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Abstract 

 

     This thesis presents the research undertaken by the author within the field of intelligent 

traction motor control for Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) 

applications.  

     A robust Fuzzy Logic (FL) based traction motor field-orientated control scheme is 

developed which can control multiple motor topologies and HEV/EV powertrain architectures 

without the need for re-tuning. This control scheme can aid in the development of an HEV/EV 

and for continuous control of the traction motor/s in the final production vehicle. 

     An overcurrent-tolerant traction motor sizing strategy is developed to gauge if a prospective 

motor’s torque and thermal characteristics can fulfil a vehicle’s target dynamic and electrical 

objectives during the early development stages of an HEV/EV. An industrial case study is 

presented. 

     An on-line reduced switching multilevel inverter control scheme is investigated which 

increases the inverter’s efficiency while maintaining acceptable levels of output waveform 

harmonic distortion.  

     A FL based vehicle stability control system is developed that improves the controllability 

and stability of an HEV/EV during an emergency braking manoeuvre. This system requires 

minimal vehicle parameters to be used within the control system, is insensitive to variable 

vehicle parameters and can be tuned to meet a vehicle’s target dynamic objectives. 
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1. Chapter One - Introduction 
Introduction 

 

     This thesis outlines the research conducted by the author surrounding intelligent traction 

motor control methods for Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) 

applications. These control systems aim to simplify the development of an HEV/EV, increase 

the energy efficiency of the traction motor/inverter and improve the vehicle’s safety. This is 

achieved by investigating various control technologies for the traction motors, Direct Current 

(DC) to Alternating Current (AC) inverters – also known as DC-AC inverters - and Vehicle 

Stability Control (VSC) systems. This chapter presents the purpose for this research in Section 

1.1, vehicle development trends and challenges in Section 1.2, the research objectives in Section 

1.3 and the thesis structure in Section 1.5. 

 
 Purpose of the Research 

     The main purposes for the research conducted in this thesis include; Environmental 

protection on a global and local platform; reducing tensions surrounding the dwindling energy 

and fuel supply crisis; and improving vehicle safety during emergency braking scenarios. 

 

1.1.1 Environmental Protection 

     Climate change threatens the future of our survival on this planet. Mankind’s impact from 

the burning of fossil fuels and the production of greenhouse gasses is undeniably the main 

perpetrator to the rising irreversible global climate [1, 2].  

“No challenge poses a greater threat to our future and future generations 

than a change in climate” 

- Barack Obama, 2015 
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     Carbon Dioxide (CO2) is the leading greenhouse gas contributing to climate change [3]. The 

breakdown of CO2 emissions by sector in Figure 1.1 shows that 18% of the total CO2 emissions 

produced globally comes from the burning of fossil fuels within an Internal Combustion Engine 

(ICE) in the road transportation sector alone [4, 5]. In addition, an ICE produces large quantities 

of other greenhouse gasses such as Methane (CH4) and Nitrous Oxides (NOx) [6]. Forecasts of 

the total emissions produced from the transport sector are predicted to increase over the next 

few decades [7, 8]. The greenhouse gasses produced by an HEV/EV are a fraction of those 

generated by a purely ICE powered vehicle [9]. 

 

     Particulate matter emissions produced by an ICE pose the greatest threat to human health 

within urban environments [10]. In the UK alone, nearly 29,000 deaths are attributed to 

exposure with fine particulate matter each year [11]. Vehicle emissions in urban areas account 

for nearly 30% of the NOx and 54% of the Carbon Monoxide (CO) emissions produced globally 

[12]. NOx emissions are converted into photochemical smog when exposed to ultraviolet light, 

extended exposure to this causes eye irritation and deteriorates respiratory functions [13, 14].  

Road Transport
18%

Aviation 2.5%

Marine 2%

Electricity and Heat 42 %

Industry 19%

Residential 6%

Other 10.5 %

Figure 1.1 Global CO2 emissions from fuel combustions by sector in 2015 [5] 
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     Both HEVs and EVs use electric traction motors to drive the vehicle (see Section 2.1). 

Optimising the traction motor and powertrain components enable the motor to operate in the 

high efficiency regions for longer and dissipate less energy as heat. For HEVs, this can lead to 

an increase in fuel economy and possibly a reduction in output emissions [15, 16]. For both 

Plug-in HEVs ( and pure EVs, this would enable the vehicle to drive longer distances between 

recharging and consequently reduce the burden upon the electrical grid - reducing the emissions 

from the Electricity and Heat generation sector (see Figure 1.1) [17, 18]. Tools that aid in the 

development of an HEV/EV by correctly sizing a traction motor can influence the total 

emissions produced by the vehicle. Development of an HEV/EV can be difficult, time 

consuming and expensive [17, 18]. Intelligent traction motor control techniques that can be 

applied to multiple motors and vehicles would enable a vehicle manufacturer to easily optimise 

their HEV/EV design to improve efficiency and reduce emissions. The more tools available to 

vehicle manufacturers that reduce the development time and cost might increase the number of 

HEV/EVs produced and therefore reduce the overall global emissions produced by the 

transportation sector. 

 

1.1.2 Energy and Fuel Scenario 

     The current World Energy Outlook forecasts higher and an ever-growing need for more 

energy and fuel over the next few decades [19]. The New Policies Scenario is expected to 

require an additional 20% increase in energy and a 32% increase in oil over the Sustainability 

Development Scenario. Figure 1.2 shows that from the total energy demand, nearly 50% of the 

global energy consumption by end-user is expected to come from the transportation sector [20].  

     An HEV consumes less fuel than a purely ICE powered vehicle, an EV consumes none 

(directly). As popularity with these vehicles increase, the burden on the current fuel stocks used 
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within the transport sector reduces. However, it is thought that a full EV society would merely 

shift the energy demand onto the power generation sector. Therefore, an equal effort in the 

move towards renewable energy is also required to fully exploit the benefits HEV/EVs and 

alleviate the fuel and energy crisis 

 

     As with Section 1.1.1, if the efficiency of these vehicles can be improved by optimally sizing 

the powertrain components and efficiently controlling the traction motors, then it may elevate 

some of the foreseen energy and fuel demand as HEVs will have increased fuel economy and 

EVs will be able to drive for longer between charging.  

 

1.1.3 Vehicle Safety 

     Road traffic incidents are the result of; excessive speed, driving in poor weather conditions, 

driver error or distracted drivers and component failure. There were nearly 2,000 deaths on UK 

roads in 2017 and a further 28,000 serious injuries, of which 57% of total casualties involved 

passenger vehicles [21]. In 2016, excessive speed in harsh conditions accounted for nearly 24% 

of fatal incidents [22].  

Figure 1.2 Passenger transportation energy consumption estimates up to the year 2040 
between (a) Organization for Economic Cooperation and Development (OECD) 

countries and (b) Non-OECD countries, scale in quadrillion Btu [22] 

(a) (b) 
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     Safety is one of the highest priorities in vehicle design. HEV/EVs have exceptional dynamic 

performance and stability control because the electric traction motor/s offer high frequency and 

instant torque modulation, simple feedback to the control system and easy estimation of the 

current driving conditions [23, 24, 25]. Intelligent control over the traction motor/s therefore 

allow an HEV/EV to have a shorter breaking distances and superior steering controllability over 

an ICE counterpart [26, 27, 28]. These improved safety features ensure that there is a greater 

chance that a driver would be able to remain in control of their vehicle during an emergency 

manoeuvre and reducing the total number accidents and fatalities. 

 

 Vehicle Development Trends and Challenges 

It is generally considered by the general public and researchers within the automotive 

industry that the HEV/EV is the next technological paradigm for the transport sector for 

personnel, public and fleet vehicles [29, 30]. Figure 1.3 shows that an estimated 55% of all new 

car sales are expected to be electrified by 2040, this accounts for 33% of the total global fleet 

[31]. The growth in HEV/EVs has been attributed to both the public’s concern over the issues 

(discussed in Section 1.1), but also due to planned legislation requiring vehicle manufactures 

to move towards an EV future [32].  

The reason for the growing popularity of electrified vehicles is that they consume less fuel 

and emit lower emissions when compared to pure ICE powered vehicles [33]. The current 

challenges in reaching an all-electric vehicle market from the consumers’ point of view include; 

limited driving range [34], long charging times, the upfront cost and lifetime of the battery 

packs [35, 36]. 
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Other technological issues include; the impact on the electrical grid [37], material 

acquirement for batteries [38] and battery recyclability [39, 40]. These issues are being 

addressed through research and development in their respective fields. No single solution solves 

all the current challenges, but it requires the collective effort in all areas of science and 

engineering [41, 42]. This thesis aims to contribute to the current trend in HEV/EV development 

and tackle some of the major challenges facing their development, the key objectives 

undertaken as explained in Section 1.3. 

 

 Research Objectives and Approach 

     The original research objective of this thesis was to investigate intelligent control systems 

for an HEV/EV. This was separated into the following objectives as follows: 

1) To understand the key technical milestones and the current state of the art literature for 

traction motor modelling, power delivery and intelligent control techniques for HEV/EV 

applications.  

Figure 1.3 Global HEV/EV Sales forecast up to 2040 [33] 
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2) To develop tools which simplify the control system of a traction motor system in order to 

speed up and reduce the development cost of an HEV/EV. 

3) To develop tools which optimise the powertrain components of an HEV/EV in order to 

increase the energy efficiency, reduce fuel consumption and reduce output emissions. 

4) To investigate and develop energy efficient methods of powering a traction motor for 

HEV/EV applications. 

5) To develop methods of controlling an HEV/EV’s traction motor based powertrain to 

improve the vehicle’s safety during an emergency manoeuvre. 

     The general approach to the research conducted in this thesis will follow a similar pattern; 

First, simulate the control system using pre-existing established control methods. Secondly, 

develop new control techniques based on the gaps in the current literature. Thirdly, verify the 

new control technique’s ability for hardware implementation. Finally, evaluate and compare 

the new control method to the pre-existing method. This research approach will be achieved 

largely through detailed simulation studies in MATLAB/Simulink utilising CarSim vehicle 

models and an intensive series of Processor-in-the-loop (PIL) verification experiments. This is 

explained in more detail in Section 3.1. 

 

 Key Contributions 

     The main contributions and novel ideas investigated within this thesis include: 

1. A new traction motor Field-Orientated Control (FOC) scheme that can control multiple 

motor topologies and HEV/EV powertrain architectures without the need for re-tuning. A 

further investigation into controller robustness under the effects of variable motor 

parameters is conducted, this type of investigation is rarely done in literature and has never 

been done for HEV/EV applications. 
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2. A new empirical data based traction motor model is developed and its application as a 

traction motor sizing tool is shown. The effects of early stage traction motor sizing on the 

final vehicle’s powertrain design, energy usage and fuel economy is then explored with a 

real-world case study.  

3. An on-line reduced switching inverter control scheme is developed which increases the 

inverter’s efficiency without compromising on the output waveform harmonic distortion. 

The performance of the inverter control scheme is then investigated over a wide range of 

traction motor operating regions, unlike other investigations which only investigate a few 

operating points. 

4. A Vehicle Stability Control (VSC) system that improves the controllability and stability of 

an HEV/EV during emergency braking manoeuvres is developed that requires minimal 

vehicle parameters within the control system, is insensitive to variable vehicle parameters 

and is tuneable to meet a vehicle’s target dynamic objectives. Whereas other researchers 

only investigate the a few simple braking manoeuvres, this VSC system is analysed over 

numerous real-world emergency braking scenarios with a further investigation into the 

likelihood of if the vehicle could be controlled by real drivers. 

 

 Thesis Outline 

     Chapter Two reviews the current state of the art control techniques relevant to the research 

undertaken in this thesis. The limitations and real-world challenges associated with traction 

motor modelling and control for HEV/EV applications are investigated first. The various 

control systems and objectives of DC-AC inverters are then explored. Finally, the VSC systems 

which control the wheel slip and yaw dynamics of an HEV/EV are reviewed.  
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     Chapter Three introduces the general vehicle dynamics, traction motors and inverters 

modelling and control techniques which are conventionally used in vehicle simulations. An 

explanation as to how and when they are used in this thesis is given. The experimental PIL 

procedure adopted within this thesis is then described which is used to verify the control 

system’s readiness to move onto full hardware validation. 

     Chapter Four develops a Fuzzy Logic (FL) based Field-Orientated Control (FOC) scheme 

to control any HEV/EV powertrain architecture and multiple motor topologies without the need 

for re-tuning. A detailed comparison between the simulated FL based FOC scheme and a 

conventional Proportional-Integral (PI) controller based FOC scheme is given with a further 

investigation into the controller’s robustness. 

     Chapter Five develops a new HEV/EV traction motor sizing strategy whereby an 

overcurrent-tolerant prediction model is used to estimate the dynamic and thermal 

characteristics of a motor operating in the overcurrent region. A case study is explored where 

this sizing strategy is used to convert an aeroplane pushback vehicle into a series HEV. The 

feasibility of two possible HEV configurations are then explored further. 

     Chapter Six develops an on-line Reduced Intermediate Switching Space Vector Pulse Width 

Modulation (RIS-SVPWM) scheme for multilevel HEV/EV DC-AC inverters. The RIS-

SVPWM scheme identifies the switching patterns of the voltage vectors enclosing the reference 

voltage on-line and controls the switching devices of the inverter with minimal switching. A 

detailed comparison between the switching count and harmonic quality of the waveforms 

generated by the RIS-SVPWM scheme against a previous on-line scheme is then given. 

     Chapter Seven develops a FL based VSC system that has been developed in this thesis which 

improves the controllability and stability of an HEV/EV during combined emergency braking 
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and steering manoeuvres. A detailed comparison between the simulated FL based VSC system, 

a conventional Anti-Lock Braking System and an advanced wheel slip controller is given. 

     Chapter Eight summarises the major points from the research conducted in this thesis. A 

critical analysis of this research is given and with recommendations for future work. 
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2. Chapter Two – Literature Review 
Literature Review 

 

     This chapter presents a comprehensive review of the key literature which examines the 

theoretical concepts, state of the art technology and research trends surrounding; traction motor 

modelling and control, methods of powering the traction motor and intelligent motor control 

techniques that improve vehicle safety. Firstly, a broader view of HEV/EV powertrain 

architectures are discussed in Section 2.1 before moving onto various traction motor 

characteristics, modelling and control theories in Section 2.2. Popular DC-AC inverter topology 

and control theories are then presented in Section 2.3. Finally, state of the art Vehicle Stability 

Control (VSC) systems for HEV/EVs are investigated in Section 2.4. At the end of Section 2.1 

- Section 2.4, the research gaps from the literature reviewed will be stated. Section 2.5 will 

summarise these gaps and present a set of specific research objectives to be investigated in the 

remainder of this thesis. 

 

 The HEV and EV 

     The Electric Vehicle (EV) dates back to the mid-1800s, they were rudimentary in 

comparison to the vehicles of today and their effectiveness in comparison to horse drawn 

carriages was still under debate [43, 44]. The Hybrid Electric Vehicle (HEV) later utilised an 

Internal Combustion Engine (ICE) to charge the battery pack and provide additional power 

when travelling up gradients [45]. The HEV/EVs of today are more refined than their 

predecessors and because their potential driving range increases are approaching comparable 

values of a pure ICE vehicles they are becoming more appealing to customers. 
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2.1.1 HEV Powertrain Architectures 

     An HEV stores energy on-board in more than one form, most notably as hydrocarbon-based 

fuel and electricity stored within an Energy Storage System (ESS). An Additional Power Unit 

(APU) provides power to the vehicle’s DC-bus to charge the ESS and/or power the traction 

motors. Conventional HEV APU systems consists of an ICE, but more research for future HEVs 

to use fuel cells as an APU is being conducted as they generate no harmful emissions and no 

noise [46, 47, 48].  

     Depending on the powertrain architecture, an HEV is able to provide torque to the driven 

wheels using a traction motor alone and/or be coupled to the ICE to provide additional power. 

The traction motors are connected to the vehicle’s DC-bus which is powered by a battery pack. 

An ultracapacitor bank may be used if the battery pack cannot provide the peak output power 

alone [49, 50]. Plug-in HEVs (P-HEV) have grown in popularity because they are able to charge 

the ESS from an external source [31]. HEV powertrains will normally fall within one of the 

three following architectures shown in Figure 2.1 [51, 52, 53, 54]: 

1) Series HEV – Shown in Figure 2.1(a), this architecture is closely related to a pure EV where 

only the traction motor/s provide the driving torque to wheels. The ICE is not mechanically 

connected to the wheels but instead spins the rotor of a generator to charge the ESS. This 

architecture has the highest efficiency because the ICE runs at its most efficient point, but 

the vehicle’s dynamic performance is limited to the performance of the traction motor/s. 

2) Parallel HEV – The traction motor and ICE are mechanically coupled by a gearbox which 

allows them to provide torque to the driven wheel together or independently from one 

another as shown in Figure 2.1(b). Typically, the traction motor is used at low speeds or 

low torque applications and the ICE takes over once a threshold has been reached. The ICE 

can provide mechanical power to the motor which will act as a generator to charge the ESS. 
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3) Power-Split HEV – This behaves similarly to a parallel HEV, but with the inclusion of a 

dedicated generator the vehicle is also able to act as a series-HEV as shown in Figure 2.1(c). 

This is a popular powertrain architecture for HEVs because even with the additional costs 

it allows the greatest control freedom between the two powertrain systems. This was most 

notably popularised through the Toyota Prius [55, 56].  

 

2.1.2 EV Powertrain Architectures 

     An EV only uses electric traction motor/s to provide torque to the driven wheels. They do 

not contain an on-board APU so the ESS must be charged from an external source. The driving 

range of an EV is limited to the energy stored within the ESS alone (excluding any regenerative 

braking abilities). There are numerous powertrain architectures for an EV, the following shown 

in Figure 2.2 are the most common [57, 58]:  

1) A single motor with a single/multi speed gearbox as shown in Figure 2.2(a). The power 

flow of this vehicle is similar to a conventional vehicle utilising a single ICE. The ESS 

powers the traction motors which provides torque to the driven wheels alone.  

2) Dual traction motors with separate gearboxes as shown in Figure 2.2(b). This system allows 

for greater freedom when choosing between Front-Wheel Drive (FWD), Rear-Wheel Drive 

(RWD) and All-Wheel Drive. This architecture is adopted by the Tesla Model S P100D 

which uses a small motor on the front axle while cruising at low speed, and a high-power 

motor on the rear axle for quick acceleration [59].  

3) The use of multiple independent motors as shown in Figure 2.2(c) is able to regulate the 

torque at any of the driven wheels without the need for complex torque splitting differentials 

with full freedom of where to apply torque. 
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(a) (b) 

(c) 

Figure 2.2 EV Powertrain Architecture, (a) Single motor with single/multi speed 
gearbox, (b) Dual motors with single speed transmissions, (c) Four independent in-

wheel motors with single speed gearboxes 
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 Traction Motors for HEV/EV Applications 

2.2.1 Background into Electric Motors  

     Nikola Tesla’s ground-breaking presentation to the American Institute of Electrical 

Engineers in 1888 introduced his patented Alternating Current (AC) electric motors. He 

presented three motor topologies; the synchronous motor, the synchronous Reluctance Motor 

(RM) and the Induction Motor (IM) which became the starting point for future AC motor drives 

[60]. In 1889, Mikhail Dolivo-Dobrovolsky added a third phase to an IM to reduce the inherent 

torque ripple problems of Tesla’s two-phase motors [61]. Then only three years after Tesla’s 

original paper, General Electric and Westinghouse collaborated on developing an IM for mass 

production using a squirrel cage rotor in 1891 [62]. Cahill published the complete theory of 

Permanent Magnet Synchronous Motors (PMSM) in 1962 by attaching permanent magnets to 

the squirrel cage of an IM [63].  

     Charles Steinmetz wrote several publications about how equivalent analytical circuits are an 

effective tool for representing and analysing AC motors [64]. Robert Park’s and Edith Clarke’s 

voltage transformations significantly simplified the analysis of AC motors [65, 66]. This 

allowed the three-phase system to be separated into individual torque and magnetic flux 

producing current components. 

 

2.2.2 Traction Motor Topology Characteristics 

     DC motors were a popular choice for transportation applications in the early 20th century 

because they are relatively simple in construction and produce high torque at low speeds [67]. 

However, due to their dependence on carbon commutators they were unreliable, generated high 

friction at high speeds, had a low specific power density and their relatively large volume saw 

them being overtaken by the AC traction motor. 
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     One factor which determines a motors eligibility for HEV/EVs applications is the output 

torque ripple from the rotor shaft. This ripple can be generated either by mechanical imbalances 

(due to uneven wear of rotor shaft bearings, etc.), poor motor design or excessive current 

distortion (Total Harmonic Distortion ). A general rule for motor design and control 

systems is that a torque ripple magnitude  of the motor’s rated torque is desirable for 

most applications including HEV/EVs [68].  

     Currently, the four common traction motor topologies for HEV/EV applications include the 

IM, Surface-PMSM (S-PMSM), Interior-PMSM (I-PMSM) and the RM. The cross sectional 

view of these motors are shown in Figure 2.3 and are characterised as follows [69, 70, 71, 72]: 

1) IM – As shown in Figure 2.3(a), the IM has no magnets but instead induces its own magnetic 

flux within the windings of the rotor on the basis of Lorentz’s law. Their simple construction 

makes them inexpensive, rugged, and reliable. These qualities make them an ideal candidate 

for HEV/EV traction motors. In addition, they have good dynamic performance and a wide 

speed range. However, they are susceptible to rotor winding failure due to overheating 

which means they have a relatively lower efficiency and require the most amount of cooling. 

 

Stator 

Figure 2.3 Traction motor constructional topologies cross-section view, (a) IM, 
(b) S-PMSM, (c) I-PMSM, (d) RM 

(a) (b) (c) (d) 

Rotor Permanent Magnets  

Rotor Stator Windings 

Stator Windings 

Rotor Windings 



18 
 

2) S-PMSM – This motor uses permanent magnets attached to the outside of the rotor as shown 

in Figure 2.3(b). Because the permanent magnets produce a constant magnetic flux, no 

current is required to be induced in the rotor (as with an IM), and therefore have higher 

efficiency and require less cooling. However, the permanent magnets are brittle, sensitive 

to temperature changes and because the magnets are on the outside of the rotor, they are 

vulnerable to demagnetization and create a large air gap between the rotor and stator.  

