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Abstract– The occam programming language, based on the 
CSP formal algebra and tied to a specific hardware 
platform (transputers), offered a structured way to 
organize concurrency.  The CT library [1], developed at 
University of Twente, inspired by occam is a kernel library 
implementing occam primitives in modern programming 
languages and for general purpose microprocessors. In this 
paper, a practical implementation of the CT library is 
explained and some aspects are compared to similar 
occam-like library developed at the University of Kent.  
The design of the CT-library internals is then revisited and 
proposed changes are implemented in the C++ version of 
the library. 
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I.  INTRODUCTION 
 

A. CSP approach to modeling concurrency 
 

From a laymen’s point of view, software concurrency 
is always about some bunch of processes that can exist 
and execute simultaneously. But those processes rarely 
stand in isolation; they usually have to synchronize, 
exchange data and collaborate to accomplish their 
objectives. Concurrent software can be based on a 
synchronous communication model, an asynchronous 
communication model or some mixture of the two. 

Software based on an asynchronous communication 
between components, models the world in terms of 
independent tasks accessing shared objects. Well 
established synchronization primitives (like events, 
semaphores, monitors) exist with a purpose to provide a 
mutually exclusive access to the shared objects.  
Moreover this kind of synchronization primitives is 
supported by all modern operating systems.  

On the other side, most of formal theories assume that 
communication between components is synchronous. 
CSP is one of the first and still a popular formal algebra. 
CSP theory models the world as a set of collaborating 
processes that synchronize on events [2]. The first 
process ready to engage in some event must wait till 
every process participating in that event becomes ready 
to perform that event. Only after this event is performed, 
the processes involved are allowed to proceed. From 
obvious reasons, this type of communication is known as 
rendezvous communication. 

Well established scheduling theory, that offers large 
variety of priority assignment schemes, is based on the 
asynchronous model [3]. These schemes do not work for 
the synchronous model. Therefore the asynchronous 
model fits best when focus is on time requirements. 
Rendezvous based design is on the other hand better 
suited when focus is on using formal methods and 
structured way of using concurrency. 

The CSP theory had its simplified practical 
implementation in occam / transputer platform [4-6]. 
Occam is parallel language in which every statement is 
considered to be an elementary process. Blocks of 
statements are grouped into more complex processes 
using SEQ, PAR and ALT constructs. The Sequential 
construct (SEQ) defines strict order (or sequence) of 
execution for associated group of processes. The Parallel 
construct (PAR) defines that associated group of 
processes is executed concurrently. When a process 
offers to the environment a choice between several 
alternatives, those alternatives are grouped in an 
Alternative construct (ALT). Occam code can be 
transformed to machine readable CSP form and used in 
combination with existing formal checking tools, like 
FDR [7]. 

In occam, communication and synchronization is 
possible only through rendezvous channels. Call 
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Research, NOW, the Dutch Ministry of Economic Affairs and the Technology Foundation STW.
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channels and shared channels are the extensions defined 
by Occam 3 standard [8] which were never implemented 
in practice. Shared channels allow multiple processes to 
share one end of a channel. Call channels are needed in 
client/server paradigm where a request is send from a 
client to a server and result or a status of the performed 
action is communicated back to the client. 

In occam, standard control flow structures like 
WHILE and FOR loops are used to implement repetitive 
processes. There are also two decision making 
constructs: IF and ALT. Differences are explained in 
more details in subsection II.B. 

The occam / transputer platform was for a while 
really popular for implementation of complex control 
systems [9]. Control systems have strict time 
requirements, whose violation can bring controlled 
system in an unstable state. Real-time scheduling is 
therefore very important for control systems.  

The CT libraries (CTJ, CTCPP and CTC) [1, 10], 
developed at University of Twente, as well as the CSP 
(JCSP, CCSP and C++CSP) libraries [11, 12] developed 
at University of Kent, are attempts to keep the benefits of 
occam programming language after its hardware life 
companion - transputers had disappeared. This is done by 
remarrying occam to existing hardware platforms and 
modern programming languages. Although occam was a 
simple language with simple semantic rules, not all of its 
aspects are trivial to efficiently implement in modern 
programming languages. 

After the initial version of the CT library created by 
Hilderink was successfully applied in several control 
setups, the library has proved to be a good vehicle for 
further research in the area of distributed real-time 
control systems.  

Software development of complex architectures is 
best viewed as an evolutionary process. In first versions, 
performance and structured design are often less 
important then proving the validity of the approach. The 
CT library is not exception to this rule.  
In this paper, the design of the CT library is revisited in 
order to make certain aspects either more efficient or 
better structured. Focus is put first on the C++ version of 
library, because that version is most widely used in 
practical setups. Some of the performed evolution steps, 
are partly also a return to the origins of occam and 
transputers. 

II. CT LIBRARIES 
The CT Library is implemented in Java (CTJ), C 

(CTC) and C++ (CTCPP or CTC++). This library is 
customized for the application area of real-time control 
systems. The aim of the occam and CSP way is to supply 
users with safe patterns for organizing concurrency 
structure of an application. Although occam is based on 

synchronous rendezvous communication, the CT library 
also implements basic synchronization primitives created 
in models based on asynchronous communication, like 
semaphores and monitors. Those primitives are used as 
building blocks in the implementation of synchronous 
basic primitives (constructs and channel 
synchronization). It appeared as a more structured 
approach then building synchronization mechanisms 
from scratch each time those are needed. However, users 
of the library operate on a higher level of abstraction, 
where it is not allowed to use semaphores and monitors. 
The CT libraries, as well as the Kent CSP libraries, have 
additional features that distinguish them from occam. 

A. Relation to object-oriented programming 
While modeling the real world, humans rely on 

certain rules (abstraction, encapsulation, hierarchy, 
classification) in order to manage the complexity. 
Object-oriented programming (OOP) incorporates those 
rules as its basic principles. Concurrency of the real 
world is, however, better described using occam and 
CSP.   In the time when CSP and occam appeared, the 
dominant programming style was imperative. Object-
oriented programming, which is the preferred style 
nowadays, was still not conceived. Interesting research 
would be to fit those two concepts together.  

Occam-like libraries are implemented using the OOP 
approach.  But from the users point of view, OOP usage 
is in occam-like libraries restricted to lower level objects 
encapsulated inside processes. Maybe some other 
mixture better suited to human way of thinking can be 
discovered.  

In occam, every statement is considered to be a 
process. Subprocesses can inspect variables defined in 
scope of their parent processes. But only if a parent 
process is sequential, subprocesses are allowed to modify 
those variables. 

Though a process can be implemented as an object, 
essentially a process is not an object. While an object is 
an entity, a process is focused on defining some 
behavior, possibly a behavior attributed to an object, part 
of object or a set of objects. This behavior is specified by 
defining either strict orders of events (sequential 
execution) or by allowing events from parallel streams to 
be executed in any order, or by allowing a choice 
(alternative construct). Any partial behavior introduced 
in this way can be seen as a process. In the CT library, 
processes and constructs are implemented as objects, 
imposing more strict boundaries for variables scope then 
in occam. The scope of variables belonging to some 
process is, due to encapsulation, determined by the 
borders of the object implementing that process. 

In occam, a logical condition associated with a guard, 
is an expression that can involve any of the variables 
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visible in the current scope and which produces as a 
result a Boolean expression stating whether channel 
communication is allowed or not. In occam-like libraries, 
the Alternative construct and Guards are also 
implemented as objects. Since encapsulation is a very 
important feature of the object, variables defined in the 
surrounding Alternative process are out of the scope of 
the guard object and can not be used in the expression to 
check whether communication on those channels is 
allowed. The CT library still leaves a possibility to do 
this by adding to each guard one Boolean variable 
representing the associated logical condition. Organizing 
expression checking and setting the Boolean representing 
the condition is left to the user process. In the Kent 
C++CSP library, it is chosen not to support such logical 
conditions. 

