
PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

Redesign of the C++ Communicating Threads
Library for Embedded Control Systems

Bojan Orlic and Jan F. Broenink
Twente Embedded Systems Initiative,

Drebbel Institute for Mechatronics and Control Engineering,
Dept. of Electrical Engineering, University of Twente,
P.O.Box 217, NL-7500 AE Enschede, The Netherlands

Phone: +31 53 489 2817 Fax: +31 53 489 2223
E-mail: B.Orilc@utwente.nl

Abstract– The occam programming language, based on the
CSP formal algebra and tied to a specific hardware
platform (transputers), offered a structured way to
organize concurrency. The CT library [1], developed at
University of Twente, inspired by occam is a kernel library
implementing occam primitives in modern programming
languages and for general purpose microprocessors. In this
paper, a practical implementation of the CT library is
explained and some aspects are compared to similar
occam-like library developed at the University of Kent.
The design of the CT-library internals is then revisited and
proposed changes are implemented in the C++ version of
the library.

Keywords– Embedded Control Systems; CSP; occam;
concurrent programming

I. INTRODUCTION

A. CSP approach to modeling concurrency

From a laymen’s point of view, software concurrency
is always about some bunch of processes that can exist
and execute simultaneously. But those processes rarely
stand in isolation; they usually have to synchronize,
exchange data and collaborate to accomplish their
objectives. Concurrent software can be based on a
synchronous communication model, an asynchronous
communication model or some mixture of the two.

Software based on an asynchronous communication
between components, models the world in terms of
independent tasks accessing shared objects. Well
established synchronization primitives (like events,
semaphores, monitors) exist with a purpose to provide a
mutually exclusive access to the shared objects.
Moreover this kind of synchronization primitives is
supported by all modern operating systems.

On the other side, most of formal theories assume that
communication between components is synchronous.
CSP is one of the first and still a popular formal algebra.
CSP theory models the world as a set of collaborating
processes that synchronize on events [2]. The first
process ready to engage in some event must wait till
every process participating in that event becomes ready
to perform that event. Only after this event is performed,
the processes involved are allowed to proceed. From
obvious reasons, this type of communication is known as
rendezvous communication.

Well established scheduling theory, that offers large
variety of priority assignment schemes, is based on the
asynchronous model [3]. These schemes do not work for
the synchronous model. Therefore the asynchronous
model fits best when focus is on time requirements.
Rendezvous based design is on the other hand better
suited when focus is on using formal methods and
structured way of using concurrency.

The CSP theory had its simplified practical
implementation in occam / transputer platform [4-6].
Occam is parallel language in which every statement is
considered to be an elementary process. Blocks of
statements are grouped into more complex processes
using SEQ, PAR and ALT constructs. The Sequential
construct (SEQ) defines strict order (or sequence) of
execution for associated group of processes. The Parallel
construct (PAR) defines that associated group of
processes is executed concurrently. When a process
offers to the environment a choice between several
alternatives, those alternatives are grouped in an
Alternative construct (ALT). Occam code can be
transformed to machine readable CSP form and used in
combination with existing formal checking tools, like
FDR [7].

In occam, communication and synchronization is
possible only through rendezvous channels. Call

*) This research is supported by PROGRESS, the embedded system research program of the Dutch organization for Scientific
Research, NOW, the Dutch Ministry of Economic Affairs and the Technology Foundation STW.

141

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

channels and shared channels are the extensions defined
by Occam 3 standard [8] which were never implemented
in practice. Shared channels allow multiple processes to
share one end of a channel. Call channels are needed in
client/server paradigm where a request is send from a
client to a server and result or a status of the performed
action is communicated back to the client.

In occam, standard control flow structures like
WHILE and FOR loops are used to implement repetitive
processes. There are also two decision making
constructs: IF and ALT. Differences are explained in
more details in subsection II.B.

The occam / transputer platform was for a while
really popular for implementation of complex control
systems [9]. Control systems have strict time
requirements, whose violation can bring controlled
system in an unstable state. Real-time scheduling is
therefore very important for control systems.

The CT libraries (CTJ, CTCPP and CTC) [1, 10],
developed at University of Twente, as well as the CSP
(JCSP, CCSP and C++CSP) libraries [11, 12] developed
at University of Kent, are attempts to keep the benefits of
occam programming language after its hardware life
companion - transputers had disappeared. This is done by
remarrying occam to existing hardware platforms and
modern programming languages. Although occam was a
simple language with simple semantic rules, not all of its
aspects are trivial to efficiently implement in modern
programming languages.

After the initial version of the CT library created by
Hilderink was successfully applied in several control
setups, the library has proved to be a good vehicle for
further research in the area of distributed real-time
control systems.

Software development of complex architectures is
best viewed as an evolutionary process. In first versions,
performance and structured design are often less
important then proving the validity of the approach. The
CT library is not exception to this rule.
In this paper, the design of the CT library is revisited in
order to make certain aspects either more efficient or
better structured. Focus is put first on the C++ version of
library, because that version is most widely used in
practical setups. Some of the performed evolution steps,
are partly also a return to the origins of occam and
transputers.

II. CT LIBRARIES
The CT Library is implemented in Java (CTJ), C

(CTC) and C++ (CTCPP or CTC++). This library is
customized for the application area of real-time control
systems. The aim of the occam and CSP way is to supply
users with safe patterns for organizing concurrency
structure of an application. Although occam is based on

synchronous rendezvous communication, the CT library
also implements basic synchronization primitives created
in models based on asynchronous communication, like
semaphores and monitors. Those primitives are used as
building blocks in the implementation of synchronous
basic primitives (constructs and channel
synchronization). It appeared as a more structured
approach then building synchronization mechanisms
from scratch each time those are needed. However, users
of the library operate on a higher level of abstraction,
where it is not allowed to use semaphores and monitors.
The CT libraries, as well as the Kent CSP libraries, have
additional features that distinguish them from occam.

A. Relation to object-oriented programming
While modeling the real world, humans rely on

certain rules (abstraction, encapsulation, hierarchy,
classification) in order to manage the complexity.
Object-oriented programming (OOP) incorporates those
rules as its basic principles. Concurrency of the real
world is, however, better described using occam and
CSP. In the time when CSP and occam appeared, the
dominant programming style was imperative. Object-
oriented programming, which is the preferred style
nowadays, was still not conceived. Interesting research
would be to fit those two concepts together.

Occam-like libraries are implemented using the OOP
approach. But from the users point of view, OOP usage
is in occam-like libraries restricted to lower level objects
encapsulated inside processes. Maybe some other
mixture better suited to human way of thinking can be
discovered.

In occam, every statement is considered to be a
process. Subprocesses can inspect variables defined in
scope of their parent processes. But only if a parent
process is sequential, subprocesses are allowed to modify
those variables.

Though a process can be implemented as an object,
essentially a process is not an object. While an object is
an entity, a process is focused on defining some
behavior, possibly a behavior attributed to an object, part
of object or a set of objects. This behavior is specified by
defining either strict orders of events (sequential
execution) or by allowing events from parallel streams to
be executed in any order, or by allowing a choice
(alternative construct). Any partial behavior introduced
in this way can be seen as a process. In the CT library,
processes and constructs are implemented as objects,
imposing more strict boundaries for variables scope then
in occam. The scope of variables belonging to some
process is, due to encapsulation, determined by the
borders of the object implementing that process.

