involve
pre-registration of synchronization objects. This allows indexing of wait queues by other
means not susceptible to attacks, e.g. by using an index in a descriptor table [34]. Such a
limitation is fully compliant to most programming environments for real-time applications,
such as ARINC 653 for Avionics, which often require allocation of all resources at start time
anyway, to prevent later resource exhaustion at runtime, but this also limits the flexibility of
futexes for non-real-time workloads.

Another important design aspect of futexes is the use of 32-bit variables as protocol
variables in user space. 32-bit variables were originally chosen because atomic operations
on them are available on most major platforms supported by Linux. However, using 32-bit
variables in futex-based synchronization protocols requires that all data needed to make a
decision whether to wait or to wake up threads must be “compressed” into a single 32-bit
variable. While this is possible for most POSIX user space synchronization mechanisms such
as mutexes, condition variables, barriers, and semaphores, it is not the case for other, more
complex synchronization mechanisms, such as message queues.

To address these problems of futexes in the context of real-time systems, while preserving
their desirable properties, we propose to turn the futexes “inside-out” and to move the wait
queue management out of the kernel into user space. An efficient mechanism for short critical
sections is the enabling factor for queue manipulations, e.g. priority-ordered queues, which
cannot be realized as simple atomic operations on modern hardware. Such a mechanism also
removes the limitation of 32-bit protocol variables, allowing more complex waiting conditions.
For this to work efficiently and deterministically, we need three key components:
(i) A reliable and efficient mechanism to prevent preemption in user space.
(ii) Fair spinlocks for mutual exclusion between other processor cores.
(iii) A light-weight mechanism to suspend and wake up threads.
The resulting design effectively resembles a non-preemptive busy-waiting monitor with Mesa-
style blocking condition variables [10]. The main challenge of this design is that the overall
performance of these mechanisms must be comparable to futexes. For a blocking mutex, we
aim for a solution that avoids system calls in the fast path and requires system calls only

A. Zuepke 11:3

to suspend the calling thread in a mutex lock operation, or to wake up a waiting thread
in an unlock operation. The baseline is given by a traditional approach of implementing
synchronization mechanisms in the kernel, using dedicated system calls for all operations.
Here, we must reach a similar level of performance in the worst case.

Components (i) and (ii) are well researched in the context of real-time systems. Specifically,
in user space, temporarily disabling preemption while holding a spinlock is necessary to
avoid the lock-holder preemption problem [26, 35]. To this end, efficient and predictable
implementations of the immediate priority ceiling protocol (IPCP) [2, 37] are to be preferred
over other non-real-time techniques of controlling preemption [13, 20, 22, 25]. In this
paper, the design of component (iii) is based on the key idea of addressing threads directly.
Mechanisms for O(1) look-up of threads by their ID are in fact readily available at OS
kernel level, so we can leverage them to construct light-weight suspension and wake-up
mechanisms targeting threads directly rather than introducing another level of indirection
to look-up wait queues in the kernel. As result, the required kernel mechanisms to support
the proposed monitors in user space are much simpler compared to futexes or a traditional
approach. This effectively reduces the implementation effort and related WCET concerns
inside the operating system kernel and moves the complexity to support common thread
synchronization mechanisms into user space.

Our contributions in this paper are:
A mechanism to suspend and to wake up threads in IPCP for an operating system using
partitioned fixed-priority (P-PF) scheduling (Section 4).
Non-preemptive busy-waiting monitors in user space (Section 5).
An analysis of synchronization mechanisms w.r.t. their potential for optimization by
reducing system calls and related WCET concerns (Section 6).
An efficient implementation of blocking mutexes and condition variables based on the mon-
itor that require at most one system call. Like futex-based synchronization mechanisms,
no pre-registration of synchronization objects in the kernel is required (Section 7).
An experimental evaluation of the approach in a research RTOS for 32-bit ARM processors
to demonstrate the effectiveness of the proposed approach (Section 8).

2 Terminology and System Model

We assume a system comprising a contemporary 32-bit or 64-bit processor with one or more
processor cores. On the system, an operating system kernel executes in supervisor mode,
which is a privileged mode of the processor, while processes host code executing in a non-
privileged user mode. The processor provides virtual memory or enforces memory protection,
such that each process has its own isolated address space. Code in user mode uses system
calls, a hardware trap mechanism, to call into the operating system kernel. The processor
also provides general atomic operation on 32-bit variables based on compare-and-swap (CAS)
or load-linked/store-conditional (LL/SC) instructions. The atomic operations additionally
provide acquire or release semantics, or the processor provides explicit memory barriers
to order memory accesses. We also assume that, on average, non-atomic operations (e.g.
ALU- and normal load/store-operations) are much faster than atomic operations, and atomic
operations are much faster than system calls.

We use the term thread instead of task when talking about schedulable entities of a
process. TCB refers to the thread control block, which can comprise variables shared between
kernel and user space. We denote the user space part of the TCB as UTCB. The identifier
SELF points to the current thread’s thread-local storage (TLS) data segment in user space,
which also contains the UTCB.

ECRTS 2020

11:4 Futexes Inside-Out: Efficient and Deterministic Synchronization Primitives

We assume partitioned fixed-priority (P-FP) scheduling. We define the scheduling priority
in the sense that higher values refer to higher priority level, as this is often done in RTOS
implementations. The value max_prio defines the maximum priority level that a thread in a
process can use, while 0 is the minimum priority level in the system.

For resource sharing on each single processor core, we use the immediate priority ceiling
protocol (IPCP) [12]. When accessing a shared resource, the requesting thread temporarily
raises its scheduling priority to the ceiling priority of the resource. The ceiling priority
of each resource is defined as the maximum priority of all threads accessing the resource.
This effectively excludes other threads from accessing the resource at the same time, but
only as long as a thread does not block. Compared to the original priority ceiling protocol
(OPCP) [32], IPCP is simpler to implement, and it is the implementation mandated by e.g.
POSIX and found in real-world RTOS implementations. When max_prio is used as ceiling
priority, the protocol effectively reduces to non-preemptive critical sections (NPCS).

We now consider resource sharing between two or more processor cores. For short critical
sections, we combine non-preemptive critical sections with FIFO spinlocks, like in MSRP [15].
As spinlock implementation, both ticket locks and MCS locks provide fair FIFO ordering [24].
For long resource requests, we use mutexes as suspension-based mechanism instead of busy
waiting. The mutexes use priority-ordering, following POSIX as example. This approach is
also used in operating system kernels such as Linux. We further assume that synchronization
mechanisms are used correctly. Preventing deadlocks should be done in user space and is
outside of the scope of this paper.

Note that the presented approach is applicable to both single and multi-processor systems.
A single processor system does not require the use of spinlocks. Additionally, the approach
can be extended to partitioned EDF by using the deadline floor protocol (DFP) instead of
IPCP [11, 2]. We plan to investigate this combination in future work.

To analyze the worst case, we do not perform an actual WCET analysis, as this requires
detailed knowledge of the underlying processor architecture and the overall system, see e.g.
[6]. Instead, we keep the worst-case considerations on an abstract level and identify the worst
case for each building block in O notation. We think this is the right level to decide for or
against a mechanism in general.

3 Previous Work

3.1 Efficient Synchronization Mechanisms and Futexes
The observation that system call overheads are expensive is well known. Several approaches
were proposed to improve efficiency of synchronization mechanisms: Keedy describes atomic
test-and-increment and decrement-and-test operations to implement uncontended semaphore
operations and call into the operating system only to suspend or to wake up threads [18].
Birrell et al. describe an optimization for mutexes, condition variables, and semaphores in
the Taos operating system to only call the operating system kernel when there is contention
or a thread is waiting on a condition variable [4]. A similar approach is also described
for Benaphores in BeOS [31]. For synchronization in a Java virtual machine, Bacon et al.
proposed Thin Locks, based on atomic operations for uncontended cases, with a fall-back to
OS provided synchronization primitives [3].