3) I-PMSM – Similarly to the S-PMSM, this motor also uses permanent magnets attached to 

the rotor, but they are now buried inside as shown in Figure 2.3(c). When placed inside the 

rotor, the magnets retain themselves without additional fixings, are less prone to 

demagnetization and reduce the air gap between the rotor and stator. As with the S-PMSM 

the magnets are expensive and their orientation within the rotor requires careful attention 

since they induce reluctance torque. The cross-sectional shape of the magnets within the 

rotor allows for different torque-speed characteristics. These have been the most popular 

choice for traction motors in modern HEV/EVs [67]. 

4) RM – These motors have no rotor windings or permanent magnets as shown in Figure 

2.3(d). Instead, they use reluctance torque to spin the rotor using a carefully designed rotor 

core. The large rotor mass makes this motor less susceptible to failure due to overheating. 

However, they are not currently used for traction applications because they suffer from 

undesirably large torque ripple, poor noise quality, excessive vibration, low power density 

and require dedicated inverter circuits [73]. 
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2.2.3 Traction Motor Modelling Techniques 

     Analytical models provide a good trade-off between computational effort and accurate 

characterisation of an AC motor, these are often used during the development stages of an 

HEV/EV [70, 71, 74, 75]. These models represent the motor as equivalent electrical circuits 

constructed from smaller components (resistors, inductors and voltages) whose currents 

determine the torque and magnetic flux of the motor. Per-phase analytical models provide 

useful information about the motor’s dynamic performance and power requirements during 

stead-state conditions, but cannot be used with more advanced control methods (see Section 

2.2.4) [76]. Magnetic circuit analysis or Finite-Element Analysis of the motor are extremely 

detailed and accurate representations of the physical motor, but due to their high computational 

requirements they are usually confined to AC motor development and not used for HEV/EV 

simulations [67]. 

     Simple empirical data based torque-speed curves and efficiency maps characterise the 

traction motor/s of an HEV/EV when a low simulation time is preferred over model accuracy 

[77, 78]. This is done at the cost of losing some motor control analysis, but fewer motor 

parameters are required. This approach is used for preliminary vehicle design analysis or where 

the primary objective of the research is not heavily reliant on the motor’s current control (e.g. 

vehicle stability control).  

 

2.2.4 Advanced Traction Motor Control Schemes 

     Field-Oriented Control (FOC) is a popular motor control method because it allows for 

independent control over a motor’s torque (q-axis ) and magnetic flux (d-axis ) producing 

current components [79, 80, 81]. During the late 60’s, Blaschke and Hasse proposed the 

Indirect-FOC and Direct-FOC schemes as a way of controlling IMs and PMSMs respectively 
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[82, 83]. The general theory of both FOC schemes are similar to one another, but I-FOC has to 

estimate the position of the IM’s rotor flux wave because it cannot be measured easily or 

accurately. When compared to the preceding scalar V/Hz motor control, FOC increases the 

torque responsiveness, improves the overall efficiency by avoiding oversaturation of the 

magnetic material and improves field-weakening performance at high speeds [84, 85, 86, 87]. 

However, FOC requires multiple independent controllers for the motor’s speed and current 

components that must be carefully tuned, multiple voltage and current sensors, a rotor speed 

sensor (if sensorless FOC is not used) and an independent Pulse Width Modulation (PWM) 

scheme to generate inverter switching patterns.  

     Direct Torque Control (DTC) in a similar way to FOC tries to minimise the error between 

the dq-current axes. DTC uses a look-up table to directly control the inverter’s switching 

patterns and achieve the target voltage vector [84]. This negates the need for current controllers 

and an external PWM module. Generally, DTC offers a greater torque responsiveness over 

FOC, but generates high current/torque ripples, produces variable-switching behaviour, high 

noise and offers poor control at low speed [85].  

     Model Predictive Control (MPC) is another popular control technique for AC motors [86, 

87]. An optimisation problem is used to find the optimal inverter switching sequence to meet 

an objective cost function using a model of the motor within the control scheme. MPC has 

shown to be more responsive than FOC and more control freedom than DTC [88]. A major 

drawback of MPC is the large computational effort required to simulate all the possible 

scenarios for each action [89]. This confined MPC to slow varying processes such as chemical 

plant and industry process applications for many years [90]. However, with improved modern 

processors the use of MPC for real-time applications such as motor control schemes have grown 

in popularity. The accuracy of MPC is greatly affected by model parameters and signal noise 
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in the feedback loops. These effects can be minimised with improved parameter estimators and 

filters, but the added computational complexity rises further [91]. The resemblance of MPC 

based current control to hysteresis current controllers in DTC can require variable inverter 

switching frequency and can promote higher torque ripple [92]. To reduce the computational 

burden of MPC, the model used within the control algorithm can be simplified. This then 

produces a trade-off between controller accuracy and computational effort [93, 94, 95, 96].  

     MPC for motor control operates either as Predictive Torque Control [97, 98] or Predictive 

Current Control [99]. Predictive Torque Control aims to minimise the error between the 

electromagnetic torque and the magnitude of the motor flux by generating appropriate target 

axis currents. Predictive Current Control aims to minimise the dq-current error by selecting 

suitable inverter voltage vectors [98]. The computational effort of Predictive Current Control 

grows exponentially with inverter size as the total number of available switching states grows 

[100]. Samaranayake [101] reduced the degradation of a traction motor by minimising the 

power losses. The MPC scheme by Schubert [102] was used to optimise the trade-off between 

torque and flux producing current control to improve motor efficiency and torque 

responsiveness, this provides good performance during start-up operations. 

 

2.2.5 Optimised FOC Strategies 

     Because the magnets of an I-PMSM are buried within the rotor, the magnetic circuit of the 

motor becomes disturbed and a d-axis reluctance torque is generated. Jahns [103] developed 

the Maximum-Torque-Per-Amp (MTPA) control for an I-PMSM to exploit the motor’s d-axis 

reluctance torque to produce useful work. Jahns later extended the MTPA theory into the 

constant-power speed region of the I-PMSM to cover the motor’s entire torque-speed range 

[104]. MTPA allows smaller permanent magnets to be used, increases the power density and 
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efficiency of the motor and improves the torque responsiveness. Morimoto [105] applied the 

MTPA theory to both S-PMSMs and I-PMSMs while abiding to current and voltage constraints. 

Morimoto [106] also explains how the supply voltages must be compensated to account for the 

cross-coupling between the dq-axis.  

     A similar MTPA theory was developed by Kim [107] for an IM. Maximum Efficiency Per-

Amp control theory by Lemmens [108] searches for the smallest d-axis current which generates 

the lowest iron and inverter switching losses for the same target torque output using a gradient 

based optimisation problem. Sergaki [109] showed how the efficiency of an IM increases by 

reducing the d-axis current when the motor is under light load and use a larger q-axis current 

instead to produce more useful work. 

 

2.2.6 Real World Motor Control  

     The physical properties of a motor (electric resistance of the rotor/stator windings, 

inductance and magnetic flux) vary with temperature [110]. FOC requires accurate 

representations of these parameters in order to operate optimally and the control parameters 

representing these properties should also change to reflect their physical counterparts [111].  

     Matsuo [112] developed an on-line gain scheduling scheme to improve the FOC 

performance of an IM susceptible to variable rotor resistance. Bose [113] showed how to 

compensate the B-EMF voltage to account for changes in the permanent magnet’s magnetic 

flux strength. Holtz [114] and Marino [115] developed on-line rotor flux estimation methods to 

identify the parameters of an IM for direct use within the FOC scheme. Lemmens [108] also 

provides a temperature control scheme to limit the current without affecting the Maximum 

Efficiency Per-Amp control of the motor and prolonging the lifetime of the motor. However, 

this control scheme yields undesirable torque/current ripple and produces audible noise from 
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running the inverter at a low switching frequency. These publications highlight some of the 

difficulties that arise from the variable motor parameters and how the control scheme should be 

modified to ensure optimal control. However, these methods require highly detailed and time-

consuming experimentation for each particular motor under investigation. 

 

2.2.7 Controller Types for FOC 

     Sliding Mode Controllers (SMC) for FOC offer quick responsiveness and great robustness 

with a well-designed sliding surface. SMC speed [116] and current [117] controllers have 

superior control over Proportional-Integral (PI) counterparts. However, SMCs suffer from 

implementation issues due to the chattering nature of the controllers at steady-state if not 

properly accounted for with adaptive smoothing functions [118, 119]. Also, designing a good 

sliding surface is not an intuitive process when dealing with complex non-linear systems. 

     Neural Networks for motor speed and current control are computationally efficient and 

robust once they are trained [120, 121]. However, these controllers would again require re-

tuning and re-training between systems. An artificial neural network speed controller trained 

via a GA showed superior speed tracking and torque responsiveness over a conventional PI 

speed controller [122]. The neural network developed by Lftisi [123] is trained on-line for the 

speed control of an IM with the aim of mimicking an optimally tuned PI controller. This negates 

the need for time consuming off-line manual PI controller tuning or neural network training, 

but the effect of variable motor parameters and the on-line training time is not discussed.  

     FOC schemes commonly use PI controllers to regulate the speed of a vehicle/motor, the 

independent current components and the magnetic flux because they are simple to use, require 

little computational effort and operate with minimal steady-state error if tuned correctly [124, 
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125]. If tuned incorrectly then these controllers may produce unstable or non-optimal 

vehicle/motor control.  

     A Fuzzy Logic Controller (FLC) offers an accurate representation of how a vehicle’s speed 

would be controlled by a real driver and therefore a better estimation of how the physical vehicle 

would perform in the real world. A FLC also offers greater robustness over a PI controller 

because it is insensitive to variable motor parameters, similar controller designs have appeared 

for numerous publications using vastly different motors [126, 127, 128, 129, 130, 131].  

 

2.2.8 PI vs Fuzzy Logic for FOC 

2.2.8.1 Speed Control using FOC 

     Numerous heuristic optimisation techniques [85] have been developed in response to PI 

controller gain tuning including; Particle Swarm Optimisation (PSO) [132, 133], Genetic 

Algorithms (GA) [125, 134] and Backtracking Search Optimisation [135]. Each of these 

optimisation methods improve the control performance of the PI controllers without an 

intensive manual iterative tuning process but require re-tuning for different FOC systems and 

may still suffer from variable motor parameters.  

     One inherent characteristic of PI controllers is that they tend to overshoot their control 

objective if improperly tuned, this is unrealistic and not desirable for vehicle control 

applications. For example, a PI speed controller that overshoots the target velocity will have to 

apply the brakes in order to reduce the vehicle’s speed. In the real world, a driver would reduce 

the accelerator pedal ahead of the approaching target velocity. This has been investigated by 

numerous researchers who have compared the performance of PI vehicle/motor speed 

controllers against FLCs [136, 137, 138].  
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     An adaptive Fuzzy Logic (FL) controller by Zeb [139] used to control the speed of an IM 

was shown to not only have greater robustness over a PI speed controller, but to also reduce the 

steady-state error by on-line updating the input and output gains via an optimisation algorithm. 

Hybrid PI-FLC speed controllers also reduce some of the overshooting and robustness 

difficulties that arise from pure PI speed controllers for FOC [140, 141, 142, 143, 144]. These 

use a PI system to tune the input and output gains of a FLC and combine some of the robustness 

of a FLC with the small steady-state error of a Proportional-Integral-Differential (PID) 

controller. Alonge [145] presented a PI-FLC system to control a motor’s speed, command flux 

and dq-axis current components. This has good variable tracking performance, but Alonge 

offered no robustness analysis with variable motor parameters. A PI-FLC speed controller by 

Masiala [146] uses a PI controller to change the input/output gains, membership function and 

rule base of a Takagi-Sugeno type FLC. The PID elements of these hybrid controllers still 

require an iterative tuning process for each independent system being controlled. The FL-PID 

speed controller presented by Rohan [147] uses a FLC to change the proportional and integral 

gains of a PI controller and reduces the overshooting characteristics. However, this does not 

use any current control so the performance of this system cannot be fully validated.  

 

2.2.8.2 Current Control using FOC 

     The output from a PI or FL speed controller in an FOC system is either a target output torque 

or a target q-axis current. If a FL speed controller is used in conjunction with a PI q-axis current 

controller, the benefits of the FL speed controller may not be as effective if the motor’s torque 

overshoots its target value or if the current controller is susceptible to parameter changes. FLCs 

also show superior current control over PI counterparts for both the q-axis  [148] and d-

axis  [149, 150, 151] currents. Lubin [148] compares independent FL speed and  current 
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controllers to a PI based FOC system. The highly robust FLCs proved to be insensitive to 

variable parameter changes when the rotor resistance was intentionally altered, whereas the PID 

controllers tuned for the original motor system became unstable and had a sluggish response.  

     Typically, the target flux producing d-axis current in an IM is not as dynamic as the torque 

producing q-axis current, it remains constant up to the motor’s rated speed and gradually 

reduces as the motor speed increases in the constant power region. It might be seen that the d-

axis current does not require the same attention as the q-axis current and a PI controller is 

sufficient for most circumstances. But as explained previously in Section 2.2.6, varying 

parameters may affect the motor’s ability to produce flux and the d-axis current tracking may 

suffer. In an I-PMSM, the d-axis current’s reluctance torque requires the regulator be more 

active. FOC schemes that incorporate FL d-axis current controllers have improved robustness 

as with the FL q-axis current controllers [149, 150, 151].  

 

2.2.9 Research Gaps in the Field of Traction Motor Modelling and Control 

     FOC is now thought to be a mature branch of motor control. Generally, the scope of 

intelligent motor control is moving in the direction of sensorless-FOC to estimate the rotor/flux 

position without rotary encoders, fault detection mechanisms and control of future motor 

topologies such as switched and synchronous reluctance motors for HEV/EV applications. 

However, from the literature reviewed in Section 2.2, the author recognises the following gaps 

in the literature which aim to be resolved within this thesis: 

1) The high robustness of FLCs and their insensitivity to variable motor or vehicle parameters 

makes them ideal for vehicle control applications. However, it has not been shown how a 

single FOC system (using FLCs or any other controller type) can be used to control multiple 
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different motor topologies, powertrain architectures or with variable motor parameters for 

HEV/EV applications.  

2) Only a small handful of the literature examined in this section acknowledges the effects of 

variable motor parameters and their effect on the control algorithm. This should be taken 

into account for every control system designed as it will drastically lower the performance 

of the system.  

3) All the FOC algorithms and analytical traction motor models reviewed in this section 

require detailed motor parameters that are only obtainable from an intensive series of 

experiments. When multiple motors are under investigation, the time and cost required to 

conduct multiple experiments on each motor in order to find all the required parameters 

becomes impractical.  However, the author is yet to find an empirical motor model that 

considers the constraints of operating within the overcurrent region as a simpler and more 

cost-effective alternative for traction motor sizing during the early development stage of an 

HEV/EV. 

 DC-AC Inverters for Traction Motors 

     A DC-AC inverter modulates a DC voltage into multiple stepped DC voltage levels so that 

the fundamental harmonic of the output resembles an AC waveform. An inverter is classified 

according to its construction and the number of output voltage levels that it can generate. 

Multilevel inverters can output more than two voltage levels per phase. Richard Baker and 

Lawrence Bannister developed a multilevel Cascaded H-Bridge (CHB) inverter by stringing 

together multiple H-Bridge inverters and multiple DC sources [152, 153, 154]. Nabae [155] 

developed a 3-level (3L) Neutral-Point Clamped (NPC) inverter which required only a single 

DC source to generate multiple voltage levels. Nabae also showed how a multilevel inverter 
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increases the combined efficiency of the inverter and motor as well as reduces high frequency 

harmonics over the 2-Level (2L) predecessors. 

 

2.3.1 Inverter Topologies for HEV/EVs 

     The inverters used in HEV/EVs convert the DC voltage of the battery pack to 3-phase AC 

power for the traction motor. Both NPC and CHB inverters are common topologies used in 

HEV/EVs [156, 157, 158, 159, 160]. The schematic diagrams for a 5-Level (5L) NPC and CHB 

inverters are shown in Figure 2.4(a)-(b) respectively. The NPC inverter uses a single large DC 

voltage battery, whereas the CHB inverter uses multiple smaller DC battery packs.  

 

     Numerous surveys investigate the control, topology and general applications of multilevel 

inverters [161, 162, 163] with their application in HEV/EV traction drives. The largest benefits 
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Figure 2.4 Five -Level inverter topologies, (a) Neutral-Point Clamped, 
(b) Cascaded H-Bridge, (c) Isolated Neutral load 
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multilevel inverters have over 2-level inverters include; lower rate of change in output voltages, 

lower harmonic distortion, smaller common-mode voltages and can operate at lower switching 

frequencies. Multilevel inverter surveys directed at HEV/EV applications compare Voltage 

source inverters (NPC and CHB) along with current source inverters and Z-Source inverters 

[164, 165]. The benefits and shortcomings for each inverter type are given with how the 

vehicle’s performance, efficiency and price is affected. Particularly, Malinowski’s [166] survey 

on multilevel CHB inverters explains how they are more suitable for HEV/EVs because they 

utilise the numerous individual DC cells within the vehicle effectively. 

 

2.3.2 Inverter Modulation Methods 

     The simplest method of controlling the switching devices of an inverter is 6-step waveform 

control [167]. This outputs the maximum phase-pole voltage for 180° for each phase, and then 

the maximum negative phase-pole voltage for the remaining 180°. This is replicated for the 

three phase voltages but shifted 120° out of phase as shown in Figure 2.5. This produces 6 

distinct phase-neutral voltage levels and generates the maximum fundamental AC waveform 

possible for an inverter. 

     Figure 2.6 displays how carrier-based Sine Pulse Width Modulation (SPWM) uses a 

reference target AC voltage waveform (dotted blue line in Figure 2.6) overlaid by a set of 

triangular carrier waveforms (green lines in Figure 2.6) for a 3-Level (3L) inverter. The 

switching devices of the inverter change whenever these waveforms cross. The stepped output 

pole voltage (red line in Figure 2.6) has a fundamental harmonic that is similar to the target 

reference voltage waveform. The maximum fundamental voltage using SPWM is only 78.55% 

of what is generated using 6-step control. SPWM can be adopted into multilevel PWM, phase-
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shifted PWM and include harmonic injection by changing the carrier waveforms or the AC 

reference voltage [168].  

 

     SVPWM is a popular control method for voltage source inverters as it improves the 

harmonic quality of the output waveforms, has good DC-link utilisation and is simple to 

implement [169]. The target input voltage waveforms  and  are transformed into  

and  on an  axis. The magnitude of  and  creates a rotating reference voltage . 

Examples of 5L, 3-level (3L) and 2L Space Vector Modulation (SVM) diagrams are shown in 

Figure 2.5 3 phase waveforms from an inverter operating using 6-step operation 
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Figure 2.7. Any point within the outer hexagonal SVM diagram is enclosed by a triangular 

sector. Every triangular vertex represents a voltage vector with unique  co-ordinates. 

 

     The switching combinations that generate the same  and  co-ordinates are assigned to 

a respective voltage vector. SVPWM calculates how long the inverter must occupy each of the 

three voltage vectors enclosing the reference voltage so that the average output voltage over the 

SVM cycle equals . The maximum fundamental voltage of an inverter using SVPWM is 

90.7% of that generated using 6-step control in the inverter’s linear region of operation. Because 

the inverter can operate in the overmodulation region it is also able utilise full 6-step control. 

     Calligaro [170] and Hasan [171] reviewed various PWM strategies for multilevel inverters 

and compared the indices which quantify their performance including; Neutral point balancing, 

Total Harmonic Distortion (THD), Weighted THD (WTHD) and switching losses. Through a 

simulation investigation, SVPWM reduced the total switching count over SPWM and Double-

Signal PWM due to one phase of the inverter phases being clamped over a single SVPWM 

cycle and reduced the output current THD.  

Reference waveform 

 

 

 
 

Carrier Waveform Output Waveform 
Figure 2.6 One pole voltage waveform of a 3-phase voltage waveform generated by 

an inverter using Carrier-based SPWM 
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2.3.3 Space Vector Pulse Width Modulation (SVPWM)  

     Holtz [172] extended the operating range of a 2L inverter using SVPWM to fully exploit the 

voltage capabilities of a DC source. Inverters had previously been confined to the circular 

trajectory boundaries of a Space Vector Modulation (SVM) diagram, but Holtz showed how to 

control the inverter all the way up to 6-step operation. The SVM regions were defined as 

“Continuous”, “Overmodulation mode - I”, and “Overmodulation mode – II” in relation to how 

the reference voltage is modified. This was later expanded upon by different authors who 

applied the theory to 3-level NPC inverters [173, 174, 175].   

     Celanovic [176] presented a general SVPWM algorithm for three phase inverters of any 

voltage level which was computationally efficient and suitable for real-time implementation on 

digital processors. Seo [177] and Zhang [178] developed simplified SVM strategies for a 3L-

NPC inverter by reducing the 3L-SVM diagram into multiple 2L-SVM diagrams and enabled 

simpler 2L-SVM duty ratio calculations to be used.  

     Jiao [179] investigated the major SVM switching pattern strategies and their effect on neutral 

point voltage balancing, switching loss reduction, and noise reduction for 3-level NPC 

inverters. Prabaharan [180] reviewed different performance parameters for multilevel inverters 

which quantify the power output and efficiency of the different inverter topologies and control 

algorithms. These investigations highlight the need to give more attention to other aspects of 

the inverters control other than harmonic quality. In the case of an HEV/EV, the inverter should 

be controlled efficiently to optimise energy usage and extend the vehicles driving range [181]. 

     Attique [182] reviewed the numerous reference frames for SVPWM and argues that the 

imaginary axis aligning with the 3-phase voltage waveforms of the inverter offers the simplest 

control and conceptual understanding over the other widely researched schemes. 
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Figure 2.7 Inverter Space Vector Diagrams [178, 180], (a) 5-Level, (b) 3-Level, 
(c) 2-Level  
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2.3.4 Optimising SVPWM  

     Optimisation objectives for SVPWM include zero-voltage reduction [183], neutral point 

balancing of NPC inverters [184, 185, 186, 187], waveform harmonic distortion reduction [188, 

189, 190] and noise reduction [191]. 

     Pinewski [192] converted the voltage vector on-times calculated using SVPWM into 

switching patterns to control the individual switching devices of a 2L inverter. The alternating-

null vector duty ratios reduced the harmonic distortion of the output wave signals, reduced 

capacitor voltage imbalances and lowered the risk of switching device overheating when 

compared to other switching patterns. 