In occam, a logical condition associated with a guard,
is an expression that can involve any of the variables

142

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

visible in the current scope and which produces as a
result a Boolean expression stating whether channel
communication is allowed or not. In occam-like libraries,
the Alternative construct and Guards are also
implemented as objects. Since encapsulation is a very
important feature of the object, variables defined in the
surrounding Alternative process are out of the scope of
the guard object and can not be used in the expression to
check whether communication on those channels is
allowed. The CT library still leaves a possibility to do
this by adding to each guard one Boolean variable
representing the associated logical condition. Organizing
expression checking and setting the Boolean representing
the condition is left to the user process. In the Kent
C++CSP library, it is chosen not to support such logical
conditions.

B. Similarity and differences in occam, Kent libraries
and CT libraries
In occam, the IF conditional statement is considered

as a decision making construct, somewhat similar to the
ALT construct. In occam, the IF construct is priority
structured. The process associated with the first condition
that equates to TRUE is executed. If no condition equates
to TRUE, the resulting action is equivalent to STOP or
deadlock. If it is possible that no condition equates to
true, usually an additional branch is added with a
condition that is always true and has as resulting action
the SKIP process (process that does nothing, but
successfully finishes). The branch to be executed is in the
IF construct resolved directly when the IF construct is
entered: there is no waiting involved. See the code
below:

IF
 [logical condition 1]
 Process1
 [logical condition2]
 Process2
 [TRUE]
 SKIP

The ALT construct offers a choice between several
events to its environment. Processes from this
environment express their willingness to participate in
particular events by attempting to communicate on the
associated channel. Since those channels are guarded for
communication attempts, the ALT will be notified about
the chosen alternative.

If the environment in the same time accepts two or
more events, this is resolved by choosing one of ready
channels randomly (in theory), choosing the first ready
channel from the list (PRIALT) or choosing the channel
accessed by highest priority process (preference alting in
CT library [1]) . Unlike IF, the ALT process will wait
until one of the channels, for which the associated

Boolean condition is set to true, becomes ready, and it
will execute the associated process.

ALT
 [logical condition 1] & channel1 ? data
 Process1
 [logical condition 2] & channel2 ? data
 Process 2
 [logical condition 3] & SKIP
 output ! x

In occam, only inputs can be guarded, there are no
output guards. Of course, one can have output
communication inside an ALT, and the SKIP process can
be used in a guard in place of a channel communication
(see branch 3 in above example). But this is somewhat
different from an output guard, because there is no
guarantee that the peer process on the input side of the
channel is ready in the moment the ALT chooses this
branch.

The CT library does allow output guards. It
implements only one decision making construct – the
Alternative construct. Behavior of the IF construct can
be implemented using if/then control blocks of the native
language (i.e. C++).

A guard that behaves the same as the combination of
a logical condition and a SKIP process as in branch 3 of
the given occam sample code is in the CT library called
SKIP guard. A SKIP guard has no channel associated.
Readiness of this guard depends only on the state of the
associated logical condition. A guard that has no logical
condition either, is in the CT library called an ‘else’
guard. An ’Else’ guard is always ready. If no other guard
is ready, the alternative containing the ‘else’ guard
executes the process associated with this guard without
blocking. This is somewhat similar to non-waiting
behavior of the IF construct. But worth noting is that
Alternative is like a more advanced IF construct. If only
SKIP guards and ‘else’ guard are used in Alternative, it
will have the same behavior as an IF construct.
Possibility to use readiness of the channels in guards
makes the Alternative a superior choice-making
construct.

Guards in the C++CSP library do not have a logical
condition associated and thus there is no need to
differentiate between ‘else’ and SKIP guards.

The prioritized version of the ALT construct
(PRIALT) enables a more deterministic choice if more
then two alternatives are ready for execution at the same
time. Preference is given according to the order in which
guards are specified in Alternative construct.

 The C++CSP library has a facility that the same ALT
construct can make a choice in different ways in
subsequent triggering. Besides the expected fair ALT,
and the PRIALT choice, it is also possible to give
preference to the last chosen guard. This can be

143

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

beneficial to handle burst transfers without changing
device settings.

 The CT library also offers several innovations in a
way a choice is made. The ‘Preference Alting’
mechanism enables that in case several guards are ready
a choice is made according to priorities of the processes
blocked on the guarded channels. However since
different behaviors of the Alternative construct are
captured using different classes; once the ALT or
PRIALT object is defined, its behavior cannot be
changed from one iteration to another.

The Alternative can in the CT library be executed in
two ways: as a standalone entity possibly with its own
context or as a selection-making statement in a context of
a calling process.

The Kent C++CSP library prefers the second
approach.

In our CT library, the Alternative is a kind of Guard.
This might at first seem strange, but this is necessary in
order to allow nesting of Alternatives – one of the
features defined in the occam 3 reference manual.

C++CSP can have guards for buffered channels. Its
associated guard is not ready during the time in which its
buffer is empty. In the CT library, there is no guard for
buffered channels. C++CSP defines several different
kinds of guards: Normal Input Guard, Normal External
Input Guard, Skip Guard, Buffered Input Guard, Relative
Timeout Guard, Timeout Guard. All those different
guards are implemented using hierarchy of classes with a
common parent class – Guard. The CT library on the
other hand puts all different functionalities of a guard in
one object. Since Alternative is also kind of guard, it
also implements all those features.

Both the Kent and CT libraries use the template
mechanism of C++ as a way to make generic versions of
channels that can be instantiated as a channel of a
particular data type by specifying an appropriate data
type as a template parameter.

One of the key aspects of the CT library is orientation
towards the real-time systems. Therefore, a special
scheduler is designed that uses the hierarchical structure
of constructs and processes in efficient way and allows
for a practically infinite number of priorities in a system.

C. First steps in redesigning CT library
First in the list of evolutionary steps for the CT

library was to implement the context switch using the
fibers mechanism of Windows. This might not seem a
good idea for a library targeting towards real-time
systems, but this step allows the use of best IDE tools
available for further developments.

The C++ version of the CT library has a core of its
kernel written in C. The second step was to transform all
parts of the library to C++. This might seem as

unnecessary step. It might look even as a step in a wrong
direction since with this step maintenance of C and C++
versions is totally separated. But, if we take in account
that C version of CT library has an object-oriented C++
look and feel, reasons for this change become more
obvious. Also some glue code that connects C and C++
parts has been eliminated. But the main advantage is
that, once whole library was rewritten in C++, it was far
more readable and understandable.

III. REDESIGNING THE CHANNEL CONCEPT OF CT
LIBRARY

A. Shared Channels
While the version of occam that was actually used

was based solely on one-to-one rendezvous channels,
occam 3, although never implemented as such, defines
shared channels as well. According to that definition, a
process that wants to use a shared end of the channel
must first claim it, and then wait until its claim is granted
by the process existing on the not-shared end of the
channel. Basically this can be an ‘any-1’ or ‘1-any’ type
of channel, where the shared end is marked with ‘any’. In
practice, sometimes ‘any-any’ channels might be needed
as well.