Futexes extend these prior approaches as a generic compare-and-block mechanism. Futexes
allow a thread to wait on a variable in user space or to wake up a given number of waiting
threads. The kernel dynamically creates an internal wait queue based on the given user space
address and keeps the wait queue as long as threads are waiting. The third conceptual futex
operation allows to requeue waiting threads from one wait queue to another. This helps when

A. Zuepke 11:5

signaling condition variables to prevent thundering herd effects [16]. The requeue operation
transfers waiting threads from the condition variable’s wait queue to the mutex’ one instead
of waking the threads up and letting them compete on the associated mutex.

Futexes were first introduced in Linux to implement POSIX thread synchronization
objects in user space [14], and then later extended to support the priority inheritance
protocol (PIP) [16]. Over time, scalability issues were addressed and discussed [8, 9]. Pizlo
describes an approach resembling futexes using cascaded locks and hashed wait queues in
user space for fine-grained locking and condition variables in the WebKit browser [28]. Spliet
et al. evaluated the use of different real-time locking protocols for futexes in the context of
LITMUSRT, a Linux-based testbed for real-time scheduling experiments [34]. They use an
index-based wait queue look-up and a bitmap of acquired locks that is shared between user
space and kernel. Zuepke et al. presented approaches for deterministic futexes with FIFO
ordering based on doubly-linked lists and look-up by thread ID [36], by replacing the futex
hash table with binary search trees to bound interference effects to logarithmic runtime [38],
and by using an index-based wait queue look-up [37].

3.2 Lock Holder Preemption
A problem with spinning synchronization in user space is that a thread can be preempted
inside a critical section, as the scheduler is not aware of the critical section, and other threads
continue spinning while the lock holder is preempted. In turn, multiple preemption-safe
lock mechanisms were proposed [25], which either prevent preemption or try to recover
from the fact that a lock holder is preempted, e.g. adaptive mutexes, by spinning only for a
limited time and then falling back to blocking [26], scheduler hints [5], or scheduler-conscious
synchronization with liveness indicators [20]. Michael and Scott provide an overview on these
techniques [25]. We focus on mechanisms to prevent preemption.

Edler et al.’s temporary non-preemption mechanism in Symunix II uses two flags shared
between user space and kernel [13]. Before starting spinning, a thread indicates its wish to
disable preemption in the first flag. When the kernel actually wants to preempt the thread
inside the critical section, the kernel sets the second flag to indicate a pending preemption
request and let the thread continue. After the thread finishes the critical section, it clears
the first flag and checks the second flag if it has to yield the processor. The kernel can set
up a short timeout to enforce preemption of uncooperative threads not enabling preemption.
An alternative approach is the two-minute warning mechanism proposed by Marsh et al.
in Psyche [22]: the kernel indicates upcoming preemption (i.e. end of time slice) in a user
readable flag, and a user space thread then avoids acquiring any spinlocks and rather yields.
Holman and Anderson present a third approach in the context of Pfair-scheduling [17]: a
locking attempt in the frozen interval at the end of a time slice implicitly blocks the thread
until the next time slice. All three mechanisms were originally designed for systems with
quantum scheduling where the time of preemption is known in advance.

3.3 Efficient IPCP Implementations
In the context of real-time systems with P-FP scheduling, lock holder preemption by lower
priority threads can be also prevented by using real-time locking protocols such as IPCP.
To reduce the overhead of frequent scheduling priority changes, Zuepke et al. presented
two protocols to change a thread’s priority lazily in user space [37]. The protocols use
two variables shared between user space and kernel, similar to Edler et al.’s temporary
non-preemption mechanism [13]. Almatary et al. presented an efficient implementation of
IPCP (and DFP as well) using a different protocol with three shared variables [2].

ECRTS 2020

11:6 Futexes Inside-Out: Efficient and Deterministic Synchronization Primitives

Listing 1 User space per-thread data and UTCB
typedef struct {

tid_t tid; // thread ID
prio_t uprio; // user space priority
prio_t nprio; // next thread ’s priority
uint32_t ustate ; // user space state variable
<...>

} thread_t ;

define SELF <...> // get current thread ’s per - thread data

Listing 2 Priority change operations in user space
prio_t prio_raise (prio_t new_prio) {

prio_t old_prio = SELF ->uprio;
assert (new_prio >= old_prio);
SELF ->uprio = new_prio ;
return old_prio ;

}

void prio_restore (prio_t old_prio) {
SELF ->uprio = old_prio ;
if (old_prio < SELF ->nprio) {

sys_preempt ();
}

}

Listing 3 Priority change operations in the kernel
define CURRENT <...> // get current thread ’s kernel state (TCB)
define UTCB <...> // get current thread ’s user space data

void sys_preempt (void) {
prio_t uprio = min(UTCB ->uprio , CURRENT -> max_prio);
kernel_preempt (CURRENT , uprio);

}

void kernel_wake (<... >) {
<...>
prio_t uprio = min(UTCB ->uprio , CURRENT -> max_prio);
prio_t nprio = ready_queue_next ()-> prio;
UTCB ->nprio = nprio;
if (uprio < nprio) {

kernel_preempt (CURRENT , uprio);
}
<...>

}

void kernel_preempt (thread_t *thr , prio_t prio) {
// preempt the current thread
<...>

}

A. Zuepke 11:7

All three protocols comprise a priority raise operation and a priority restore operation.
The raise operations indicate a temporarily elevated scheduling priority in shared variables
without using a system call. The restore operations revert the scheduling priority to the
previous value and contain one optional system call to preempt the thread. On scheduling
events, e.g. when releasing a suspended thread, the kernel obtains the elevated scheduling
priority from the shared variables to consider whether to defer the preemption of the current
thread.

In Zuepke et al.’s first protocol [37] and Almatary et al.’s protocol [2], the kernel also
updates an in-kernel representation of the current thread’s scheduling priority and then
indicates that it has observed the priority change in the shared variables. In both protocols,
the priority restore operations need a system call to update the in-kernel value again, even if
the current thread will not be preempted.

Zuepke et al.’s second protocol addresses this shortcoming [37]. Here, the kernel does not
update an in-kernel priority and indicates whether it has observed the priority change, but
instead provides the priority of the next thread eligible for scheduling in a shared variable
and updates its value on each scheduling event. With this, the restore operation only issues
a system call when the current thread really needs to be preempted. We therefore focus only
on this protocol. The two shared variables are named uprio (user priority) and nprio (next
thread’s priority).

Listing 1 shows the shared protocol variables uprio and nprio among other variables. We
keep these variables in the per-thread TLS. Listing 2 shows the priority change operations in
user space. The priority raise operation returns the previous scheduling priority for the later
restore operation. Listing 3 shows the kernel parts of the implementation for the preemption
system call and when waking up a suspended thread. In both cases, the user space priority
is bounded to max_prio before further use.

Note that the kernel is optimized for frequent priority changes and does not keep the
current thread on ready queues, so nprio is naturally available from the highest priority
thread on the ready queue and also used internally by the kernel to decide whether to preempt
the current thread or not. Blackham et al. describe a similar technique for seL4 [6].

From the point of view of their worse-case timing, all three protocols show equal behavior:
no system call is needed to raise the priority, but a restore operation might require a system
call1, so we assume the system call is always called as the worst case. Also, all protocols
show equal overhead to synchronize and validate user priorities when testing to preempt the
currently running thread.

4 Light-Weight Blocking for IPCP

With the IPCP implementation presented in Section 3.3, we can now realize non-
preemptive critical sections in user space. Listing 4 shows a simple example. A thread
first raises its user space scheduling priority to max_prio to become non-preemptive, then
acquires a spinlock. The threads previous priority is kept in old_prio. At the end of the
critical section, the thread unlocks the spinlock and restores its previous scheduling priority.
Note that this sequence does not need any system calls in the fast path. The system call to
preempt the thread in prio_restore is only needed when in the meantime another thread
with a medium priority higher than old_prio became ready.

1 In Zuepke et al.’s protocols [37], the preemption system call would be superfluous if the thread is
preempted after updating uprio but before calling sys_preempt. Almatary et al. solve this corner case
at the expense of additional protocol variables [2]. In the worst case, one syscall is always needed.