     A direct comparison between different SVPWM switching patterns was carried out by 

Pahlavani [193]. This review considered the switching losses and harmonic distortion to 

quantify the overall efficiency of the inverter and quality of the waveforms. It was shown that 

different starting-ending switching states and the order in which they change over a single 

SVPWM cycle has a trade-off between switching losses and the harmonic distortion. 

     An example of how intermediate switching is generated over two SVM cycles is shown in 

Figure 2.8 for phase  of a 5L-NPC inverter. In Figure 2.8(a), the inverter switching states 

change between 0-1-2 for SVM cycle-1, then repeat in reverse 2-1-0 for SVM cycle-2. The 

switching states at the end of SVM cycle-1 are the same as the starting switching state for SVM 

cycle-2. Therefore, the inverters switching devices can remain in the same position when 

transitioning between the two SVM cycles and no intermediate switching required. 

     In Figure 2.8(b), the inverter’s switching states change between 0-1-2 for SVM cycle-3, but 

then decreases 3-2-1 for SVM cycle-4. Although switching devices  and  remain in the 

same switching position, switch  requires an intermediate switch to put the inverter into the 

correct position before SVM cycle-4 can begin. In addition, the complimentary switching 
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device  will also require an intermediate switch. This situation often occurs when the 

reference voltage vector transitions into a different voltage vector triangle and the switching 

states for one SVM cycle are not be available for the next SVM cycle. 

 

     McGrath [194, 195]  gave a detailed comparison between a variety of PWM strategies for 

multilevel NPC and CHB inverters. This emphasised the importance of switching sequences 

for SVM to reduce the total switching count. By selecting appropriate starting-ending switching 

patterns (null vector), the intermediary switching losses will be reduced when the reference 

voltage vector transitions between enclosing SVM triangles. Again, the trade-off between lower 

switching losses and the harmonic distortion of the waveform was shown to be a limiting factor. 

 

2.3.5 On-line SVPWM Methods 

     As the inverters voltage level  increases, the number of enclosing vector triangles within 

the SVM diagram grows at a rate of  and the total number of switching states grows 

at a rate of . Assigning a SVM switching pattern for a particular reference voltage is 

difficult when there are multiple options to choose between for a single voltage vector. Storing 

all this information requires large look-up tables and is computationally inefficient. On-line 

Figure 2.8 How intermediate switches are generated when transitioning between SVM cycles, 
(a) No intermediate switching, (b) One intermediate switch on   
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methods of calculating the available switching patterns remove these problems by directly 

calculating the switching pattern for each SVM cycle [196, 197].  

     Mohammed [196] and Susheela [198] separate an  -SVM diagram into layers as a means 

of locating the reference voltage  and map it on a  diagram. Gopinath’s [197] 

fractal approach of identifying the triangle sub-section is mathematically simple, but the total 

number of iterative calculations increases rapidly with inverter size. These methods do not 

calculate all the available null switching patterns, nor do they allow for a different enclosing 

voltage vector to be used. 

     Neural networks have been used to calculate the on-times of the switching devices and as 

image processors used to identify the enclosing vector triangle [199, 200, 201, 202]. These are 

computationally efficient and are implemented easily using dedicated hardware. However, a 

pre-existing control scheme is required to train the network. This training is time consuming 

and the performance of the network will only match that of the training scheme. 

     Deng’s [203, 204] on-line SVPWM method gradually reduces the  diagram 

(through  and  … diagrams) down to a single 2L-SVM diagram which encloses 

the reference voltage vector. This calculates all the possible switching patterns for one enclosing 

voltage vector. The linear time-complexity in proportion to the SVM voltage level is ideal 

because for every voltage level increase on the SVM diagram only one additional mapping 

sequence is required. However, this control method does not calculate the switching patterns of 

the alternative voltage vectors which might contain a better switching pattern to be used for a 

given SVM cycle. 

     Off-axis on-line SVPWM schemes identify the triangle sub-sector enclosing  and 

directly computes the time durations for the switching devices [174, 175, 205, 206, 207]. These 

do not use a Cartesian co-ordinate system but instead opt for one parallel to the triangular edges. 
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The freedom to choose the switching pattern and control objectives (lower THD, lower switch 

count etc.) is removed and confined to the single switching pattern generated from the 

calculations. Jana’s [208] on-line SVPWM scheme required minimal iterative calculations, 

lowered the switch count and improved the harmonic quality simultaneously. This was achieved 

by finding the triangle sub-sector that encloses the reference voltage in a similar manner to 

Gupta [174, 175] and Chamarthi [206], but instead opted to directly calculate the switching 

states of the enclosing voltage vectors.  

 

2.3.6 Research Gaps in the Field of DC-AC Inverter Control 

     From the literature reviewed in Section 2.3, the author has the following comments about 

the research trend and the gaps in knowledge within the current literature: 

1) The method presented by Deng [203, 204] currently has the lowest computational demand 

for an on-line SVPWM scheme. However, the optimisation of this control scheme is not 

analysed further (switch count, harmonic quality, etc.). 

2) Jana [208] argues how Cartesian on-line SVPWM methods are more complex, require a 

greater number of iterative calculations and need more storage to hold switching patterns 

that have been calculated offline. However, the author of this thesis argues that the 

numerous logic-based identification methods for finding the enclosing triangle sub-sector, 

the correct equations to calculate the switching states and switching patterns required for 

off-axis on-line SVPWM methods can prove to be as computationally inefficient. 

3) The general scope of multilevel inverter control seems to be increasingly growing with the 

invention of more modular and hybrid inverter topologies. As new topologies are created, 

their corresponding control systems are developed alongside and advance in a similar 
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progression to NPC and CHB inverters through reduced switching, improved harmonic 

quality, lower noise, etc. 

4) There is only a small handful of inverter control and topology reviews for HEV/EV 

applications. Nearly all the inverter control schemes investigated within this literature are 

applicable to isolated inverter-motor applications. While most identify the harmonic quality 

of the waveforms delivered to the motor, they only consider single points of operation. This 

is usually taken to be at the end of the linear modulation region and only for a few full or 

part load applications. For inverter control strategies applicable to HEV/EVs, the full 

operating regions of the inverter and motor should be considered. 

 

 Vehicle Stability Control for HEV/EVs 

2.4.1 Vehicle Stability Control Techniques 

     The terms oversteer and understeer were first defined for steady-state and transient 

conditions by Bergman [209] of the Ford Motor Company in the 1960’s. The ability to quantify 

these variables enabled researchers and vehicle manufactures to improve future vehicle design 

and investigate active control methods. Diagrammatical views of vehicles with oversteer or 

understeering characteristics are shown in Figure 2.9 in comparison to a vehicle following the 

ideal target trajectory. 

     The mid-90s saw the beginning of Yaw Moment Control (YMC) when Bosch developed the 

yaw stability controller [210, 211]. This controller pulsated the brakes on the appropriate wheels 

to achieve an extra moment about the vehicle’s yaw axis during an emergency steering 

manoeuvre. Shibahata [212], Motoyama [213] and Ikushima [214] where some of the first 

researchers to investigate YMC and implementation methods to distribute tractive/braking 

forces to the wheels of a vehicle. Shibahata [212] developed a new method for analysing YMC 
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by introducing a parameter derived from the vehicle’s side-slip referenced the vehicles centre 

of gravity. These methods show how YMC transitions from emergency manoeuvres to 

improving the yaw control in every day driving and increase cornering performance. 

 

      The geometry and velocity components of a tyre are shown in Figure 2.10. The wheel slip 

ratio  compares the velocity of the tyre’s outer surface at a radius  with rotational 

velocity  at the road-tyre interface against the longitudinal velocity at the centre of the 

tyre  shown in Figure 2.10(a). The velocity components of the tyre in Figure 2.10(b) distorts 

the tyre’s contact patch at the road-tyre interface in (shown in Figure 2.10(c)) by side slip 

angle .  

 

Figure 2.9 Oversteer, Understeer and Target yaw rate trajectory graphical view  

Target yaw rate 
and trajectory 

Understeer 

Oversteer 

Figure 2.10 Diagrammatical view of the tyre dynamics, (a) Wheel slip ratio, (b) Wheel 
side-slip angle and velocity components, (c) Tyre contact patch distortion 

 

 
 

(a) (b) 

 

(c) 
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     Anti-lock Braking Systems (ABS) aim to maximise the Coefficient of Friction (COF) at the 

road-wheel interface to increase the braking force and reduce the stopping distance. It is shown 

in Figure 2.11 that the peak longitudinal COF  is generated at a particular wheel slip , but 

the actual slip varies for different tyre-road conditions and the tyre’s side slip angle . As 

 increases, the lateral COF  also increases and produces a larger lateral tyre force which 

aids in steering.  

 

     ABS appeared in the early 1950’s within the aviation industry [215]. The high cost of these 

systems prevented them from crossing into the automotive industry until later that decade. Early 

adaptations of ABS were purely mechanical, a system of interconnected flywheels and springs 

would open hydraulic valves and release the brake fluid pressure if the wheel locked up. 

Figure 2.11 COF curves for one tyre and road combination over different wheel slip 
and sideslip angles, (a)  curves, (b)  curves [277] 

(a) 

(b) 
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Madison [216] patented the first automotive anti-skid system which used electronic sensors and 

actuators in 1969. Independent ABS control of all four wheels did not arrive until the early 80’s 

where authors such as Satoh [217], Newton [218] and Main [219] showed how ABS improved 

steering control during emergency braking.  

     Under the same principles as ABS, Traction Control Systems (TCS) limit wheel slip to 

improve tractive force and maintain vehicle stability. Buick introduced the Max-Trac system 

[220] in the early 1970’s to control the engine power according to electronic wheel speed 

sensors to prevent excessive wheel slip. 

 

2.4.2 Vehicle Yaw Rate Control Methods 

2.4.2.1 Implementing Yaw Rate Control 

     There are two popular methods for implementing YMC for road vehicles; varying the 

braking/tractive forces on either side of the vehicle, also known as Torque Vectoring (TV); and 

compensation steering angle.  

     Mokhiamar [221] compared the effect of TV with Front-Wheel Steer (FWS), Rear-Wheel 

Steer (RWS) and Four-Wheel Steer (4WS). The simulation study showed that a vehicle with 

TV+RSW has lower yaw rate tracking ability than a TV+FWS vehicle, but a TV+FWS+RWS 

vehicle has the best responsiveness and stability overall. This concluded that the 4WS vehicle 

has superior cornering performance over single axle steer vehicles and how the effect of FWS 

is greater than RWS. The key information from this publication is that the asymmetrical tractive 

forces alone improved the yaw rate control of these vehicles regardless of what steering system 

was used. A further comparison between 4WS and TV was conducted by Abe [222] who 

highlighted that the saturation effects of the tyre forces using steering compensation may limit 
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the performance in contrast to TV, but a combination of the two methods outperform both 

independently. 

     The application of TV in an EV with multiple independent traction motors has shown to be 

advantageous over ICE vehicles using torque splitting differentials [26, 27]. The traction motors 

enabled greater control of the tractive/braking force at each wheel and therefore improved the 

controllability and stability of the vehicle [28].  

 

2.4.2.2 Yaw Rate Controller Types 

     Control of a vehicle’s yaw rate and sideslip angle has been investigated for YMC 

independent of one another [223, 224], but both methods are required to ensure both 

controllability and stability of the vehicle.  

     Sliding-Mode Controllers (SMC) have been a popular method for TV as they allow for 

smooth and stable control of the vehicle and allocation of tyre forces. Goggia [225] changed 

the vehicle’s driving modes (Normal and Sport) by changing the gain values of an integral 

sliding mode TV based YMC subject to the vehicle’s lateral acceleration. Novellis [226] and 

Fu [227] later improved the yaw rate and sideslip control using electric traction motors. Novellis 

[228] compared the performance of the SMC against a PID controller for YMC. The 

comparison showed that a SMC has a lower yaw rate error than the PID controllers, but suffered 

from undesirable chattering, an inherent SMC control problem.  

     Optimisation methods applied to YMC allow for multiple objectives to be monitored and 

controlled simultaneously [229]. Kampanakis [230], Kasinathan [231] and Wong [232] used 

the vehicle’s yaw rate error and side-slip as control objectives as well as the independent 

traction motor’s temperature. This improved the yaw performance of the vehicle without 
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overheating the traction motors. Zhai [233] included the regenerative energy capturing ability 

of the traction motors to maximise the vehicle’s driving range.  

     Boada [234] used the yaw rate error and sideslip angle as inputs to a FLC system to generate 

an ideal additional yaw moment that would minimise the input errors. Variable braking forces 

on the front axle generated the additional yaw moment during a detailed simulation study. 

Because the target speed for these simulations was intended to be constant for the duration of 

the manoeuvre, an opposing tractive force on the opposite side of the axle should have been 

included. Boada [235] and Li [236] advanced upon the FLC method by including compensation 

FWS and RWS respectively, both controllers and implementation methods showed improved 

vehicle control over [234]. Jin [237] used a genetic algorithm to tune the membership functions 

of a FLC using the yaw rate error and vehicle side-slip as optimisation parameters. The 

performance of the final FLC iteration was superior to the initial controller design. 

     Ghosh [238] attempted to use the vehicle’s yaw rate error and steering wheel angle as the 

inputs to a FLC for YMC instead of the vehicle’s sideslip angle because it is difficult to measure 

or estimate. However, this approach is in danger of stabilisation issues since no stability input 

was considered. Krishna [239] included the driver steering angle into the FL yaw controller on 

top of the vehicle yaw rate error and sideslip angle. This improved the dynamic performance 

over the original vehicle, but it is difficult to determine whether the improvements are due to 

steering wheel input as no comparison is given without it. Kim [240] used a FL yaw moment 

controller to maintain the yaw rate and vehicle side-slip angle in conjunction with an 

optimisation problem to minimise the utilisation of the electrohydraulic braking system and 

maximise regenerative energy recuperation.  
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2.4.3 Wheel Slip Controller Schemes 

2.4.3.1 Wheel Slip Control for an HEV/EV 

     Conventional ABS controllers will pulsate the brake torque around a single target wheel 

slip  or if the wheel rapidly approaches lockup. Since the target  changes for various different 

driving-wheel-road conditions this method may not offer optimal braking performance, but it 

is simple to implement [241, 242, 243, 244]. 

     Hori [25], Kuruppu [245], and Ivanov [246] all promoted the use of electric vehicles over 

ICE powered vehicles because of the superior tractive and braking performance only attainable 

from electric traction motors. The fast, accurate and predictable torque output of the electric 

motor/s allowed for higher frequency torque modulation [246]. Because it is easier to estimate 

the torque output from the traction motors than an ICE, MPC and parameter estimation methods 

are simpler and more accurate for use in ABS/TCS [23, 245]. 

     Spichartz [247] compared the regenerative braking ability of EV’s using a single electric 

motor against four independent in-wheel motors when the ABS is engaged during braking. 

Because the independent in-wheel motors are not limited by the dynamics of the other wheels 

in the same way as a single drive EV, greater regenerative energy capturing and braking 

performance is obtainable. 

 

2.4.3.2 Wheel Slip Controller Types 

     SMCs for ABS often take on the role of extremum seeking algorithms which search for the 

peak coefficient of friction, an advantage of these controllers over PI and FL controllers are that 

if designed correctly they negate the need for knowing the wheel slip or coefficient of friction 

and opt for other control parameters (e.g. wheel forces) [248, 249, 250, 251]. 
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     A FLC’s ability to handle the nonlinearities associated with tyre and vehicle dynamics has 

made them a popular choice for implementing ABS/TCS [241, 252, 253]. The optimal wheel 

slip for maximum coefficient of friction changes with different road and tyre conditions, Bauer 

[254] used a FLC to estimate the optimal wheel slip on varying road surfaces and a secondary 

system of FLCs to regulate the brake torque so the wheels match the target slip value. This 

method improves over other authors who choose to only operate around a constant  [255]. 

     Colli’s [256, 257] FL wheel slip controller uses the gradient of the longitudinal slip curve 

(rate of change in friction over the rate of change in wheel slip) and the accelerator pedal 

movement for a vehicle’s TCS. This was achieved by estimating the coefficient of friction and 

measuring the instantaneous wheel slip for each independently driven wheel. This method 

changed the control objective of a wheel slip percentage, to the peak gradient of the curve which 

remains constant for all driving conditions as shown in Figure 2.11. Since this was implemented 

on a vehicle using electric traction motors, the road conditions are estimated easier than if an 

ICE vehicle was used. 

     A comparison between pure PI torque control and a compensated PID-FLC for a vehicle’s 

TCS was given by Li [258]. The torque control of the PI controller regulated the wheel-slip for 

both control methods, but the inclusion of the FLC to compensate the torque when the road 

conditions abruptly changed offered a shorter settling time and smaller oscillations around the 

target wheel-slip. 

2.4.4 Vehicle Yaw Control during Braking Manoeuvres 

     Braking YMC (BYMC) is diagrammatically shown in Figure 2.12 (brake forces for each 

wheel are represented by green arrows) whereby the brakes on one side of the vehicle are given 

a lower brake torque, this produces asymmetrical braking forces around the vehicle’s centre of 

gravity and thus an additional yaw moment is generated [259]. 
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     Early attempts to improve the poor yaw control of a vehicle while braking during a turn-in 

manoeuvre was improved by Novel [260] and Heinzl [261] during the early 2000’s who reduced 

the systems down into an optimisation problem and a SMC respectively. Both systems used 

asymmetrical braking by changing the target wheel slip or additional brake pressures in order 

to generate the additional yaw moment. However, these systems are used for gradual vehicle 

braking and use the ABS as a limiting factor instead of controlling the brake forces at the point 

of maximum braking force. 

 

     Cascaded [262] and parallel [263] YMC and ABS/TCS architectures are simple to 

implement, but the hierarchy of the layout and/or sensitivity of the control parameters may 

create difficulties in deciding the overruling control method. Kaiser [264] showed how an 

interconnected architecture of the two control methods reduced the typical layout control 

problems to either reduce the input torque request or output torque command. 

     Song [250, 265, 266] provides numerous detailed studies on the effect of YMC under steady 

state driving and emergency braking/steering manoeuvres. Many of these investigations 

(a) (b) 
Figure 2.12 How varying asymmetrical braking forces can produce an external 
yaw moment, (a) Symmetrical Braking forces, (b) Asymmetrical braking forces 
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compare the performance of BYMC and compensated Steering YMC (SYMC) against a vehicle 

with only an ABS which achieves peak longitudinal COF on all four wheels. Song shows that 

both BYMC and SYMC have greater controllability and stability over the original vehicle, with 

SYMC performing slightly better than BYMC. A problem not addressed by Song is the 

increased cost associated with additional RWS and if the small increase in controllability over 

BYMC is justified. Systems which combine asymmetrical brake forces and active front steering 

[267, 268] for braking and steering manoeuvres have shown better yaw control and stability 

over systems which use these implementation methods independently. 

     Mirzaeinejad’s [269] optimization problem sought to minimise the yaw rate tracking error 

with the smallest amount of external yaw moment while maximising total braking force to 

ensure a short stopping distance. The design of this control algorithm however does limit its 

use to split-mu surfaces, it also does not directly control the wheel torque but instead applies 

the ideal tyre force to the road.  

     The yaw control system given by Mirzaei [268] uses an optimisation problem to minimise 

the amount of asymmetrical braking forces and slow the vehicle down as fast as possible while 

preventing compensated steering oversaturation. Mirzaei uses a FLC to control the weighting 

factors of the optimisation problem depending on the saturation properties of the tyre forces 

while meeting the required performance of the system. 

     Naderi’s [270] YMC system directly controls the wheel torque of the vehicle under various 

braking and steering scenarios. A SMC is used to produce the ideal braking torques on either 

side of the vehicle where a FL wheel slip controller scales these values to ensure the wheel does 

not lock-up. This is advantageous because the wheel torques are directly calculated instead of 

target wheel forces as with previous control algorithms. However, an experimental validation 
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is not provided and SMCs often suffers from a chattering around the target values when 

implemented in hardware. 

     Dogruğüven [271] investigated the regenerative ability of an EV during an emergency 

braking manoeuvre. A major advantage highlighted by this control scheme is the combined 

hydraulic and traction motor braking system. The traction motors braking torque becomes less 

effective at high road speeds and the hydraulic brakes must be incorporated into the control. At 

lower speeds, the fast torque response of the traction motors offers greater control of the torque 

provided to the wheels and the yaw control becomes more effective. 

     Dincmen [272] advanced upon the work of Drakunov’s [248] extremum seeking algorithm 

by changing the single sliding-mode curve into a sliding-mode surface to incorporate the 

changes in the lateral coefficient of friction of the wheels. Dincmen showed that during 

combined braking and cornering manoeuvres, sacrificing a small amount of longitudinal 

friction by reducing the target wheel slip operating point increases the tyre’s lateral force. The 

results showed that the vehicle may be able to avoid a collision during an emergency braking 

scenario because it is able to travel more laterally. 

     Song [273] compared the performance of a PI, FLC and SMC for compensated FWS 

controllers for driving scenarios with and without asymmetrical braking forces. Song found that 

the membership functions and rule base of the FLC that was specifically tuned for braking 

manoeuvres outperformed the SMC and PI controllers, the FLC thus performed worse during 

constant velocity scenarios. An additional comparison to a FLC tuned to either constant velocity 

manoeuvres or a FLC able to accommodate the two scenarios would offer a better comparison 

of the performance of this type of controller.  

     The YMC presented by Tahami [274] was designed for use during emergency braking and 

steering manoeuvres. Tahami used a FL wheel slip and yaw moment controller in conjunction 
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with a neural network to generate target yaw reference values. However, only a constant target 

wheel slip was used for this investigation, the performance of the network on other surfaces 

may suffer if the COF changes and the optimum slip value changes. 

 

2.4.5 Research Gaps in the Field of Vehicle Stability Control for HEV/EVs 

     From the literature reviewed in Section 2.4, the author has the following comments and has 

recognised the following gaps in knowledge within the current literature:  

1) A gradient based wheel slip control algorithm (like the TCS developed by Colli [256, 257]) 

has not been applied to braking manoeuvres. 

2) The TCS system developed by Colli [256, 257] also only considers straight line 

manoeuvres. Implementation of a gradient based wheel slip control system has not been 

investigated in combination with yaw rate control systems. 

3) The current trend in VSC research is heading in multiple directions including; combining 

independent vehicle control algorithms with autonomous and connected vehicle systems, 

improving system robustness and improving real-time implementation for computationally 

heavy control systems. In addition, improving estimation methods to find the tyre-road 

COF, vehicle sideslip angle, wheel slip and tyre forces are also of concern. 

