92 research outputs found

    EFFICIENCY AND RELIABILITY ENHANCEMENT OF MULTIPHASE SYNCHRONOUS MOTOR DRIVES

    Get PDF
    Multiphase electric machines are attractive in comparison with three-phase ones due to advantages such as fault-tolerant nature, smaller rating per phase and lower torque ripple. More specifically, the machines with multiple three-phase windings are particularly convenient, because they are suitable for standard off-the-shelf three-phase dc/ac converter modules. For instance, they are becoming a serious option for applications such as electric vehicles and wind turbines. On the other hand, in these applications, operation at low power is often required for long time intervals; hence, improving the efficiency under such conditions is highly desired and could save a significant amount of energy in the long term. This dissertation proposes a method to enhance the efficiency of electric drives based on multiple three-phase windings at light load. The number of active legs is selected depending on the required torque at each instant. To ensure that the overall efficiency is effectively optimized, not only the converter losses, but also the stator copper losses, are taken into account. Experimental results verify the theoretical outcomes. Surface-mounted permanent-magnet synchronous motors (SPMSMs) require a position measurement to ensure a high-performance control. To avoid the cost and maintenance associated to position sensors, sensorless methods are often preferred. The approaches based on high-frequency signal injection are currently a well-established solution to obtain an accurate position estimation in SPMSMs. These techniques can be roughly divided into two groups: those based on sinusoidal or on square-wave high-frequency signals. The main drawback of the former is the limitation on the response speed, due to the presence of several low-pass filters (LPFs). On the other hand, the latter methods are sensitive to deadtime effects, and high-frequency closed-loop current control is required to overcome it. This dissertation proposes to improve the sensorless strategies based on sinusoidal high-frequency injection by simplifying the scheme employed to extract the information about the position error. Namely, two LPFs and several multiplications are removed. Such simplification does not only reduce the computational complexity, but also permits to obtain a faster response to the changes in the angle/speed, and hence, a faster closed-loop control. Experimental results based on a SPMSM prove the enhanced functionality of the proposed method with respect to the previous ones based on high-frequency sinusoidal signal injection

    INVESTIGATION OF PERMANENT MAGNET SYNCHRONOUS MACHINES FOR DIRECT-DRIVE AND INTEGRATED CHARGING APPLICATIONS IN ELECTRIC VEHICLES

    Get PDF
    Electrified vehicles have proven to be potential candidates in the future for disrupting the automotive industry which is dominated by conventional gasoline vehicles. Electric vehicle (EV) technology has evolved rapidly over the last decade with new designs of EV drivetrain systems and components but no specific design has been able to serve as a solution that is affordable, reliable and performance-wise similar to existing gasoline vehicle equivalent. Extended driving range and overall cost of the vehicle still remain major bottlenecks. Understanding the state-of-the-art technologies and challenges in existing electric vehicle powertrain and charging systems, with major focus on permanent magnet synchronous machines & drives, this dissertation presents the following

    Integrated DC-DC Charger Powertrain Converter Design for Electric Vehicles Using Wide Bandgap Semiconductors

    Get PDF
    Electric vehicles (EVs) adoption is growing due to environmental concerns, government subsidies, and cheaper battery packs. The main power electronics design challenges for next-generation EV power converters are power converter weight, volume, cost, and loss reduction. In conventional EVs, the traction boost and the onboard charger (OBC) have separate power modules, passives, and heat sinks. An integrated converter, combining and re-using some charging and powertrain components together, can reduce converter cost, volume, and weight. However, efficiency is often reduced to obtain the advantage of cost, volume, and weight reduction.An integrated converter topology is proposed to combine the functionality of the traction boost converter and isolated DC-DC converter of the OBC using a hybrid transformer where the same core is used for both converters. The reconfiguration between charging and traction operation is performed by the existing Battery Management System (BMS) contactors. The proposed converter is operated in both boost and dual active bridge (DAB) mode during traction operation. The loss mechanisms of the proposed integrated converter are modeled for different operating modes for design optimization. An aggregated drive cycle is considered for optimizing the integrated converter design parameters to reduce energy loss during traction operation, weight, and cost. By operating the integrated converter in DAB mode at light-load and boost mode at high-speed heavy-load, the traction efficiency is improved. An online mode transition algorithm is also developed to ensure stable output voltage and eliminate current oscillation during the mode transition. A high-power prototype is developed to verify the integrated converter functionality, validate the loss model, and demonstrate the online transition algorithm. An automated closed-loop controller is developed to implement the transition algorithm which can automatically make the transition between modes based on embedded efficiency mapping. The closed-loop control system also regulates the integrated converter output voltage to improve the overall traction efficiency of the integrated converter. Using the targeted design approach, the proposed integrated converter performs better in all three aspects including efficiency, weight, and cost than comparable discrete solutions for each converter