ECRTS 2020

11:8 Futexes Inside-Out: Efficient and Deterministic Synchronization Primitives

Listing 4 Example non-preemptive critical section in user space
spin_t example_lock ;

void example_cs (<... >) {
prio_t old_prio = prio_raise (max_prio);
spin_lock (& example_lock);
<...>
spin_unlock (& example_lock);
prio_restore (old_prio);

}

Listing 5 System call implementation for light-weight waiting in IPCP
err_t sys_wait_at_prio (uint32_t *ustate , uint32_t cmp ,

timeout_t timeout , prio_t wait_prio) {
<...>
spin_lock (& ready_queue_lock);
uint32_t val = safe_user_space_read_access (ustate);
if (val == cmp) {

CURRENT ->prio = min(wait_prio , CURRENT -> max_prio);
CURRENT -> ustate = ustate ;
CURRENT ->state = WAIT_USER ;
err = kernel_wait (CURRENT , timeout);

} else {
err = EAGAIN ;

}
spin_unlock (& ready_queue_lock);
<...>

}

We now extend the critical sections with a blocking mechanism that interacts properly
with the IPCP implementation and the spinlock-protected critical sections. We opt to manage
the wait queue of blocked threads in user space.

Waiting: We can make the following considerations for a waiting operation:
Suspending the current thread needs help by the kernel. This requires a system call.
Waiting after calling prio_restore could trigger unnecessary preemption, as the calling
thread is going to suspend itself anyway. Waiting at max_prio is advisable.
Waiting inside the spinlock-protected critical section causes problems, as other threads
would be unable to acquire the spinlock. A system call to suspend a thread must happen
after unlocking the spinlock in user space.
As the spinlock-protected critical section protects any internal state w.r.t. blocking, a
system call to suspend a thread outside the critical section must prevent missed wake-ups.
A thread’s scheduling priority at wakeup time should reflect its original priority. When a
thread is woken up at max_prio, it would execute only to the point where it restores its
original priority and then causes unnecessary context switches if other medium priority
threads are ready.
Spurious wake-ups, e.g. timeouts, require a second critical section after waiting to remove
the current thread from the wait queue again.

A. Zuepke 11:9

Listing 6 System call implementation for light-weight wake-up of a thread in IPCP
err_t sys_wake_set_prio (tid_t tid , uint32_t *ustate , uint32_t cmp ,

prio_t new_prio) {
<...>
thread_t *thr = kernel_lookup_TCB_by_tid (tid);
spin_lock (& ready_queue_lock);
new_prio = min(new_prio , CURRENT -> max_prio);
UTCB ->uprio = new_prio ;
uint32_t val = safe_user_space_read_access (ustate);
if ((thr != NULL) && (thr ->state == WAIT_USER)

&& (thr -> ustate == ustate) && (val == cmp)) {
kernel_wake (thr);

} else if (new_prio < UTCB ->nprio) {
kernel_preempt (CURRENT , new_prio);

}
spin_unlock (& ready_queue_lock);
<...>

}

To prevent missed wake-ups, we use a compare-and-block mechanism similar to futexes.
Inside the spinlock-protected critical section, a thread decides to block and reads a state
variable. The state variable encodes a waiting condition and is changed by a wakeup operation.
Then the thread unlocks the critical section in user space and calls the kernel to suspend.
The kernel reads the state variable again and, if the current value matches the previous
value, suspends the thread. An alternative would be to call the kernel from inside the critical
section and let the kernel unlock the critical section before suspending the calling thread.
This would prevent any ambiguity with parallel wakeup operations. However, the kernel
would then need to know the exact semantics of the spinlocks to unlock the spinlock for the
caller. We opt to unlock the spinlock in user space instead. This keeps the kernel simple.

To address the problems of the scheduling priority at wakeup time, we temporarily drop
the priority while waiting. While still executing at max_prio in user space, a thread calls
a system call to wait at a lower priority wait_prio. The kernel then temporarily sets the
thread’s priority to wait_prio while waiting. When the thread is woken up again, it will be
enqueued at wait_prio on the ready queue. And when the thread is eventually scheduled,
the kernel increases the scheduling priority back to max_prio, and then returns from the
waiting system call. We can easily achieve this by using the following trick in the IPCP
implementation of Section 3.3: the kernel lets the thread wait at wait_prio, but leaves uprio
unmodified while waiting. Note that uprio was set to max_prio before waiting, so the thread
is effectively running at max_prio again after waiting as well. The thread in user space can
then either lock the spinlock again, or leave the IPCP-protected critical section and restore
its previous scheduling priority old_prio. As no other threads with a higher priority will be
ready at that moment, no system call will be needed.

Listing 5 shows the implementation of the sys_wait_at_prio system call. With the ready
queue locked, the kernel evaluates if the content of a given state variable in user space
(ustate) matches a compare value (cmp). If this is the case (no missed wakeup), the kernel
keeps the address of ustate for later, and suspends the current thread with the given timeout
(timeout) on the given waiting priority (wait_prio) in an internal waiting state WAIT_USER.
In case of a missed wakeup, the kernel returns an error condition. The system call does not
change uprio, so the thread will be immediately boosted to its previous uprio after wakeup.

ECRTS 2020

11:10 Futexes Inside-Out: Efficient and Deterministic Synchronization Primitives

Wakeup: For a wake-up operation, we can discuss similar considerations as for waiting:
Waking up a waiting thread needs help by the kernel. This requires a system call as well.
The wakeup system call addresses a blocked thread directly by its thread ID (tid).
Waking a thread up after calling prio_restore could cause unnecessary delays due to
preemption. Again, doing the wake-op operation at max_prio is advisable.
The wakeup system call could happen inside the spinlock-protected critical section or
be deferred after unlocking the spinlock. In the latter case, a system call to wake up a
thread outside the critical section must prevent spurious wake-ups.
Waking up a thread with a priority higher than oneself causes preemption when restoring
the previous priority.

We opt to wake up a thread outside the critical section. To prevent spurious wake-ups,
we use same technique as in the waiting operation. User space code passes the address and
expected value of a state variable in user space to the system call, and the kernel compares
the state variable to the expected value and only unblocks the given thread on a match. This
constitutes a compare-and-unblock mechanism.

To prevent unnecessary system calls for preemption in prio_restore, we defer the wake-up
to the latest possible point and fuse the system call for wake-up with the system call for
preemption. The resulting system call combines wake-up, priority change, and preemption.

Listing 6 shows the implementation of the sys_wake_set_prio system call. The wake-up
operation directly references a waiting thread by its thread ID (tid), so the system call first
looks up the TCB in the kernel. With the ready queue locked and executing non-preemptively,
the kernel first bounds the given priority to restore and updates uprio in user space. Then
the kernel evaluates the wake-up condition: the thread must exist, it must be waiting in a
call to sys_wake_set_prio, it must wait on the same ustate variable, and the current value
of ustate must match a compare value (cmp). If the condition is met, it wakes up the thread.
Otherwise, it just preempts the current thread, if necessary. Recall that kernel_wake in
Listing 3 also preempts the current thread when a higher priority thread is woken up.

5 Non-Preemptive Busy-Waiting Monitors in User Space

We now discuss how to construct higher-level synchronization mechanisms based on the IPCP
implementation of Section 3.3 to temporarily disable preemption, fair spinlocks, and the
light-weight waiting and wake-up primitives of Section 4. We use the term monitor for the
resulting design because the operations resemble the ones found in monitor implementations.

A monitor protects the state of a specific synchronization object of a higher-level synchro-
nization mechanism, e.g. the current lock owner of a mutex, and one or more wait queue
heads. We place the according wait queue nodes in each thread’s TLS segment, or on the
stack in the waiting functions. As a thread can only wait on one wait queue at a time, the
space for wait queue nodes is bounded.

A thread enters the monitor to gain exclusive access to the internal state, and leaves the
monitor afterwards. When multiple threads try to enter the monitor, they are serialized by
the spinlock. This relates to a FIFO-ordered enter queue. Within the monitor, a thread
can decide to wait or to notify waiting threads. Waiting effectively comprises enqueuing
the thread in a wait queue, leaving the monitor, blocking in the kernel, and entering the
monitor again after waiting. To handle spurious wake-ups, a thread must eventually remove
itself from the wait queue. For notification, a thread removes a blocked thread from the
wait queue and wakes up up the blocked thread when leaving the monitor. The design is

A. Zuepke 11:11

optimized to perform an uncontended enter → leave sequence without system calls, and
both wait and notify with one system call in the best case. Note that more than one thread
can be woken up, but this requires one additional system call for each thread.