4) Most of the VSC control algorithms investigated require numerous detailed vehicle 

parameters to be used within the control algorithms. However, the nonlinear or time varying 

parameters (e.g. vehicle mass changing due to passengers, luggage and fuel) often required 

for vehicle simulation and control might cause the system to perform sub-optimally if the 

values used within the control system do not accurately represent the corresponding real-

world parameters. Values that can be accurately estimated (wheel slip, road COF) offer 
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better wheel slip and yaw rate control over values that use predetermined estimated values 

within the control algorithm. 

 

 Summary of Literature Gaps and Specific Research Objectives 

     An overarching aim for this thesis is to investigate how intelligent motor modelling and 

control techniques can be used to create new HEV/EV development tools, increase vehicle 

energy efficiency and improve vehicle safety. The first original research objective for this thesis 

in Section 1.3 has been achieved by examining the technological milestones and state of the art 

literature while exposing gaps in the current research within this chapter.  

     Research gaps #1 and #2 from Section 2.2.9 detail the lack of a single FOC algorithm that 

is able to control multiple vehicle systems without the need for re-tuning and the lack of depth 

of investigations into the effects of variable motor parameters for HEV/EV applications. As 

discussed in Section 2.2.8, FLCs offer high robustness and excellent control performance for 

FOC applications. The first specific research objective investigated within this thesis is: 

 

     Objective 1 - To develop a single FL based FOC system that can be implemented into 

multiple different motor topologies and vehicle powertrain architectures without the need for 

re-tuning to simplify the development of an HEV/EV. The control system’s robustness will be 

examined with the effect of variable motor parameters for HEV/EV applications. 

 

     This will fulfil the second original research objective listed in Section 1.3 - to develop a 

traction motor control system in order to simplify the development process of an HEV/EV. A 

control system such as this would be a useful tool for vehicle manufacturers as this single FOC 

scheme could be used for any vehicle prototype under investigation without the risk of unstable 

or undesirable control. 
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     Research gap #3 from Section 2.2.9 highlights how there are no effective methods to 

estimate the thermal and torque characteristics of the motor operating in the overcurrent region 

without detailed motor parameters. The second specific research objective investigated within 

this thesis is: 

 

     Objective 2 - To develop a traction motor model for HEV/EV design applications which uses 

only readily available empirical motor data to estimate the torque and thermal characteristics 

of a motor operating in the overcurrent region without any detailed motor parameters.  

 

     This will fulfil the third original research objective in Section 1.3 - to develop a traction 

motor modelling tool to inform a vehicle manufacturer if a motor and powertrain combination 

offers the greatest total vehicle energy efficiency or lowest output emissions. A modelling tool 

such as this would show if the traction motor and powertrain combination allow the vehicle to 

achieve its own dynamic performance quickly and early on in the development process when 

only empirical data is available. 

     Observation #1 - #2 into the literature trend surrounding DC-AC inverter control schemes 

in Section 2.3.6 show how the on-line SVPWM method by Deng [203, 204] has the lowest 

computational burden in comparison to other on-line methods, but does not extend its control 

objectives into other quantifiers (low intermediate switching, low THD) used to describe the 

quality of SVPWM methods as described in literature observation #3. The third specific 

research objective investigated within this thesis is: 
 

     Objective 3 - To advance upon the current state of the art on-line SVPWM schemes with a 

new reduced intermediate switching algorithm which does not inhibit the computational 

efficiency of the SVPWM algorithm and improves the energy efficiency of the inverter over the 

entire driving range of an HEV/EV. 
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     This will fulfil the fourth original research objective in Section 1.3 - to develop an energy 

efficient method of powering the traction motor of an HEV/EV. By reducing the intermediate 

switching, there will be lower energy dissipated as heat and therefore a higher energy efficiency, 

if this can be achieved over the entire driving range of an HEV/EV.  

     Literature gaps #1 - #2 in Section 2.4.5 show that gradient based wheel slip controllers have 

not been applied to braking manoeuvres nor do they directly incorporate yaw rate control for 

steering scenarios. Therefore, the fourth specific research objective investigated within this 

thesis is: 

 

     Objective 4 - To develop a gradient based wheel slip control algorithm for braking 

manoeuvres which directly incorporates yaw stability into the control algorithm in order to 

improve the safety of a vehicle during an emergency manoeuvre.  

 

     This will fulfil the fifth original research objective in Section 1.3 - to increase a vehicle’s 

safety by intelligently controlling the traction motors during an emergency manoeuvre. 
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3. Chapter Three – Research Methodology and Model 
Verification Procedures 
Research Methodology and Model Verification Procedures 
 

     This chapter presents the methodology and experimental procedures used within this thesis. 

Section 3.2 discusses the general modelling and control techniques commonly used for the 

vehicle dynamics, traction motors and DC-AC inverters for HEV/EV simulations. How and 

why these methods are used in this thesis are explained to offer a basic understanding to the 

reader of how the advanced control methods work in later chapters. The statistical analysis 

methods in Section 3.3 are used to quantify the performance of the Processor-in-the-Loop (PIL) 

verification simulations in Section 3.4 and the systems developed in the remainder of this thesis. 

 

 Research Methodology 

     The following steps describe the main methodology steps used for the research conducted 

within this thesis: 

1) Model the vehicle components under investigation in MATLAB/Simulink. How and why 

these components are modelled instead of commercially available models is given in 

Section 3.2. To ensure that these models perform as expected, they are validated against 

commercially available equivalents. Both models should produce comparable outputs 

within acceptable margins of error for a set of given inputs (see Section 3.4).  

2) Implement the current state of the art control techniques into the validated models. This 

highlights areas of room for improvement within the control algorithms. These state of the 

art control schemes then act as a baseline to compare and highlight the advantages of the 

new control algorithms developed within this thesis. 



54 
 

3) From examination of the current state of the art control algorithms and considering the 

current literature from Chapter Two, a new control system is developed addressing the 

major problems of the system and control algorithms under investigation found by the gaps 

in the current literature explained in Section 2.2.9, Section 2.3.6 and Section 2.4.5. 

4) The newly developed control systems ability to be unaffected by hardware limitations and 

compiler errors are verified using a series of PIL simulation experiments (see Section 3.4).  

5) Compare the new control system to the previous state of the art control techniques. Areas 

of improvement for both control techniques are highlighted and areas for future work to 

address are discussed. 

      

 Component Modelling of the HEV/EV 

3.2.1 Traction Motor Models 

    The Induction Motor (IM) and Interior Permanent Magnet Synchronous Motor (I-PMSM) 

are two common traction motor topologies used in HEV/EVs [67, 275]. Chapter Four presents 

an intelligent FOC scheme and Chapter Six observes the harmonic quality of the motor’s current 

waveforms. As discussed in Section 2.2.3, there are several methods for modelling a motor for 

HEV/EV applications (analytical models, Finite Element Analysis or empirical data based). 

The torque-speed characteristics and electrical analysis of the motors in these chapters are 

represented by the equivalent electrical circuits given in Section 3.2.1.3 - 3.2.1.4. This 

modelling method has been well documented throughout literature as an acceptable method for 

both standalone motor applications and HEV/EV applications [71, 75, 276, 277]. It should be 

noted that there are some limitations to this modelling method as they do not include the effects 

of eddy currents, local saturation points, skin effects or any end effects [67]. This makes them 

unsuitable for motor design purposes as the errors may be too high. The trade-off between 
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relatively high accuracy over the full operating range of the motors torque-speed curve with 

low computational power does make them suitable for HEV/EV applications. 

     Chapter Five and Chapter Seven do not examine any motor current or voltage control, simple 

2D look-up table representations of the traction motors given in Section 3.2.5.1 are sufficient 

as they simplify the overall control system and reduce simulation time.  

      

3.2.1.1 Voltage Vector Transformations 

     In Figure 3.1(a), an arbitrary choice of voltages  and  from the 3-phase AC 

waveforms supplied to the motor windings in Figure 3.1(b) are represented on a 2D plane. 

These voltages use the  axis for their respective windings (black dotted lines) whose 

combined magnitude produces a reference voltage  which travels around the origin at 

synchronous speed . 

      Only two co-ordinates are required to represent any point in 2D space. The Clarke 

transformation (1) converts  and  into the voltages  and  on an  axis as 

shown in Figure 3.1(c). The Park transformation (2) then converts the sinusoidal  and  

waveforms into the direct  and quadrature  voltages on the dq-axis (Figure 3.1(d)) [66]. 

The dq-axis observes  and  as DC waveforms on a rotating reference frame with an 

angular velocity . The Park transformation requires finding the electrical angle  from (3) 

by integrating  over a time  from the initial time . The same transformations are used to 

find the direct  and quadrature  stator currents which are responsible for the motor’s 

torque and magnetic flux respectively. 
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(a) 

Figure 3.1 Vector transformations, (a) 2D visual representation of the transformation process, 
(b) Original 3-phase AC waveforms, (c) Clarke transformation, (d) Park transformation 
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3.2.1.2 FOC Architecture 

     The FOC flowchart in Figure 3.2 is used to control the direct and quadrature currents of the 

motor of the analytical traction motor models used throughout this thesis [278]. Using the 

import and export parameters between CarSim and MATLAB/Simulink in Table 3.3 of Section 

3.2.4.1, the FOC architecture is explained as follows:  

     MATLAB Environment – MATLAB/Simulink imports the vehicle’s instantaneous 

longitudinal velocity  and the rotational velocity of the wheels  from CarSim. The 

error between  and the target velocity  of the drive cycle is fed to a speed controller which 

generates suitable accelerator pedal  or brake pedal  activation levels. 

 

     If the brake pedal is activated, a brake pedal force proportional to the brake pedal’s activation 

level is exported to CarSim. No traction motor regenerative braking is considered within this 

FOC scheme. The traction motor model control and verification in Section 3.4.1 show that this 

FOC architecture and analytical models are able to operate in all four quadrants of the traction 

motor and regenerative braking is a possible route for future control applications. This was done 

to simplify the control architecture at this stage of the research to avoid complications with 
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Figure 3.2 FOC flowchart architecture between the MATLAB/Simulink and CarSim 
environments 
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wheel slip control. Instead, the internal Anti-Lock Braking Systems (ABS) of the CarSim 

vehicle model will monitor this area by controlling the brake fluid pressure of the pure hydraulic 

braking system. The wheel slip and regenerative braking systems will be accommodated for in 

future research by employing the wheel slip control schemes developed in Chapter Seven. 

     When the accelerator pedal is activated, it signifies that the speed controller is requesting 

torque from the motors. For motor control and FOC, a torque command corresponds to an 

increase in torque producing current components. Target q-axis  and d-axis  currents are 

generated which would satisfy the increase in output torque. The independent current 

controllers compare  and  against the instantaneous q-axis  and d-axis  currents 

being drawn by the motor respectively.  

     The current controllers produce unit q-axis  and d-axis  voltages to reduce the current 

error. These voltages are de-coupled and have the constraints imposed by the motor applied to 

them (see Section 3.2.1.5). The final d-axis  and the q-axis  voltages are then supplied 

to the stator windings. It is assumed that voltage and current waveforms are perfectly generated 

by an ideal inverter. The traction motor model generates an output torque  which is exported 

to CarSim. 

     CarSim Environment – The vehicle model imports  and the brake fluid pressure from 

MATLAB/Simulink. The vehicle model accounts for the 6 degrees of freedom around the 

vehicle body, spin dynamics of the tyres and uses steering control to maintain a straight heading. 

The longitudinal velocity of the vehicle’s centre of gravity  is then exported back to 

MATLAB/Simulink.  
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3.2.1.3 Analytical Model of an IM 

     The q-axis and d-axis analytical circuits for a squirrel cage IM with magnetic poles  are 

given in Figure 3.3(a)-(b) respectively. Equations (4)-(14) are used to simulate the 

characteristics of the IM motor [279, 280].  

 

     Equations (4)-(7) represent the voltage drop over the stator winding resistance , rotor 

winding resistance  and the Back Electromotive Force (B-EMF). These are used to find the 

flux linkages  of the d-axis and q-axis circuits for both the stator (  and ) and the rotor 

 and ). The magnitude of the B-EMF is proportional to difference between the electrical 

angular velocity of the rotor  and .  

  (4) 

  (5) 

  (6) 

  (7) 

   

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 IM analytical equivalent circuits, (a) q-axis (b) d-axis  

(a) 

(b) 
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    The inductance leakages of the stator  and rotor  in Equations (8)-(9) require their 

respective leakage inductances  and  as well as the magnetising inductance of the 

motor . 

  (8) 

  (9) 

     The current flow within the d-axis and q-axis circuits for both the stator (  and ) and 

rotor (  and ) are found using Equations (10)-(13). The stator d-axis  (10) and q-axis  

(11) currents are fed back to the current controllers. Equation (14) calculates the output torque 

 from the IM which is exported to CarSim. 

 (10) 

 (11) 

 (12) 

 (13) 

 (14) 

     The mechanical rotational velocity of the rotor  is calculated from the wheel’s rotational 

velocity  imported directly from CarSim. The magnitude of the rotor’s magnetic flux 

wave  is estimated using (15) because it cannot be directly measured [146, 279]. The 

magnetic flux is induced in the rotor because of the slip between the electrical rotational 

velocity of the rotor  (16) and the rotating magnetic flux wave of the stator travelling at 

synchronous speed  (17). The supply voltage frequency  is then calculated using (18). 
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 (15) 

 (16) 

 (17) 

 (18) 

     The priority for an IM is being able to induce the target magnetic flux  (19) in the rotor. 

The IM uses constant target up to the motor’s base speed  [107]. The corresponding target 

d-axis current  in Equation (20a) is also constant up to base speed, this is dependent on the 

rated voltage  and the rated supply frequency . At base speed, the B-EMF matches the rated 

voltage of the motor and restricts the flow of current. To allow the motor to reach higher speeds, 

the target flux  and  reduce proportionally with the rotor speed in Equation (20b) [71, 

276]. A scaling factor  is used to control the rate at which  reduces.  

(19) 

 
(20a) 

(20b) 

     Because the maximum motor current is limited to the rated value , the target d-axis current 

 is given priority over the target q-axis current [124]. The upper limit of the target q-axis 

current  (21) thus varies depending with . The target q-axis current  (22) which 

goes towards the current controller is linearly proportional to the accelerator pedal activation 

level .  
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 (21) 

 (22) 

3.2.1.4 Analytical Model of a PMSM  

     The q-axis and d-axis analytical circuits for an I-PMSM are given in Figure 3.4(a)-(b) 

respectively [70, 105]. Equations (23)-(27) simulate the electrical and dynamic characteristics 

of an I-PMSM [281, 282]. Unlike an IM, permanent magnets with constant magnetic flux  

are attatched to the rotor of a PMSM. The cross-sectional design of the magnets within the rotor 

effect the q-axis and the d-axis inductance  and  respectively [283, 284]. In a surface 

mounted PMSM (S-PMSM), the magnets are attached to the surface of the rotor and . 

Whereas in an I-PMSM, the magnets are buried inside the rotor, so disturb the magnetic circuit 

between rotor and stator, this causes  [105]. Since there is no slip between the angular 

velocity of the rotor and the magnetic flux wave of the stator  and no estimation 

methods are required as  is easily measured. The output torque for the I-PMSM is given by 

Equation (27).  

 

(a) 

(b) 

 
 

   

 

 

 

 

 
 

  

 

 

 

Figure 3.4 I-PMSM analytical equivalent circuits, (a) d-axis, (b) q-axis 
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 (23) 

 (24) 

 (25) 

 (26) 

 (27) 

     The difference between  and  within an I-PMSM creates a reluctance torque, if this did 

not occur (like in an S-PMSM) the output torque would be proportional to  and . 

Maximum Torque Per-Amp (MTPA) theory utilises the I-PMSM’s saliency ratio  (28) to have 

the d-axis reluctance torque produce useful work [104, 285, 286].  

 (28) 

     The requested torque by a driver is separated between the d-axis and q-axis currents. As with 

the IM, the target  is proportional to the accelerator pedal activation level  (22). Equation 

(29) first finds a suitable target q-axis limit  for each rotor speed [287]. The motor’s 

rotational velocity lies within one of three operating regions; below base speed, partial-flux 

weakening and full-flux weakening [288]. The partial flux weakening region lies between  

and the critical speed  (32) [106, 284]. The target d-axis current  is then found using (30) 

or (31) according to the flowchart in Figure 3.5 [288].  

 (29) 
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 (30) 

 (31) 

 (32) 

 

3.2.1.5 Voltage Constraints 

     The process of generating the d-axis voltage  and q-axis voltage  is shown in (33)-

(34) [105, 108]. The current controllers’ output unit value d-axis  and q-axis 

 stator voltages. These are first multiplied by the stator’s rated voltage  before the 
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No 

No 

Figure 3.5 I-PMSM MTPA  flow chart 
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respective de-coupling terms are added to them depending on whether an IM or I-PMSM is 

being controlled.  

 (33) 

 (34) 

     As the magnitude between  and  approaches , the d-axis voltage  is given 

priority over  by reducing the upper q-axis voltage limit  (35). Limiting the q-axis 

voltage does inhibit the current controller’s ability to regulate the q-axis current, but this is 

required to allow the motor to reach higher speeds. 

 (35) 

 

3.2.2 DC-AC Inverter Models 

     This section discusses the DC-AC inverter topologies and control methods used within 

Chapter Six whereby the inverter switching devices are controlled using an advanced Space 

Vector Pulse Width Modulation (SVPWM) scheme.  

     The inverter modulates a DC voltage source  into 3-phase AC voltage waveforms ,  

and . For the purpose of this investigation, pole voltages ,  and  are measured 

between the inverter’s neutral point and the individual output phases. The voltage level of the 

inverter is in reference to the number of pole voltages that it is able to generate [173]. The phase 

voltages ,  and  are the potential difference between the pole voltage and an isolated 

neutral point N (i.e. a motor) and are calculated using Equation (36). The phase voltages are 
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used within the voltage vector transformations in Section 3.2.1.1 [167]. The line 

voltages ,  and  (37)-(39) are the potential difference between two phase voltages.  

3.2.2.1 Inverter Switch Control 

     The switching tables for a 5L-NPC and a 5-CHB inverter are given in Table 3.1 and Table 

3.2 respectively. These switching tables are used to simulate the pole voltage produced by each 

phase leg of the inverter. The switching state combination corresponding to a particular 

switching state is fed into a 2D lookup table which outputs the pole voltage. 

     Modelling a DC-AC inverter in this manner makes numerous physical assumptions about 

the system. The switching components act as ideal switches with no resistance, capacitance or 

inductance, there are no copper or switching losses and the effect of the component temperature 

on the physical properties are not considered. However, because the purpose of this inverter 

model is to compare the switching count of different modulation strategies, this modelling 

technique will be adequate for this investigation. Future investigations with more detailed 

simulation tools and physical components will incorporate these physical assumptions back into 

the system at a later date. 

 

 

 (36) 

 (37) 

 (38) 

 (39) 
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Table 3.1 Per-phase switching table for a 5L-NPC inverter [161, 163] 
Switching state 

 
Pole voltage 

 ( ) 
Switch number for phase leg  or  

1 2 3 4 

4  1 1 1 1 

3  0 1 1 1 

2 0 0 0 1 1 

1  0 0 0 1 

0  0 0 0 0 

 

 

3.2.2.2 Inverter Operating Limits 

     The initial target reference voltage vector  must be enclosed by the outer edges 

of the hexagonal SVM diagram as shown in Figure 2.7. Voltages outside the SVM diagram 

cannot be generated by an inverter because no voltage vectors or switching states define the 

Table 3.2  Per-phase switching table for a 5L-CHB inverter [154, 175] 

Switching state 
 

Pole voltage 
(V) 

Switch number for phase  or  
Upper Cell Lower Cell 

1 2 3 4 
4  1 0 1 0 

3  

1 1 1 0 
0 0 1 0 
1 0 1 1 
1 0 0 0 

2 0 

0 0 0 0 
1 1 0 0 
1 0 0 1 
0 0 1 1 
0 1 1 0 
1 1 1 1 

1  

0 1 1 1 
0 1 0 0 
1 1 0 1 
0 0 0 1 

0  0 1 0 1 
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area. The six outermost vertices of the hexagonal SVM diagram represent the  co-

ordinates of the inverter operating under 6-step control. The distance between the centre of the 

hexagon and the outer vertices represent voltage vectors with magnitude , where  is twice 

the maximum pole voltage during 6-step control (see Figure 3.6). 

    

To begin with,  is quantified in terms of a modulation index  using (40). 

This compares the magnitude of  with respect to the magnitude of the fundamental 

component  of the voltage waveform using 6-step control [156, 157, 289].  

     The inverter operates in 6-step control when only the six outermost hexagonal voltage 

vectors of the SVM diagram are used. A diagrammatical view of the inverter’s pole voltage 

waveform under 6-step control is shown in Figure 3.6. The modulation index classifies what 

region the inverter operates in (sinusoidal/linear or overmodulation) [156, 175, 177]. Figure 3.7 

visually shows how the trajectory of (dotted red line) at an angle  against the  

axis is modified for sinusoidal mode, overmodulation mode-I, and overmodulation mode-II in 

one major sector of a 5L-SVM diagram. 

 (40) 

Fundamental harmonic 

Output Waveform 

 

  

 

Figure 3.6 Fundamental component of an inverter operating in 6-step square wave control 
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     For sinusoidal mode  in Figure 3.7(a), the target trajectory of  

does not cross any of the outer hexagon boundaries and completes a full circle as it rotates 

around the SVM diagram. The example reference voltage vectors in Figure 3.7(a) make angles 

 and  against the  axis. The reference voltage vector  is directly used 

as . The inverter remains in sinusoidal mode until the reference voltage reaches the edge of 

the outer hexagonal boundary where  and  as shown in (41). 

(a) 

(b) 

(c) 

Figure 3.7 Modulation modes diagrammatical analysis [177, 204], (a) Sinusoidal, 
(b) Overmodulation mode I, (c) Overmodulation mode II  
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     For overmodulation mode-I , the target trajectory of  

partially crosses the outer hexagonal boundary as shown in Figure 3.7 (b). The reference voltage 

 is forced to follow the trajectory a-b-c-d. The angular velocity of is the same 

as , but the magnitude follows the linear trajectory b-c when  passes the 

crossover angle  from Figure 3.8(a). To account for the reduction in the fundamental 

harmonic voltage endured when travelling down the linear trajectory, the magnitude of 

increases to (42) when it re-enters the hexagonal boundaries. 