B. Similarity and differences in occam, Kent libraries 
and CT libraries  
In occam, the IF conditional statement is considered 

as a decision making construct, somewhat similar to the 
ALT construct. In occam, the IF construct is priority 
structured. The process associated with the first condition 
that equates to TRUE is executed. If no condition equates 
to TRUE, the resulting action is equivalent to STOP or 
deadlock. If it is possible that no condition equates to 
true, usually an additional branch is added with a 
condition that is always true and has as resulting action 
the SKIP process (process that does nothing, but 
successfully finishes). The branch to be executed is in the 
IF construct resolved directly when the IF construct is 
entered: there is no waiting involved. See the code 
below:  

 
IF  
 [logical condition 1] 
  Process1 
 [logical condition2] 
  Process2 
 [TRUE] 
  SKIP 
    

The ALT construct offers a choice between several 
events to its environment. Processes from this 
environment express their willingness to participate in 
particular events by attempting to communicate on the 
associated channel. Since those channels are guarded for 
communication attempts, the ALT will be notified about 
the chosen alternative.   

If the environment in the same time accepts two or 
more events, this is resolved by choosing one of ready 
channels randomly (in theory), choosing the first ready 
channel from the list (PRIALT) or choosing the channel 
accessed by highest priority process (preference alting in 
CT library [1]) . Unlike IF, the ALT process will wait 
until one of the channels, for which the associated 

Boolean condition is set to true, becomes ready, and it 
will execute the associated process.  
 
ALT 
 [logical condition 1] & channel1 ?  data   
  Process1 
 [logical condition 2] & channel2 ? data 
  Process 2 
 [logical condition 3] & SKIP 
  output ! x 
 

In occam, only inputs can be guarded, there are no 
output guards. Of course, one can have output 
communication inside an ALT, and the SKIP process can 
be used in a guard in place of a channel communication 
(see branch 3 in above example). But this is somewhat 
different from an output guard, because there is no 
guarantee that the peer process on the input side of the 
channel is ready in the moment the ALT chooses this 
branch.  

The CT library does allow output guards. It 
implements only one decision making construct – the 
Alternative construct.  Behavior of the IF construct can 
be implemented using if/then control blocks of the native 
language (i.e. C++).  

A guard that behaves the same as the combination of 
a logical condition and a SKIP process as in branch 3 of 
the given occam sample code is in the CT library called 
SKIP guard. A SKIP guard has no channel associated. 
Readiness of this guard depends only on the state of the 
associated logical condition. A guard that has no logical 
condition either, is in the CT library called an ‘else’ 
guard. An ’Else’ guard is always ready. If no other guard 
is ready, the alternative containing the ‘else’ guard 
executes the process associated with this guard without 
blocking. This is somewhat similar to non-waiting 
behavior of the IF construct. But worth noting is that 
Alternative is like a more advanced IF construct. If only 
SKIP guards and ‘else’ guard are used in Alternative, it 
will have the same behavior as an IF construct. 
Possibility to use readiness of the channels in guards 
makes the Alternative a superior choice-making 
construct. 

Guards in the C++CSP library do not have a logical 
condition associated and thus there is no need to 
differentiate between ‘else’ and SKIP guards. 

The prioritized version of the ALT construct 
(PRIALT) enables a more deterministic choice if more 
then two alternatives are ready for execution at the same 
time. Preference is given according to the order in which 
guards  are specified in Alternative construct. 

 The C++CSP library has a facility that the same ALT 
construct can make a choice in different ways in 
subsequent triggering. Besides the expected fair ALT, 
and the PRIALT choice, it is also possible to give 
preference to the last chosen guard. This can be 
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beneficial to handle burst transfers without changing 
device settings. 

  The CT library also offers several innovations in a 
way a choice is made. The ‘Preference Alting’ 
mechanism enables that in case several guards are ready 
a choice is made according to priorities of the processes 
blocked on the guarded channels. However since 
different behaviors of the Alternative construct are 
captured using different classes; once the ALT or 
PRIALT object is defined, its behavior cannot be 
changed from one iteration to another. 

The Alternative can in the CT library be executed in 
two ways: as a standalone entity possibly with its own 
context or as a selection-making statement in a context of 
a calling process. 

The Kent C++CSP library prefers the second 
approach. 

In our CT library, the Alternative is a kind of Guard. 
This might at first seem strange, but this is necessary in 
order to allow nesting of Alternatives – one of the 
features defined in the occam 3 reference manual. 

C++CSP can have guards for buffered channels. Its 
associated guard is not ready during the time in which its 
buffer is empty. In the CT library, there is no guard for 
buffered channels. C++CSP defines several different 
kinds of guards: Normal Input Guard, Normal External 
Input Guard, Skip Guard, Buffered Input Guard, Relative 
Timeout Guard, Timeout Guard. All those different 
guards are implemented using hierarchy of classes with a 
common parent class – Guard. The CT library on the 
other hand puts all different functionalities of a guard in 
one object.  Since Alternative is also kind of guard, it 
also implements all those features.  

Both the Kent and CT libraries use the template 
mechanism of C++ as a way to make generic versions of 
channels that can be instantiated as a channel of a 
particular data type by specifying an appropriate data 
type as a template parameter. 

One of the key aspects of the CT library is orientation 
towards the real-time systems. Therefore, a special 
scheduler is designed that uses the hierarchical structure 
of constructs and processes in efficient way and allows 
for a practically infinite number of priorities in a system.   

C. First steps in redesigning CT library  
First in the list of evolutionary steps for the CT 

library was to implement the context switch using the 
fibers mechanism of Windows. This might not seem a 
good idea for a library targeting towards real-time 
systems, but this step allows the use of best IDE tools 
available for further developments.   

The C++ version of the CT library has a core of its 
kernel written in C. The second step was to transform all 
parts of the library to C++. This might seem as 

unnecessary step. It might look even as a step in a wrong 
direction since with this step maintenance of C and C++ 
versions is totally separated. But, if we take in account 
that C version of CT library has an object-oriented C++ 
look and feel, reasons for this change become more 
obvious. Also some glue code that connects C and C++ 
parts has been eliminated.  But the main advantage is 
that, once whole library was rewritten in C++, it was far 
more readable and understandable.  

III. REDESIGNING THE CHANNEL CONCEPT OF CT 
LIBRARY 

A. Shared Channels  
While the version of occam that was actually used 

was based solely on one-to-one rendezvous channels, 
occam 3, although never implemented as such, defines 
shared channels as well. According to that definition, a 
process that wants to use a shared end of the channel 
must first claim it, and then wait until its claim is granted 
by the process existing on the not-shared end of the 
channel. Basically this can be an ‘any-1’ or ‘1-any’ type 
of channel, where the shared end is marked with ‘any’. In 
practice, sometimes ‘any-any’ channels might be needed 
as well.  

Communication performed on ‘any-any’ channels can 
be decomposed into ‘any-1’, ‘1-1’ and ‘1-any’ parts (see 
Figure 1). There are two shared or ‘any’ sides of the 
channel and on each of them a choice is made between 
processes attempting to access the channel.  Pairs of 
processes that have passed shared sides of a channel can 
engage in a ‘1-1’ rendezvous communication.    

 
Figure 1: Any-to-any channel 

In the Kent library, a distinction is made between 
different types of channels (‘1-1’, ‘1-any’, ‘any-1’, and 
‘any-any’). The CT library on the other hand, 
implements only one type of channel that can be used as 
‘1-1’, ‘1-any’, ‘any-1’ or ‘any-any’. Since obviously, a 
channel used as ‘1-1’ needs less synchronization then 
one used as an ‘any-any’ channel, it seems that 
performance might be better if channel types are 
separated. But actually, there are much more important 
reasons for separating channel types. 