Another important aspect is to handle the ustate variables correctly. For this, we
draw from eventcounts and sequencers [30]. Firstly, we will use ustate as a counter that
is incremented before a thread suspends or is woken up. The motivation to use a counter
instead of a binary state like WAITING and READY is to prevent spurious wake-ups due to
ABA-problems when two waiting operations follow each other back to back. Secondly, we will
use a dedicated ustate variable for each thread. Like a sequencer, the increments of a thread’s
ustate variable in user space order the particular wait and wakeup operations of the related
thread. The waiting operation in the kernel follows eventcounts. As we use a dedicated
per-thread counter, a wait operations will observe at most one additional increment from
the corresponding wakeup operation. With this, the compare-equal condition for blocking in
the kernel is sufficient to detect missed wake-ups. The increment before waking up a thread
also follows eventcounts. As any further waiting attempt would increment ustate again,
the compare-equal condition for unblocking in the kernel is sufficient to prevent spurious
wake-ups. Note that we keep ustate in the TLS segment of each thread, see Listing 1.

The ustate variables are only modified in the critical sections of the related synchronization
objects in user space. Nevertheless, an implementation should change ustate by using atomic
read and write operations to prevent undefined behavior by the compiler, as the kernel reads
the current value in parallel.

6 Analysis of Designs for Blocking Synchronization Mechanisms

6.1 Building Blocks
To compare the presented monitor approach to futexes and a traditional implementation
using dedicated system calls, we first analyze how blocking synchronization mechanisms are
typically implemented in operating systems using fine-grained locking like Linux. For this,
we define a generic blocking mechanism and decompose it into its internal building blocks.
The generic blocking mechanism provides two operations. The waiting operation either lets
the calling thread continue or suspends it, and the wake-up operation can optionally wake up
a previously suspended thread. This resembles common operations on mutexes, semaphores,
or condition variables, but without specifying the exact semantic of the synchronization
mechanism. We denote a step where the exact semantics of an actual synchronization
mechanism would be required as semantic operation. Note that futexes and the monitor
approach require two semantic operations, a 1st semantic operation in user space and a 2nd
semantic operation in the kernel. The system call approach needs one only in the kernel.

Table 1 shows a comparison of the generic blocking synchronization mechanism imple-
mented as (i) a system call based approach as baseline, (ii) futexes like in Linux, and (iii)
the proposed monitors. The upper part of the table shows the layered individual steps to
suspend or to wake up a thread from top to bottom. A “•” marks the operations when no
blocking is needed, i.e. the fast path. The lower part of the table shows associated data in
user space and the kernel. Here, a “�” indicates global data. Comparable operations and
data objects are placed in the same rows.

System call: In the baseline implementation using system calls, user space code calls the
kernel with an identifier to a kernel object. In turn, the kernel validates the identifier and
retrieves the kernel object comprising all necessary data in the look-up step. Then the kernel

ECRTS 2020

11:12 Futexes Inside-Out: Efficient and Deterministic Synchronization Primitives

Table 1 Comparison of three implementations of a generic blocking synchronization mechanism.
The upper part shows the layered operations from user space down to the kernel. A “•” marks the
operations in the fast path when no blocking is needed. The lower part shows the associated data in
both user space and the kernel. A “�” denotes global data.

operations system call (baseline) futex monitor (this paper)
user space •disable preemption

•lock user space object
•1st semantic op. (atomic) •1st semantic operation

wait queue operation
•system call system call system call

kernel •look-up kernel object look-up futex wait queue look-up thread
•disable preemption disable preemption disable preemption
•lock kernel object lock wait queue
•semantic operation 2nd semantic operation
wait queue operation wait queue operation
lock ready queue lock ready queue lock ready queue

2nd semantic operation
suspend / wake-up suspend / wake-up suspend / wake-up

data model system call (baseline) futex monitor (this paper)
user space ID of kernel object futex value (atomic) user space object lock

additional semantic state semantic state
wait queue
� thread states

kernel kernel object lock wait queue lock
semantic state address
wait queue wait queue
� ready queue lock � ready queue lock � ready queue lock
� thread states � thread states � thread states

disables preemption, locks the data in the kernel object, and performs a semantic operation,
such as checking and modifying the internal state. At this point, the semantic operation
decides whether the operation is completed or if a wait queue operation is needed. In the
latter case, the kernel either enqueues the calling thread on the wait queue, or removes a
waiting thread from the wait queue, depending on the desired operation. Then the kernel
must lock internal scheduling data (ready queue lock) before it can finally suspend the calling
thread or wake up a waiting thread.

Futex: Compared to the system call approach, the main difference of the futex-based
implementation is the 32-bit variable in user space expressing the semantic state. Depending
on the atomic operation on the variable, the 1st semantic operation either succeeds imme-
diately or requires a system call. In the kernel, the look-up of an associated in-kernel wait
queue is based on the user space address of the atomic variable, but the following steps are
similar to the baseline approach. That is because futexes are a generic compare-and-block
mechanism. The 2nd semantic operation in the kernel checks if the futex value has changed
in the meantime. This indicates a parallel wake-up operation, and the system call returns in
this case, similarly to the baseline version.

A. Zuepke 11:13

Monitor: The monitor-based implementation differs from both approaches. The user space
object already comprises a lock, semantic state, and a wait queue. User space code disables
preemption and locks the object before it evaluates the internal semantic state in the 1st
semantic operation. In the fast path, the 1st semantic operation succeeds and the operation
completes. In the slow path, a system call is required to block or to wake up. For blocking
or wake-up, the wait queue operation either adds the current thread to the wait queue or
removes a thread from the wait queue and then in turn calls into the kernel. The kernel
first validates the given thread ID and locates the target thread. Then the kernel locks
the necessary scheduling data and performs a 2nd semantic operation. The 2nd semantic
operation is serialized by this last lock and detects parallel wake-up or suspend operations.
If its semantic check succeeds, a suspend or wake-up operation takes place.

6.2 Analysis of the Fast Paths
Note that the overhead in the fast path in user space for both the futex and the monitor
variants is less than a system call, but the monitor shows more overhead than a futex. A futex
fast path typically comprises one atomic operation with either acquire or release semantics
or equivalent memory barriers. The monitor fast path requires to disable preemption (load
and store instructions on the local processor), and one or two atomic operations with both
acquire and release semantics or equivalent memory barriers in the spinlock operations.

When comparing the three implementations shown in Table 1, we can see that both the
futex and the monitor require additional operations compared to the baseline approach. If
we consider the atomic operation in the futex case as a (somewhat “compressed”) critical
section, then both futex and monitor use a critical section in user space to guard the fast
path with the 1st semantic operation. However, there is a second critical section in the kernel
as well to guard the 2nd semantic operation that decides whether to block or unblock.

The key technique for the separation into a fast-path in user space and the actual
blocking/unblocking in the kernel is to use two serialized critical sections, one in user space
and one in the kernel. These critical sections are loosely coupled by semantic state data that
is set in the 1st semantic operation and checked in the 2nd one. The benefit of this pattern is
that one can determine the WCET of each critical section in isolation.

The 2nd semantic operation in the kernel prevents race conditions between suspend and
wake-up operations ongoing in parallel. In the common case, the 2nd semantic operation
simply succeeds, but how do the implementations behave if the 2nd semantic operation fails?
Non-real-time futexes in Linux use compare-equal semantics. If the futex value in user space
no longer matches a given previous value, the kernel does not suspend the calling thread,
but returns to user space. The user space part then retries the whole operation from the
beginning. For priority inheritance (PI) mutexes, the Linux kernel solves this situation
internally and tries to lock a mutex for the calling thread again. In both cases, the loops for
this are potentially unbounded. The monitor approach naturally works without any retrying.

6.3 Analysis of the Worst Case
From a worst-case point of view, where we assume that the fast paths are not taken, we see
mostly similar operations for all three variants in Table 1. For a typical implementation, we
can further assume that a system call, a look-up of a pre-registered kernel object, suspending
the current thread, or a wake-up of a blocked thread need O(1) time. Locking operations
usually have O(m) worst-case behavior for m processor cores. Wait queue operations take
at most O(log n) time when using balanced binary search trees or O(n) when using sorted

ECRTS 2020

11:14 Futexes Inside-Out: Efficient and Deterministic Synchronization Primitives

linked lists for n blocked threads. For the semantic operations, we can also assume O(1)
timing behaviour, e.g. checking the state of a mutex and either making the thread the new
mutex owner or suspending the thread.