    Overmodulation method with adaptive x-y current limitation for five-phase induction motor drives

    Get PDF
    Five-phase induction machines are attractive due to inherent benefits such as lower current rating than three-phase ones. On the other hand, ac motor drives often need to operate in the overmodulation (OVM) region, e.g., to increase the maximum speed or to work with reduced dc-link voltage. Most of the existing OVM strategies for five-phase drives are based on injecting low-order harmonics in the no-torque x y plane while avoiding low-order α - β harmonics (at least up to a modulation index of 1.2311p.u. ), so as to prevent the torque ripple associated with the α - β components. However, in practice the x - y impedance is very small, and hence, this approach can easily lead to overcurrent. This article proposes an OVM method for five-phase induction motors that adaptively modifies the injected components so that at each moment the addition of low-order x - y harmonics is favored over α - β ones but without surpassing the maximum current rms of the drive. In case the total stator copper loss (SCL) tends to exceed its rating during OVM in a given scenario, the proposed scheme automatically reduces the x - y injection to keep the SCL at its rated value. Experimental results verify the theoryXunta de Galicia | Ref. ED431F 2020/07Agencia Estatal de Investigación | Ref. PID2019-105612RB-I00Agencia Estatal de Investigación | Ref. RYC2018-024407-

    Intelligent traction motor control techniques for hybrid and electric vehicles

    Get PDF
    This thesis presents the research undertaken by the author within the field of intelligent traction motor control for Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) applications. A robust Fuzzy Logic (FL) based traction motor field-orientated control scheme is developed which can control multiple motor topologies and HEV/EV powertrain architectures without the need for re-tuning. This control scheme can aid in the development of an HEV/EV and for continuous control of the traction motor/s in the final production vehicle. An overcurrent-tolerant traction motor sizing strategy is developed to gauge if a prospective motor’s torque and thermal characteristics can fulfil a vehicle’s target dynamic and electrical objectives during the early development stages of an HEV/EV. An industrial case study is presented. An on-line reduced switching multilevel inverter control scheme is investigated which increases the inverter’s efficiency while maintaining acceptable levels of output waveform harmonic distortion. A FL based vehicle stability control system is developed that improves the controllability and stability of an HEV/EV during an emergency braking manoeuvre. This system requires minimal vehicle parameters to be used within the control system, is insensitive to variable vehicle parameters and can be tuned to meet a vehicle’s target dynamic objectives

    EFFICIENCY AND RELIABILITY ENHANCEMENT OF MULTIPHASE SYNCHRONOUS MOTOR DRIVES

    Get PDF
    Multiphase electric machines are attractive in comparison with three-phase ones due to advantages such as fault-tolerant nature, smaller rating per phase and lower torque ripple. More specifically, the machines with multiple three-phase windings are particularly convenient, because they are suitable for standard off-the-shelf three-phase dc/ac converter modules. For instance, they are becoming a serious option for applications such as electric vehicles and wind turbines. On the other hand, in these applications, operation at low power is often required for long time intervals; hence, improving the efficiency under such conditions is highly desired and could save a significant amount of energy in the long term. This dissertation proposes a method to enhance the efficiency of electric drives based on multiple three-phase windings at light load. The number of active legs is selected depending on the required torque at each instant. To ensure that the overall efficiency is effectively optimized, not only the converter losses, but also the stator copper losses, are taken into account. Experimental results verify the theoretical outcomes. Surface-mounted permanent-magnet synchronous motors (SPMSMs) require a position measurement to ensure a high-performance control. To avoid the cost and maintenance associated to position sensors, sensorless methods are often preferred. The approaches based on high-frequency signal injection are currently a well-established solution to obtain an accurate position estimation in SPMSMs. These techniques can be roughly divided into two groups: those based on sinusoidal or on square-wave high-frequency signals. The main drawback of the former is the limitation on the response speed, due to the presence of several low-pass filters (LPFs). On the other hand, the latter methods are sensitive to deadtime effects, and high-frequency closed-loop current control is required to overcome it. This dissertation proposes to improve the sensorless strategies based on sinusoidal high-frequency injection by simplifying the scheme employed to extract the information about the position error. Namely, two LPFs and several multiplications are removed. Such simplification does not only reduce the computational complexity, but also permits to obtain a faster response to the changes in the angle/speed, and hence, a faster closed-loop control. Experimental results based on a SPMSM prove the enhanced functionality of the proposed method with respect to the previous ones based on high-frequency sinusoidal signal injection