 
Prod 1 

 
Prod 2 

 
Prod n 

 
 Cons 1 

 
 Cons 2 

 
 Cons m 

Any-1   1-Any 

Any-Any 

   1-1 
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B. Channels in CT library 
A channel is in the CT library implemented in a 

following way: on the shared ends of a channel, 
processes are sequentialized on two semaphores 
(readersSemaphore and writersSemaphore). A pair of 
processes that pass those semaphores will enter a 
Monitor, where synchronization and data exchange 
(communication) is performed. The Monitor contains 
three semaphores: mutex – that ensures mutually 
exclusive access to the monitor, condition – on which in 
this case the process that arrives first will be blocked 
waiting for rendezvous, and the semaphore urgent which 
is a standard part of monitor, used to block either a 
process released by signaling the condition semaphore or 
the process that has signaled the condition semaphore 
ensuring that only one process is active inside the 
monitor at any time.  In this case, the process that arrives 
secondly performs the data exchange and afterwards 
releases the waiting process. 

Besides the obvious overhead of this implementation, 
it is interesting that the synchronization primitives from 
asynchronous systems like semaphores and monitors are 
used as basic building blocks to implement rendezvous 
channels. In CSP theory, an opposite approach is used: 
synchronous communication is a basic building block 
and an asynchronous communication between producer 
and consumer process is implemented by inserting in 
between a buffer process that synchronizes on 
rendezvous channel with both producer and consumer.  

Strangely enough, only the implementation of 
buffered channels in the CT library does not rely on 
semaphores and/or monitors which are naturally suited 
for this. Instead, probably in an attempt to achieve truly 
asynchronous behavior, the buffered channel throws an 
exception in cases when read is attempted from an empty 
buffer, and/or write is attempted to a full buffer.      

C.  Why are different types of shared channels needed? 
A well-known rule in practical use of the CSP theory 

is that a channel cannot be guarded on both sides. Or in 
other words: two processes that engage in rendezvous 
communication cannot both be subprocesses of ALT 
constructs. The guarded side becomes ready to be chosen 
for execution only after the other side is already ready for 
execution. If both sides are guarded, then the associated 
processes will never become ready to be chosen.  Since 
no process can proceed, this is deadlock. 

An analogy can be drawn between shared ends of 
channels and the alternative construct, based on the fact 
that in both cases a choice is made between processes.  
Moreover one could implement a structure that will 
behave as an any-any channel using rendezvous channels 
and alternative processes. Of course, such an 
implementation would have significant overhead since 

several new processes are defined. But this approach is 
more for sake of description then for implementation. 

The process that accesses the shared end of a channel 
is in a similar situation to a process that accesses a 
channel guarded by some ALT construct. In other words, 
a shared end of a channel is implicitly guarded. If a 
process accessing a shared end of a channel is a 
subprocess of some ALT construct, that channel is 
practically guarded from both sides.  

  
Figure 2: Example of an alt and an any-to-any channel. 

In the example shown in Figure 2, g2 is output guard 
which guards the output from Prod2 to the Any-1 
channel. Two implementations and two race hazard 
scenarios, equally unwanted, are possible: 

In first scenario, the guard is allowed to claim the 
shared end of channel. If the ALT is triggered before 
Prod0 and Prod3, then g2 claims the channel and 
becomes ready. If in meantime g1 has also become ready 
Cons1 might be chosen for execution instead of Prod2.  
Prod0 and Prod3 cannot access the channel because it 
was already granted to g2.  

If a guard is not allowed to claim a channel, then after 
process Cons has accessed the channel, guard g2 will 
become ready, but the channel might be granted to one of 
the processes Prod0 and Prod3.  

Thus, the safe solution is to distinguish between ‘1-1’, 
‘1-any’, ‘any-1’ and ‘any-any’ channels and to forbid 
output guards associated with ‘any-1’ channels,  input 
guards associated with ‘1-any’ channels, and any kind of 
guards associated with ‘any-any’ channels.  

Since like in occam, only input guards are allowed in 
the Kent libraries, an exception is thrown on attempt to 
associate input guards with ‘1-any’ and ‘any-any’ 
channels.  The Kent library implements ‘1-1’ channels in 
a very efficient way, much alike to the mechanism that 
was used on occam/transputer platforms.   

D.  Redesigning channels 

Rendezvous channels 
 Following the discussion presented in the previous 

subsection, the first decision was to separate ‘1-1’, ‘1-

Any-1 
channel 

Ch 2 

Prod 2 

Cons  

Prod 1 

Cons 1 g1 

g2 

Prod 0 

Prod 3 

ALT 
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any’, ‘any-1’ and ‘any-any’ types of channels like it is 
done in the Kent library. After this change is 
implemented, the CT library becomes capable to detect 
and prevent misuse of guards on shared ends of channels. 
Similarly to the Kent library, the ‘1-1’ channel is then 
implemented in an efficient way alike to the way used by 
occam / transputer platform.  

In transputers [6] only one memory word was used to 
implement rendezvous channels. The process that arrives 
first, writes its Process ID (which is address of its 
workspace in memory) in this memory location. The  
process that arrives second performs data exchange and 
reschedules the first process. This mechanism was rather 
easy to mimic in the implementation of One2One 
channels for the CT library: Instead of using 
synchronization mechanisms like semaphores and/or 
monitors, one pointer to a thread (waitingProcess) was 
sufficient. First process that arrives needs to put pointer 
to its thread in waitingProcess variable and to deschedule 
itself. Those two activities should be executed in an 
atomic fashion. The process that arrives second performs 
the data transfer and reschedules the first process.  In CT 
library this looks like the following code: 
 
void One2OneChannel::write(Object* object, 
unsigned size) { 

Processor::enterAtomic(); 
if(!bReaderReady) { 
 // wait for the consumer 

      waitingProcess  
       =Dispatcher::getRunning(); 

bWriterReady=true; 
  buffer=object; 
 } 

else{ 
  Processor::copy(object,buffer,size); 
  Dispatcher::add(waitingProcess); 
  bWriterReady = false;  
  bReaderReady = false; 
 } 

//potential context switch 
Processor::exitAtomic(); 

} 
The Read() function is designed in analogue way. 

Shared channels 
Relationships between the mentioned types of 

channels, naturally define a class hierarchy with ‘1-1’ 
channel as a base class. The ‘Any-1’ and ‘1-any’ 
channels extend the ‘1-1’ channel by adding mechanism 
to arbitrate channel access on  shared input and output 
end respectively. The ‘Any-any’ channel naturally inherit 
from both ‘any-1’ and ‘1-any’ channels because it needs 
the access arbitration mechanism both on input and 
output end.  The same class hierarchy also exist in the 
Kent C++CSP library. 

 
Figure 3: Class hierarchy of channels 

The Any2One channels add the access mechanism on 
shared input end of a channel. A process which passes 
arbitration can engage in rendezvous with the consumer 
process using the functionality defined in ‘1-1’ channel. 
The simplest way to implement this is to use an 
additional semaphore (writersSemaphore) on which 
producers are sequentialized before entering the inherited 
One2One rendezvous channel.  
 
void Any2OneChannel::write(Object* object, 
unsigned int size){ 
 writeSem->p(); 
 One2One::write(object,size); 
 writeSem->v(); 
} 
 
An analogue mechanism can be used for the One2Any 
channels.  
 
void One2AnyChannel::read(Object* object, 
unsigned int size) 
{ 
 readSem->p(); 
 One2One::read(object,size); 
 readSem->v(); 
} 

The Any2Any channel can then inherit functionality 
of both the Any2One and One2Any channels. 