When we compare the futex approach to the baseline, we see that using futexes adds an
atomic operation in user space and requires a more complex look-up operation in the kernel.
Hashed wait queues are fast, but have determinism issues and degrade to O(n) in the worst
case. In [38], the author describes a deterministic approach by using a balanced binary search
trees with O(log n) time for look-up of wait queues. A critical point is to prevent loops if the
second semantic operation fails, as this is the case for futex operations on real-time-mutexes
using the priority inheritance protocol in Linux. These potentially unbounded loops make
futexes hard to assess in a WCET analysis.

The monitor approach moves some steps of the baseline version from the kernel to
user space and adds just one additional semantic check before suspending or waking up a
thread. The critical point is the non-preemptive critical section in user space. An in-kernel
implementation can simply disable interrupts to achieve non-preemptiveness, however, this
is not possible in user space. Therefore, in a WCET analysis, extra delays due to interrupt
handling have to be accounted for, e.g. see [7] for applicable techniques. Additional overhead
is caused by the priority restore operation, where we must account an additional system call
to preempt the thread after the critical section in user space. We can model this overhead as
a constant. All in all, a WCET analysis of the kernel parts of the monitor approach should
be simpler than for the baseline approach, but the user space parts require to account for
additional overheads of interrupt handling and preemption.

7 Implementation of Blocking Mutexes and Condition Variables

7.1 Blocking Mutexes
Based on the monitor building blocks of Section 5, we now present a blocking mutex. The
data structure representing a mutex comprises a spinlock, an owner field, and a wait queue.

Listing 7 shows a mutex lock operation with timeout in mutex_lock. The function first
raises the scheduling priority to max_prio and locks the internal spinlock. If the mutex is
currently unlocked, the function registers the calling thread as mutex owner and returns
successfully after unlocking the spinlock and restoring the previous priority. Otherwise, the
function adds the current thread to the priority-ordered wait queue using its original priority.
Then the mutex function retrieves and increments the current value of its user state variable
ustate, unlocks the spinlock, and suspends itself in the kernel with the timeout and its
original priority. After wake-up, the function locks the spinlock again and tests if ustate
was incremented. If true, the current thread is now the lock owner. If not, the timeout has
expired instead, and the function removes the thread from the wait queue. The function
unlocks the spinlock, restores the previous priority and returns the status of lock ownership.

The unblock operation is shown in mutex_unlock in Listing 7. Again, the function increases
the scheduling priority and locks the spinlock. Then it tries to retrieve the highest priority
waiting thread from the wait queue. If no thread is found, the function sets the mutex to
unlocked state, unlocks the spinlock, restores the previous priority, and returns. Otherwise,
the operation makes the waiting thread the new lock owner, increments its user mode state
variable, unlocks the spinlock, and performs a fused wake-up and priority restore operation.

In the best case, when we assume that the priority restore operation does not preempt
the thread, then both mutex lock and unlock operations do not need any system calls in the
fast path, and only one system call for blocking and wake-up on contention. This is similar

A. Zuepke 11:15

Listing 7 Implementation of a blocking mutex with timeout and a priority-ordered wait queue
typedef struct {

spin_t lock; // internal spinlock
tid_t owner; // current mutex owner or UNLOCKED
waitq_t waitq; // priority - ordered mutex wait queue

} mutex_t ;

bool_t mutex_lock (mutex_t *m, timeout_t timeout) {
prio_t old_prio = prio_raise (max_prio);
spin_lock (&m->lock);

bool_t success = (m->owner == UNLOCKED);
if (success == TRUE) {

m->owner = SELF ->tid;
goto out;

}

waitq_add_ordered (&m->waitq , SELF , old_prio);
uint32_t seq = ++SELF -> ustate ;
spin_unlock (&m->lock);
sys_wait_at_prio (&SELF ->ustate , seq , timeout , old_prio);
spin_lock (&m->lock);

success = (SELF -> ustate != seq);
if (success == FALSE) {

waitq_remove (&m->waitq , SELF);
}

out:
spin_unlock (&m->lock);
prio_restore (old_prio);
return success ;

}

void mutex_unlock (mutex_t *m) {
assert (m->owner == SELF ->tid);
prio_t old_prio = prio_raise (max_prio);
spin_lock (&m->lock);

thread_t *next = waitq_remove_highest (&m->waitq);
if (next == NULL) {

m->owner = UNLOCKED ;
spin_unlock (&m->lock);
prio_restore (old_prio);
return ;

}

m->owner = next ->tid;
uint32_t seq = ++next -> ustate ;
spin_unlock (&m->lock);
sys_wake_set_prio (next ->tid , &next ->ustate , seq , old_prio);

}

ECRTS 2020

11:16 Futexes Inside-Out: Efficient and Deterministic Synchronization Primitives

to futexes. However, in the worst case, we must assume that the mutex is contended and
the thread is interrupted, and then we need to account two system calls for mutex_lock (one
for waiting, one for preemption) and one system call for mutex_unlock (combined wake-up
and preemption). Compared to futexes and the baseline, we have to account one additional
system call for preemption in mutex_lock.

7.2 Condition Variables for Blocking Mutexes
We present condition variables with POSIX semantics for the mutexes described in Section 7.1.
Both cond_wait and cond_notify operations expect a locked support mutex. The data type
of the condition variable comprises just a wait queue. The internal spinlock of the support
mutex also protects the wait queues of condition variables. Discussing the implementation in
detail exceeds the page limitation of this paper, so we provide only a brief overview.

cond_wait enqueues the calling thread on the wait queue of the condition variable, unlocks
the mutex, then waits. cond_notify simply requeues the given number of threads (one or all)
from the wait queue of the condition variable to the wait queue of the mutex. After wake-up,
a thread is either the mutex owner (successfully notified and requeued to the mutex), or not
(spurious wake-up, e.g. timeout). In the latter case, the thread blocks again on the mutex.

In the best case (no preemption when restoring the previous priority), waiting needs one
system call and notifying needs no system call at all, as threads just get requeued to the
mutex wait queue and the actual wake-up is done when the notifying thread unlocks the
mutex. Therefore, we must include the mutex operations in the discussion as well. Now
a lock → wait → unlock sequence takes at most one system call to wait for the condition,
and a lock → notify → unlock sequence also needs only one when unlocking, regardless of
the number of notified threads. Again, this is similar to futexes. In the worst case (with
preemption), we must account five system calls for waiting: one to lock the mutex, one when
unlocking the mutex and waking up the next mutex owner, one for waiting on the condition
variable, another one to block on the mutex again on spurious wake-ups, and the last one
for preemption when unlocking the mutex. Futexes require four system calls (the final one
for the preemption is not needed). For notification, the number of required system calls is
two, one to lock the mutex and one to notify. This is the same for futexes. In both best and
worst case, the baseline version always needs three system calls for these sequences. Also,
moving threads between queues has the same overhead in all three versions.

8 Experimental Evaluation

For comparison, we have implemented all three approaches (baseline, futex, and monitor) in a
small real-time operating system (RTOS) named Marron. Marron provides static partitioning
of OS resources with fixed-priority scheduling on each processor core. The kernel implements
fine-grained locking with a similar implementation complexity as described in Table 1.

Marron currently supports only 32-bit ARM platforms, so we evaluated the approaches
on three system-on-a-chip platforms. A BeagleBone Black provides a single Cortex A8 core
running at 550 MHz, a Freescale i.MX6Q has four Cortex A9 cores at 792 MHz each, and
the BeagleBoard-X15 has two Cortex A15 cores at 1 GHz. Note that the Cortex A8, A9, and
A15 cores have different microarchitectures. The A8 is an in-order design with a 13-stage
pipeline, while the A9 and A15 are out-of-order designs, with a short 8-stage pipeline on the
A9 and a longer 15-stage pipeline on the A15. As the working set is small, we expect our
experiments to fit into both instruction and data caches and not access any external DRAM.
Also, we run our experiments without any interference from other applications. For better

A. Zuepke 11:17

Table 2 Overhead measurements on 32-bit ARM platforms in CPU cycles. The first set of
measurements determines the overhead of the building blocks, the last four sets compare the different
approaches for synchronization mechanisms in uncontended and contended scenarios.