Communication performed on ‘any-any’ channels can
be decomposed into ‘any-1’, ‘1-1’ and ‘1-any’ parts (see
Figure 1). There are two shared or ‘any’ sides of the
channel and on each of them a choice is made between
processes attempting to access the channel. Pairs of
processes that have passed shared sides of a channel can
engage in a ‘1-1’ rendezvous communication.

Figure 1: Any-to-any channel

In the Kent library, a distinction is made between
different types of channels (‘1-1’, ‘1-any’, ‘any-1’, and
‘any-any’). The CT library on the other hand,
implements only one type of channel that can be used as
‘1-1’, ‘1-any’, ‘any-1’ or ‘any-any’. Since obviously, a
channel used as ‘1-1’ needs less synchronization then
one used as an ‘any-any’ channel, it seems that
performance might be better if channel types are
separated. But actually, there are much more important
reasons for separating channel types.

Prod 1

Prod 2

Prod n

 Cons 1

 Cons 2

 Cons m

Any-1 1-Any

Any-Any

 1-1

144

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

B. Channels in CT library
A channel is in the CT library implemented in a

following way: on the shared ends of a channel,
processes are sequentialized on two semaphores
(readersSemaphore and writersSemaphore). A pair of
processes that pass those semaphores will enter a
Monitor, where synchronization and data exchange
(communication) is performed. The Monitor contains
three semaphores: mutex – that ensures mutually
exclusive access to the monitor, condition – on which in
this case the process that arrives first will be blocked
waiting for rendezvous, and the semaphore urgent which
is a standard part of monitor, used to block either a
process released by signaling the condition semaphore or
the process that has signaled the condition semaphore
ensuring that only one process is active inside the
monitor at any time. In this case, the process that arrives
secondly performs the data exchange and afterwards
releases the waiting process.

Besides the obvious overhead of this implementation,
it is interesting that the synchronization primitives from
asynchronous systems like semaphores and monitors are
used as basic building blocks to implement rendezvous
channels. In CSP theory, an opposite approach is used:
synchronous communication is a basic building block
and an asynchronous communication between producer
and consumer process is implemented by inserting in
between a buffer process that synchronizes on
rendezvous channel with both producer and consumer.

Strangely enough, only the implementation of
buffered channels in the CT library does not rely on
semaphores and/or monitors which are naturally suited
for this. Instead, probably in an attempt to achieve truly
asynchronous behavior, the buffered channel throws an
exception in cases when read is attempted from an empty
buffer, and/or write is attempted to a full buffer.

C. Why are different types of shared channels needed?
A well-known rule in practical use of the CSP theory

is that a channel cannot be guarded on both sides. Or in
other words: two processes that engage in rendezvous
communication cannot both be subprocesses of ALT
constructs. The guarded side becomes ready to be chosen
for execution only after the other side is already ready for
execution. If both sides are guarded, then the associated
processes will never become ready to be chosen. Since
no process can proceed, this is deadlock.

An analogy can be drawn between shared ends of
channels and the alternative construct, based on the fact
that in both cases a choice is made between processes.
Moreover one could implement a structure that will
behave as an any-any channel using rendezvous channels
and alternative processes. Of course, such an
implementation would have significant overhead since

several new processes are defined. But this approach is
more for sake of description then for implementation.

The process that accesses the shared end of a channel
is in a similar situation to a process that accesses a
channel guarded by some ALT construct. In other words,
a shared end of a channel is implicitly guarded. If a
process accessing a shared end of a channel is a
subprocess of some ALT construct, that channel is
practically guarded from both sides.

Figure 2: Example of an alt and an any-to-any channel.

In the example shown in Figure 2, g2 is output guard
which guards the output from Prod2 to the Any-1
channel. Two implementations and two race hazard
scenarios, equally unwanted, are possible:

In first scenario, the guard is allowed to claim the
shared end of channel. If the ALT is triggered before
Prod0 and Prod3, then g2 claims the channel and
becomes ready. If in meantime g1 has also become ready
Cons1 might be chosen for execution instead of Prod2.
Prod0 and Prod3 cannot access the channel because it
was already granted to g2.

If a guard is not allowed to claim a channel, then after
process Cons has accessed the channel, guard g2 will
become ready, but the channel might be granted to one of
the processes Prod0 and Prod3.

Thus, the safe solution is to distinguish between ‘1-1’,
‘1-any’, ‘any-1’ and ‘any-any’ channels and to forbid
output guards associated with ‘any-1’ channels, input
guards associated with ‘1-any’ channels, and any kind of
guards associated with ‘any-any’ channels.

Since like in occam, only input guards are allowed in
the Kent libraries, an exception is thrown on attempt to
associate input guards with ‘1-any’ and ‘any-any’
channels. The Kent library implements ‘1-1’ channels in
a very efficient way, much alike to the mechanism that
was used on occam/transputer platforms.

D. Redesigning channels

Rendezvous channels
 Following the discussion presented in the previous

subsection, the first decision was to separate ‘1-1’, ‘1-

Any-1
channel

Ch 2

Prod 2

Cons

Prod 1

Cons 1 g1

g2

Prod 0

Prod 3

ALT

145

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

any’, ‘any-1’ and ‘any-any’ types of channels like it is
done in the Kent library. After this change is
implemented, the CT library becomes capable to detect
and prevent misuse of guards on shared ends of channels.
Similarly to the Kent library, the ‘1-1’ channel is then
implemented in an efficient way alike to the way used by
occam / transputer platform.

In transputers [6] only one memory word was used to
implement rendezvous channels. The process that arrives
first, writes its Process ID (which is address of its
workspace in memory) in this memory location. The
process that arrives second performs data exchange and
reschedules the first process. This mechanism was rather
easy to mimic in the implementation of One2One
channels for the CT library: Instead of using
synchronization mechanisms like semaphores and/or
monitors, one pointer to a thread (waitingProcess) was
sufficient. First process that arrives needs to put pointer
to its thread in waitingProcess variable and to deschedule
itself. Those two activities should be executed in an
atomic fashion. The process that arrives second performs
the data transfer and reschedules the first process. In CT
library this looks like the following code:

void One2OneChannel::write(Object* object,
unsigned size) {

Processor::enterAtomic();
if(!bReaderReady) {
 // wait for the consumer

 waitingProcess
 =Dispatcher::getRunning();

bWriterReady=true;
 buffer=object;
 }

else{
 Processor::copy(object,buffer,size);
 Dispatcher::add(waitingProcess);
 bWriterReady = false;
 bReaderReady = false;
 }

//potential context switch
Processor::exitAtomic();

}
The Read() function is designed in analogue way.

Shared channels
Relationships between the mentioned types of

channels, naturally define a class hierarchy with ‘1-1’
channel as a base class. The ‘Any-1’ and ‘1-any’
channels extend the ‘1-1’ channel by adding mechanism
to arbitrate channel access on shared input and output
end respectively. The ‘Any-any’ channel naturally inherit
from both ‘any-1’ and ‘1-any’ channels because it needs
the access arbitration mechanism both on input and
output end. The same class hierarchy also exist in the
Kent C++CSP library.