However, there is serious disadvantage associated 
with the described approach. 

 In the CT library, Semaphores are implemented in 
such a way that processes in waiting queues are ordered 
by priorities. Still, the described access mechanism does 
not ensure that highest priority reader and highest 
priority writer will actually win the arbitration. Let us for 

bInputGuard:bool 
bOutputGuard:bool 
guard : Guard* 

write(object, size) 
read(object, size) 

One2OneChannel 

write(object, size) 
read(object, size) 

Any2One Channel 

write(object, size) 
read(object, size) 

One2Any Channel 

write(object, size) 
read(object, size) 

Any2Any Channel  
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example imagine the situation in which several producers 
subsequently attempt to claim the channel and then after 
a while a consumer arrives. The first producer that has 
arrived is the first one that passes the semaphore 
regardless of its priority and only subsequent producers 
are ordered by priority in a waiting queue.    

Instead of semaphores, a better access mechanism can 
be implemented by handling directly waiting queues 
(writers and readers) to which all incoming processes are 
added. Only after detection that the other side is ready, 
arbitration will be performed and a pair of the highest 
priority processes from the waiting queues will be 
released to engage in rendezvous communication. As an 
example of this approach, read and write function of 
Any2One channel are shown. The Reader accesses the 
not- shared end of the channel. Therefore it can directly 
go to 1-1 part. If there are writers blocked on the access 
mechanism of the shared end (in writers queue), reader 
will release the first one before entering the 1-1 part. If, 
however, reader enters the channel first then it will set 
the readerReady flag and it will block inside the 
One2OneChannel::read function. The first writer that 
arrives will proceed to the One2OneChannel::write function. 

  
void Any2OneChannel::read(Object* object, 
unsigned int size){ 
 Processor::enterAtomic(); 
 if(writers->getSize()>0 ){ 

bBusy = true; 
Dispatcher::put(writers->get()); 

 } 
Processor::exitAtomic();  

 One2OneChannel::read(object, size); 
 bBusy = false;   
} 
 
void Any2OneChannel::write(Object* object, 
unsigned int size){ 
 Processor::enterAtomic(); 
 writers->put(Dispatcher::getRunning()); 
 if(bReaderReady && !bBusy) 

Dispatcher:: put(writers->get()); 
 Processor::exitAtomic(); 
 One2OneChannel::write(object,size); 
} 
 
The write and read functions of One2Any channels are 
implemented in an analogue way. Any2Any channels are 
slightly more complicated because the access 
mechanisms exist on both ends of the channels. 

 

Buffered channels 
Instead of throwing exceptions, a buffered channel is 

now implemented in the standard way using 
synchronisation based on three semaphores with 
following symbolic names mutex, dataAvailable and  
spaceAvailable. 

 The equivalent occam and therefore also equivalent 
CSP representation can be easily constructed for this 
kind of bounded buffer, as shown below: 
 
Buffer[size]; 
int spaceAvailable=size; int dataAvailable=0; 
 
 WHILE(TRUE){ 
 ALT{ 
  [spaceAvailable] in? buffer[inputIndex] 
   dataAvailable++; 
   spaceavailable = size-dataAvailable; 
  [dataAvailable]out!  buffer[outputIndex] 
   dataAvailable--; 
   spaceavailable = size-dataAvailable; 
 }  
} 

The original implementation of a bounded buffer, 
although giving illusion of being truly asynchronous, 
could not be represented with an equivalent CSP block 
and would rely on channel users to deal with exceptional 
conditions probably by adding blocking synchronization.  

IV.   ALTERNATIVE AND GUARDS 
In the previous part of the paper, a notion of the 

alternative construct and a way it can be used were 
described. Let’s now focus on implementation aspects. 

A.  Transputer implementation  
On transputer systems support for the Alternative 

construct of occam was built in on microcode level. Its 
simplified scenario was as follows: First the alternative 
start instruction is executed, which will bring the 
alternative process into the ENABLING state. In this state 
ALT executes the instruction enable channel for each 
guarded channel; if the peer process is ready and waiting 
on channel, then the associated guard becomes ready and 
the state of Alternative process will become READY. The 
Alternative wait instruction is then executed. If there are no 
ready guards, the state of Alternative process will be 
changed from ENABLING to WAITING and Alternative 
will be descheduled.  When a peer process arrives to one 
of the guarded channels, the state of Alternative process 
will be changed from ENABLING or WAITING to 
READY. This will reschedule the alternative process.  
When a processor is granted to the Alternative process, it 
will execute the disable channel instruction for each of 
guarded channels. During guards disabling, choice 
among ready guards is made. In the instruction 
alternative end a jump is made to the code of the process 
guarded by the selected guard.  

While the Kent C++CSP library implements exactly 
the same mechanism as the one in the transputers, the CT 
library has somewhat different implementation.  
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B. CT library implementation 
Although the mechanism implemented in the CT 

library seems to work fine, responsibilities of the 
involved objects (channel, guard and alternative) are not 
clearly delegated, making verification, maintenance and 
readability of the code somewhat cumbersome.   

The synchronization mechanism used inside is again a 
Monitor, which is again overkill. The Alternative is 
triggered by calling the select() function which first 
acquires the monitor. This function will return a selected 
guard to a caller. If no guard is ready it will block on the 
condition semaphore of the monitor. If some process 
attempts to access a guarded channel, its associated 
guard will be put in an alting queue and the condition 
semaphore will be signaled. AltingQueue is a helper 
class which will sort ready guards according to the 
‘preference alting’ mechanism.  

 So far, on this global level design seems good. But 
let us now plunge slightly deeper in design. 

Although there is a class that implements guards, it is 
not designed elegantly. Actually, the whole mechanism 
could be implemented in a more clear way, perhaps by 
using the transputer implementation as a guidance. 
Furthermore, a channel does not know whether its 
associated guard is input or output. Although this would 
normally be resolved after attaching a guard, in the CT 
library this is determined every time guards are enabled 
and/or every time access to the channel is attempted. 
During the guard enabling phase, the presence of writers 
and readers blocked on the channel is tested. If there is a 
waiting writer then the guard must be an input guard. In 
analogue way, if there is at least one reader waiting this 
must be output guard. In both cases, the guard is added to 
an alting queue. If there is no process blocked on a 
channel, one can not determine at this moment whether 
the guard is an input or an output.  This will be resolved 
at the moment the first process accesses the channel: if it 
is attempting to write then associated guard, if any, must 
have been input guard. Then, the input guard will be 
added to the alting queue. An analogue scheme takes 
place when the process is attempting to read. 

The actual scenario is more complicated because a 
guard can also be in a SKIP or timeout mode and certain 
things need to be done in case the alternative is nested 
and used as a guard inside its parent Alternative.    
Timeout and SKIP should not be modes of a guard. A 
better structured and easier implementation would be to 
implement those functionalities as special kinds of 
guards. This is for instance done in the Kent C++CSP 
library. 

Instead of the recurring checks whether a guard is 
input or output, a flag can be used. This flag can be 
automatically set at the moment the guard is created.  If 
the input interface of a channel is passed to a guard 

constructor, then the guard knows that the input side of 
the channel is guarded. Once a guard notifies its 
associated channel about its presence and type, it does 
not have to be anymore aware of the channel or even of 
its own type. A channel has to be aware of its associated 
guard.  The channel is the one who notifies the guard 
whether there is a process waiting on the unguarded side 
of the channel. Guard and Alternative should be aware of 
each other.  