Test Cortex A8 Cortex A9 Cortex A15
acquire and release barriers 33 6 20
CAS without barriers 8 22 30
uncontended spin_lock/unlock pair 74 38 108
prio_raise/restore pair 17 12 6
null system call 177 107 205
uncontended mutex lock/unlock pair system call 711 465 742

futex 110 87 175
monitor 218 147 260

contended mutex lock/unlock pair system call 1557 1137 1503
(same core) futex 2051 1838 1995

monitor 1792 1668 1689
contended mutex trylock/unlock pair system call — 1172 1696
(2 cores) futex — 302 495

monitor — 712 1087
contended mutex trylock/unlock pair system call — 3182 —
(4 cores) futex — 779 —

monitor — 2445 —

comparison, we present the results of each CPU core in clock cycles. Measurements were
taken with the internal cycle counter of the CPU cores. We ran each measurement in a loop
1024 times and divided the result, therefore all measurements include the loop overhead.

We performed an experiment to evaluate the fast-path performance of the three discussed
approaches and their building blocks in different contention scenarios Table 2 shows the
results for the three different processor cores. The overhead of the building blocks in isolation
and the uncontended mutex runs show stable results, as these tests run in a single-threaded
context. We determine the results for the contended case on the same processor core indirectly
with the help of a second thread. The presented results show the remaining overhead of the
contended mutex operations and two additional context switches. The contended case on
different processor cores determines the overhead of the operations in user space, e.g. the
internal critical sections of the monitor, on two or four processor cores in parallel. The test
uses mutex_trylock instead of a blocking system call and effectively spins until it successfully
acquires the mutex. The test releases two resp. four cores from a barrier and measures the
time until all cores acquire and release the mutex once, and reach the barrier again. The
baseline variant implements mutex_trylock as system call, futexes use atomic operations in
user space, and the monitor approach uses an internal critical section. These results show a
great variation between runs and should be treated as a rough indicator of what to expect.

Observation 1: The futex approach is faster than the monitor approach, and both are
faster than the baseline approach using system calls. The system call overhead dominates
everything else. We expected to see a similar ratio of the performance of atomic operations
to system calls on ARM as reported by [1] and [33] for x86 processors, and our experiments
show this. Note that the measurement of the a system call includes the overhead of the
operating system to save and restore registers on kernel entry and exit. Therefore, our
approach to avoid system calls is reasonable.

ECRTS 2020

11:18 Futexes Inside-Out: Efficient and Deterministic Synchronization Primitives

 0

 500

 1000

 1500

 2000

 2500

 0 2 4 6 8 10 12

A
v
e

ra
g

e
 e

x
e

c
u

ti
o

n
 t

im
e

 p
e

r
b

u
c
k
e

t
[C

P
U

 c
y
c
le

s
]

Degree of contention on mutex of a hash bucket [%]

No locking
System call

Futex
Monitor

Figure 1 Operations of varying degrees of contention on a shared hash table with 64 hash buckets,
each protected by a mutex. Each thread keeps a hash bucket locked for a constant time of 1 µs.

Observation 2: Efficient implementations of IPCP do not contribute much overhead to the
fast path. On all three platforms, changing priorities in user space does not cause much
overhead. The measurement of the priority raise/restore pair shows this.

Observation 3: On ARM processors, atomic operations cause significant overhead. The
measurement of a pair of lock and unlock operations on a ticket spinlock shows significant
overhead on the Cortex A15. We did not expect this. As ARM processors use a weakly
ordered memory model and require explicit memory barriers to order memory accesses, we
investigated this further and measured memory barriers and CAS operations in isolation (first
three rows). When using futexes, a mutex lock / unlock pair comprises a sequence of CAS +
acquire barrier + release barrier + CAS, and the parts add up correspondingly. Similarly,
the monitor requires two pairs of spinlock lock / unlock operations of equal complexity than
a futex pair, explaining the more than twice as high overhead of the monitor in the fast path.
Note that the baseline version shows a similar locking overhead inside the kernel.

Observation 4: On contention on the internal critical section of the monitor, the monitor
shows worse results than futexes. Here, threads in mutex_trylock repeatedly spin to lock the
internal critical section of the monitor to detect that the mutex is already taken. Futexes
fare well here, as they can directly probe the mutex due to the atomic operations. And
implementing mutex_trylock by repeated system calls is not a reasonable design choice.

Observation 5: In the contended case with blocking, the system call approach shows the
least overhead. Futexes and monitors show more overhead, as they first detect contention
in user space before calling into the kernel. Monitors are slightly faster than futexes due
to the simpler kernel implementation. This stresses the point that the fast-paths in the
uncontended case come with extra costs in the contended case.

We conduct another experiment to compare the three discussed approaches in a scenario
of varying degrees of contention. For this, we distribute 224 random values following a square
distribution to a shared hash table comprising 64 hash buckets. We run this experiment using
four parallel threads (one for each core) on the Cortex A9. Each thread atomically draws a

A. Zuepke 11:19

unique value from the random pool and locks the resulting hash bucket for a constant time of
1 µs. Statistics counters in the mutex implementations account contended and uncontended
cases. Figure 1 shows the average execution time per bucket operation in CPU cycles (incl.
locking overhead) for the varying degrees of contention observed in the hash buckets. We
include the results of a run without any locking and without contention as reference shown as
dotted horizontal lines. Note that 1 µs relates to 792 cycles on the Freescale i.MX6Q platform.
The results show that both futexes and monitors result in less overhead in low contention
scenarios compared to the system call approach. Also, futexes show less overhead compared
to the monitor. A second effect is that both futexes and monitors show less contention than
the system call approach. Recall that both approaches comprise two semantic checks whether
to suspend the current thread. The second semantic check in the kernel provides a second
chance to acquire the mutex after a brief delay (the system call overhead). Again, this effect
is stronger in futexes.

9 Discussion

In general, the evaluation shows that the monitor approach works and saves CPU cycles by
avoiding system calls in the uncontended case. The monitor has similar properties as futexes.
Synchronization mechanisms built on top do not need initial registration in the kernel, and
therefore also no resources or memory allocations in the kernel. The analysis in Section 6.3
shows that the monitors are better than futexes w.r.t. determinism, but they also come with
more overhead due to the IPCP and spinlocks to protect internal critical sections, as the
evaluation in Section 8 shows.

Note that we only did microbenchmarks to compare specific details in a hot-cache scenario,
so the question is how big will the performance win be for a real application. This generally
depends on the specific type of application. Both real-time and non-real-time applications
originally designed for single-processor systems will probably not benefit much, as they are
usually carefully tuned to avoid synchronization overhead in the first place. However, the
situation is different if we consider multi-threaded applications with lots of fine-grained
locking and low contention, e.g. language environments for Java [3] or JavaScript [28]. While
these are not typical real-time applications, we can expect that such applications will be
deployed in mixed criticality environments, so real-time operating systems should prepare to
handle best-effort workloads efficiently as well.

From a WCET point of view, the monitor approach reduces determinism issues compared
to futexes, as the analysis in Section 6.3 shows. Mutexes based on monitors do not require
loops in the kernel or in user space, and the look-up of a particular thread is simpler than
the look-up of a wait queue in futexes. As the monitor building blocks are similar to the
baseline version but just shifted in place, the worst-case considerations are similar for both.
The monitor adds additional constant overheads for the extra system calls for preemption.
However, only the wake-up of one thread is optimized and interacts nicely with IPCP.
Waking up an additional thread needs one additional system call each. But this only affects
operations waking up multiple threads, e.g. when using a barrier_wait operation where
the last thread arriving at the barrier wakes up all waiting threads. The system calls to
wake-up the additional threads happen inside the critical section of the monitor and must be
accounted to the WCET of the monitor as well.