Figure 3: Class hierarchy of channels

The Any2One channels add the access mechanism on
shared input end of a channel. A process which passes
arbitration can engage in rendezvous with the consumer
process using the functionality defined in ‘1-1’ channel.
The simplest way to implement this is to use an
additional semaphore (writersSemaphore) on which
producers are sequentialized before entering the inherited
One2One rendezvous channel.

void Any2OneChannel::write(Object* object,
unsigned int size){
 writeSem->p();
 One2One::write(object,size);
 writeSem->v();
}

An analogue mechanism can be used for the One2Any
channels.

void One2AnyChannel::read(Object* object,
unsigned int size)
{
 readSem->p();
 One2One::read(object,size);
 readSem->v();
}

The Any2Any channel can then inherit functionality
of both the Any2One and One2Any channels.

However, there is serious disadvantage associated
with the described approach.

 In the CT library, Semaphores are implemented in
such a way that processes in waiting queues are ordered
by priorities. Still, the described access mechanism does
not ensure that highest priority reader and highest
priority writer will actually win the arbitration. Let us for

bInputGuard:bool
bOutputGuard:bool
guard : Guard*

write(object, size)
read(object, size)

One2OneChannel

write(object, size)
read(object, size)

Any2One Channel

write(object, size)
read(object, size)

One2Any Channel

write(object, size)
read(object, size)

Any2Any Channel

146

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

example imagine the situation in which several producers
subsequently attempt to claim the channel and then after
a while a consumer arrives. The first producer that has
arrived is the first one that passes the semaphore
regardless of its priority and only subsequent producers
are ordered by priority in a waiting queue.

Instead of semaphores, a better access mechanism can
be implemented by handling directly waiting queues
(writers and readers) to which all incoming processes are
added. Only after detection that the other side is ready,
arbitration will be performed and a pair of the highest
priority processes from the waiting queues will be
released to engage in rendezvous communication. As an
example of this approach, read and write function of
Any2One channel are shown. The Reader accesses the
not- shared end of the channel. Therefore it can directly
go to 1-1 part. If there are writers blocked on the access
mechanism of the shared end (in writers queue), reader
will release the first one before entering the 1-1 part. If,
however, reader enters the channel first then it will set
the readerReady flag and it will block inside the
One2OneChannel::read function. The first writer that
arrives will proceed to the One2OneChannel::write function.

void Any2OneChannel::read(Object* object,
unsigned int size){
 Processor::enterAtomic();
 if(writers->getSize()>0){

bBusy = true;
Dispatcher::put(writers->get());

 }
Processor::exitAtomic();

 One2OneChannel::read(object, size);
 bBusy = false;
}

void Any2OneChannel::write(Object* object,
unsigned int size){
 Processor::enterAtomic();
 writers->put(Dispatcher::getRunning());
 if(bReaderReady && !bBusy)

Dispatcher:: put(writers->get());
 Processor::exitAtomic();
 One2OneChannel::write(object,size);
}

The write and read functions of One2Any channels are
implemented in an analogue way. Any2Any channels are
slightly more complicated because the access
mechanisms exist on both ends of the channels.

Buffered channels
Instead of throwing exceptions, a buffered channel is

now implemented in the standard way using
synchronisation based on three semaphores with
following symbolic names mutex, dataAvailable and
spaceAvailable.

 The equivalent occam and therefore also equivalent
CSP representation can be easily constructed for this
kind of bounded buffer, as shown below:

Buffer[size];
int spaceAvailable=size; int dataAvailable=0;

 WHILE(TRUE){
 ALT{
 [spaceAvailable] in? buffer[inputIndex]
 dataAvailable++;
 spaceavailable = size-dataAvailable;
 [dataAvailable]out! buffer[outputIndex]
 dataAvailable--;
 spaceavailable = size-dataAvailable;
 }
}

The original implementation of a bounded buffer,
although giving illusion of being truly asynchronous,
could not be represented with an equivalent CSP block
and would rely on channel users to deal with exceptional
conditions probably by adding blocking synchronization.

IV. ALTERNATIVE AND GUARDS
In the previous part of the paper, a notion of the

alternative construct and a way it can be used were
described. Let’s now focus on implementation aspects.

A. Transputer implementation
On transputer systems support for the Alternative

construct of occam was built in on microcode level. Its
simplified scenario was as follows: First the alternative
start instruction is executed, which will bring the
alternative process into the ENABLING state. In this state
ALT executes the instruction enable channel for each
guarded channel; if the peer process is ready and waiting
on channel, then the associated guard becomes ready and
the state of Alternative process will become READY. The
Alternative wait instruction is then executed. If there are no
ready guards, the state of Alternative process will be
changed from ENABLING to WAITING and Alternative
will be descheduled. When a peer process arrives to one
of the guarded channels, the state of Alternative process
will be changed from ENABLING or WAITING to
READY. This will reschedule the alternative process.
When a processor is granted to the Alternative process, it
will execute the disable channel instruction for each of
guarded channels. During guards disabling, choice
among ready guards is made. In the instruction
alternative end a jump is made to the code of the process
guarded by the selected guard.

While the Kent C++CSP library implements exactly
the same mechanism as the one in the transputers, the CT
library has somewhat different implementation.

147

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

B. CT library implementation
Although the mechanism implemented in the CT

library seems to work fine, responsibilities of the
involved objects (channel, guard and alternative) are not
clearly delegated, making verification, maintenance and
readability of the code somewhat cumbersome.

The synchronization mechanism used inside is again a
Monitor, which is again overkill. The Alternative is
triggered by calling the select() function which first
acquires the monitor. This function will return a selected
guard to a caller. If no guard is ready it will block on the
condition semaphore of the monitor. If some process
attempts to access a guarded channel, its associated
guard will be put in an alting queue and the condition
semaphore will be signaled. AltingQueue is a helper
class which will sort ready guards according to the
‘preference alting’ mechanism.

 So far, on this global level design seems good. But
let us now plunge slightly deeper in design.

Although there is a class that implements guards, it is
not designed elegantly. Actually, the whole mechanism
could be implemented in a more clear way, perhaps by
using the transputer implementation as a guidance.
Furthermore, a channel does not know whether its
associated guard is input or output. Although this would
normally be resolved after attaching a guard, in the CT
library this is determined every time guards are enabled
and/or every time access to the channel is attempted.
During the guard enabling phase, the presence of writers
and readers blocked on the channel is tested. If there is a
waiting writer then the guard must be an input guard. In
analogue way, if there is at least one reader waiting this
must be output guard. In both cases, the guard is added to
an alting queue. If there is no process blocked on a
channel, one can not determine at this moment whether
the guard is an input or an output. This will be resolved
at the moment the first process accesses the channel: if it
is attempting to write then associated guard, if any, must
have been input guard. Then, the input guard will be
added to the alting queue. An analogue scheme takes
place when the process is attempting to read.

The actual scenario is more complicated because a
guard can also be in a SKIP or timeout mode and certain
things need to be done in case the alternative is nested
and used as a guard inside its parent Alternative.
Timeout and SKIP should not be modes of a guard. A
better structured and easier implementation would be to
implement those functionalities as special kinds of
guards. This is for instance done in the Kent C++CSP
library.

Instead of the recurring checks whether a guard is
input or output, a flag can be used. This flag can be
automatically set at the moment the guard is created. If
the input interface of a channel is passed to a guard

constructor, then the guard knows that the input side of
the channel is guarded. Once a guard notifies its
associated channel about its presence and type, it does
not have to be anymore aware of the channel or even of
its own type. A channel has to be aware of its associated
guard. The channel is the one who notifies the guard
whether there is a process waiting on the unguarded side
of the channel. Guard and Alternative should be aware of
each other.