In PriAlternative, guards get priorities according to 
the order in which they are added to the construct. The 
PriAlternative class is derived from the Alternative class 
and uses the same alting queue and therefore the same 
sorting algorithm. While sorting the queue, priorities of 
processes blocked on guarded channels are compared 
first (‘preference alting’). If those priorities are equal 
then priorities attached to the guards are compared. The 
PriAlternative of the CT library therefore does not have 
the same behavior as the PRIALT of occam, which 
compares only the priorities attached to the guards. 

The possibility to use different strategies for guard 
sorting in subsequent triggering of the same alternative 
construct is not allowed in the CT library, although it 
was straightforward to implement and is available in the 
Kent libraries.  

Obviously, there is room for improvement both in a 
sense of performance optimization and making design 
better structured, less complex and more readable.    

The decision was made to redesign the whole 
mechanism, keeping one eye on a way it was 
implemented in transputers and other eye on existing CT 
library implementation.   

C.  CT Library redesigned implementation 
The transputer implementation gives a good guidance 

how the Alternative construct can be efficiently 
implemented.   

In the new implementation, a guard contains three 
Boolean variables: bAltingEnabled is true when 
Alternative is in ENABLE or WAITING state and false 
otherwise, bCondition keeps information whether a 
guard is enabled or disabled and bReady is the indicator 
whether communication was already attempted on the 
unguarded side of the channel. Instead of using local 
copies in an optimized version bAltingEnabled and 
bReady variables can always be fetched from Alternative 
and channel objects, respectively. In this explanation, 
local copying is used because expressions are somewhat 
easier to describe.  

Like in the original CT library, ready guards are 
sorted using the AltingQueue. Instead of monitor 
synchronization one semaphore is used. More precisely, 
a binary semaphore known sometimes as event is derived 
from Semaphore. The obvious difference to the 
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Semaphore is that the maximal value of the internal 
counter is limited to one.  A Reset() function is added 
that puts its counter back to zero. 

Like in the transputer implementation, after triggering 
enableChannel()  is performed for every guard. If no 
guard is ready, Alternative will wait on event 
guardReadyEvent. When some process attempt to access 
one of the guarded channels, its associated guard 
becomes ready, it is added to alting queue and 
guardReadyEvent is signaled.  After the Alternative 
wakes up, it will call disableChannel() for every guard. 
This is again similar to the transputer implementation. 
The process associated with the guard that is first in the 
alting queue is selected for execution. See the code 
below: 
 
unsigned Alternative::select(){ 
 queue->empty(); 
 guardReadyEvent->Reset(); 
   enableChannel(); 
 if(queue->getSize() == 0){ 
  Processor::enterAtomic(); 
  guardReadyEvent->p(); 
  Processor::exitAtomic(); 
 } 
 
 disableChannel();  
 selectedGuard = queue->show(); 
   return selectedGuard->getIndex(); 
} 
 
Enabling channels is actually done by going through the 
list of guards and enabling channel for every one of 
them, as shown below: 
 
void Alternative::enableChannel() 
{ 
 Processor::enterAtomic();  
 for(int i=0;i<guards->getSize();i++) 

guards[i]->enableChannel();    
 Processor::exitAtomic();   
 
} 
 

The guard should remember that it is enabled. If the 
associated channel is already ready and if the guard is 
enabled, this guard can be put to the alting queue. The 
Alternative is notified about that using the SetReady() 
function: 
 
void Guard::enableChannel(){ 
  bAltingEnabled=true; 
  if(bCondition && bReady) 

myAlt->SetReady(this); 
}  
 

In the SetReady function, the guard is added to the 
alting queue and an event that guard is ready is signaled. 

If the alternative construct is nested, it should act as a 
guard. Its functions enableChannel() and 

disableChannel() are called directly from its parent like is 
done for any other guard. After one of its guards is ready, 
the nested alternative should keep acting as a guard and 
should notify its parent that a guard is ready, but instead 
of pointer to itself, it will pass the pointer of its ready 
guard as an argument in the call to the SetReady() 
function of its parent alternative. 
   
void Alternative::SetReady(Guard *guard){  
 if(myAlt)myAlt->SetReady(guard); 
 else{ 
  queue->add(guard); 
    guardReadyEvent->v(); 
 } 
} 
 

If no guard is ready, the Alternative will block on the 
guardReady event. When a process attempts to access a 
guarded channel, prior to blocking a call to the 
SetReady() function of the guard will be made. The 
guard will now know that its channel is ready and, 
provided that the guard is enabled and alting is enabled, 
it can signal the Alternative. Otherwise it will notify the 
Alternative when proper conditions are met - either 
during the next enableChannel() call or at the moment 
the guard is enabled. 
 
void Guard::SetReady(ProcessThread* ptBlocked) 
{ 
 bReady=true; 
 waitingProcessThread=ptBlocked; 
 if(bCondition && bAltingEnabled) 

myAlt->SetReady(this); 
} 
void Guard::ResetReady(){bReady=false;} 
 

In a channel’s read() and write(), functions calls to 
Guard::SetReady() and Guard::ResetReady() are inserted to 
keep the state of the associated guard in accordance with 
the state of the channel. 
 
void One2OneChannel::write(Object* object, 
unsigned int size){ 
Processor::enterAtomic(); 
if(!bReaderReady){ 

  waitingProcessThread = 
Dispatcher::getRunning(); 

     if(bInputGuard)guard->SetReady(); 
     bWriterReady=true; 
     buffer=object; 
     Processor::exitAtomic();  
 } 
 else{ 
   Processor::copy(object,buffer,size); 
   Dispatcher::add(waitingProcessThread); 
   bReaderReady=false; 

bWriterReady=false; 
   if(bOutputGuard)guard->ResetReady(); 
   Processor::exitAtomic(); 
 } 
} 
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void One2OneChannel::read(Object* object, 
unsigned int size){ 

Processor::enterAtomic(); 
 if(!bWriterReady){ 

  waitingProcessThread = 
 Dispatcher::getRunning(); 

  if(bOutputGuard)guard->SetReady(); 
  bReaderReady=true; 
  buffer=object;  
  Processor::exitAtomic(); 
 } 
 else{ 
  Processor::copy(buffer,object,size); 
  Dispatcher::add(waitingProcessThread); 
  bReaderReady=false; 
  bWriterReady=false; 
  if(bInputGuard)guard->ResetReady(); 
  Processor::exitAtomic(); 
  } 
} 
void Guard::ResetReady(){bReady=false;} 
 

After at least one guard becomes ready, the alting 
queue is not empty any more. Following the logic of the  
transputer / occam platform, all channels should be 
disabled. The Alting queue will be emptied next time the 
Alternative is triggered. 
 
void Alternative::disableChannel(){ 
 for(int i=0;i<guards->getSize();i++) 
  guards[i]->disableChannel(); 
} 
 
void Guard::disableChannel(){ 

bAltingEnabled=false; 
} 

Inspired by the Kent libraries, another significant 
change was made. PriAlternative does not exist anymore 
as a separate class. Instead Alternative can be in one of 
following regimes: PRIALT, PREFERENCE_ALT and 
FAIR .  The Mode in which the Alternative works is now 
maintained in the AltingQueue which will sort guards 
according to its current mode. There is no need for a 
special PriAlternative class. Furthermore PRIALT is 
defined in the same way as in occam: guards are sorted 
solely according to their priorities.  

A bounded buffer can now also have a guard 
associated. The Associated input guard is ready as long 
as its buffer is not empty. The associated output guard is 
ready as long as its buffer is not full. A guarded buffer 
should not be used in an Alternative that is working in 
PREFERENCE_ALT mode. Reason for this is that 
‘preference alting’ selects a guard according to the 
priority for the process blocked on the  not-guarded side 
of the ALT. Processes accessing a buffer are blocked 
only if read from an empty buffer or write to a full buffer 
is attempted.  