Due to direct addressing of threads, the monitor approach is limited to synchronization
of threads in the same process, if we assume that thread ID are local to a single process
and not globally accessible. But this is the typical use case for thread synchronization in
most applications anyway and therefore not a problem. However, if a system allows access to

ECRTS 2020

11:20 Futexes Inside-Out: Efficient and Deterministic Synchronization Primitives

threads in other processes, then the monitor approach can also be used for shared memory
communication, like futexes. In this case, a thread’s waiting state variable (ustate) must be
placed in the shared memory as well. Note that the robustness considerations here are the
same as when using futexes or other synchronization mechanisms, as synchronization over
shared memory requires that applications must trust each other. But typically, access to
threads in other processes is a source of unwanted interference and therefore not possible. We
also expect that threads behave correctly and use the protocols appropriately, but the impact
on other processes is bounded by max_prio. Still, further mechanisms to detect runaway
threads are possible. For example, the kernel could set up a timer when it has to defer a
preemption request, and the system call for preemption clears the timer again.

From a security point of view, the efficient implementation of IPCP can leak scheduling
information of unrelated processes if processes are not temporally isolated, e.g. by a TDMA
scheme like in ARINC 653 for avionics. In the used protocol, nprio exposes the priority of
the next eligible thread for scheduling on the ready queue to other processes.

Lastly, the presented mutexes do not address priority inversion. The monitor approach
can only implement synchronization mechanisms using anticipatory locking protocols [34],
such as IPCP, where the locking protocol prevents problematic situations a priori. As the
monitor approach already uses IPCP internally, a mutex_lock operation can easily implement
IPCP mutexes by not restoring a thread’s previous scheduling priority, but by setting the
priority to the ceiling priority of the mutex after successfully locking the mutex. But also
other priority-based mechanisms to address priority inversion should work, for example
MPCP [29]. For MPCP, the priority space in user space needs to be partitioned into a range
of normal priorities and a boosted priority range, with the non-preemptive priority on top.
Similar to the IPCP example, a lock holder then uses the boosted ceiling priority of the
mutex until release. Note that these approaches also work for the futexes in our setting,
as they only depend on the efficient IPCP implementation. Reactive locking protocols [34],
such as PIP, are not suitable for the monitor approach, as the kernel lacks the necessary
information to build a resource allocation graph, and handling the priority changes for PIP
in user space would require additional system calls. When using PIP, futexes are the perfect
choice, as the protocol activates on resource contention, and this is the case where futexes
need system calls anyway.

10 Conclusion

In this paper, we explored the design space of blocking synchronization mechanisms optimized
to avoid costly system calls in the fast, uncontended path. We analyzed different design
approaches using futexes and monitors and compared them to a system call based approach.
For each mechanism, we discussed the impacts on determinism and related WCET concerns.
We presented a light-weight monitor implementation in user space comprising efficient imple-
mentations of IPCP, spinlocks, and interwoven blocking mechanisms. The proposed monitor
approach avoids the determinism issues of the futexes by avoiding unbounded loops and a
complex look-up mechanism for wait queues in the operating system kernel. Furthermore,
compared to the simple atomic variable state used by futexes, the monitor approach enables
a richer semantics in critical sections. The experimental evaluation shows that both monitors
and futexes considerably reduce the overhead compared to the baseline system call approach.
The extra complexity of the monitor is reflected in the additional overhead of this approach
compared to the futex one. The presented approach is suitable as building block to construct
other blocking synchronization mechanisms in RTOS implementations for multi-processor
real-time systems with P-FP scheduling.

A. Zuepke 11:21

References
1 Samy Al-Bahra. Nonblocking algorithms and scalable multicore programming. Commun.

ACM, 56(7):50–61, 2013. doi:10.1145/2483852.2483866.
2 Hesham Almatary, Neil C. Audsley, and Alan Burns. Reducing the implementation overheads

of IPCP and DFP. In 2015 IEEE Real-Time Systems Symposium, RTSS 2015, San Antonio,
Texas, USA, December 1-4, 2015, pages 295–304. IEEE Computer Society, 2015. doi:10.1109/
RTSS.2015.35.

3 David F. Bacon, Ravi Konuru, Chet Murthy, and Mauricio Serrano. Thin locks: Feather-
weight synchronization for java. In Proceedings of the ACM SIGPLAN 1998 Conference on
Programming Language Design and Implementation, PLDI ’98, pages 258–268, New York, NY,
USA, 1998. ACM. doi:10.1145/277650.277734.

4 Andrew Birrell, John V. Guttag, James J. Horning, and Roy Levin. Synchronization primitives
for a multiprocessor: A formal specification. In Les Belady, editor, Proceedings of the Eleventh
ACM Symposium on Operating System Principles, SOSP 1987, Stouffer Austin Hotel, Austin,
Texas, USA, November 8-11, 1987, pages 94–102. ACM, 1987. doi:10.1145/41457.37509.

5 David L. Black. Scheduling Support for Concurrency and Parallelism in the Mach Operating
System. IEEE Computer, 23(5):35–43, 1990. doi:10.1109/2.53353.

6 Bernard Blackham, Yao Shi, Sudipta Chattopadhyay, Abhik Roychoudhury, and Gernot Heiser.
Timing analysis of a protected operating system kernel. In Proceedings of the 32nd IEEE
Real-Time Systems Symposium, RTSS 2011, Vienna, Austria, November 29 - December 2,
2011, pages 339–348. IEEE Computer Society, 2011. doi:10.1109/RTSS.2011.38.

7 Björn B. Brandenburg. Scheduling and Locking in Multiprocessor Real-Time Operating Systems.
PhD thesis, The University of North Carolina at Chapel Hill, 2011.

8 Neil Brown. In pursuit of faster futexes. LWN, May 2016. URL: https://lwn.net/Articles/
685769/.

9 Davidlohr Bueso and Scott Norton. An Overview of Kernel Lock Improvements. LinuxCon
North America, Chicago, IL, August 2014. URL: http://events17.linuxfoundation.org/
sites/events/files/slides/linuxcon-2014-locking-final.pdf.

10 Peter A. Buhr, Michel Fortier, and Michael H. Coffin. Monitor classification. ACM Comput.
Surv., 27(1):63–107, March 1995. doi:10.1145/214037.214100.

11 Alan Burns, Marina Gutiérrez, Mario Aldea Rivas, and Michael González Harbour. A deadline-
floor inheritance protocol for EDF scheduled embedded real-time systems with resource sharing.
IEEE Trans. Computers, 64(5):1241–1253, 2015. doi:10.1109/TC.2014.2322619.

12 Alan Burns and Andy J. Wellings. Real-Time Systems and Programming Languages: Ada,
Real-Time Java and C/Real-Time POSIX. Addison-Wesley Educational Publishers Inc, USA,
4th edition, 2009.

13 Jan Edler, Jim Lipkis, and Edith Schonberg. Process management for highly parallel UNIX
systems. In Proceedings of the USENIX Workshop on Unix and Supercomputers, pages 1–17,
September 1988.

14 Hubertus Franke, Rusty Russell, and Matthew Kirkwood. Fuss, Futexes and Furwocks: Fast
Userlevel Locking in Linux. In Proceedings of the 2002 Ottawa Linux Symposium, pages
479–495, 2002.

15 Paolo Gai, Giuseppe Lipari, and Marco Di Natale. Minimizing memory utilization of real-time
task sets in single and multi-processor systems-on-a-chip. In Proceedings of the 22nd IEEE
Real-Time Systems Symposium (RTSS 2001), London, UK, 2-6 December 2001, pages 73–83.
IEEE Computer Society, 2001. doi:10.1109/REAL.2001.990598.

16 Darren Hart and Dinakar Guniguntalay. Requeue-PI: Making Glibc Condvars PI-Aware. In
Eleventh Real-Time Linux Workshop, pages 215–227, 2009.

17 Philip Holman and James H. Anderson. Locking in Pfair-scheduled multiprocessor systems.
In Proceedings of the 23rd IEEE Real-Time Systems Symposium (RTSS’02), Austin, Texas,
USA, December 3-5, 2002, pages 149–158. IEEE Computer Society, 2002. doi:10.1109/REAL.
2002.1181570.