     As  continues to increase,  reaches the outer vertices of the hexagonal boundary and the 

inverter enters overmodulation mode-II  as shown in Figure 3.7(c) where 

both the magnitude and angular velocity of  are modified (43). The reference voltage 

is held at one of the hexagon vertices until  passes the required holding angle  from 

Figure 3.8(b) before travelling along the linear trajectory to the next hexagonal vertex. 

 

 (41) 

 (42) 

  (43) 
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3.2.2.3 Inverter Control for Traction Motor Four-Quadrant Operation 

     The traction motor of an HEV/EV is required to work in all four-quadrants of the torque-

speed curve. These quadrants include; forward tractive, forward braking, reverse tractive and 

reverse braking. The operating mode is dependent on the direction of rotor spin (forward or 

reverse) and the directional flow of the motor’s supply current to apply either tractive or 

negative torque. Regardless of the operating quadrant, the reference voltage vector will still be 

enclosed by a hexagonal SVM diagram. The SVPWM methods examined in this thesis enable 

the motor to operate in all four quadrants. 

 

3.2.3 Battery Pack Model 

     The auxiliary power load  of an HEV/EV represents the power consumed by the 

headlights, heating system, air-conditions pumps, etc. Along with the power consumption of 

the motor  and the charging power of the APU , the total energy  within the battery 

(a) 

(b) 

Figure 3.8 Modulation mode modifier [172, 178] (a) Crossover Angle, 
(b) Holding Angle  
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pack is calculated using Equation (44). The State of Energy (SOE) can be calculated using 

Equation (45) which offers a percentage of the battery pack’s energy level with respect to its 

maximum capacity . 

3.2.4 Vehicle Dynamics 

3.2.4.1 CarSim Vehicle Modelling 

     CarSim is a commercial vehicle simulation tool widely used by vehicle manufacturers and 

researchers around the globe. Figure 3.9 graphically shows the geometry of the vehicle 

parameters used within CarSim [234, 235].   

     The vehicle model in Figure 3.9 consists of four 2-degree-of-freedom suspension systems 

connected by the sprung mass . The components at each corner of the vehicle are denoted 

by the subscript  in reference to whether they are on the front right (fr), rear right (rr), front 

left (fl) or rear left (rl) corner of the vehicle, i.e. . The model accounts for the 

global longitudinal , lateral  and vertical  positions of the sprung mass as well as its 

roll , pitch  and yaw  angle about its centre of mass at height . The model requires 

the distance  between  and the roll axis, the yaw inertia , roll inertia  and pitch 

inertia  of the sprung mass. 

     The model requires the basic geometrical parameters of the vehicle including the 

wheelbase , the distance between  to the front axle  and rear axle  as well as the track 

width of the front  and rear axle . The steer angle  of the wheels are controlled by 

CarSim’s internal closed-loop steering system to follow a predetermined path.  

 (44) 

 (45) 
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     The suspension system consists of unsprung masses on the front axle  at height  

above the road   with a spring coefficient   and a damping coefficient  . The 

suspension system from the tyres are represented by spring coefficient  and a damping 

coefficient  . The front and rear anti-roll bars are represented by torsional springs with 

coefficients   and   respectively. The torsional characteristics of the chassis are 

represented by spring coefficient  and a damping coefficient . 

     CarSim offers detailed multiple degree of freedom vehicle body dynamics, tyre rotational 

dynamics, steering control, suspension response, braking system control and powertrain 

models. Chapter Four and Chapter Seven use CarSim vehicle models to simulate the dynamics 

of the vehicle using the control systems developed in their respective chapters. CarSim allows 

for direct communication between itself and MATLAB via a dedicated CarSim toolbox in 

 

 
  

  

 

 

 

 

  

 

 
 

 

 

 

 

 

 

   
 

 
  

 

Figure 3.9 14 Degree of Freedom vehicle model [239, 240] 
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Simulink. Table 3.3 shows the parameters transferred between CarSim and 

MATLAB/Simulink.  

Table 3.3 Input-output parameters between CarSim and MATLAB/Simulink.  

Thesis 
Chapter 

         CarSim Import              CarSim Export 

Parameter Symbol Parameter Symbol 

4 
Motor torque (Nm)  Longitudinal velocity (km/h)  

Brake pedal force (N)  Wheel rotational velocity (rad/s)  

7 

Longitudinal tyre 
force (N)  

Vertical tyre force (N)  

Velocity at wheel-road (km/h)  

Lateral tyre force (N)  

Longitudinal velocity (km/h)  

Lateral velocity (km/h)  

Vehicle Yaw rate (rad/s)  

Front right steer angel (deg°)  

Front left steer angel (deg°)  

 

3.2.4.2 The Tyre Model 

     Due to integration errors within CarSim, external wheel slip control techniques generate 

unstable tyre responses. Since Chapter Seven requires direct control of the wheel slip, the tyres 

and braking system are modelled in MATLAB/Simulink, the longitudinal and lateral tyre forces 

are then exported back to CarSim to simulate the dynamics of the vehicle body.  

     The wheel slip ratio  (46) requires the longitudinal velocity at the centre of the 

wheel  and the velocity of the tyre’s outer surface at a radius  with a rotational 

velocity .  

 (46) 



75 
 

     The diagrammatical view of the wheel slip velocity components are given in Figure 3.10(a) 

and the wheel’s sideslip angles are shown in Figure 3.10(b). The longitudinal velocity of the 

wheels  (47)-(50) and the individual wheel sideslip angle  (51)-(54) are required for the 

tyre model. 

 

 (47) 

 (48) 

 (49) 

 (50) 

 (51) 

 (52) 

 (53) 

 (54) 

 

 
 

 

 

 

 
 

 

 

 

(a) (b) 

Figure 3.10 Wheel dynamics, (a) Wheel Slip, (b) Wheel sideslip angles 
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    The Pacejka Magic Formula produces accurate results for both steady-state and small slip 

angle transients (the points of concern within this thesis) in both longitudinal and lateral 

directions [290]. For larger slip angles beyond stable wheel slip control (past peak friction), a 

transient tyre model which accounts for the larger contact patch time delay would be required, 

but these models need more parameters and have a higher computational burden [291]. The 

over parameterisation of the Magic Formula model requires an extensive series of experimental 

tests to find all the required parameters if they are not provided. Even with these limitations, 

the high accuracy and low computational effort of the Magic Formula has made it used 

throughout literature for vehicle simulation and VSC research [235, 271, 272, 292]. 

     The tractive force  (55) and side forces  (56) of the wheels from the Pacejka magic 

formula are split into the longitudinal forces  (57) and lateral forces  (58). The tyre-

road force characteristics are represented by a peak value , shape factor , stiffness factor  

and a curvature factor . The effect of the wheels sideslip angle on the stiffness and shape 

factors are accounted for with parameters  and  respectively. 

 (55) 

 (56) 

 (57) 

 (58) 

     The rotational velocity of the wheel  (59) depends on the rotational inertia of the 

wheel , longitudinal tractive force of the tyre  as well as the brake torque  and 

drive torque  supplied to the wheel.  

 (59) 
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3.2.5 Simplified HEV/EV Modelling techniques 

3.2.5.1 Simplified Traction Motor Model 

    The detailed analytical models of the traction motors offer a good trade-off between accurate 

modelling of the motor’s dynamic and electrical characteristics against the time-space 

modelling complexity. However, the detailed parameters used to create these models may be 

difficult to obtain from motor manufacturers and performing a series of experiments to find 

them is impractical if numerous motors are being considered [293, 294].   

     Where detailed analytical motor models are not required, the output torque  for a prime 

mover (traction motor or ICE) is calculated using a 2D look-up table (60). The lookup table 

requires the full load output torque  at the current prime mover rotational velocity  and 

the accelerator activation level . The electrical efficiency map  of the 

traction motor is used to calculate the electrical power consumption of a traction motor  (61) 

 (60) 

 (61) 

 

3.2.5.2 Simplified ICE Model 

     The torque-speed characteristics of an ICE are simulated using a similar manner to the 

simplified traction motor models using Equation (60) by replacing  or via an 

equivalent throttle map. The full load torque-speed curve of the traction motors are now 

representative of the ICE peak torque-speed curve  and the efficiency maps of Equation 

(61) are replaced by the ICE’s fuel consumption and tailpipe output emissions maps. See 

Section 5.2.3 for an example of the characteristic curves used for an ICE. 
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3.2.5.3 Simplified APU Model 

     The APU is defined by numerous factors including; output power  (kW), fuel 

consumption (L/hr) and output emissions (g/s). These parameters are integrated over time to 

calculate the total energy provided to the DC-Link, total fuel consumption and the total output 

emissions over a duty cycle. 

     The APU model within this thesis provides power  to the DC-link in one of 3 ways; full 

power mode, idle mode, and off. During full power mode, the genset provides full power to the 

DC-Link and consumes fuel at its full rate. The APU is turned on-off to keep the battery pack’s 

SOE within safe upper and lower working limits. During idle mode, the genset provides no 

power to the DC-Link but consumes fuel at a fraction of the rated value. For the case study in 

Section 5.2, a value of 10% of the rated fuel is consumed during idle mode to highlight a worst-

case scenario. When the genset is off, no power is provided to the DC-Link and no fuel is 

consumed and the HEV operates in full EV mode. 

     The manufacturer of the genset used in the case study in Section 5.2 recommends idle mode 

to be used for 60 seconds before and after full power mode in order to prolong the lifetime of 

the genset. If the SOE of the battery pack reaches the lower limit during this idling period, the 

genset switches to full power mode. This overruling control might adversely affect the genset’s 

lifetime if it occurred frequently, but the more expensive battery pack’s sensitivity to under-

discharging is a higher priority.  

 
3.2.5.4 Simplified Vehicle Dynamics 

     Chapter Five uses a simplified vehicle model to reduce the computational effort required for 

long simulations. The vehicle in Chapter Five is only simulating straight line velocity dynamics 

with no roll, pitch, yaw or wheel spin dynamics considered.  
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     A Fuzzy Logic (FL) speed controller is used to control the vehicle’s speed which attempts 

to follow a target velocity profile by generating appropriate accelerator  and brake 

pedal  activation levels [128, 295]  (see Section 4.1.1). 

     A vehicle model created in MATLAB/Simulink contains the basic forces acting upon the 

vehicle. The tractive force  at the road-wheel interface (62), the rolling resistance 

 of the tyres (63), the aerodynamic drag  (64) and the brake force  (65) are 

all included in the model [49, 53, 296]. The tractive force requires the output torque from the 

prime mover , gear ratio of the final drive , transmission ratio , their combined 

efficiency  and the wheel’s rolling radius . As the vehicle under investigation in Chapter 

Five is an aeroplane pushback vehicle, the mass of the aeroplane being towed at the current 

time  is included in (63) to account for the additional rolling resistance from the 

aeroplane. Removal of  allows this vehicle model to be used for conventional passenger 

vehicle simulations. The rolling resistance is also dependant on the acceleration of the vehicle 

under gravity  and the coefficient of rolling resistance  between the tyre and road interface. 

The aerodynamic drag force  requires the frontal area of the vehicle , coefficient of 

aerodynamic drag  and the density of the air . The combined brake force  uses a 

linear relationship between the brake pedal activation level  and the maximum brake force 

available to the road-wheel conditions . 

     The effective additional towing mass of the vehicle  (66) is dependent on the rotational 

inertias of the prime mover , transmission , final drive  and the wheels . The 

longitudinal acceleration  of the vehicle is then calculated using (67). The rotational speed of 

the prime mover  is then calculated using (68).  
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 Statistical Analysis Methods 

     This section presents the statistical analysis tools used to evaluate the accuracy of the 

modelling techniques described in Section 3.2 and the performance of the control methods 

developed in this thesis against pre-existing control schemes.  

 

3.3.1 Controller Error Analysis 

     The Symmetrical Mean Absolute Percentage Error (SMAPE) (69) quantifies the accuracy 

of a control system with an average percentage error. This is done by comparing the target 

(forecast) values  and the actual values  at the time interval  in a time series with  

data points. The smaller the SMAPE, the greater the accuracy of the control system. Throughout 

this thesis, SMAPE values below 5% are deemed acceptable error percentages to state that the 

control system is sucessfully able to regulate its control variables.  

 (69) 

 (62) 

 (63) 

 (64) 

 (65) 

 (66) 

 (67) 

 (68) 
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     The advantage this version of the SMAPE over other average percentage error quantifiers 

for time series data is that this SMAPE equation will still work when . However, this 

version of the SMAPE is slightly sensitive to percentage value variances between 

overestimation and underestimation, but it is still commonly used in practice as this variance is 

usually small enough to be negligible [297]. 

  

3.3.2 Waveform Harmonic Distortion 

     The Total Harmonic Distortion (THD) (70) is a measure of how much a waveform has 

distorted from its fundamental component  due to other harmonics  between the 

second harmonic ( ) and an upper limit . The Weighted-THD (WTHD) (71) 

places more emphasis on low order harmonic distortion by giving high frequency harmonics a 

lower weighting factor [163]. Minimising these values is a key objective for DC-AC inverters 

as they attempt to produce pure sinusoidal voltage and current waveforms.  

3.3.3 Vehicle Dynamic Performance Indices 

    The performance indices (72)-(75) are used to evaluate dynamic and braking performance of 

a vehicle during an emergency braking scenario. The total braking time ( ) and longitudinal 

braking distance ( ) are primarily used for straight line braking scenarios, but these do not 

account for any steering or yaw rate control.  

 (70) 

 (71) 
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     The performance index (72) compares the braking severity and steering controllability 

between the start of the braking scenario at time  until the vehicle comes to a complete stop 

at time  [259]. This index relies on the peak COF between the road and wheel interface , the 

initial velocity entering the braking manoeuvre  and a weighting factor  ( . The 

weighting factor is used to place more emphasis on the braking severity or the yaw rate control.  

     The Integrated Yaw Rate Error (IYRE) (73) integrates the error between the vehicle’s target 

yaw rate  and the actual yaw rate  over time. Low IYRE values show that the vehicle has 

good steering responsiveness. The Integrated Sideslip Error (ISSE) (74) integrates the vehicle 

sideslip angle  over time. Low values of the ISSE show that the vehicle has good stability.  

     The Integrated Steering Control (ISC) (75) shows how much driver steering intervention is 

needed to maintain control by integrating the steer angle  over time. Inexperienced drivers 

may be unable to control the vehicle if excessive steering input is required. 

 (72) 

 (73) 

 (74) 

 (75) 
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 Model Verification Procedure 

3.4.1 Traction Motor Model Verification 

     The traction motor models are constructed in MATLAB/Simulink using the equations 

described in Section 3.2.1 using basic components (integrators, multipliers, etc.). To ensure that 

the motor models are constructed correctly, their dynamic and electrical performance are 

compared to the commercial Powertrain Blockset™ motor models. The models within this 

Blockset were chosen over other commercial MATLAB/Simulink models because they are 

based on the same analytical equations and the same assumptions described in Section 3.2.1. 

This makes them not suitable for motor design application, but acceptable for HEV/EV and 

standalone motor control applications. The commercial models include additional features such 

as viscous damping, power loss considerations and bandwidth current control. The additional 

complexity of the commercial models increase the simulation time during parallel simulations 

and these commercial models cannot be easily deconstructed to examine the internal control 

signals and do not permit exporting the internal control variables required for the flux wave 

estimation (see Section 3.2.1.3). The commercial motor models are therefore not used for the 

main investigation of this thesis but confined to this verification investigation and act as a 

sensibility check of the newly constructed MATLAB/Simulink models to ensure that they 

produce similar magnitude results. 

     The motor models for this verification investigations are modelled independently from a 

vehicle and instead have a load torque  providing resistance applied to the rotor with 

rotational inertia . An IM and an I-PMSM motor with parameters given in Table 3.4 are used 

in both MATLAB/Simulink and within the Powertrain Blockset™ models [143, 298]. These 

motors are controlled using identical FOC architectures as shown in Figure 3.2 of Section 

3.2.1.2 and follow the same target speed-torque profile. The PI controllers for the IM and I-
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PMSM motor were tuned for the specific motors using the controller gains in Table 3.5. Data 

used for the SMAPE results in Table 3.6 were taken at 5x10-4s discrete time steps, data points 

lower than 1% of the peak control variable are negated. 

Table 3.4 IM and I-PMSM parameters [143, 298] 

Parameter Symbol 
Motor 

IM I-PMSM 
Number of poles  4 8 

Rated power (kW)  37.5 100 
Base speed (rpm)  1675 3000 
Rated Voltage (V)  380 155 
Rated Current (A)  78 450 

Stator resistance (Ω)  0.087 0.0083 
Rotor resistance (Ω)  0.228 - 

Magnetising inductance (mH)  34.7 - 
Leakage stator inductance (mH)  0.8 - 
Leakage rotor inductance (mH)  0.8 - 

Rotor flux max (Wb)  0.97 - 
Magnet flux (Wb)  - 0.071 

D-axis inductance (mH)  - 0.174 
Q-axis inductance (mH)  - 0.293 

Rotor Inertia (kg.m2)  0.2 0.5 

Table 3.5 PI controller gains for IM and I-PMSM model comparison investigation 
Motor Controller Proportional gain Integral gain 

IM 

 1 0.2 
 10 10 
 10 10 
 1000 100 

I-PMSM 
 0.1 0.1 
 1 0.2 
 1 0.2 

     The comparison between the IM and I-PMSM motor models are given in Figure 3.11 and 

Figure 3.12 respectively.  
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(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

Figure 3.11 IM model verification simulation (a)  comparison, (b)  comparison, 
(c)  comparison, (d)  voltage comparison, (e)  comparison, (f)  comparison, 

(g)  comparison 
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(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

Figure 3.12 I-PMSM model verification simulation (a)  comparison, (b)  
comparison, (c)  comparison, (d)  voltage comparison, (e)  comparison, (f)  

comparison, (g)  comparison 
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     The dynamic and electrical performance of the motors constructed from basic 

MATLAB/Simulink components perform comparably to the commercially available models. 

In addition, the FOC schemes are able to suitably maintain the control variables while 

conforming to the systems current and voltage limits.  

     The SMAPE analysis between the MATLAB and commercial motor models given in Table 

3.6 show that the error percentage between the two models are within acceptable levels. 

Therefore, the analytical motor models and FOC scheme architecture produce comparable 

results to the commercial models (accounting for similar limitations and simplifications as 

discussed) and deemed suitable for use within the main investigation of this thesis. 

Table 3.6 SMAPE analysis between the MATLAB and Commercial IM and I-PMSM 
models.  

Control 
Variable 

        SMAPE (%) 
IM I-PMSM 

 9.6x10-6 0.0051 
 0.0152 2.77 
 0.0115 1.37 
 0.825 3.41 
 0.015 3.65 
 0.067 2.83 
 0.0012 0.0049 

 

 

3.4.2 DC-AC Inverter Model Verification 

     To ensure that the inverter model described in Section 3.2.2 is constructed correctly, the 

output voltage for this model is compared to the output voltage of a CHB inverter modelled in 

the Simscape environment of MATLAB/Simulink. This is to verify that both models output the 

correct voltage level for a given combination of command signals. The Simscape CHB inverter 

is constructed using the 5L-CHB architecture as shown in Figure 2.4(b) using 32 ideal switches 

and 8 ideal DC voltage sources with parameters given in Table 3.7. Simscape models are widely 

used throughout literature for DC-AC inverter modelling and control applications [160, 299, 
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300, 301]. Because ideal components are being used for the Simscape model, they will have 

the same simplifying physical assumptions to the inverter model described in Section 3.2.2, but 

the justification remains the same in that only the output voltage is being checked for this 

inverter topology and control signals. 

Table 3.7 Simscape DC-AC inverter model parameters 
Parameter Value 

DC Source 
Voltage (V) 100 
Internal Resistance (Ω) 0.1 
Charge Capacity  Infinite 

Switches 
Closed Resistance (Ω) 0.01 
Open Resistance (Ω) 1x108 

 

 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

Figure 3.13 DC-AC inverter model comparison, (a)  at , (b)  at , 
(c)  at , (d)  at , (e)  at , (f)  at , (g)  at 

, (h)  at  
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     The inverter switching devices are controlled using the SVPWM scheme described in 

Section 6.1. The inverter uses a switching frequency of  to create a voltage 

waveform with a fundamental harmonic of  over a range of modulation indexes. The 

comparison between the two inverter models is shown in Figure 3.13. Both models produce 

identical voltage waveforms to one another over the range of output waveform modulation 

indices. However, due to the large number of parallel simulations required for the investigation 

in Section 6.2, the simpler 2D look-up tables will be used for the simulation investigation in 

this thesis instead of the Simscape model to reduce simulation time.  

 

3.4.3 Tyre Model Verification 

     To ensure that the tyre models are constructed correctly in MATLAB/Simulink, their tractive 

force and dynamic performance is compared to the commercial Powertrain Blockset™ tyre 

model. The models within this Blockset were chosen over other commercial 

MATLAB/Simulink models because they are based on the same Pacejka Magic Formula 

equations described in Section 3.2.4.2. The commercial models will therefore also suffer with 

the limitations discussed in Section 3.2.4.2 but still act as a suitable verification tool and act as 

a sensibility check of the newly constructed MATLAB/Simulink models to ensure that they 

produce similar magnitude results. 

     The Powertrain Blockset™ tyre model is more detailed as it includes greater detail about the 

tyre’s relaxation length, contact patch and damping coefficient. However, this model does not 

consider the sideslip angle or lateral tyre forces and therefore cannot be used for the VSC 

vehicle model in Chapter Seven, it will therefore be confined to the comparison simulations for 

the longitudinal tractive forces using the parameters in Table 3.8. The applied axle torque, 

longitudinal speed profile and wheel dynamics for both models are given in Figure 3.14.  
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Table 3.8 Longitudinal tyre parameters for commercial and Simulink tyre models 
Parameter Value 

 (Kg.m2) 0.8 
Relaxation length (m) 0.05 

 (m) 0.3 
Inflation pressure (kPa) 220 

  1 
  2.7 
  4 
  1 

 (N) 1000 
 (kg) 100 

 

 

     From the results in Figure 3.14 and the SMAPE comparison values in Table 3.9, both the 

commercial and Simulink tyre models have comparable longitudinal performance to one 

another validating the use of the MATLAB tyres for the main investigation within this thesis. 

(a) 

(b) 

(c) 

(d) 

Figure 3.14 Tyre model verification, (a) Applied axle torque, (b) , (c) , (d)  
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Data for the SMAPE values in Table 3.9 used at 1x10-6s discrete time steps. Data points lower 

than 1% of the peak control variable are negated. 