V.  SCHEDULING 

A. Occam / transputer platform for real-time control 
systems 

CSP theory is not aware of priorities and scheduling 
A distributed system based on hierarchy of constructs 

and processes is scalable by nature. Reason is that a node 
can actually be interpreted as a complex process that uses 
associated physical links as channels to other processors. 
Scheduling is concerned with sharing the time of a 
processor or the bandwidth of a bus. There is no notion 
of the scheduling and priority assignments in the CSP 
theory. Parallel processes are considered to be truly 
parallel. Sharing processor time to execute several 
processes on one processor is an implementation issue. It 
will not influence the CSP model of the application. It 
will however dominantly influence its timing behavior. 
For real-time systems, satisfying time requirements is a 
key issue.  

Scheduling in OS based on general purpose processors 
Usually, scheduling is performed by the Operating 

System (OS) based on priority levels assigned to 
processes. In general purpose microprocessors, context 
switching between threads is performed in software. 
Since such a context switch incurs significant time 
overhead, the intended parallelism is more coarse 
grained. For instance, a context switch is avoided by 
executing an Interrupt Service Routine (ISR) on the stack 
of the currently executing thread instead of treating it as 
a separate process.  This perhaps saves one context 
switch per interrupt, but it also complicates making 
context switch during ISR, which is needed in a case 
when a higher priority process is released due to this 
interrupt. A standard approach to scheduling is assigning 
priorities to processes either in static way (fixed priority 
schemes, e.g. Rate Monotonic (RM)) or in dynamic way 
(Earliest deadline first (EDF) and similar schemes).  

Transputers and scheduling 
In a case of the occam / transputer platform, 

scheduling is a joint activity of software (occam) and 
hardware (transputer).  

Transputers were designed specially for message-
passing parallel systems. Hardware within a transputer 
multiplexes virtual links between processes from 
different nodes to the one of the four physical point-point 
links (DS links). The bus that connects the memory, the 
CPU and the link peripherals was a crossbar 4x32 bits 
data address bus.  

The transputer has a hardware scheduler that 
distinguishes two priority levels. The higher-priority 
level was most often assigned to processes that handle i/o 
communication. Those processes are triggered either by 

150



PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS 
_____________________________________________________________________________________________________________________________ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
© PROGRESS/STW 2004, ISBN 90-73461-41-3                                                                                                     OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL 

external events (e.g. data arrival) or by timeouts on time 
channel calls. The functionality of those processes is 
equivalent to ISRs of general purpose processors. The 
main difference is that such processes have their own 
workspace (or stack in terms of general purpose 
processors).  The overhead of an additional context 
switch per interrupt (called event in terminology of 
transputers) is not significant thanks to the fast hardware 
scheduler.  For the same reason, parallelism can be more 
fine grained. 

Occam language support for scheduling  
In addition to the PAR (parallel) construct in occam a 

prioritized version of the parallel construct, the PRIPAR 
construct, exists. The priority in a PRIPAR construct is 
relative to the order of adding processes to the parallel 
construct. However on transputer platforms only two 
priority levels were supported and a PRIPAR was 
therefore used only on top level. Additional priority 
levels were often implemented in software. 

Scheduling rendezvous-based systems 
The chosen scheduling mechanism is not important for 
CSP formal checking. But structuring a program in the 
CSP way does influence schedulability analysis because 
it imposes rendezvous based communication. In 
rendezvous based systems, process priority does not 
influence dominantly the order of execution. The 
communication pattern of the overall system is 
determined by event based interaction of processes.  
 
 

 
Figure 4: Process execution is dominantly determined by 

communication patterns rather then by process 
priority 

Rules that govern such interaction are distributed in 
the communication patterns of participating processes. 
All those patterns together with process arrival times 
define only a partial ordering of the set of events. Still 
this partial ordering of events, inherently to the structure 
of the overall system, will always overrule process 
priorities. Assigning a higher priority to one process, 
engaged in a complex interaction scheme with processes 

of different priorities, does not necessarily mean it will 
be always executed before lower-priority processes. This 
is illustrated in Figure 4. 

It seems that attaching priorities to processes does not 
impose enough influence on the behavior of rendezvous 
based systems. Maybe, it would be better to attach 
priorities to events. Deadlines are anyway time 
requirements imposed on events or on distances between 
some events. Furthermore, while priority of processes is 
local to a node, priority of events is valid for the whole 
distributed system. Only problem with an event based 
scheduling is that there should be a sound mathematical 
ground before it can be implemented in real-time 
systems. 

Scheduling and formal checking in practice 
Although in occam a channel communication between 

processes was rendezvous based, asynchronous 
communication was also used. It was implemented using 
an additional process that protected a buffer from 
simultaneous access by engaging in rendezvous 
synchronization with one or the other side (repetitive 
alternative on input and output channel).  

If processes are communicating using asynchronous 
overwriting channels, established scheduling theories can 
be used to assign priorities. Actually, one can implement 
applications that contain a mixture of synchronous and 
asynchronous communication appropriate both for real-
time scheduling and formal checking.  

On the highest level, different priorities can be 
assigned to independent processes that exchange 
parameters through overwriting channels. E.g. in control 
applications those high level processes would be control 
and supervisory loops. The internals of those processes 
can in turn be implemented as a cooperation of processes 
of equal priorities communicating over rendezvous 
channels. 

The top-level PRIPAR construct can order control 
loops by sampling frequency, which is equivalent to a 
RM (Rate |Monotonic) priority assignment. 
Communication inside loops is allowed to be rendezvous 
and all communication between loops is asynchronous. 
In [13] this idea is implemented in a way that it can 
efficiently use properties of a hardware scheduler.  

B. The scheduling mechanism of the CT library 
The CT library is in fact a kernel that, besides 

providing communication and synchronization 
primitives, also offers its own scheduling policy. This is 
very useful when a CT based program is executed on a 
bare microprocessor. A program based on the CT library 
can also be executed on the top of some operating system 
(OS). In that case, it will run in one system-level thread. 
All processes and stacks defined inside that thread are 
invisible to the OS. The scheduling policy of the CT 
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library will in this case manage the time that is granted to 
the associated system level thread by the OS. This 
concept is often referred to as a user-level scheduling. To 
achieve real-time guarantees it is necessary to run CT-
based application as a highest priority process of real-
time OS (RTOS). 

There is an important problem associated with user 
level scheduling. Inside an OS, synchronization 
primitives like semaphores are often used. If one of the 
processes from the CT application attempts to make a 
system call, there is a chance that it will have to wait on a 
semaphore to access some resource. However the OS 
does not see CT processes, it sees only one system level 
thread (containing the whole CT program). Therefore, on 
an OS semaphore, the whole system level thread running 
the CT program will be blocked. Thus all CT processes 
inside that thread will halt after one of them issued 
access to some OS resource. This is not desired.  

Preemption in the CT library 
The CT library is not fully preemptive in a strict 

sense. A pair of functions (enterAtomic() and 
exitAtomic()) exists to mark the borders of an atomic 
section. enterAtomic() increments a counter of nested 
atomic sections and exitAtomic() decrements the counter 
and performs a context switch if needed, provided that 
the atomic section is not nested. Atomic sections are used 
in implementation of the CT library communication and 
synchronization elements-like: channels, semaphores and 
monitors.  Only at those points in program execution, 
preemption can take place. This is in conjunction with 
the underlying CSP theory. 

Hierarchy of dispatchers 
Traditionally, the term Scheduler is used for a part 

that maintains a queue of ready processes (ready queue) 
and determines the process that will run next. Dispatcher 
is the term used for a part that actually performs the 
context switches from the running process to the next 
one determined by the scheduler. In the CT library, those 
functionalities are not distinguished and Dispatcher is 
the name used for a process that maintains a ready 
Queue. Actually, there is not one Dispatcher, but a whole 
hierarchy of them. Scheduling is based on a tree-like 
hierarchical structure of occam programs. 