In PriAlternative, guards get priorities according to
the order in which they are added to the construct. The
PriAlternative class is derived from the Alternative class
and uses the same alting queue and therefore the same
sorting algorithm. While sorting the queue, priorities of
processes blocked on guarded channels are compared
first (‘preference alting’). If those priorities are equal
then priorities attached to the guards are compared. The
PriAlternative of the CT library therefore does not have
the same behavior as the PRIALT of occam, which
compares only the priorities attached to the guards.

The possibility to use different strategies for guard
sorting in subsequent triggering of the same alternative
construct is not allowed in the CT library, although it
was straightforward to implement and is available in the
Kent libraries.

Obviously, there is room for improvement both in a
sense of performance optimization and making design
better structured, less complex and more readable.

The decision was made to redesign the whole
mechanism, keeping one eye on a way it was
implemented in transputers and other eye on existing CT
library implementation.

C. CT Library redesigned implementation
The transputer implementation gives a good guidance

how the Alternative construct can be efficiently
implemented.

In the new implementation, a guard contains three
Boolean variables: bAltingEnabled is true when
Alternative is in ENABLE or WAITING state and false
otherwise, bCondition keeps information whether a
guard is enabled or disabled and bReady is the indicator
whether communication was already attempted on the
unguarded side of the channel. Instead of using local
copies in an optimized version bAltingEnabled and
bReady variables can always be fetched from Alternative
and channel objects, respectively. In this explanation,
local copying is used because expressions are somewhat
easier to describe.

Like in the original CT library, ready guards are
sorted using the AltingQueue. Instead of monitor
synchronization one semaphore is used. More precisely,
a binary semaphore known sometimes as event is derived
from Semaphore. The obvious difference to the

148

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

Semaphore is that the maximal value of the internal
counter is limited to one. A Reset() function is added
that puts its counter back to zero.

Like in the transputer implementation, after triggering
enableChannel() is performed for every guard. If no
guard is ready, Alternative will wait on event
guardReadyEvent. When some process attempt to access
one of the guarded channels, its associated guard
becomes ready, it is added to alting queue and
guardReadyEvent is signaled. After the Alternative
wakes up, it will call disableChannel() for every guard.
This is again similar to the transputer implementation.
The process associated with the guard that is first in the
alting queue is selected for execution. See the code
below:

unsigned Alternative::select(){
 queue->empty();
 guardReadyEvent->Reset();
 enableChannel();
 if(queue->getSize() == 0){
 Processor::enterAtomic();
 guardReadyEvent->p();
 Processor::exitAtomic();
 }

 disableChannel();
 selectedGuard = queue->show();
 return selectedGuard->getIndex();
}

Enabling channels is actually done by going through the
list of guards and enabling channel for every one of
them, as shown below:

void Alternative::enableChannel()
{
 Processor::enterAtomic();
 for(int i=0;i<guards->getSize();i++)

guards[i]->enableChannel();
 Processor::exitAtomic();

}

The guard should remember that it is enabled. If the
associated channel is already ready and if the guard is
enabled, this guard can be put to the alting queue. The
Alternative is notified about that using the SetReady()
function:

void Guard::enableChannel(){
 bAltingEnabled=true;
 if(bCondition && bReady)

myAlt->SetReady(this);
}

In the SetReady function, the guard is added to the
alting queue and an event that guard is ready is signaled.

If the alternative construct is nested, it should act as a
guard. Its functions enableChannel() and

disableChannel() are called directly from its parent like is
done for any other guard. After one of its guards is ready,
the nested alternative should keep acting as a guard and
should notify its parent that a guard is ready, but instead
of pointer to itself, it will pass the pointer of its ready
guard as an argument in the call to the SetReady()
function of its parent alternative.

void Alternative::SetReady(Guard *guard){
 if(myAlt)myAlt->SetReady(guard);
 else{
 queue->add(guard);
 guardReadyEvent->v();
 }
}

If no guard is ready, the Alternative will block on the
guardReady event. When a process attempts to access a
guarded channel, prior to blocking a call to the
SetReady() function of the guard will be made. The
guard will now know that its channel is ready and,
provided that the guard is enabled and alting is enabled,
it can signal the Alternative. Otherwise it will notify the
Alternative when proper conditions are met - either
during the next enableChannel() call or at the moment
the guard is enabled.

void Guard::SetReady(ProcessThread* ptBlocked)
{
 bReady=true;
 waitingProcessThread=ptBlocked;
 if(bCondition && bAltingEnabled)

myAlt->SetReady(this);
}
void Guard::ResetReady(){bReady=false;}

In a channel’s read() and write(), functions calls to
Guard::SetReady() and Guard::ResetReady() are inserted to
keep the state of the associated guard in accordance with
the state of the channel.

void One2OneChannel::write(Object* object,
unsigned int size){
Processor::enterAtomic();
if(!bReaderReady){

 waitingProcessThread =
Dispatcher::getRunning();

 if(bInputGuard)guard->SetReady();
 bWriterReady=true;
 buffer=object;
 Processor::exitAtomic();
 }
 else{
 Processor::copy(object,buffer,size);
 Dispatcher::add(waitingProcessThread);
 bReaderReady=false;

bWriterReady=false;
 if(bOutputGuard)guard->ResetReady();
 Processor::exitAtomic();
 }
}

149

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

void One2OneChannel::read(Object* object,
unsigned int size){

Processor::enterAtomic();
 if(!bWriterReady){

 waitingProcessThread =
 Dispatcher::getRunning();

 if(bOutputGuard)guard->SetReady();
 bReaderReady=true;
 buffer=object;
 Processor::exitAtomic();
 }
 else{
 Processor::copy(buffer,object,size);
 Dispatcher::add(waitingProcessThread);
 bReaderReady=false;
 bWriterReady=false;
 if(bInputGuard)guard->ResetReady();
 Processor::exitAtomic();
 }
}
void Guard::ResetReady(){bReady=false;}

After at least one guard becomes ready, the alting
queue is not empty any more. Following the logic of the
transputer / occam platform, all channels should be
disabled. The Alting queue will be emptied next time the
Alternative is triggered.

void Alternative::disableChannel(){
 for(int i=0;i<guards->getSize();i++)
 guards[i]->disableChannel();
}

void Guard::disableChannel(){

bAltingEnabled=false;
}

Inspired by the Kent libraries, another significant
change was made. PriAlternative does not exist anymore
as a separate class. Instead Alternative can be in one of
following regimes: PRIALT, PREFERENCE_ALT and
FAIR . The Mode in which the Alternative works is now
maintained in the AltingQueue which will sort guards
according to its current mode. There is no need for a
special PriAlternative class. Furthermore PRIALT is
defined in the same way as in occam: guards are sorted
solely according to their priorities.

A bounded buffer can now also have a guard
associated. The Associated input guard is ready as long
as its buffer is not empty. The associated output guard is
ready as long as its buffer is not full. A guarded buffer
should not be used in an Alternative that is working in
PREFERENCE_ALT mode. Reason for this is that
‘preference alting’ selects a guard according to the
priority for the process blocked on the not-guarded side
of the ALT. Processes accessing a buffer are blocked
only if read from an empty buffer or write to a full buffer
is attempted.