Table 3.9 SMAPE evaluation between the Simulink tyre model and commercial tyre model.  
Control Variable SMAPE (%) 

  1.43 
  1.41 

  1.37 
 

3.4.4 Control System Verification 

     There are numerous levels of controller verification, each method progresses upon the 

previous and increasing the amount of verification. The different methods should be applied at 

different times of the controller development process as follows: 

- Model-in-the-Loop (MIL) – The control system is first designed with a plant model in a 

fully simulated environment [302]. The parameters of the control system can be initialised, 

tested and adjusted quickly to obtain a first iteration of the controller design which will 

operate as intended.  

- Software-in-the-Loop (SIL) - The controller designed using the MIL simulations now runs 

on a simulated version of the hardware which the controller is intended to be implemented 

into [303]. During the SIL stage, any limitations or undesirable characteristics of the 

physical hardware will be replicated in the simulation. As both MIL and SIL still operate in 

a fully simulation-based environment, adjustments to the control system can be made and 

re-tested quickly.  

- Processor-in-the-Loop (PIL) – Here, the MIL controller is compiled into code that enables 

it to run on physical hardware [302, 304, 305]. As a precursor to the final hardware 

verification, the key objectives for PIL simulations are to ensure that the compiled code 

performs numerically identical to the MIL counterparts, check for compiler optimisation 
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flags and the memory footprint of the compiled code [306]. PIL is able to run the controller 

in pseudo-time on physical hardware with a simulated plant environment. 

- Hardware-in-the-Loop (HIL) – This is the final stage of the verification process before the 

controller is implemented on a physical plant. The controller must run successfully in real-

time with a simulated plant environment. 

     A control system that can successfully run in real-time for a HIL simulation can be classed 

as validated and ready for full scale implementation with a physical control plant. PIL however 

acts an ideal bridge between MIL/SIL and HIL. In the absence of real-time simulation tools, 

the pseudo-time PIL simulation can be used to verify the controller code and compiler methods 

ahead of the HIL simulation. PIL simulations will be carried out throughout this thesis as a 

method of verifying that the compiled control systems behave numerically identical to their 

MIL counterparts. The HIL validation procedure will be conducted in the future when real-time 

simulation and hardware tools become available. 

     An Arduino Mega 2560 with specifications given in Table 3.10 acts as the physical hardware 

for the PIL simulations. The open source Arduino toolbox for MATLAB/Simulink enables code 

generation which directly converts the controllers designed in Simulink into code and directly 

implements it onto the Arduino. 

Table 3.10 Arduino Mega 2560 microcontroller technical specification [307] 

Information Specification 

Microcontroller ATmega2560 

Connection Type USB 

Operating Voltage 5 V 

DC Current per I/O Pin 20 mA 

Flash Memory 256 kb 

SRAM  8 kb 

EEPROM 4 kb 

Clock Speed 16 MHz 
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     A USB connection between the Arduino and the computer running the software-based 

simulations enable the two environments to communicate with one another. The flowchart of 

controller inputs and outputs between MATLAB/Simulink, CarSim and the Arduino is shown 

in Figure 3.15. The communication between MATLAB/Simulink and CarSim is confined to 

the software environment, only during the PIL simulations is the Arduino required.  

 

     Only one controller (Fuzzy Logic, PI etc) from each system is able to run on the Arduino 

when communicating with MATLAB/Simulink at a single time. Therefore, numerous PIL 

simulations are conducted for each process or scenario investigated within this thesis. The 

individual control system variables for each PIL simulation which are exported to the Arduino 

and imported back into Simulink are given in Table 3.11, the reader should refer to the 

corresponding chapters for further detail on the control variables under investigation. All the 

CarSim 

Vehicle 
Model 

MATLAB/Simulink 
Environment 

Arduino 
Mega 2560 

Physical hardware 

Computer Software 

CarSim Export 

CarSim Import 

USB 
Connection Si

m
ul

in
k 

Ex
po

rt 

Sim
ulink Im

port 

Controller uploaded 
from Simulink  
pre-simulation 

Figure 3.15 PIL control flowchart using Matlab/Simulink, CarSim and an Arduino Mega 
2560 microcontroller 
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controllers in Table 3.11 ran at a discrete time step of 0.001s. However, due to the high 

computational load on the computer running the simulations and use of serial connection 

between the Arduino and the computer, the PIL simulations do not run in real time. Therefore, 

the PIL simulations are conducted before the main simulation study to verify that the compiled 

controller code acts identically to the MIL simulations which then take over for the remainder 

of the investigation.  

     Chapter Four and Chapter Seven each develop new control systems. The results of the PIL 

simulations are presented in their respective chapters before the simulation investigation begins 

to ensure that the controllers are unaffected by the code compiler methods. Because Chapter 

Five introduces a new traction motor sizing strategy which uses no controllers, no PIL 

simulations are required. Even though Chapter Six does develop a DC-AC inverter control 

methodology, no controllers (PI, FLC SMC) are used, instead a series of algebraic functions 

simply generate appropriate switch controls. Future efforts will be undertaken to validate the 

control methodology in Chapter Six by controlling the physical switches of an inverter, but no 

PIL simulations are conducted at this stage. 

 

Table 3.11 Arduino PIL controller input-output parameters 

Thesis Chapter Controller Name Simulink Export Simulink Import 

4 

FL-Speed    ,  

FL-Current    

FL-Flux    

7 

FL-VSC-GR    

FL-VSC-FR    

FL-VSC RL    
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 Summary 

     This chapter has presented the modelling and control techniques used to represent the 

traction motor, DC-AC inverter and vehicle dynamics required for the research conducted 

within the remainder of this thesis. The suitability of the models created in MATLAB/Simulink 

for use within HEV/EV simulations have been verified by comparing their outputs against 

commercially available equivalent simulation tools. How and why these models are used for 

the various research activities within this thesis is given and why they were chosen over the 

commercially available methods has also been explained. 

     The statistical analysis methods used to verify the modelling techniques and analyse the 

control algorithms in the remainder of this thesis have also been introduced. The explanations 

as to how and why they are used accompany their explanation. These statistical methods are 

used to quantify the performance of the control systems developed within this thesis against the 

state-of-the-art predecessors. 

     The PIL experimental procedures used to verify the intelligent control algorithms have been 

presented. These are used to confirm that the control systems can perform numerically identical 

to their software-based counterparts once they have been compiled for use on embedded 

hardware.  
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4. Chapter Four – Fuzzy Logic Field-Oriented Control for 
Traction Motors 

Fuzzy Logic Field-Oriented Control for Traction Motors 
 

 

     The robustness of Fuzzy Logic (FL) controllers in previous literature have shown them to 

be insensitive to system and parameter changes, making them a suitable candidate for Field-

Oriented Control (FOC) [140, 141, 142]. The author proposes a FL controller based FOC (FL-

FOC) system consisting of independent FL; vehicle speed, traction motor  traction motor 

 and IM  controllers developed in Section 4.1. These controllers take place in the FOC 

architecture in Figure 3.2 of Section 3.2.1.2. The aim of the FL-FOC scheme is to stably control 

the FOC objectives within acceptable error tolerances with any HEV/EV powertrain 

architecture system and multiple traction motor topologies without the need for re-tuning.  

     Although this chapter only investigates vehicles powered purely by traction motors, as is the 

case with series-HEVs and pure EVs, it is possible to extrapolate this system to control the 

electric motors of other HEV powertrain architectures (parallel, power-split) with minimal 

changes to the control architecture. This is explained where necessary within this chapter. 

     Section 4.1 presents the FL controllers used within the FL-FOC system whereby the PIL 

simulations are then given in Section 4.2. The performance of the FL-FOC system in 

comparison to a PI based FOC scheme is given in Section 4.3 with an investigation into the 

systems robustness in Section 4.4.  

     The contents of this chapter have been published in a journal article which presented the FL-

FOC scheme [295] and at a conference which analysed its robustness in further detail [308]. 
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 Fuzzy Logic Controllers within the FL-FOC Scheme 

     The FL-FOC scheme consists of independent FL speed,   and  (in an IM) 

controllers. These controllers use the linguistic terms Positive Large (PL), Positive Medium 

(PM), Positive Small (PS), Zero (Z), Negative Small (NS), Negative Medium (NM) and 

Negative Large (NL). 

 

4.1.1 Fuzzy Logic Speed Controller 

     The membership functions for the FL speed controller are given in Figure 4.1 and the rule 

base is given in Table 4.1. This controller uses the longitudinal velocity error  (76) at time 

 as the first input and its time derivative as the second input to generate a suitable pedal 

activation level.  

 (76) 

Table 4.1 FL Speed Controller rule base 

  
NL NM NS Z PS PM PL 

 

NL NS Z Z PS PM PM PL 
NM NM NS Z Z PS PM PL 
NS NM NM NS Z PS PM PL 
Z NL NM NS Z PS PS PM 
PS NL NM NS Z PS PS PM 
PM NL NM NS Z Z PS PM 
PL NL NM NM NS Z Z PS 

     An input range of  km/h in Figure 4.1(a) is used for the controller’s first input  

because this offers the best trade-off between a low steady-state velocity error and control 

realism. Reducing this input range improves the steady-state error of the vehicle, but it also 

resulted in erratic pedal control. For this investigation, pulsating the accelerator or brake pedal 

more than 2 times per second (>2 Hz) with >20% activation level is considered to be erratic 

pedal control. Larger pedal activation levels at this frequency (or higher frequencies) are 
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deemed to be beyond typical achievable vehicle speed control by a real driver. Higher pedal 

activation levels ( ) at a lower frequency ( ) are permitted.  The second input range 

 km/h/s in Figure 4.1(b) for the time derivative of  is used because  km/h/s 

approaches the acceleration ability of high performance sports vehicles (0-60 mph time ≈ 4.8 

s). Most typical drivers would accept  km/h/s to be a large acceleration value.  

 

     A controller output with a magnitude 1 shows that the accelerator or brake pedal is fully 

activated. Positive speed controller outputs represent accelerator pedal activation levels and 

Figure 4.1 FL speed controller membership functions, (a) Input 1 - , 
(b) Input 2 – , (c) Output - Pedal movement 

(a) 

(b) 

(c) 
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negative outputs represent brake pedal activation levels. An accelerator pedal activation level 

corresponds to the driver requesting a motor torque output to either accelerate the vehicle or 

maintain a steady cruising speed. For series-HEVs and pure EVs, the positive unit value output 

from the controller is multiplied by the motors rated current  and separated into d and q axis 

currents for the respective motor topologies to generate the required output torque (see Section 

3.2.1.3-3.2.1.4). For other HEV powertrain architectures (parallel, power-split, etc.), the 

positive unit value output is first separated between the individual torque sources (ICE and 

traction motor). The fraction of the total torque required to be produced by the traction motor/s 

then follow a similar process as for a pure EV. Brake pedal activation levels correspond to the 

driver requesting brake torques to decelerate the vehicle.  

Some examples of the rule base for the for the FL speed controller are explained as follows: 

- If  is (Z) and  is (Z) then Pedal Movement is (Z). If the vehicle is travelling at its 

target velocity and is not accelerating or decelerating, then no accelerator or brake pedal is 

required.  

- If  is (NL) and  is (NS) then Pedal Movement is (NM). Even though the vehicle is 

travelling much faster that its target velocity, the brake pedal does not need to be fully 

applied because the vehicle is already decelerating towards the target velocity. 

- If  is (PL) and  is (NS) then Pedal Movement is (PL). If the vehicle is travelling 

much slower than the target velocity and decelerating, the accelerator pedal is fully 

applied to bring the vehicle back up to the target velocity. 

 

4.1.2 Fuzzy Logic Current Controller 

     Both  and  current are controlled using identicle indpendent FL current controllers. 

The FL current controllers use the membership functions given in Figure 4.2 and the rule base 

Table 4.2. These controllers use the instantaneous current error  (77) as the first input 
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and the change in current error from the previous discrete time step  (78) as the second 

input [148, 287].  

 
(77) 

 (78) 

 

     In the same way as the FL speed controller, the input ranges for  (Figure 4.2(a)) and 

 (Figure 4.2(b)) were chosen as they offered the best steady-state performance while 

(a) 

(b) 

(c) 

Figure 4.2 FL Current controller membership functions, (a) Input 1 - , 
(b) Input 2 – , (c) Output –  
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remaining stable. The FL current controllers output the voltage  (Figure 4.2(c)) as a unit 

value, these are then multiplied by the rated stator voltage (see Section 3.2.1.5). 

Table 4.2 FL current controller rule base 

  
N Z P 

 
N Z PS PL 
Z NS Z PS 
P NL NS Z 

     Some examples of the rule base for the FL current controllers are explained as followed:  

- If  is (Z) and  is (Z) then  is (Z). When the current error is zero and the 

error has not changed since the previous time step, the voltage output is zero. The only 

time this condition occurs is when the target voltage is zero, otherwise the (Z) 

membership functions is used to scale down the applied voltage from the other rules. 

- If  is (N) and  is (P) then  is (NL). When the instantaneous current is 

much larger than the target value and is increasing, then a large negative voltage is used to 

prevent overshooting the target current.  

- If  is (N) and is (N) then is (Z). When the instantaneous current is much 

larger than the target value, but the error is reducing, then zero voltage is used because the 

current is going to reach the target value without any intervention. 

 

4.1.3 Fuzzy Logic Flux Controller 

     The same FL speed and current controllers are used in both the I-PMSM and IM FOC 

systems, but a third FLC is used to control the magnitude of the magnetic flux wave  (by 

outputting ) for an IM. The FL flux controller uses the error of the rotor’s magnetic flux  

(79) and its time derivative as the two inputs in Figure 4.3(a)-(b) respectively. The controller 

then outputs a target d-axis current  in Figure 4.3(c) as a unit value, this is then multiplied 
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by the motor’s rated current . The membership functions and rule base for the FL flux 

controller are given in Figure 4.3 and Table 4.3 respectively. The rules and membership 

function input ranges were chosen in a similar manner to the FL speed controller in order to 

prevent overshooting the target objectives. 

 (79) 

 

 

(a) 

(b) 

(c) 

Figure 4.3 FL Flux controller membership functions, (a) Input 1 – , 
(b) Input 2 – , (c) Output –  
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Table 4.3 FL Flux Controller rule base 

  
NL NM NS Z PS PM PL 

 

NL NS Z PS PM PL PL PL 
NM NM NS Z PS PM PL PL 
NS NM NM NS Z PS PM PL 
Z NL NM NS Z PS PM PL 
PS NL NM NS Z PS PM PM 
PM NL NL NM NS Z PS PM 
PL NL NL NL NM NS Z PS 

     

     The role of  is to induce a magnetic flux wave within the IM’s rotor. However, if the 

properties of the IM changes, causing the target magnetic flux  to no longer be represented 

by a previously defined  (e.g. due to temperature changes), then the performance of the IM 

becomes compromised. Directly controlling  avoids this scenario so long as it is estimated 

accurately. In addition, permitting a larger  current for start-up operations in order for  to 

reach its target value quicker is useful for motors that have large time constants.  

 

 FL-FOC Verification 

     Two separate driving cycles using two different vehicles are used within the PIL simulations 

to examine how the FL-FOC scheme interacts with different vehicle systems. The first PIL 

driving scenario uses a FWD C-class hatchback (vehicle B in Table 4.4) using two independent 

37.5 kW in-wheel IMs (IM#1 in Table 4.5) following the US Federal Drive Cycle. This drive 

cycle is a close representation to real-world driving scenarios and tests the controller’s ability 

to handle aggressive acceleration and decelerations. The second PIL driving scenario involves 

a RWD E-Class sedan (vehicle A in Table 4.4) using a single 100 kW I-PMSM (I-PMSM in 

Table 4.5) following a short section of the Extra Urban Driving Cycle Drive Cycle. This drive 

cycle examines the controller’s ability to control the vehicle at high speed and how the control 

system approaches a constant target velocity. 
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Table 4.4 Vehicle parameters used for this simulation investigation [309] 

Parameter Symbol Vehicle 
A B C D 

Chassis type  Sedan Hatchback Compact 
Compact 

SUV 

Sprung mass (kg)  1650 1270 750 1430 
Unsprung mass Front (kg)  90 71 41.5 80 
Unsprung mass Rear (kg)  90 71 41.5 100 
Roll inertia (kg.m2)  928 535 270 700 
Pitch inertia (kg.m2)  2788 1535 750 2060 
Yaw inertia (kg.m2)  3234 1536 750 2060 
Wheelbase (m)  3.05 2.91 2.35 2.66 
Centre of mass height (m)  0.53 0.54 0.54 0.65 
Front axle to centre of mass (m)  1.4 1.015 1.1 1.05 
Aerodynamic coefficient of drag  0.3 0.3 0.35 0.33 
Frontal Area (m2)  2.8 2.2 1.6 2.8 
Transmission and final drive ratio  4.7 4.7 3.7 6 
Wheel radius – loaded (mm)  353 329 284 347 

 

Table 4.5 IM and I-PMSM parameters used for the simulation investigation [143, 298] 

Parameter Symbol 
Motor 

IM #1 IM #2 I-PMSM 
Number of poles  4 4 8 
Rated power (kW)  35 50 100 
Rated speed (rpm)  1675 1470 3000 
Rated Voltage (V)  380 380 155 
Rated Current (A)  78 138 450 
Stator resistance (Ω)  0.087 0.04 0.0083 
Rotor resistance (Ω)  0.228 0.15 - 
Magnetising inductance (mH)  34.7 25 - 
Leakage stator inductance (mH)  0.8 1.5 - 
Leakage rotor inductance (mH)  0.8 1.5 - 
Rotor flux max (Wb)  0.97 0.9 - 
Magnet flux (Wb)  - - 0.071 
D-axis inductance (mH)  - - 0.174 
Q-axis inductance (mH)  - - 0.293 
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The PIL results for driving scenarios 1 and 2 are given in Figure 4.4 and Figure 4.5 respectively.  

 

     Figure 4.4(a) and Figure 4.5(a) show that the vehicles are able to follow their respective 

drive cycles with minimal error. The pedal activation levels for both vehicles in Figure 4.4(b) 

and Figure 4.5(b) are stable with no erratic movements.       

(a) 

Figure 4.4 PIL simulations for a C-Class hatchback vehicle using dual IMs following a 
short section of the US Federal Drive Cycle, (a) , (b) Pedal movement, (c)  current, 

(d)  votlage, (e)  current, (f)  voltage, (g) Flux wave magnitude  

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(k
m

/h
) 

PIL PIL PIL 
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     Both the  and  currents in Figure 4.4(c) and Figure 4.4(e) for the first driving scenario 

are well regulated and use suitably stable  and  voltages in Figure 4.4(d) and Figure 4.4(f) 

respectively. Similar conclusions are drawn from the current control for driving scenario 2.  

Figure 4.5 PIL simulations for an E-Class saloon vehicle using a single I-PMSM 
following a short seciton of the Extra Urban Drive Cycle, (a) , (b) Pedal movement, 

(c) , (d) , (e) , (f)   

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(k
m

/h
) 

PIL PIL PIL 
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     Finally, the FL flux control in Figure 4.4(g) shows that the IM’s rotor magnetic flux is well 

maintained over the drive cycle and reduces as the vehicle’s velocity increases.  

     These results show that the FLC PIL simulations act identically to their software-based 

counterparts. Due to the time-consuming effort of running multiple PIL simulations, the 

remainder of this chapter investigates the performance of the FL-FOC system using the 

software-based controllers.  

 

 Performance Evaluation of the FL-FOC System 

     This section directly compares the performance of a vehicle and traction motors controlled 

by the FL-FOC system against a PI based FOC (PI-FOC) counterpart. This comparison is 

conducted using two different vehicles with different motor topologies to further examine how 

the FL-FOC scheme interacts with different vehicle systems. The FL-FOC system does not 

change between simulations but the PI-FOC is tuned for the specific vehicle it is implemented. 

The PI-FOC controller gains for both driving scenarios, given in Table 4.6, offer the greatest 

trade-off between system responsiveness, low steady-state error and remain stable for the 

duration of the simulation. The FOC system must be able to maintain the control objectives 

stably with minimal error throughout the drive cycle. The control actuation must be achievable 

by physical real-world counterparts (i.e. no erratic control of accelerator/brake pedals). 

Table 4.6 A-Class compact vehicle with a 50 kW IM PI-FOC controller gains 
Driving scenario Controller Proportional gain Integral gain 

1 

Speed 0.14 0.16 
 1 2 
 1 2 

Flux 2 10 

2 
Speed 0.4 1 

 0.05 0.2 
 0.05 0.1 
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     The first driving scenario uses a FWD A-Class compact vehicle (vehicle C in Table 4.4) 

using a single 50 kW IM (IM#2 in Table 4.5) following a short section of the Japan 10-15 drive 

cycle. The second driving scenario uses a RWD D-Class SUV (vehicle D in Table 4.4) with a 

single 100 kW I-PMSM (I-PMSM in Table 4.5) following a short section of the Worldwide 

Harmonized Light vehicle Test Procedure (WLTP). 

     The SMAPE values in Table 4.7 show that the FL-FOC system overall has a slightly larger 

average percentage error than the PI-FOC system due to having a larger steady-state error, but 

still well within acceptable error tolerances. The SMAPE values in Table 4.7 use data used at 

5x10-4s discrete time steps. Data points lower than 1% of the peak control variable are negated. 

Table 4.7 PI-FOC and FL-FOC SMAPE performance evaluation.  

Driving scenario Control Variable 
SMAPE (%) for the control system 

PI-FOC FL-FOC 

1 

 1.67 2.64 
 0.35 0.73 
 0.02 0.72 
 0.04 0.42 

2 
 0.63 1.06 
 2.20 1.18 
 2.02 1.19 

 

 

4.3.1 FOC Driving Scenario 1  

     The comparison using the FL-FOC and PI-FOC systems for the vehicle’s velocity (Figure 

4.6),  current (Figure 4.7),  current (Figure 4.8) and flux magnitude (Figure 4.9) for the 

first driving scenario shows that all control objectives remain stable throughout the drive cycle.  
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     The  and  current control shows that both FOC systems regulate the motors current to 

meet their respective target values over the drive cycle using stable and adequately controlled 

axis voltages.  

Figure 4.6  PI and FL speed control for driving scenario 1, (a)  comparison, 
(b) Pedal movement, (c)  comparison 

(a) 

(b) 

(c) 
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m
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     Figure 4.6(a) shows that the vehicle’s velocity using the PI-FOC system overshoots the 

target speed whereas Figure 4.6(b) shows that the FL-FOC system reduces the amount of 

applied accelerator and brake pedal ahead of the approaching target velocity. This makes the 

FL-FOC system a closer representation to how a vehicle would be controlled by a real driver.  