In the CT library, stack management is encapsulated 
in the ProcessThread class. Not every process needs to 
have its own stack.  For instance, subprocesses of the 
Sequential construct can obviously all be executed by the 
same thread. Similarly, the process representing a chosen 
alternative can be executed by the same thread that has 
executed its parent ALT construct. Therefore, in the CT 
library, only for processes executed in Parallel and 
PriParallel a separate context (read stack) is needed and a 
separate ProcessThread needs to be created.  

While all subprocesses of a Parallel construct have the 
same priority, priorities of processes inside a PriParallel 
are based on the order in which they are added to the 
construct. This is a fundamental difference between 
Parallel and PriParallel constructs.  

Hierarchy of PriParallel constructs alone can allow an 
infinite number of different priority levels in a system. 
But a hierarchy containing both Parallel and PriParallel 
constructs, contains also some processes of the same 
priority. Most efficient way to organize a ready queue 
might be to divide it to several ready queues — one for 
each priority level. Since an infinitely large number of 
priorities can exist, a centralized dispatcher might 
contain too many ready queues. Instead, in the CT library 
a hierarchy of dispatchers is employed. For every 
PriParallel construct, one dispatcher is created. In this 
way, nested Parallel processes, which all have same 
priorities will go to one ready queue, belonging to the 
dispatcher of the closest parent PriParallel process.   

According to the given explanation, if a top-level 
construct is not a PriParallel there will be no Dispatcher 
to manage the top level processes. In the CT library, 
when a Parallel construct is created and there is still no 
dispatcher in a system, then a dispatcher will be created 
for this top level Parallel construct. If a top level 
construct is an alternative or a sequential construct, in its 
constructor a hidden parallel construct will be created 
and made top level construct.  

For a following hierarchy of processes, three 
dispatchers will be created: 
 
PAR P 
 PRIPAR P1 
  P11 
  P12 
  P13 
 PAR P2 
  PRIPAR P21 
   P211 
   P212 
   P213 
  P22 
  P23 
 

One for the top-level Parallel construct (P), and one 
for each PriParallel construct (P1, P21). Processes P22 
and P23 will be added to the top-level Dispatcher. The 
Process Threads of the two Dispatchers associated with 
PriParallel constructs P1 and P21 will be added to a top-
level dispatcher. See Figure 5. 

Process Threads for IdleTasks and Dispatchers 
Every Dispatcher is executed in a separate Process 

Thread. When a parent dispatcher runs the Process 
Thread of a nested Dispatcher, this nested Dispatcher 
will take over and become current dispatcher of the 
processor.  
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As shown on Figure 5, a Dispatcher contains one 
prioritized Ready Queue. In addition, there is one FIFO 
Queue for every priority level of the dispatcher. The 
Process Threads of the nested Dispatchers will also 
appear in those FIFO queues. To efficiently manage 
ready queues in the associated dispatcher, a PriParallel is 
allowed to have up to 8 priorities. Of course any number 
of different priority levels can be achieved by nesting 
PriParallel constructs.  

 

 
 
Figure 5:  Dispatcher and ready queues of the example 

Every Dispatcher contains an additional process thread 
known as IdleTask. This process thread will execute 
when all processes from the current dispatcher are either 
blocked or finished. The Idle task will give control back 
to the parent dispatcher. If the idle task of the top level 
dispatcher is executed, and not all processes have 
finished, and provided that the cause of blocking was not 
a deadlock, the program will have to wait on an external 
event to wake up one of the blocked processes. 

In a case where a CT-based application is executed 
directly on a microprocessor, the top-level idle task 
performs waiting in a busy loop. When however a CT- 
based application is executed on a top of some OS, the 
CT program and all its processes run in one system level 
thread. To allow execution of other threads running on 
the top of the same OS, the Idle task will, on such 
platforms, suspend the thread in which the CT-based 
application is being executed.   

C. Redesigning scheduling mechanism of the CT library 

Starting point 
Additional Process threads for every dispatcher and 

the associated IdleTask increase significantly the total 
number of context switches and associated overhead. 
Those processes are existing in every CT-based 
application, but hidden from the user. If a user decides to 

make a CSP model of its application, it is not likely that 
those additional processes will be included in such a 
model.   

Let us try to get rid of these active processes and 
implement the functionality they offer in passive 
Dispatcher objects. The basic idea of a hierarchy of 
dispatchers remains the same.  Like in the original CT 
library, PriParallel constructs and top-level Parallel 
constructs create dispatchers. But the lower levels in the 
hierarchy are again significantly redesigned. 

First implementation 
Dispatchers are used in the context of their associated 

PriParallel processes. The PriParallel process will, after it 
is triggered, ask the associated Dispatcher to activate its 
subprocesses, or in other words to put them in a ready 
queue. The Dispatcher is considered to be ready when it 
contains a Process Thread that can be executed.  To 
ensure that a PriParallel will finish after its subprocesses 
have finished, it maintains a number of currently active 
processes (activePTCount). Note that some of the active 
processes may temporarily be blocked on channels. 
Every time a PriParallel gets to be executed it will check 
whether its Dispatcher is ready. If it is ready then it is set 
to be the current Dispatcher. If it is not ready, the 
PriParallel is blocked on a semaphore that will be 
signaled once there are processes ready to run in the 
Dispatcher. In the code snippet bellow this blocking is 
hidden in a yield function: 
 
void PriParallel::run(void){ 
 activePTCount = processes->getSize()); 
 myDispatcher->activateProcesses(this,true); 
 while(activePTCount>0){ 
  Processor::enterAtomic(); 
  if(myDispatcher->isReady()) { 

Processor::currentDispatcher =  
myDispatcher; 

  } 
  else { 

 myDispatcher->yield(); 
  } 
  Processor::exitAtomic(); 
 } 
} 

If a Parallel is a top-level construct and has created a 
Dispatcher, its run() function behaves the same. 
Otherwise the same dispatcher will manage the Parallel 
construct and its subprocesses. In that case, the Parallel 
construct will only notify the Dispatcher to activate its 
subprocesses and then it will block until all of its 
subprocesses finish execution.  

In the CT library, an idle task of a nested Dispatcher 
will give control to the parent dispatcher and only the 
idle task of the top level process will do idle waiting.  
Obviously only the idle task of the top-level dispatcher 
needs to be separate process thread. Idle tasks belonging 
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to nested dispatchers are not needed; their functionality 
can be implemented in function calls of passive 
dispatcher objects. 

If not preempted by the release of a higher priority 
thread, a dispatcher once it takes over, it will give back 
control to its parent dispatcher only after it does not have 
process threads to execute. This can lead to starvation of 
Dispatchers of equal priority.  

Changes in class hierarchy 
Constructs are essentially processes, which organize 

execution of other processes. In the CT library, all 
constructs inherit from the abstract class Process. This 
class defines only an undefined run() function. 

The redesigned CT library recognizes behavior 
common for all constructs and implements a new parent 
class (Construct) from which all constructs inherit. 
Construct class is a kind of Process.  

All constructs maintain the list of subprocesses. They 
also offer a function (exit()) called by subprocesses to 
notify their parent that they have finished execution.  

The Process class is also extended. Now it keeps track 
of its associated ProcessThread, if any, and desired stack 
size needed in case this process is executed as a 
subprocess of a Parallel or a PriParallel construct. This 
enables a user of the library to specify the stack size 
based on estimated needs of each process. A Design 
Space Exploration tool is under development, which 
should be able to provide estimates of the needed stack 
sizes for every process.  