V. SCHEDULING

A. Occam / transputer platform for real-time control
systems

CSP theory is not aware of priorities and scheduling
A distributed system based on hierarchy of constructs

and processes is scalable by nature. Reason is that a node
can actually be interpreted as a complex process that uses
associated physical links as channels to other processors.
Scheduling is concerned with sharing the time of a
processor or the bandwidth of a bus. There is no notion
of the scheduling and priority assignments in the CSP
theory. Parallel processes are considered to be truly
parallel. Sharing processor time to execute several
processes on one processor is an implementation issue. It
will not influence the CSP model of the application. It
will however dominantly influence its timing behavior.
For real-time systems, satisfying time requirements is a
key issue.

Scheduling in OS based on general purpose processors
Usually, scheduling is performed by the Operating

System (OS) based on priority levels assigned to
processes. In general purpose microprocessors, context
switching between threads is performed in software.
Since such a context switch incurs significant time
overhead, the intended parallelism is more coarse
grained. For instance, a context switch is avoided by
executing an Interrupt Service Routine (ISR) on the stack
of the currently executing thread instead of treating it as
a separate process. This perhaps saves one context
switch per interrupt, but it also complicates making
context switch during ISR, which is needed in a case
when a higher priority process is released due to this
interrupt. A standard approach to scheduling is assigning
priorities to processes either in static way (fixed priority
schemes, e.g. Rate Monotonic (RM)) or in dynamic way
(Earliest deadline first (EDF) and similar schemes).

Transputers and scheduling
In a case of the occam / transputer platform,

scheduling is a joint activity of software (occam) and
hardware (transputer).

Transputers were designed specially for message-
passing parallel systems. Hardware within a transputer
multiplexes virtual links between processes from
different nodes to the one of the four physical point-point
links (DS links). The bus that connects the memory, the
CPU and the link peripherals was a crossbar 4x32 bits
data address bus.

The transputer has a hardware scheduler that
distinguishes two priority levels. The higher-priority
level was most often assigned to processes that handle i/o
communication. Those processes are triggered either by

150

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

external events (e.g. data arrival) or by timeouts on time
channel calls. The functionality of those processes is
equivalent to ISRs of general purpose processors. The
main difference is that such processes have their own
workspace (or stack in terms of general purpose
processors). The overhead of an additional context
switch per interrupt (called event in terminology of
transputers) is not significant thanks to the fast hardware
scheduler. For the same reason, parallelism can be more
fine grained.

Occam language support for scheduling
In addition to the PAR (parallel) construct in occam a

prioritized version of the parallel construct, the PRIPAR
construct, exists. The priority in a PRIPAR construct is
relative to the order of adding processes to the parallel
construct. However on transputer platforms only two
priority levels were supported and a PRIPAR was
therefore used only on top level. Additional priority
levels were often implemented in software.

Scheduling rendezvous-based systems
The chosen scheduling mechanism is not important for
CSP formal checking. But structuring a program in the
CSP way does influence schedulability analysis because
it imposes rendezvous based communication. In
rendezvous based systems, process priority does not
influence dominantly the order of execution. The
communication pattern of the overall system is
determined by event based interaction of processes.

Figure 4: Process execution is dominantly determined by

communication patterns rather then by process
priority

Rules that govern such interaction are distributed in
the communication patterns of participating processes.
All those patterns together with process arrival times
define only a partial ordering of the set of events. Still
this partial ordering of events, inherently to the structure
of the overall system, will always overrule process
priorities. Assigning a higher priority to one process,
engaged in a complex interaction scheme with processes

of different priorities, does not necessarily mean it will
be always executed before lower-priority processes. This
is illustrated in Figure 4.

It seems that attaching priorities to processes does not
impose enough influence on the behavior of rendezvous
based systems. Maybe, it would be better to attach
priorities to events. Deadlines are anyway time
requirements imposed on events or on distances between
some events. Furthermore, while priority of processes is
local to a node, priority of events is valid for the whole
distributed system. Only problem with an event based
scheduling is that there should be a sound mathematical
ground before it can be implemented in real-time
systems.

Scheduling and formal checking in practice
Although in occam a channel communication between

processes was rendezvous based, asynchronous
communication was also used. It was implemented using
an additional process that protected a buffer from
simultaneous access by engaging in rendezvous
synchronization with one or the other side (repetitive
alternative on input and output channel).

If processes are communicating using asynchronous
overwriting channels, established scheduling theories can
be used to assign priorities. Actually, one can implement
applications that contain a mixture of synchronous and
asynchronous communication appropriate both for real-
time scheduling and formal checking.

On the highest level, different priorities can be
assigned to independent processes that exchange
parameters through overwriting channels. E.g. in control
applications those high level processes would be control
and supervisory loops. The internals of those processes
can in turn be implemented as a cooperation of processes
of equal priorities communicating over rendezvous
channels.

The top-level PRIPAR construct can order control
loops by sampling frequency, which is equivalent to a
RM (Rate |Monotonic) priority assignment.
Communication inside loops is allowed to be rendezvous
and all communication between loops is asynchronous.
In [13] this idea is implemented in a way that it can
efficiently use properties of a hardware scheduler.

B. The scheduling mechanism of the CT library
The CT library is in fact a kernel that, besides

providing communication and synchronization
primitives, also offers its own scheduling policy. This is
very useful when a CT based program is executed on a
bare microprocessor. A program based on the CT library
can also be executed on the top of some operating system
(OS). In that case, it will run in one system-level thread.
All processes and stacks defined inside that thread are
invisible to the OS. The scheduling policy of the CT

ev3

ev2

ev1

ev2

ev1

ev38

 P1 > P2 > P3
1

2 3

4 5
6

7 9

151

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

library will in this case manage the time that is granted to
the associated system level thread by the OS. This
concept is often referred to as a user-level scheduling. To
achieve real-time guarantees it is necessary to run CT-
based application as a highest priority process of real-
time OS (RTOS).

There is an important problem associated with user
level scheduling. Inside an OS, synchronization
primitives like semaphores are often used. If one of the
processes from the CT application attempts to make a
system call, there is a chance that it will have to wait on a
semaphore to access some resource. However the OS
does not see CT processes, it sees only one system level
thread (containing the whole CT program). Therefore, on
an OS semaphore, the whole system level thread running
the CT program will be blocked. Thus all CT processes
inside that thread will halt after one of them issued
access to some OS resource. This is not desired.

Preemption in the CT library
The CT library is not fully preemptive in a strict

sense. A pair of functions (enterAtomic() and
exitAtomic()) exists to mark the borders of an atomic
section. enterAtomic() increments a counter of nested
atomic sections and exitAtomic() decrements the counter
and performs a context switch if needed, provided that
the atomic section is not nested. Atomic sections are used
in implementation of the CT library communication and
synchronization elements-like: channels, semaphores and
monitors. Only at those points in program execution,
preemption can take place. This is in conjunction with
the underlying CSP theory.