ECRTS 2020

https://doi.org/10.1145/2483852.2483866
https://doi.org/10.1109/RTSS.2015.35
https://doi.org/10.1109/RTSS.2015.35
https://doi.org/10.1145/277650.277734
https://doi.org/10.1145/41457.37509
https://doi.org/10.1109/2.53353
https://doi.org/10.1109/RTSS.2011.38
https://lwn.net/Articles/685769/
https://lwn.net/Articles/685769/
http://events17.linuxfoundation.org/sites/events/files/slides/linuxcon-2014-locking-final.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/linuxcon-2014-locking-final.pdf
https://doi.org/10.1145/214037.214100
https://doi.org/10.1109/TC.2014.2322619
https://doi.org/10.1109/REAL.2001.990598
https://doi.org/10.1109/REAL.2002.1181570
https://doi.org/10.1109/REAL.2002.1181570

11:22 Futexes Inside-Out: Efficient and Deterministic Synchronization Primitives

18 James Leslie Keedy. An outline of the ICL 2900 series system architecture. Australian
Computer Journal, 9(2):53–62, 1977.

19 Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike
Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval
Yarom. Spectre attacks: Exploiting speculative execution. In 2019 IEEE Symposium on
Security and Privacy, SP 2019, San Francisco, CA, USA, May 19-23, 2019, pages 1–19. IEEE,
2019. doi:10.1109/SP.2019.00002.

20 Leonidas I. Kontothanassis, Robert W. Wisniewski, and Michael L. Scott. Scheduler-conscious
synchronization. ACM Trans. Comput. Syst., 15(1):3–40, 1997. doi:10.1145/244764.244765.

21 Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders Fogh,
Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
Meltdown: Reading kernel memory from user space. In William Enck and Adrienne Porter
Felt, editors, 27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD,
USA, August 15-17, 2018, pages 973–990. USENIX Association, 2018. URL: https://www.
usenix.org/conference/usenixsecurity18/presentation/lipp.

22 Brian D. Marsh, Michael L. Scott, Thomas J. LeBlanc, and Evangelos P. Markatos. First-class
user-level threads. In Proceedings of the Thirteenth ACM Symposium on Operating Systems
Principles, SOSP ’91, page 110–121, New York, NY, USA, 1991. Association for Computing
Machinery. doi:10.1145/121132.344329.

23 Ross McIlroy, Jaroslav Sevcík, Tobias Tebbi, Ben L. Titzer, and Toon Verwaest. Spectre is
here to stay: An analysis of side-channels and speculative execution. CoRR, abs/1902.05178,
2019. arXiv:1902.05178.

24 John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable synchronization
on shared-memory multiprocessors. ACM Trans. Comput. Syst., 9(1):21–65, 1991. doi:
10.1145/103727.103729.

25 Maged M. Michael and Michael L. Scott. Nonblocking algorithms and preemption-safe locking
on multiprogrammed shared memory multiprocessors. J. Parallel Distrib. Comput., 51(1):1–26,
1998. doi:10.1006/jpdc.1998.1446.

26 John K. Ousterhout. Scheduling techniques for concurrent systems. In Proceedings of the 3rd
International Conference on Distributed Computing Systems, Miami/Ft. Lauderdale, Florida,
USA, October 18-22, 1982, pages 22–30. IEEE Computer Society, 1982.

27 John K. Ousterhout. Why aren’t operating systems getting faster as fast as hardware? In
Proceedings of the Usenix Summer 1990 Technical Conference, Anaheim, California, USA,
June 1990, pages 247–256. USENIX Association, 1990.

28 Filip Pizlo. Locking in webkit. online article, May 2016. URL: https://webkit.org/blog/
6161/locking-in-webkit/.

29 R. Rajkumar. Real-time synchronization protocols for shared memory multiprocessors. In
10th International Conference on Distributed Computing Systems (ICDCS 1990), May 28 -
June 1, 1990, Paris, France, pages 116–123. IEEE Computer Society, 1990. doi:10.1109/
ICDCS.1990.89257.

30 David P. Reed and Rajendra K. Kanodia. Synchronization with eventcounts and sequencers.
Commun. ACM, 22(2):115–123, February 1979. doi:10.1145/359060.359076.

31 Benoit Schillings. Be Engineering Insights: Benaphores. Be Newsletters, 1(26), May 1996.
32 Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky. Priority inheritance protocols:

An approach to real-time synchronization. IEEE Trans. Computers, 39(9):1175–1185, 1990.
doi:10.1109/12.57058.

33 Livio Soares and Michael Stumm. Flexsc: Flexible system call scheduling with exception-less
system calls. In Remzi H. Arpaci-Dusseau and Brad Chen, editors, 9th USENIX Symposium
on Operating Systems Design and Implementation, OSDI 2010, October 4-6, 2010, Vancouver,
BC, Canada, Proceedings, pages 33–46. USENIX Association, 2010. URL: http://www.usenix.
org/events/osdi10/tech/full_papers/Soares.pdf.

https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1145/244764.244765
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://doi.org/10.1145/121132.344329
http://arxiv.org/abs/1902.05178
https://doi.org/10.1145/103727.103729
https://doi.org/10.1145/103727.103729
https://doi.org/10.1006/jpdc.1998.1446
https://webkit.org/blog/6161/locking-in-webkit/
https://webkit.org/blog/6161/locking-in-webkit/
https://doi.org/10.1109/ICDCS.1990.89257
https://doi.org/10.1109/ICDCS.1990.89257
https://doi.org/10.1145/359060.359076
https://doi.org/10.1109/12.57058
http://www.usenix.org/events/osdi10/tech/full_papers/Soares.pdf
http://www.usenix.org/events/osdi10/tech/full_papers/Soares.pdf

A. Zuepke 11:23

34 Roy Spliet, Manohar Vanga, Björn B. Brandenburg, and Sven Dziadek. Fast on average,
predictable in the worst case: Exploring real-time futexes in LITMUSRT. In Proceedings of
the IEEE 35th IEEE Real-Time Systems Symposium, RTSS 2014, Rome, Italy, December 2-5,
2014, pages 96–105. IEEE Computer Society, 2014. doi:10.1109/RTSS.2014.33.

35 Alexander Wieder and Björn B. Brandenburg. On spin locks in AUTOSAR: blocking analysis
of fifo, unordered, and priority-ordered spin locks. In Proceedings of the IEEE 34th Real-Time
Systems Symposium, RTSS 2013, Vancouver, BC, Canada, December 3-6, 2013, pages 45–56.
IEEE Computer Society, 2013. doi:10.1109/RTSS.2013.13.

36 Alexander Zuepke. Deterministic fast user space synchronisation. In OSPERT Workshop, July
2013.

37 Alexander Zuepke, Marc Bommert, and Daniel Lohmann. AUTOBEST: a united AUTOSAR-
OS and ARINC 653 kernel. In 21st IEEE Real-Time and Embedded Technology and Applications
Symposium, Seattle, WA, USA, April 13-16, 2015, pages 133–144. IEEE Computer Society,
2015. doi:10.1109/RTAS.2015.7108435.

38 Alexander Zuepke and Robert Kaiser. Deterministic futexes: Addressing WCET and bounded
interference concerns. In Björn B. Brandenburg, editor, 25th IEEE Real-Time and Embedded
Technology and Applications Symposium, RTAS 2019, Montreal, QC, Canada, April 16-18,
2019, pages 65–76. IEEE, 2019. doi:10.1109/RTAS.2019.00014.

ECRTS 2020

https://doi.org/10.1109/RTSS.2014.33
https://doi.org/10.1109/RTSS.2013.13
https://doi.org/10.1109/RTAS.2015.7108435
https://doi.org/10.1109/RTAS.2019.00014

	Introduction and Motivation
	Terminology and System Model
	Previous Work
	Efficient Synchronization Mechanisms and Futexes
	Lock Holder Preemption
	Efficient IPCP Implementations

	Light-Weight Blocking for IPCP
	Non-Preemptive Busy-Waiting Monitors in User Space
	Analysis of Designs for Blocking Synchronization Mechanisms
	Building Blocks
	Analysis of the Fast Paths
	Analysis of the Worst Case

	Implementation of Blocking Mutexes and Condition Variables
	Blocking Mutexes
	Condition Variables for Blocking Mutexes

	Experimental Evaluation
	Discussion
	Conclusion