Centralized Dispatcher 
As described in previous subsections, dispatchers are 

transformed to passive objects, whose sole duty is to 
maintain ready queues. This form is further transformed 
to one centralized dispatcher containing a hierarchy of 
ready queues.   

With a centralized dispatcher, there is no more need 
to switch from one Dispatcher to another. Instead, the 
ready queue will always get the highest priority thread 
from the hierarchy of ready queues. 

The centralized dispatcher is also more flexible and 
modular solution. The way the ready queue is organized 
is localized in one object and not dispersed across the 
whole library structure. The scheduling mechanism can 
be changed easily by replacing the internals of the single 
dispatcher object. Two basic types of ready queues exist: 
prioritized and FIFO version. However different 
architectures of ready queue can be built from instances 
of those two blocks. 

Priority comparison in CT library and occam sense 
Priorities of two process threads are in the CT library 

compared by browsing from both of them up through 
hierarchy of dispatchers until the common parent 

dispatcher is found. Then, only immediate children of 
common dispatcher from both ancestor branches are 
compared. In the following example: 
 
PAR P 
 PRIPAR P1 
  A 
  B 
  C 
 PRIPAR P2 
  D 
  E 
  F 
 

In table below, all processes from the example are 
listed. Associated priorities are represented in binary 
numbers.  The shaded part of the table is scheduled by 
dispatcher of first PriParallel construct and the rest by the 
dispatcher of second PriParallel construct. Borders 
between  queues are specified in bold. In this case, one 
FIFO queue will contain two prioritized queues. Parallel 
constructs add their process threads in the same FIFO 
queue where they belong. Priparallel constructs create 
new prioritized queue for process threads executing its 
subprocesses. 

 
Priority in Par Priority in PriPAr Process 

000 000 A 
000 001 B 
000 010 C 
000 000 D 
000 001 E 
000 010 F 

 
The group of processes A, B and C has strict priority 

ordering defined. Same goes for a group of processes D, 
E and F. However since P1 and P2 are considered to 
have the same priority, their subprocesses are in the 
occam and the CT library also considered to have the 
same priorities. For instance, the priority of F is treated 
as equal when compared to priorities of A, B or C. Due 
to the usage of PAR there is no strict ordering of 
priorities in the system. 

Components friendly way to perform priority comparison 
In the CT library, the released process D will not 

preempt the running process B, because they are 
considered to have the same priority.  

An alternative way to compare priorities would be to 
see a priority of some process thread as an array that 
consist of priorities of all its parent dispatchers and own 
priority number of process thread from encompassing 
parent. In this light, considering zero as highest priority 
process, priorities are arrays of size two: for A and D: 
{0;0}, for B and E: {0;1}, for C and F{0;2}, Now 
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priority ordering is fully defined and corresponds better 
to intuitive expectations. 

Of course one can get same priority ordering in the 
conventional way of comparing priorities by 
reorganizing the structure of the program: 
 
PRIPAR 
 PAR 
  A 
  D 
 PAR  
  B 
  E 
 PAR 
  C 
  F 
 

But what if the P1 and P2 are the IP blocks, 
commercial off the shelf components, that internally 
distinguish several priority levels- e.g. hard real-time, 
several soft and not real-time level. Dividing components 
to pieces in order to have better structure of the program 
would not be allowed in that case. If P1 and P2 are 
equally important components it is logical to organize 
them in a PAR construct. The expected behavior would 
be that soft or not real-time priority level processes from 
P2 cannot preempt hard real-time processes of 
component P2. The priority of (implivet) process thread 
should in this case include also all the priorities of its 
parent dispatchers. 

The table containing total ready queue of the system 
should be rearranged according to the changed 
interpretation of priorities, see the table on the next page.   
 
Priority in Par Priority in PriPAr Process 

000 000 A 
000 000 D 
000 001 B 
000 001 E 
000 010 C 
000 010 F 

 
In this case, the hierarchy of ready queues that mimics 

the hierarchy of PriParallel constructs seems not to be 
perfect backbone to organize the ready queues.  Superior 
structure of ready queues can be organized as in the 
following table:  
  
Priority in Par Priority in PriPAr Process 

000 000 A 
000 000 D 
000 001 B 
000 001 E 
000 010 C 
000 010 F 

 
In this case, there is a strict hierarchy of prioritized 

queues. Every prioritized queue maintains one FIFO 
queue that handles all the Process Threads having the 
same priority array as it does.  

When the hierarchy of ready queues is maintained in 
the single object (centralized dispatcher) it is very easy to 
rearrange hierarchy in order to change the way priorities 
are assigned. Described component-friendly way of 
priority comparison is implemented. Conditional 
compiling on few key points allows users to choose one 
of the two or more implemented scheduling mechanisms 
in a very simple way. 

VI.  CONCLUSIONS AND FUTURE WORK 
Although core parts of the CT library are redesigned, 

there is still much work to be done. Future work will 
include redesigning the communication model for 
external events (handling device drivers and remote 
communication), adding support for barrier 
synchronization, and redesigning timer support.  

VII. ACKNOWLEDGMENTS 
The contribution of Gerald Hilderink to this project is 

substantial. Gerald came up with the idea and 
implemented a first version of the occam-like kernel 
library for the real-time control systems application area.  

The authors use this opportunity to thank the other 
present and ex members of our embedded team: P.M. 
Visser, D. Jovanovic, G. Liet, T. van Engelen and M. 
Groothuis. All of them had given in several occasions 
valuable feedback on the subject. 

155



PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS 
_____________________________________________________________________________________________________________________________ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
© PROGRESS/STW 2004, ISBN 90-73461-41-3                                                                                                     OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL 

REFERENCES 
[1] G. H. Hilderink, A. W. P. Bakkers, and J. F. Broenink, 

“A Distributed Real-Time Java System Based on CSP”, 
The third IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing ISORC 
2000. Newport Beach, CA, 2000. 

[2] C. A. R. Hoare, Communicating Sequential Processes: 
Prentice Hall, 1985. 

[3] G. C. Buttazzo, Hard real-time computing systems: 
Predictable Scheduling Algorithms and Applications. 
Pisa, Italy: Kluwer Academic Publishers, 2002. 

[4] INMOS, occam 2 Reference Manual: Prentice Hall, 
1988. 

[5] R. Meenakshisundaram, “Transputer Home Page” 
http://www.classiccmp.org/transputer/, 2004. 

[6] P. H. Welch, M. D. May, and P. W. Thompson, 
“Networks, Routers and Transputers: Function, 
Performance and Application” 
http://www.cs.ukc.ac.uk/pubs/1993/271, 1993. 

[7] Formal Systems, “CSP Tools” http://www.fsel.com, 
2004. 

[8] J. Kerridge, “Jon  Using occam3 to build large parallel 
systems: Part 1, occam3 features,” Transputer 
Communications, vol. 1, pp. 47-63, 1993. 

[9] O. J. Fleming, “Parallel Processing in Control - the 
transputer and other architectures,” in IEE Computing 
Series, vol. 38. London: P. Peregrinus, 1988, pp. 244. 

[10] G. H. Hilderink, “Communicating Threads home page: 
www.ce.utwente.nl/JavaPP,”, 2002. 

[11] P. H. Welch, “The JCSP Homepage” 
http://www.cs.kent.ac.uk/projects/ofa/jcsp/, 2004. 

[12] N. C. C. Brown and P. H. Welch, “An Introduction to 
the Kent C++CSP Library”, In J. F. Broenink and G. H. 
Hilderink, Eds., Communicating Process Architectures 
2003. Enschede, Netherlands, 2003. 

[13] J. P. E. Sunter, Allocation, Scheduling and Interfacing 
in Real-time Parallel Control Systems, PhD thesis, 
Faculty of Electrical Engineering, University of 
Twente, Enschede, Netherlands, 1994.  

 

156