Hierarchy of dispatchers
Traditionally, the term Scheduler is used for a part

that maintains a queue of ready processes (ready queue)
and determines the process that will run next. Dispatcher
is the term used for a part that actually performs the
context switches from the running process to the next
one determined by the scheduler. In the CT library, those
functionalities are not distinguished and Dispatcher is
the name used for a process that maintains a ready
Queue. Actually, there is not one Dispatcher, but a whole
hierarchy of them. Scheduling is based on a tree-like
hierarchical structure of occam programs.

In the CT library, stack management is encapsulated
in the ProcessThread class. Not every process needs to
have its own stack. For instance, subprocesses of the
Sequential construct can obviously all be executed by the
same thread. Similarly, the process representing a chosen
alternative can be executed by the same thread that has
executed its parent ALT construct. Therefore, in the CT
library, only for processes executed in Parallel and
PriParallel a separate context (read stack) is needed and a
separate ProcessThread needs to be created.

While all subprocesses of a Parallel construct have the
same priority, priorities of processes inside a PriParallel
are based on the order in which they are added to the
construct. This is a fundamental difference between
Parallel and PriParallel constructs.

Hierarchy of PriParallel constructs alone can allow an
infinite number of different priority levels in a system.
But a hierarchy containing both Parallel and PriParallel
constructs, contains also some processes of the same
priority. Most efficient way to organize a ready queue
might be to divide it to several ready queues — one for
each priority level. Since an infinitely large number of
priorities can exist, a centralized dispatcher might
contain too many ready queues. Instead, in the CT library
a hierarchy of dispatchers is employed. For every
PriParallel construct, one dispatcher is created. In this
way, nested Parallel processes, which all have same
priorities will go to one ready queue, belonging to the
dispatcher of the closest parent PriParallel process.

According to the given explanation, if a top-level
construct is not a PriParallel there will be no Dispatcher
to manage the top level processes. In the CT library,
when a Parallel construct is created and there is still no
dispatcher in a system, then a dispatcher will be created
for this top level Parallel construct. If a top level
construct is an alternative or a sequential construct, in its
constructor a hidden parallel construct will be created
and made top level construct.

For a following hierarchy of processes, three
dispatchers will be created:

PAR P
 PRIPAR P1
 P11
 P12
 P13
 PAR P2
 PRIPAR P21
 P211
 P212
 P213
 P22
 P23

One for the top-level Parallel construct (P), and one
for each PriParallel construct (P1, P21). Processes P22
and P23 will be added to the top-level Dispatcher. The
Process Threads of the two Dispatchers associated with
PriParallel constructs P1 and P21 will be added to a top-
level dispatcher. See Figure 5.

Process Threads for IdleTasks and Dispatchers
Every Dispatcher is executed in a separate Process

Thread. When a parent dispatcher runs the Process
Thread of a nested Dispatcher, this nested Dispatcher
will take over and become current dispatcher of the
processor.

152

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

As shown on Figure 5, a Dispatcher contains one
prioritized Ready Queue. In addition, there is one FIFO
Queue for every priority level of the dispatcher. The
Process Threads of the nested Dispatchers will also
appear in those FIFO queues. To efficiently manage
ready queues in the associated dispatcher, a PriParallel is
allowed to have up to 8 priorities. Of course any number
of different priority levels can be achieved by nesting
PriParallel constructs.

Figure 5: Dispatcher and ready queues of the example

Every Dispatcher contains an additional process thread
known as IdleTask. This process thread will execute
when all processes from the current dispatcher are either
blocked or finished. The Idle task will give control back
to the parent dispatcher. If the idle task of the top level
dispatcher is executed, and not all processes have
finished, and provided that the cause of blocking was not
a deadlock, the program will have to wait on an external
event to wake up one of the blocked processes.

In a case where a CT-based application is executed
directly on a microprocessor, the top-level idle task
performs waiting in a busy loop. When however a CT-
based application is executed on a top of some OS, the
CT program and all its processes run in one system level
thread. To allow execution of other threads running on
the top of the same OS, the Idle task will, on such
platforms, suspend the thread in which the CT-based
application is being executed.

C. Redesigning scheduling mechanism of the CT library

Starting point
Additional Process threads for every dispatcher and

the associated IdleTask increase significantly the total
number of context switches and associated overhead.
Those processes are existing in every CT-based
application, but hidden from the user. If a user decides to

make a CSP model of its application, it is not likely that
those additional processes will be included in such a
model.

Let us try to get rid of these active processes and
implement the functionality they offer in passive
Dispatcher objects. The basic idea of a hierarchy of
dispatchers remains the same. Like in the original CT
library, PriParallel constructs and top-level Parallel
constructs create dispatchers. But the lower levels in the
hierarchy are again significantly redesigned.

First implementation
Dispatchers are used in the context of their associated

PriParallel processes. The PriParallel process will, after it
is triggered, ask the associated Dispatcher to activate its
subprocesses, or in other words to put them in a ready
queue. The Dispatcher is considered to be ready when it
contains a Process Thread that can be executed. To
ensure that a PriParallel will finish after its subprocesses
have finished, it maintains a number of currently active
processes (activePTCount). Note that some of the active
processes may temporarily be blocked on channels.
Every time a PriParallel gets to be executed it will check
whether its Dispatcher is ready. If it is ready then it is set
to be the current Dispatcher. If it is not ready, the
PriParallel is blocked on a semaphore that will be
signaled once there are processes ready to run in the
Dispatcher. In the code snippet bellow this blocking is
hidden in a yield function:

void PriParallel::run(void){
 activePTCount = processes->getSize());
 myDispatcher->activateProcesses(this,true);
 while(activePTCount>0){
 Processor::enterAtomic();
 if(myDispatcher->isReady()) {

Processor::currentDispatcher =
myDispatcher;

 }
 else {

 myDispatcher->yield();
 }
 Processor::exitAtomic();
 }
}

If a Parallel is a top-level construct and has created a
Dispatcher, its run() function behaves the same.
Otherwise the same dispatcher will manage the Parallel
construct and its subprocesses. In that case, the Parallel
construct will only notify the Dispatcher to activate its
subprocesses and then it will block until all of its
subprocesses finish execution.

In the CT library, an idle task of a nested Dispatcher
will give control to the parent dispatcher and only the
idle task of the top level process will do idle waiting.
Obviously only the idle task of the top-level dispatcher
needs to be separate process thread. Idle tasks belonging

…

1

7

0

 ready

ReadyQueue

FIFO Queues

Dispatcher

153

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

to nested dispatchers are not needed; their functionality
can be implemented in function calls of passive
dispatcher objects.

If not preempted by the release of a higher priority
thread, a dispatcher once it takes over, it will give back
control to its parent dispatcher only after it does not have
process threads to execute. This can lead to starvation of
Dispatchers of equal priority.

Changes in class hierarchy
Constructs are essentially processes, which organize

execution of other processes. In the CT library, all
constructs inherit from the abstract class Process. This
class defines only an undefined run() function.

The redesigned CT library recognizes behavior
common for all constructs and implements a new parent
class (Construct) from which all constructs inherit.
Construct class is a kind of Process.

All constructs maintain the list of subprocesses. They
also offer a function (exit()) called by subprocesses to
notify their parent that they have finished execution.

The Process class is also extended. Now it keeps track
of its associated ProcessThread, if any, and desired stack
size needed in case this process is executed as a
subprocess of a Parallel or a PriParallel construct. This
enables a user of the library to specify the stack size
based on estimated needs of each process. A Design
Space Exploration tool is under development, which
should be able to provide estimates of the needed stack
sizes for every process.