 

     The FL-FOC scheme responds to the initial acceleration from standstill quicker by applying 

a larger acceleration pedal angle and generating a larger peak  current sooner as shown in 

Figure 4.7 PI and FL  current control for driving scenario 1, (a)  comparison, 
(b)  comparison, (c)  error comparison 

(a) 

(b) 

(c) 
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Figure 4.7. Further adjustments to the current control could be made to the FL-FOC scheme to 

limit the current output and achieve a similar velocity profile to the PI-FOC scheme.  

 

     Because of the longer time response and the overshooting tendency of the PI-FOC scheme, 

the current controllers apply a greater voltage than what is required once steady-state conditions 

have been met. Therefore by analysing the electrical requirements in Figure 4.7-Figure 4.9, it 

Figure 4.8 PI and FL  current control for driving scenario 1, (a)  comparison, 
(b)  comparison, (c)  error 

(a) 

(b) 

(c) 
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might appear that the PI-FOC vehicle requires a higher voltage rated battery packs and inverter 

over the FL-FOC system. 

 

     Figure 4.9 shows that both FOC systems permit a large  current to flow at the beginning 

of the simulation to allow the rotor’s magnetic flux to increase at a faster rate to that achievable 

using a constant current. The rotor’s magnetic flux controlled by the PI-FOC system in Figure 

4.9(a) also overshoots its target objective. If it attempts to apply too much rotor flux, then the 

Figure 4.9 PI and FL  control for driving scenario 1, (a)  comparison, 
(b)  comparison, (c)  error comparison 

(a) 

(b) 

(c) 
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motors magnetic material might saturate and lower the electrical efficiency. If the rotor flux 

goes too low, then the motor might not be able to output the required torque.  

 

4.3.2 FOC Driving Scenario 2 

     The comparison using the FL-FOC and PI-FOC systems for the vehicle’s velocity (Figure 

4.10),  current (Figure 4.11) and  current (Figure 4.12) for the second driving scenario 

shows that all control objectives remain stable throughout the drive cycle for both FOC system. 

 
Figure 4.10 PI and FL speed control for driving scenario 2, (a)  

comparison, (b) Pedal movement, (c)  comparison 
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     The pedal control in Figure 4.10(b) causes the  and  PI current controllers some 

difficulty as seen by the SMAPE values in Table 4.7. The FL-FOC system appears to 

outperform the PI-FOC current controllers. This may be due to the FL speed controller using a 

much smoother pedal actuation and thus enabling the FL current controller to follow smoother 

targets. Alternatively, it might be possible to tune the PI controllers better to achieve a lower 

SMAPE, but this further highlights the difficulties that arise with a PI controller based FOC 

system.  

 

Figure 4.11 PI and FL  current control for driving scenario 2, (a)  comparison, 
(b)  comparison, (c)  comparison 

(a) 

(b) 

(c) 



115 
 

     The WLTP drive cycle doesn’t have any constant target velocities and thus is a much 

smoother velocity profile. The overshooting characteristics of the PI speed controller and its 

effect on the vehicle’s velocity in Figure 4.10(a) are not as pronounced as those in Figure 4.6(a). 

However, it must be noted that the pedal actuation for the FL-FOC system in Figure 4.10(b) is 

much smoother than the PI-FOC system. This produces a greater reflection on real-world 

vehicle speed control.  

 

Figure 4.12 PI and FL  current control for driving scenario 2, (a)  comparison, 
(b)  comparison, (c)  error comparison 

(a) 

(b) 

(c) 
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 Robustness Analysis using Variable Motor Parameters 

     In part, the robustness of the FL-FOC system has already been established due to its ability 

to control multiple different vehicle systems and traction motors without the need for any re-

tuning between simulations. But now, the performance of the FL-FOC is investigated under 

scenarios which may affect the control system in the real world. This is achieved by varying 

the stator resistance of an IM (IM#1 in Table 4.5) in Equations (4)-(5) from their original value 

of  to . Lubin [148] used a similar methodology to examine the 

robustness of his FL speed and  controllers.  

     A FWD C-class hatchback (vehicle B in Table 4.4) using two independent 37.5 kW in-wheel 

IMs follows a short section of the NEDC drive cycle and accelerate the vehicle up to 30 km/h. 

The FL-FOC system is compared against another FOC system (FOC-2) which uses a FL speed, 

FL  and FL flux controller with a PI  current controller. This removes any coupling effects 

in the PI-FOC system that may arise between two PI controllers. Firstly, the performance of 

both FOC systems are compared using the original stator resistance of . These 

simulations are repeated using a stator resistance of . The PI controller in FOC-2 

uses the same gains as the  controller during driving scenario 1 in Table 4.6 and are not re-

tuned between the two simulations. 

     Table 4.8 shows that the SMAPE values for both FOC systems remain within acceptable 

error tolerances over the drive cycle. The values in brackets ( ) next to the variable stator 

resistance SMAPE represent the percentage change from the original SMAPE.  

     Figure 4.13 shows the vehicle’s velocity (Figure 4.13(a)), pedal actuation (Figure 4.13(b)) 

and  current control (Figure 4.13(c)) for both FL-FOC and FOC-2 using the original stator 

resistance. Both FOC systems are able to adequately and stably meet the target velocity profile 

and maintain control over their respective target  currents with minimal error. The pedal 
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actuation in Figure 4.13(b) for the FOC-2 system is different to the FL-FOC system, this is due 

to a slightly slower response time in the  current control. The data used for the SMAPE 

values are in Table 4.8 and were taken at 5x10-4s discrete time steps, data points lower than 1% 

of the peak control variable are negated. 

Table 4.8 PI-FOC and FL-FOC SMAPE performance evaluation for the original and variable 
stator resistance simulations.  

Control Variable 
FOC-2 FL-FOC 

    

 2.40 2.77 (15.4 %) 2.26 2.40 (6.2 %) 
 5.04 13.85 (174.8 %) 1.99 1.98 (-0.5 %) 
 0.71 2.79 (292.9 %) 0.71 0.72 (1.4 %) 
 0.41 0.43 (4.9 %) 0.41 0.42 (2.4 %) 

 

     Both FOC systems in Figure 4.14(a) are still able to maintain the target velocity as with 

Figure 4.13(a). The pedal actuation and  current control for the FL-FOC in Figure 4.14(b) 

and Figure 4.14(c) respectively are comparable to those in Figure 4.13. Table 4.8 shows that 

the error for the FL-FOC  current control and vehicle’s velocity is slightly larger than the 

original conditions, but still within acceptable error tolerances. The error difference is so small 

that it doesn’t influence the pedal actuation between the two simulations.  

     For HEV/EV design purposes, it might appear that a vehicle using the PI-FOC scheme 

requires a larger target  current over the FL-FOC scheme. This may lead the vehicle designer 

to believe that a battery pack with a larger current output or larger current rated traction motor 

would be required for this vehicle to achieve this velocity profile. 

     The PI controller in Figure 4.14(b) for the FOC-2 scheme is unable to maintain the target 

 current when the stator resistance varies. The speed controller of the FOC-2 scheme has to 

apply the accelerator pedal more (and thus increase the target ) in order for the motor’s actual 

 current (and thus output torque) to be large enough for the vehicle to follow the target drive 
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cycle. Furthermore, when the FOC-2 reduces the target  current, the momentum of the PI 

current controller (due to the large integral error) means that the  current overshoots the 

target value. The speed controller of the FOC-2 system has to then apply the brake pedal in 

Figure 4.14(b).  

 

     The SMAPE values in Table 4.8 show that the  error during the variable stator resistance 

simulation is much higher than the original stator resistance simulation. Due to the coupling 

effects of the two axes, the SMAPE value for the  also increases, however the robustness of 

(a) 

(b) 

(c) 

Figure 4.13 Stator resistance  simulation for the FOC-2 and FL-FOC, 
(a)  comparison, (b) Pedal movement, (c)  comparison 
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the FL  controller in the FOC-2 scheme ensures that the  SMAPE value remains within 

acceptable error tolerances. 

 

     This investigation has shown that the FL-FOC system is more robust than a PI based FOC 

system by means of the FOC-2 scheme for variable motor parameters. This is due to the PI 

controller gains which were intended for the original motor parameters no longer being the 

optimal choice for the new motor parameters.  

Figure 4.14 Stator resistance simulation for the FOC-2 and FL-FOC, 
(a)  comparison, (b) Pedal movement, (c)  comparison 
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 Summary 

     A FLC based FOC (FL-FOC) scheme for the traction motor of an HEV/EV was developed 

which consists of independent vehicle speed, traction motor current and magnetic flux FLCs. 

The FLCs were verified ready for use in a HIL experiment via a series of PIL simulations and 

showed comparable control to their simulated counterparts after compiling. The FL-FOC 

scheme showed to be able to control multiple motor topologies and HEV/EV powertrain 

architectures without the need for re-tuning.  

     The FL-FOC scheme managed to regulate the FOC variables (speed, current, flux) within 

acceptable error tolerances (of below 5% error) for a wide range of vehicle systems. In 

comparison to a PI controller based FOC (PI-FOC) scheme, the FL-FOC showed more realistic 

vehicle control and thus a better representation of how a physical vehicle would behave. A more 

detailed robustness analysis showed that the FL-FOC scheme performs significantly better than 

PI-FOC scheme when variable motor parameters were introduced. 
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5. Chapter Five – Overcurrent-Tolerant Traction Motor 
Sizing Strategy 

Overcurrent-Tolerant Traction Motor Sizing Strategy 
 

     This chapter presents a new traction motor sizing strategy proposed by the author by utilising 

an overcurrent-tolerant prediction motor model to estimate the dynamic and thermal 

characteristic of the motor operating in the overcurrent region. This control scheme only uses 

basic motor torque-speed characteristics as they are easily obtained from a motor manufacturer. 

The prediction model quickly shows if a prospective traction motor operating in the overcurrent 

region and the powertrain configuration would enable the vehicle to achieve its required 

dynamic and electrical objectives. Similarly, to Chapter Four, only a vehicle powered purely 

by a traction motor is investigated (series-HEV), but again it is possible to extrapolate this sizing 

strategy for use on various HEV powertrain architectures (parallel or power-split). It will be 

denoted where these changes would occur within this chapter. The work presented in this 

chapter has been accepted by IET Intelligent Transport Systems awaiting online publication 

and at a conference [310]. 

     The motor’s rate of change in temperature and its output torque are both proportional to the 

magnitude of the supply current. The safe torque-speed operating region where the motor is 

able to run for its entire lifetime is referred to as the continuous region. Here, the supply current 

is limited to a rated value to prevent the motor from overheating, but this also has the effect of 

limiting the output torque. A motor’s overcurrent region temporarily permits a higher supply 

current to produce a larger output torque. Motor manufacturers represent the overcurrent region 

by one or more torque-speed curves which are assigned time limits to show how long the peak 

overcurrent torque can be used before the motor begins to overheat. Operating in the 

overcurrent region is desirable for HEV/EVs because a smaller, cheaper and more efficient 
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motor operating in its overcurrent region might be able to achieve the same output torque as a 

larger motor confined to its continuous torque-speed region.  

     This chapter is structured as followed; Section 5.1 introduces the overcurrent-tolerant 

prediction model, Section 5.2 presents a case study where an aeroplane pushback is converted 

into a series HEV utilising this sizing strategy.  

 

 The Overcurrent-Tolerant Temperature Prediction Motor Model 

     The role of the overcurrent-tolerant prediction model is to decide if the continuous 

(where  in (80)) or overcurrent (where  in (80)) torque-speed curves should 

be used in (80) at any given time at the respective traction motor speed . The choice of 

torque-speed curve is dependent on the estimated temperature of the motor. 

     The torque-speed characteristics of a traction motor in this investigation are modelled using 

2D look-up tables in MATLAB/Simulink as described in Section 3.2.5.1. A control flowchart 

for the overcurrent-tolerant prediction model is shown in Figure 5.2. The following steps 

describe the decision making process within the overcurrent tolerant prediction model: 

1) When the driver of the vehicle model (see Section 4.1.1) requests a torque output by 

activating the accelerator pedal , the motor model initially attempts to access the 

overcurrent torque curve, where  in (80). For a series-HEV or pure EV, the torque 

will be fully accommodated by the traction motor. For a parallel or power-split HEV, the 

fraction of the command torque required to be supplied by the traction motor will take the 

role of the required output torque in (80). 

 
Where  (80) 
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2) The rate of change in temperature is dependent on the position of the relative output torque 

 from (81). This is relative to the peak continuous torque  and the peak 

overcurrent torque . A diagrammatical view of how  is calculated in proportion to 

the torque-speed curves is shown in Figure 5.1 where . 

 (81) 

 

3) The rate of change in temperature is represented by a Temperature Factor

 from (82a-b).  

 

(82a) 

(82b) 

     The time limits  and  accompany the overcurrent torque-speed curves provided 

by the motor manufacturer. The estimated temperature from operating in the overcurrent 

region increases at a rate according to (82a). If  were to be used at an initial motor 

 
 

 
 

 

 

  

 

  

 

Peak Overcurrent curve  

Peak Continuous curve  

Figure 5.1 Diagrammatical view of how  is generated 
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temperature , then the estimated temperature reaches the upper temperature limit  

over a time period . 

4) The motor’s estimated temperature  (83) is calculated by integrating  over time  from 

the beginning of the simulation at time . 

 

Where
 

 

(83) 

5) If the estimated temperature reaches , the motor enters a cool-down phase, 

where  in (80). The maximum output torque is restricted to the peak torque of the 

continuous region .  

6) During the cool-down phase, the estimated temperature must reduce to the lower limit  

over a pre-determined cool-down time  before the overcurrent region is allowed to be 

used again. The estimated temperature reduces at a rate according to (82b) during the cool-

down phase or whenever the motor returns to the continuous region.  

     If only a single overcurrent torque-speed curve is given from the motor manufacturer, then 

 is a linear function. If numerous overcurrent curves and time limits are provided, 

 becomes a quadratic function and offers a better estimation of the motor’s thermal 

characteristics.  

     The overcurrent-tolerant prediction model observes the motor’s temperature  as a 

percentage between  and . For this investigation, these limits are represented as a 

percentage. For example,  and  are 100% and 50% of the maximum temperature limit 

respectively.  

     If  is linear and , the motor outputs   and increase the motor’s estimated 

temperature at a rate where  reachs 100% over the time period .  If , the output 
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torque is half way between  and . The rate of change in temperature is half that 

of when , the motor is now able to operate in this region for twice as long, or . 

 
Figure 5.2 Overcurrent-tolerant prediction model torque control flowchart 
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     During the cool-down phase, the vehicle’s towing and acceleration ability is limited, this is 

necessary to prevent overheating and premature component failure. Ideally, the overcurrent 

region would only be used for a short time period to accelerate the vehicle to a cruising speed 

where a lower motor torque would be required to maintain a constant steady-state velocity. 

 

 Aircraft Pushback HEV Conversion: A Case Study 

     A case study is now investigated to show how the overcurrent-tolerant prediction model 

developed in this chapter should be applied in a real-world case-study to convert an aeroplane 

pushback vehicle into a series-HEV. Relating back to the Purpose of the Research for this thesis 

in Section 1.1, the benefits of correctly sizing the traction motor using the newly developed 

overcurrent motor model will be discussed in relation to fuel consumption, a possible reduction 

in output emissions and the energy usage.  

     Effective HEV/EV design requires optimising the choice of electrical storage/generation 

systems and powertrain components to meet the vehicle’s target driving range and dynamic 

performance [53, 311, 312]. The development process of an HEV/EV must also compromise 

between other constraints such as price and legislative requirements [313, 314]. Therefore, a 

vehicle manufacturer might deliberate between numerous vehicle iterations before the final 

design is confirmed. Quick estimation of the motors dynamic and thermal performance is key 

in selecting the appropriate motor without wasting crucial time and resources. 

     Conventional pushback vehicles use high capacity ICEs as their prime mover with several 

transmission ratios. Between pushback operations, the vehicle might rest for long periods until 

it is needed again. The ICE remains idling whenever the vehicle is resting to avoid any technical 

difficulties when turning the ICE on (particularly during cold weather). These long idle times 

significantly increase the total fuel consumption and output emissions over the working day. 
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5.2.1 ICE Pushback Vehicle Parameters 

     The torque-speed curve for the 185 kW ICE used in the conventional pushback vehicle is 

given in Table 5.1. Further chassis and powertrain information for the former ICE powered 

vehicle is shown in Table 5.2, the same chassis information (vehicle mass, wheel radius etc.) is 

used for the HEV in Section 5.2. The torque-speed curve overlays the fuel consumption map in 

Figure 5.3 and the output emissions maps in Figure 5.4. The ICE engine of the original 

pushback vehicle is simulated using the simplified model in Section 3.2.5.2. The longitudinal 

dynamics of the pushback vehicle are modelled using the simplified vehicle model in 3.2.5.4. 

Table 5.1 ICE Speed-Torque characteristics for the conventional aeroplane pushback vehicle 
Speed 
(rpm) 

600 700 900 1100 1300 1500 1900 2300 2500 

Torque 
(Nm) 

595 630 741 864 987 990 932 915 830 

 

 

Table 5.2 Vehicle parameters of the typical ICE powered pushback vehicle to be converted 
into an HEV 
Parameter Symbol Value 

ICE only 
Transmission ratios [1,2,3]  [5.8,2.5,0.98] 
Transmission inertia (kg m2) [1,2,3]  [0.14, 0.1, 0.08] 
Final drive ratio  13 
Final drive inertia (kg m2)  0.2 
Final drive efficiency  0.98 
Driveshaft inertia (kg m2)  0.17 
ICE inertia (kg m2)  0.08 

ICE and HEV shared 
Vehicle Mass (kg)  16000 
Coefficient of Drag  0.8 
Frontal Area (m2)  6.8 
Wheel Radius (m)  0.575 
Coefficient of rolling resistance (%)  2 
Max Brake Force (N)  800 
Air density (kg m-3)  1.22 
Wheel Inertia (kg m2)  2.4 
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Figure 5.3 Conventional ICE powered pushback vehicle torque-speed 
curve and fuel map (L/hr) 

Figure 5.4 Conventional ICE powered pushback vehicle emissions maps, 
(a) Hydrocarbons (HC) (g/s), (b) Carbon Monoxide (CO) (g/s), (c) Nitrous 

Oxides (NOx) (g/s), (d) Particulate Matter (g/s) 

(a) (b) 

(d) (c) 
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5.2.2 Duty Cycle of the Aircraft Pushback Vehicle 

     An aeroplane pushback vehicle is required to move aeroplanes away from airport terminals 

and occasionally tow them across an airfield to receive routine maintenance. Therefore, the 

pushback vehicle must be able to generate a large towing force, but also have a relatively high-

top speed to travel quickly between pushback operations (~30 km/h unloaded).  

     Airport regulations require all pushback vehicles to have the capacity to generate a 

theoretical minimum tractive force for each aeroplane weight class that the vehicle is registered 

to move. An example of the tractive force requirements to move a Boeing 737-7 aeroplane over 

various runway surface conditions is shown in Figure 5.5 [315], these are supplied for each 

aeroplane and must be adhered to by the pushback vehicle manufacturers. An HEV aeroplane 

pushback vehicle must also comply with these regulations in order to be a viable product.  

 

Figure 5.5 Towing tractive force requirements for a Boeing 737-7 aeroplane over 
numerous runway conditions [320] 
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     A datalogger connected to the pre-existing ICE powered pushback vehicle via CAN bus 

recorded the vehicle’s engine speed, output torque, output power and longitudinal velocity. This 

was used to construct a target duty cycle for the HEV to follow. The pushback vehicle’s duty 

cycle is broken down into four major areas as shown in Table 5.3 and explained as followed: 

- Low velocity pushback operations of heavy aircraft. This scenario occurs when the 

pushback vehicle is required to move aeroplanes away from the airport terminal 

- Medium velocity towing operations of medium weight aircraft. This represents a 

maintenance run where the pushback vehicle tows an aeroplane for a longer duration across 

an airfield to receive routine maintenance. 

- High velocity unloaded solo runs. Here the pushback vehicle is travelling back and forth 

between resting areas where it must wait until the next operation. 

- Stationary resting periods. Here the vehicle is waiting for its next pushback operation. All 

hazard warning lights must remain on as the vehicle is still on the operating airfield. 

 

     The conventional ICE powered pushback vehicle uses three transmission ratios 

 for the various pushback operations. Gear ratio 1 is used for the towing operation, gear ratio 

2 is used for the maintenance runs, and gear ratio 3 is used for the unloaded solo runs. These 

gears cannot change while the vehicle is moving and must be set before the operation begins. 

     The pushback HEV would not be held to conventional passenger vehicle development 

criteria, i.e. fast 0-60 mph acceleration times or able to reach motorway cruising speeds. This 

Table 5.3 Pushback operation descriptions for the typical ICE vehicle and the HEV 
equivalent 

Operation No. of 
operations 

  
(Tonne) 

Target Speed 
(km/h) 

Time 
(s) 

Solo 14 0 27 170 
Tow 14 250 5 385 
Maintenance 2 160 10 1870 
Standby - 0 0 - 
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is because aeroplane manufacturers impose low acceleration limits for towing operations to 

prevent damage to the landing gear and there are speed limits enforced on working airfields for 

the safety of ground support vehicles. 

 

5.2.3 Battery Pack Constraints and APU Control 

     As well as having to power the traction motors, the pushback vehicle must also provide 

power its own heating/air-conditioning unit, external warning lights and various systems on the 

aeroplane. On the conventional ICE vehicle, these systems are either electrically or 

hydraulically powered, they are replaced with fully electrical systems on the HEV.  In the real 

vehicle, this load varies throughout the day, but a high constant load contributes to the worst-

case scenario duty cycle. 

     The price of the battery pack grows as its energy storage capacity and peak output power 

increases. During pushback and towing operations, the peak power demand from the traction 

motor is substantial. A battery pack capable of solely supplying the necessary power for these 

towing operations would therefore be large and expensive. To reduce the total price of the HEV, 

a battery pack with a smaller peak output power is used with supplemented power from the 

genset  to the DC-Link during towing operations. A flowchart for the genset control is 

shown in Figure 5.6.  