    Torque Controlled Drive for Permanent Magnet Direct Current Brushless Motors

    Get PDF
    This thesis describes the design and implementation of a simple variable speed drive (VSD) based on a brushless direct current (BLDC) machine and discrete logic circuits. A practical VSD was built, capable of operating a BLDC machine in two quadrants, motoring and regenerative braking. The intended applications are electric scooters and electric bicycles, where the recovered energy from braking extends the range of the vehicle. A conceptual four quadrant VSD, suitable for three and four wheelers requiring reverse operation, was designed and tested in simulation. Simplicity was emphasized in this design to help achieve a robust, easy to analyse system. The versatility of multi-function gate integrated circuits (ICs) made them ideal for implementing the commutation logic and keeping the system simple. The BLDC machine has sensors with a resolution of 60 ed to determine rotor position. An electronic commutator or phase switcher module interprets the position signals and produces a switching pattern. This effectively transforms the BLDC machine into a direct current (DC) brushed machine. A synchronous step down converter controls the BLDC machine current with a tolerance band scheme. This module treats the BLDC machine as if it was a DC machine. The leakage inductance of the electric machine is used as the inductive filter element. The unipolar switching scheme used ensures that current flows out of the battery only for motoring operation and into the battery only during regeneration. The current and torque are directly related in a DC brushed machine. The action of an electronic commutator or phase switcher creates that same relationship between torque and current in a BLDC machine. Torque control is achieved in the BLDC machine using a single channel current controller. The phase switcher current is monitored and used to control the duty ratio of the synchronous converter switches. Successful operation of the practical VSD was achieved in two quadrants: forwards motoring and forwards regenerating. The maximum tested power outputs were 236W in motoring mode and 158W in regenerating mode. The output torque could be smoothly controlled from a positive to a negative value. iv v Simulation of the conceptual four quadrant design was successful in all the motoring, generating and active braking zones. The required manipulation of logic signals to achieve this type of operation was done automatically while the machine was running. The resulting output torque is smoothly controlled in all of the operating zones. Commutation at certain speeds and torques are handled better by some topologies than others. Some current sensing strategies adversely affect instantaneous phase currents under certain conditions. The final design chose the method where phase currents experience no overshoot, minimizing component stress. The battery, or energy storage system, used in verifying the operation of the VSD in the practical electric bicycle was found to be the most limiting component. In regenerating mode, the low charge acceptance rate of the battery reduced the maximum retarding torque and energy recovery rate

    Energy management and control strategies for the use of supercapacitors storage technologies in urban railway traction systems

    Get PDF
    In recent years the need to reduce global energy consumption and CO2 emissions in the environment, has been involved even in the railways sector, aimed at the highly competitive concept of new vehicles/transportation systems. The requirements hoped by the operating companies, particularly as concerns tramway and metro-train systems, are increasingly focused on products with so far advanced features in terms of energy and environmental impact. In order to accomplish this possible scenario, this could be put into effects in technological subsystems and critical components, which are able to fulfill not only functional and performance requirements, but also regarding the new canons of energy saving. On the other hand, the regional and national energetic political strategies impose a continuous effort in the eco-sustainability and energy saving direction both for the vehicles and for the infrastructure management. In this scenario, the thesis aims to fill the gap in the technical literature and deals with improving the energy efficiency of urban rail transport systems by proposing both design methodologies and effective control strategies for supercapacitor-based energy storage systems, to be installed on-board urban rail vehicles or along the rail track. Firstly, a deep, rigorous and comprehensive study on the factors which affect energy issues in a DC-electrified urban transit railway system is carried out. Then a widespread overview of the currently available strategies and technologies for recovery and management of braking energy in urban rail is presented, also by providing an assessment of their main advantages and disadvantages alongside a list of the most relevant scientific studies and well established commercial solutions. Afterwards, some effective control strategies for the optimal energy management of the supercapacitor-based energy storage system have been studied. Extensive simulations have been performed with the aim of validating the proposed techniques by employing a methodology which is based on tests carried out by means of scale models of the real systems. A wide range of experimental tests has been developed and carried out on a laboratory-scale simulator for a typical urban service railway vehicle, in order to fully confirm the theoretical performances, validity, and feasibility of the studied controls, and quantify the technical and economic advantages obtained in terms of global energy saving, voltage regulation, power compensation and infrastructure power loss reduction. The overall goal of this study is to gain an understanding of the methods and approaches for assessing the use of supercapacitor storage systems in urban rail transit oriented to the optimization of the energy saving and the reduction of the vehicle energy consumption, for whatever technological solutions are adopted