Centralized Dispatcher
As described in previous subsections, dispatchers are

transformed to passive objects, whose sole duty is to
maintain ready queues. This form is further transformed
to one centralized dispatcher containing a hierarchy of
ready queues.

With a centralized dispatcher, there is no more need
to switch from one Dispatcher to another. Instead, the
ready queue will always get the highest priority thread
from the hierarchy of ready queues.

The centralized dispatcher is also more flexible and
modular solution. The way the ready queue is organized
is localized in one object and not dispersed across the
whole library structure. The scheduling mechanism can
be changed easily by replacing the internals of the single
dispatcher object. Two basic types of ready queues exist:
prioritized and FIFO version. However different
architectures of ready queue can be built from instances
of those two blocks.

Priority comparison in CT library and occam sense
Priorities of two process threads are in the CT library

compared by browsing from both of them up through
hierarchy of dispatchers until the common parent

dispatcher is found. Then, only immediate children of
common dispatcher from both ancestor branches are
compared. In the following example:

PAR P
 PRIPAR P1
 A
 B
 C
 PRIPAR P2
 D
 E
 F

In table below, all processes from the example are
listed. Associated priorities are represented in binary
numbers. The shaded part of the table is scheduled by
dispatcher of first PriParallel construct and the rest by the
dispatcher of second PriParallel construct. Borders
between queues are specified in bold. In this case, one
FIFO queue will contain two prioritized queues. Parallel
constructs add their process threads in the same FIFO
queue where they belong. Priparallel constructs create
new prioritized queue for process threads executing its
subprocesses.

Priority in Par Priority in PriPAr Process

000 000 A
000 001 B
000 010 C
000 000 D
000 001 E
000 010 F

The group of processes A, B and C has strict priority

ordering defined. Same goes for a group of processes D,
E and F. However since P1 and P2 are considered to
have the same priority, their subprocesses are in the
occam and the CT library also considered to have the
same priorities. For instance, the priority of F is treated
as equal when compared to priorities of A, B or C. Due
to the usage of PAR there is no strict ordering of
priorities in the system.

Components friendly way to perform priority comparison
In the CT library, the released process D will not

preempt the running process B, because they are
considered to have the same priority.

An alternative way to compare priorities would be to
see a priority of some process thread as an array that
consist of priorities of all its parent dispatchers and own
priority number of process thread from encompassing
parent. In this light, considering zero as highest priority
process, priorities are arrays of size two: for A and D:
{0;0}, for B and E: {0;1}, for C and F{0;2}, Now

154

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

priority ordering is fully defined and corresponds better
to intuitive expectations.

Of course one can get same priority ordering in the
conventional way of comparing priorities by
reorganizing the structure of the program:

PRIPAR
 PAR
 A
 D
 PAR
 B
 E
 PAR
 C
 F

But what if the P1 and P2 are the IP blocks,
commercial off the shelf components, that internally
distinguish several priority levels- e.g. hard real-time,
several soft and not real-time level. Dividing components
to pieces in order to have better structure of the program
would not be allowed in that case. If P1 and P2 are
equally important components it is logical to organize
them in a PAR construct. The expected behavior would
be that soft or not real-time priority level processes from
P2 cannot preempt hard real-time processes of
component P2. The priority of (implivet) process thread
should in this case include also all the priorities of its
parent dispatchers.

The table containing total ready queue of the system
should be rearranged according to the changed
interpretation of priorities, see the table on the next page.

Priority in Par Priority in PriPAr Process

000 000 A
000 000 D
000 001 B
000 001 E
000 010 C
000 010 F

In this case, the hierarchy of ready queues that mimics

the hierarchy of PriParallel constructs seems not to be
perfect backbone to organize the ready queues. Superior
structure of ready queues can be organized as in the
following table:

Priority in Par Priority in PriPAr Process

000 000 A
000 000 D
000 001 B
000 001 E
000 010 C
000 010 F

In this case, there is a strict hierarchy of prioritized

queues. Every prioritized queue maintains one FIFO
queue that handles all the Process Threads having the
same priority array as it does.

When the hierarchy of ready queues is maintained in
the single object (centralized dispatcher) it is very easy to
rearrange hierarchy in order to change the way priorities
are assigned. Described component-friendly way of
priority comparison is implemented. Conditional
compiling on few key points allows users to choose one
of the two or more implemented scheduling mechanisms
in a very simple way.

VI. CONCLUSIONS AND FUTURE WORK
Although core parts of the CT library are redesigned,

there is still much work to be done. Future work will
include redesigning the communication model for
external events (handling device drivers and remote
communication), adding support for barrier
synchronization, and redesigning timer support.

VII. ACKNOWLEDGMENTS
The contribution of Gerald Hilderink to this project is

substantial. Gerald came up with the idea and
implemented a first version of the occam-like kernel
library for the real-time control systems application area.

The authors use this opportunity to thank the other
present and ex members of our embedded team: P.M.
Visser, D. Jovanovic, G. Liet, T. van Engelen and M.
Groothuis. All of them had given in several occasions
valuable feedback on the subject.

155

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

REFERENCES
[1] G. H. Hilderink, A. W. P. Bakkers, and J. F. Broenink,

“A Distributed Real-Time Java System Based on CSP”,
The third IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing ISORC
2000. Newport Beach, CA, 2000.

[2] C. A. R. Hoare, Communicating Sequential Processes:
Prentice Hall, 1985.

[3] G. C. Buttazzo, Hard real-time computing systems:
Predictable Scheduling Algorithms and Applications.
Pisa, Italy: Kluwer Academic Publishers, 2002.

[4] INMOS, occam 2 Reference Manual: Prentice Hall,
1988.

[5] R. Meenakshisundaram, “Transputer Home Page”
http://www.classiccmp.org/transputer/, 2004.

[6] P. H. Welch, M. D. May, and P. W. Thompson,
“Networks, Routers and Transputers: Function,
Performance and Application”
http://www.cs.ukc.ac.uk/pubs/1993/271, 1993.

[7] Formal Systems, “CSP Tools” http://www.fsel.com,
2004.

[8] J. Kerridge, “Jon Using occam3 to build large parallel
systems: Part 1, occam3 features,” Transputer
Communications, vol. 1, pp. 47-63, 1993.

[9] O. J. Fleming, “Parallel Processing in Control - the
transputer and other architectures,” in IEE Computing
Series, vol. 38. London: P. Peregrinus, 1988, pp. 244.

[10] G. H. Hilderink, “Communicating Threads home page:
www.ce.utwente.nl/JavaPP,”, 2002.

[11] P. H. Welch, “The JCSP Homepage”
http://www.cs.kent.ac.uk/projects/ofa/jcsp/, 2004.

[12] N. C. C. Brown and P. H. Welch, “An Introduction to
the Kent C++CSP Library”, In J. F. Broenink and G. H.
Hilderink, Eds., Communicating Process Architectures
2003. Enschede, Netherlands, 2003.

[13] J. P. E. Sunter, Allocation, Scheduling and Interfacing
in Real-time Parallel Control Systems, PhD thesis,
Faculty of Electrical Engineering, University of
Twente, Enschede, Netherlands, 1994.

156