    Machine Learning based Early Fault Diagnosis of Induction Motor for Electric Vehicle Application

    Get PDF
    Electrified vehicular industry is growing at a rapid pace with a global increase in production of electric vehicles (EVs) along with several new automotive cars companies coming to compete with the big car industries. The technology of EV has evolved rapidly in the last decade. But still the looming fear of low driving range, inability to charge rapidly like filling up gasoline for a conventional gas car, and lack of enough EV charging stations are just a few of the concerns. With the onset of self-driving cars, and its popularity in integrating them into electric vehicles leads to increase in safety both for the passengers inside the vehicle as well as the people outside. Since electric vehicles have not been widely used over an extended period of time to evaluate the failure rate of the powertrain of the EV, a general but definite understanding of motor failures can be developed from the usage of motors in industrial application. Since traction motors are more power dense as compared to industrial motors, the possibilities of a small failure aggravating to catastrophic issue is high. Understanding the challenges faced in EV due to stator fault in motor, with major focus on induction motor stator winding fault, this dissertation presents the following: 1. Different Motor Failures, Causes and Diagnostic Methods Used, With More Importance to Artificial Intelligence Based Motor Fault Diagnosis. 2. Understanding of Incipient Stator Winding Fault of IM and Feature Selection for Fault Diagnosis 3. Model Based Temperature Feature Prediction under Incipient Fault Condition 4. Design of Harmonics Analysis Block for Flux Feature Prediction 5. Flux Feature based On-line Harmonic Compensation for Fault-tolerant Control 6. Intelligent Flux Feature Predictive Control for Fault-Tolerant Control 7. Introduction to Machine Learning and its Application for Flux Reference Prediction 8. Dual Memorization and Generalization Machine Learning based Stator Fault Diagnosi

    STUDY OF CONTROL SCHEMES FOR SERIES HYBRID-ELECTRIC POWERTRAIN FOR UNMANNED AERIAL SYSTEMS

    Get PDF
    Hybrid-Electric aircraft powertrain modeling for Unmanned Aerial Systems (UAS) is a useful tool for predicting powertrain performance of the UAS aircraft. However, for small UAS, potential gains in range and endurance can depend significantly on the aircraft flight profile and powertrain control logic in addition to the subsequent impact on the performance of powertrain components. Small UAS aircraft utilize small-displacement engines with poor thermal efficiency and, therefore, could benefit from a hybridized powertrain by reducing fuel consumption. This study uses a dynamic simulation of a UAS, representative flight profiles, and powertrain control logic approaches to evaluate the performance of a series hybrid-electric powertrain. Hybrid powertrain component models were developed using lookup tables of test data and model parameterization approaches to generate a UAS dynamic system model. These models were then used to test three different hybrid powertrain control strategies for their ability to provide efficient IC engine operation during the charging process. The baseline controller analyzed in this work does not focus on optimizing fuel efficiency. In contrast, the other two controllers utilize engine fuel consumption data to develop a scheme to reduce fuel consumption during the battery charging operation. The performance of the powertrain controllers is evaluated for a UAS operating on three different representative mission profiles relevant to cruising, maneuvering, and surveillance missions. Fuel consumption and battery state of charge form two metrics that are used to evaluate the performance of each controller. The first fuel efficiency-focused controller is the ideal operating line (IOL) strategy. The IOL strategy uses performance maps obtained by engine characterization on a specialized dynamometer. The simulations showed the IOL strategy produced average fuel economy improvements ranging from 12%-15% for a 30-minute mission profile compared to the baseline controller. The last controller utilizes fuzzy logic to manage the charging operations while maintaining efficient fuel operation where it produced similar fuel saving to the IOL method but were generally higher by 2-3%. The importance of developing detailed dynamic system models to capture the power variations during flight with fuel-efficient powertrain controllers is key to maximizing small UAS hybrid powertrain performance in varying operating conditions
    • …
    corecore