     For the HEV to be truly comparable to the ICE counterpart, the SOE of the battery pack 

must be full at the end of the duty cycle. This would be similar to the ICE vehicle having its 

fuel tank filled at the end of a working day. Once the final pushback operation has been 

completed, the genset enters full power mode (with the necessary start-up phase) and begins 

charging the battery pack while the HEV returns to the overnight storage area. The genset turns 

off once the SOE of the battery pack has reached its upper limit. 
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5.2.4 HEV Pushback Vehicle Feasibility and Efficiency Analysis 

     The feasibility of two HEV powertrain configurations are considered for the final vehicle 

prototype, the parameters for both are given in Table 5.4. Suitable powertrain components that 

would enable the vehicle to achieve the desired duty cycle are investigated first, including; the 

traction motor torque-speed characteristics, final drive ratio and transmission ratios. The 

electrical storage and generation components of the HEV are then explored. The vehicle must 

have the capacity to complete a full duty cycle using only the energy stored or generated 

internally. The electrical system requires specifying the minimum capacity and peak output 

power of the battery pack, as well as the output power of the genset. 

     Configuration 1 uses two relatively low torque and high speed in-wheel traction motors with 

a single gear ratio . The torque-speed curves for these motors and the efficiency map is 

shown in Figure 5.7. This motor is based on a de-rated 3-phase 170 kW PMSM produced by 

Figure 5.6 Genset control flowchart for the pushback HEV  

SOE % 

Genset 
Full 

Power. 
Turn off 

when  
SOE > 
Upper 
Limit 

Genset 
Idle 

Power 

Towing 
operation 

Prep 

SOE < 
Lower 
Limit 

Towing 
operation 

Genset 
Full 

Power 

Genset 
Off 

DC-Link 

Yes 

No 

No 

Yes 

Yes 

No 



133 
 

Zytek [316]. Configuration 1 was developed to fully exploit the traction motors’ overcurrent 

region. A single gear ratio  enables the HEV to tow the aeroplanes to their target speed 

for the required duration while also allowing the vehicle to reach its maximum unloaded speed.  

Table 5.4 HEV parameters for configuration 1 and configuration 2 

Parameter Configuration 1 Configuration 2 

Continuous power (kW) 128 245 

Continuous torque (Nm) 290 2200 

Overcurrent power 60 sec (kW) 200 250 

Overcurrent torque 60 sec (Nm) 500 2700 

Maximum motor speed (rpm) 8000 3252 

  50 50.28 

  - 28 

 

     Configuration 2 uses a single high torque and low speed traction motor connected to a 

transmission with 2 gear ratios and a final drive. The torque-speed curves for this motor and an 

efficiency map is shown in Figure 5.8. This motor is based on a 9-phase 245 kW IM produced 

by TM4 [317]. Configuration 2 was developed to meet the minimum tractive force requirements 

imposed by the airport regulations for the aeroplane weight classes within this duty cycle. A 

high gear ratio  is used during towing and maintenance operations as it achieves the 

minimum tractive force requirement. A low gear ratio  was chosen for unloaded solo 

runs that allows the vehicle to reach its top unloaded speed. 

     The two vehicle configurations follow the target duty cycle with minimal velocity error. 

Therefore, both powertrain configurations could theoretically be used for the final HEV as they 

achieve the target dynamic objectives. However, the price of incorrectly/oversized components 

increases the final vehicle price and the electrical energy usage differs as shown.  
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Figure 5.7 Torque Speed curves and efficiency map (%) for the traction motors 
used in HEV configuration 1 

Figure 5.8 Torque Speed curves and efficiency map (%) for the traction motor used in 
HEV configuration 2 
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5.2.4.1 Torque Characteristics for HEV Configuration 1 

     Figure 5.9 shows the traction motor’s torque-speed curve usage for the vehicle with 

configuration 1 over the duty cycle. The overcurrent and constant power regions are fully 

exploited. The theoretical temperature profile of the motors in Figure 5.10 increases at a greater 

rate while the HEV is accelerating during a towing operation than when the vehicle reaches its 

cruising speed.  

    During the maintenance operations, the command torque also enters the overcurrent region 

to accelerate the vehicle to its target velocity. However, the rate of change in temperature is 

smaller than the pushback operations. The motor only stays in the overcurrent region for a short 

time before the command torque returns to the continuous region to maintain cruising velocity. 

During solo operations, the command torque remains within the boundaries of the continuous 

torque region. 

 
Figure 5.9 Motor usage for the HEV with configuration 1 over the daily duty cycle 



136 
 

     The torque-speed characteristics and theoretical temperature profiles for configuration 1 are 

only obtainable for simulation purposes using the overcurrent tolerant prediction model. The 

prediction model shows how the traction motor’s cool-down time differs depending on how 

long it operates within the overcurrent region. Without this prediction model, it would be much 

more difficult to verify that this choice of traction motor and gear ratio allows the vehicle to 

reach both its unloaded velocity and the maximum tow weights for the required times without 

overheating. 

 

5.2.4.2 Torque Characteristics for HEV Configuration 2 

     Figure 5.11 shows that the motor usage throughout the duty cycle for the vehicle using 

configuration 2 remains within the boundaries of the continuous torque-speed curve. The large 

headroom between the torque usage and the continuous torque-speed curve shows that the 

traction motor is oversized for this application. The traction motor operates in an inefficient 

Figure 5.10 Theoretical temperature profile of the traction motors for configuration 
1 over a section of the daily duty cycle; 1 maintenance operation, 1 pushback 

operation and 2 solo runs 

(k
m

/h
) 
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region for a large percentage of the duty cycle. Oversized components also increase the price 

of the HEV where smaller and cheaper components (Configuration 1) prove to be sufficient. 

     The overcurrent tolerant prediction model is not fully utilised for this traction motor as the 

output torque does not enter the overcurrent region. The model acts similarly to a conventional 

empirical data based model confined to the continuous region. This traction motor is not fully 

exercised and the advantages of operating in the overcurrent region are not revealed. 

 

5.2.4.3 HEV Electrical Performance Comparison 

     Because both HEV configurations accurately follow the target duty cycle, their peak power 

requirements are similar enough that they are able to use the same battery pack and genset 

configuration with parameters given in Table 5.5.  

     Figure 5.12-Figure 5.13 shows the SOE of the battery pack, vehicle velocity and the genset 

operation for Configuration 1 and Configuration 2 respectively over the duty cycle. 

     The blue shaded areas of Figure 5.12-Figure 5.13 show that the genset is providing full 

power to the DC-Link and that the traction motors are fully utilising this power during towing 

Figure 5.11 Motor usage for the HEV with configuration 2 over the daily duty cycle 
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operations. Where the genset power does not meet the output power requirements, the 

remaining power is provided by the battery pack. The yellow shaded regions show that the 

genset provides full power to the DC-Link and the battery pack is being charged.  

 

     It might seem at first glance that the SOE for configuration 1 does not meet the SOE 

requirements since it drops below the lower SOE limit. Because the in-wheel traction motors 

in configuration 1 operates in a higher efficiency region than the single traction motor used in 

configuration 2, the HEV using configuration 1 enters and exits the first maintenance run with 

a higher SOE. Whereas configuration 2 reaches the lower SOE limit before the end of the first 

maintenance run, the genset turns on to begin charging the battery pack earlier than in 

configuration 1. Because configuration 1 SOE does not reach the lower limit during the rest 

period after the first maintenance run, it enters the second maintenance run with a much lower 

SOE than configuration 2.  

 

Table 5.5 Battery pack parameters used in the pushback HEV for both configuration 1 
and configuration 2 
Parameter Value 

Per cell 
Rated energy capacity (kWh) 3.5 
Rated current (A) 66 
Nominal voltage (V) 52 
Continuous power output (kW) 6.5 
Peak power output (kW) 12.5 

Pack configuration and parameters 
Cells in series per string 12 
Strings of series in parallel 2 
Upper SOE limit (%) 95 
Lower SOE limit (%) 40 
Battery pack capacity (kWh) 82 

Genset parameters 
Genset power (kW) 86 
Genset fuel consumption (L/h) 24 
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Figure 5.12 Velocity profile and battery pack SOE over the complete duty cycle for the HEV 
using configuration 1 

(k
m

/h
) 

Figure 5.13 Velocity profile and battery pack SOE over the complete duty cycle for the HEV 
using configuration 2 

(k
m

/h
) 
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     Since the duty cycle used for this investigation is a rigorous worst-case scenario, the SOE 

profile for configuration 1 is deemed acceptable. If the duty cycle was designed differently by 

slightly shifting the maintenance runs, then the SOE for configuration 1 would remain within 

the upper and lower limits. In the real world, a driver would be able to decline a maintenance 

run if they think the SOE of the battery pack is insufficient or manually control the genset if 

they are expected to have long breaks. 

     A comparison between the electrical energy required and the fuel consumed by the genset 

for both HEV configurations against the original ICE powered vehicle is shown in Table 5.6. 

Configuration 2 requires 6.97% more energy and consumes 5.7% more fuel than configuration 

1. This is because the dual hub traction motors of configuration 1 operate in the higher 

efficiency overcurrent region for large portions of the duty cycle. The increase in efficiency and 

improved energy usage of configuration 1 could only have been revealed by the overcurrent 

tolerant prediction model. If an empirical data-based traction motor model confined to the 

continuous torque region was used, the traction motors and powertrain in configuration 1 would 

not have been able to achieve the target duty cycle and therefore could not have shown an 

improvement over configuration 2. However, since configuration 1 does not meet the minimum 

tractive force regulations, configuration 2 is used as the final design for the HEV pushback 

vehicle. This legislative constriction further verifies the use of the overcurrent prediction model 

for vehicle design as there might be various other design limitations other than dynamic 

performance and require a larger number of traction motors to be investigated. Table 5.6 shows 

that configuration 2 reduced fuel consumption by 52% from the original ICE powered pushback 

vehicle over the duty cycle.  

     Throughout different ICE working conditions (e.g. start-up, cold running, hot running etc.), 

different emissions are produced at different rates. This makes it difficult to assess the change 
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in output emissions between the two HEV configurations and the original ICE vehicle. 

However, there is a consensus that significant reductions in fuel consumption correlates to a 

reduction in engine emissions [9, 15, 16]. In addition, for HEV/EVs there is a similar conclusion 

drawn between electrical efficiency and output emissions. From the results in Table 5.6, we can 

assume at this point in the vehicle’s development there is a reduction in engine emissions for 

both HEV configurations over the ICE vehicle and the overcurrent prediction model produced 

a vehicle design that was more fuel economic and reduced the total output emissions further. 

  

5.2.5 Pushback HEV Final Outcome 

     The prototype HEV aeroplane pushback vehicle is shown in Figure 5.14 using configuration 

2 [318]. The vehicle is currently being challenged with following similar duty cycle operations 

to the ones investigated in this chapter to validate the choice of powertrain components. 

 

Table 5.6 Aeroplane pushback vehicle powertrain configuration energy requirement and fuel 
consumption comparison 
Powertrain 
Configuration 

Energy required 
(kWh) 

Fuel consumed 
(L) 

ICE - 190 
HEV Configuration 1 244 86.3 
HEV Configuration 2 261 91.22 

Figure 5.14 Final HEV aeroplane pushback vehicle prototype [323]  
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 Summary  

     A new HEV/EV traction motor sizing strategy was developed based on an overcurrent-

tolerant prediction model of a traction motor operating in the overcurrent region. Using minimal 

motor parameters, this model is able to gauge if a motor’s torque and thermal characteristics 

are able to fulfil the vehicle’s target dynamic and electrical objectives. Using the motor’s 

overcurrent torque-speed curve time constraints, the motor’s temperature was estimated 

between safe upper and lower working boundaries. The rate of change in temperature was 

dependent on the position of the motor’s output torque between the continuous and overcurrent 

torque-speed curves to represent the supply current magnitude. 

 

  



143 
 

6. Chapter Six – Reduced Switching Inverter Control for 
Traction Motors 

Reduced Switching Inverter Control for Traction Motors 
 

 

     This chapter aims to increase the efficiency of a DC-AC inverter for HEV/EV applications. 

The author proposes an extension to the on-line D-SVPWM method developed by Deng [203, 

204] by introducing a Reduced Intermediate Switching SVPWM (RIS-SVPWM) scheme. The 

RIS-SVPWM method advances upon a previous on-line SVPWM method to find all possible 

available null switching states enclosing the reference voltage vector. The RIS-SVPWM 

scheme assigns inverter switching patterns which require the minimal amount of intermediate 

switching to reduce the power losses. The available null voltage vectors are generated on-line 

which negates the need for large and complicated look-up tables. This inverter control scheme 

is applicable to any HEV or EV that utilises traction motors without modifications. 

     This chapter is structured as follows; Section 6.1 presents the RIS-SVPWM method. Section 

6.2 then analyses the intermediate switching losses and the harmonic quality of the generated 

waveforms when controlling a 5L-CHB inverter while powering a traction motor. 

 

 The RIS-SVPWM scheme 

6.1.1 The D-SVPWM method 

     The D-SVPWM method developed by Deng [203, 204] is able to calculate all the switching 

states for one of the voltage vectors enclosing . The original SVM diagram with  voltage 

levels ( -SVM) is slowly reduced (e.g. ( ,  …) until only a -SVM diagram 

remains enclosing . The switching states  of the voltage vector representing the origin of 

the -SVM diagram  are modified with each mapping iteration. Any 
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invalid switching states are then removed at the end of the mapping process. The remaining 

switching states corresponding to one of the voltage vectors enclosing  are then assigned to 

the inverter. The co-ordinates of  are also mapped to the remaining voltage vector so the 

-SVM duty cycle equations to be used. The preliminary steps required for the D-SVPWM 

and the RIS-SVPWM methods are as followed: 

1) The -SVM diagram is scaled so the distance between any two voltage vectors have a unit 

length of 1. Label the outermost hexagon boundary . 

2) The co-ordinates of the reference voltage vector  are also made proportional to the new 

SVM diagram. The maximum length of  is  of unit length. 

3) The diagram is labelled  and has an origin at  with 

coordinates .  

     To complete the mapping process, a total of  mapping iterations are required, each 

iteration is denoted by . The following steps explain the D-SVPWM 

iterative mapping process: 

1) Set the mapping iteration number .  

2) Separate the L-SVM diagram into 6 mapping sectors separated by 60° (an 

example is shown in Figure 6.1 for the first mapping iteration of a -SVM diagram).  

3) Label the voltage vectors closest to the origin in each sector . The sector  that lies 

in is calculated using Equation (84), where  is the angle  makes with the  

axis.  

4) Place the origin of an ( )L-SVM diagram (labelled ) on the vector   

 (84) 
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5) Modify all the switching states of  according to the switching state modifier  in 

Table 6.1. 

6) Subtract the  modifier and the  modifier for sector  from the  co-ordinates. 

This maps  to the origin of the L-SVM diagram.  

7) If , go back to step 1 using . If , the iterative mapping process 

is now complete.  

 

     At this point, the D-SVPWM method is complete, the mapping vector and switching patterns 

from the final mapping iteration would be used to control the switching devices of the inverter. 

However, the switching states at this stage may require multiple intermediate switching before 

starting the next SVPWM cycle. An example of the iterative mapping process in Figure 6.2 

graphically demonstrates how the D-SVPWM reduces the SVM diagram from a 5L-SVM 

diagram down to a 2L-SVM diagram. 

 

 

 

 

  

 

  

 

  

 

 

Figure 6.1 5L-SVM diagram separated into the 6 sectors for the D-SVPWM 
method and an example  in Sector 2 [208, 209] 
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6.1.2 Advancement to the RIS-SVPWM method 

     It is now the role of the RIS-SVPWM to find the switching states of the other enclosing 

vectors to determine if they would be more appropriate null voltage vectors. An example  

enclosed by the voltage vectors ,  and  is shown in 

Figure 6.3. The D-SVPWM method would map  against . Mapping  against ,  or 

Table 6.1 Null vector modifications  [203, 204] 
Sector  State Modifier  Modifier  Modifier 

1    

2    

3    

4    

5    

6    

 
 

    

 

Figure 6.2 5L-SVM mapping process example for the D-SVPWM method [208, 209] 
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 to create , or  respectively allows for simpler -SVM duty cycle. The 

reference voltage vector with respect to the origin of a 2LTS is labelled . 

 

The RIS-SVPWM mapping process is explained as followed: 

1) Locate the current 2-Level triangular sector  that  lies in with respect to the 

final mapped voltage vector from the D-SVPWM method . The example 

in Figure 6.3 attempts to map  to , this means lies within a  sector. 

Figure 6.4 shows two more examples, the red  lies in  and the blue  

lies in  with respect to the origin .  

 

 

 

 

 

Figure 6.3 Example 2-level optimised dwell vector mapping options 

 

 

 

 

 

 

 

 

 

Figure 6.4 2L-SVM diagram inverter reference points 
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2) In a similar manner to steps 5 and 6 for the D-SVPWM method, apply two more mapping 

iterations to the origin vector of the current 2L-SVM diagram. Independently apply the 

mapping modifier  and . 

3) There are now three separate lists of switching state options, one list for each voltage vector 

enclosing .  

4) Any switching state combinations  that contain invalid switching states are 

removed. Invalid switching states include values  or . 

5) Calculate which vector requires the lowest total number of intermediate switching to start 

the next SVM cycle. 

6) If multiple combinations of switching states have the same minimum number of 

intermediate switches from the previous SVM cycle, the switching combination on the 

voltage vector ahead of  in the direction of travel is used. This is because the next 

voltage vector triangle that  enters will share this null voltage vector, this reduces future 

intermediate switching losses ahead of time. 

7) Label the optimal voltage vector . 

8) Subtract the  modifier and the  modifier from the  co-ordinates using the state 

modifier for the optimal voltage vector. If the original voltage vector using D-SVPWM 

holds , no modifications are required. 

     The RIS-SVPWM scheme is now complete. The optimal null voltage vector which requires 

the minimum total number of intermediate switching has been found and the reference voltage 

vector has been mapped to it. The complete null switching state mapping process under the 

RIS-SVPWM scheme for the example given in Figure 6.2 is shown in Figure 6.5. 
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6.1.3 Inverter Switching Device Control 

     Timing pulses ,  and  delivered to the switching devices of phase ,  and  

respectively ensure only one complimentary pair of switching devices change over the SVPWM 

cycle for each phase. The timing pulses are calculated using the following steps: 

1) Find the magnitude of  with respect to the optimal choice of 2L voltage vector 

in the range .  

2) Find the  sector  lies in with respect to the optimal . 

3)  makes an angle  with respect to the vector . Two examples are 

given in Figure 6.4 for the correct voltage vector that  is measured against. 

4) The reference voltage vector  is generated over a SVM switching cycle of length  

using (85). The required on-times  and  for the enclosing vectors , and 

Figure 6.5 Null vector mapping state value example for 5L-SVM diagram with  in 
Figure 6.2 
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 respectively must be calculated using the 2L-SVM diagram Equations (86)-(88) 

[154, 175, 319, 320]. 

5) Table 6.2 converts the vector on-times  and  into phase pulses ,  and  

depending on  [192] 

 

 

+  

 

(85) 

 (86) 

 (87) 

 (88) 

Table 6.2 2-Level SVPWM duty ratio calculations converts the vector on-times , ,  into 
phase pulses  and  to be applied to phase  and  respectively [192]. 

 Phase 
A B C 

1    

2    

3    

4    

5    

6    



151 
 

     The switching table for a 5L-NPC inverter in Table 3.1 consists of 4 pairs of complimentary 

power electronic switching devices on each phase leg. The switch control is simplified by only 

observing the top 4 switches and acknowledging that the bottom 4 switches have 

complimentary switch positions. For phase-  to change from switching state 2 to 3, switch  

in phase-  remains off for s, and then remains on for the remainder of the SVPWM 

cycle (refer to Figure 2.4 for switch labels). During this time, all of the switches above switch 

 are off, and all the switches below  remain on for the entire of the SVPWM cycle. For 

phase-  to change from switching state 3 to 2, switch  in phase-  remains on for s and is 

then turned off for the remainder of the SVM cycle. 

     The switching table for a 5L-CHB inverter in Table 3.2 shows that multiple combinations 

of inverter switching patterns are able to output the same switching state [154]. Keeping with 

the objective of reducing intermediate switching losses, the switching pattern that requires the 

minimum number of intermediate switching has the phase pulse assigned to it. 

 

 Performance evaluation of the RIS-SVPWM method 

6.2.1 Simulation setup procedure 

     For HEV/EV applications, an inverter must be able to generate voltage waveforms of 

varying magnitude and frequency that enable a traction motor to operate in its entire torque-

speed region. A C-Class Hatchback (Vehicle B in Table 4.4) using an IM (IM# 1 in Table 4.5) 

covering a velocity range of 15-75 mph or 25-115 km/h would require the motor and inverter 

to operate with a voltage supply frequency range of  Hz according to the 

synchronous speed. Therefore, supply voltage waveforms within this frequency range are 

explored covering a wide range of modulations indices . The 5L-CHB inverter 

model discussed in Section 3.2.2 generates voltage waveforms and feeds them to a traction 
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motor model (IM# 1) presented in Section 3.2.1. The 5L-CHB inverter for these simulations 

uses a switching frequency  of 10 kHz (i.e. ). To compare the switching count and 

harmonic quality when using the D-SVPWM and the RIS-SVPWM modulation schemes, both 

methods are used to control the individual switching devices of the inverter.  

     The following steps describe the process of determining appropriate load torques applied to 

the rotor during the simulations, this process is repeated for each supply frequency : 

1) An output voltage waveform of  Hz with a modulation index of  is supplied to the 

motor windings.  

2) The load torque is steadily increased until the line current meets the rated supply current of 

the motor.   

3) Because no speed or current control is implemented for this investigation, the motor’s speed 

decreases. The speed at which the motor dropped down to is recorded as .  

4) The peak load torque for each supply frequency is shown in Table 6.3. This waveform 

matches the expected speed-torque profile for IM# 1. 

Table 6.3 Peak Torque Profile 
 

(Hz) 
30 40 50 60 70 80 90 100 110 120 130 140 150 

Load 
(N) 

200 200 200 170 150 130 115 105 95 87 80 70 65 

5) This was repeated for a range of modulation indices . The load torque was 

steadily increased until the motors speed reached . 

6) The percentages of the load torque for each modulation indices with respect to the peak 

torque is shown in Table 6.4. The investigation showed that the same load torque 

percentages in Table 6.4 is used for every supply frequency investigated. 

Table 6.4 Load Torque percentage profile 
 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Load % 5 10 20 30 40 60 80 1 
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6.2.2 Switch Count Analysis 

          At the start of each SVM cycle, both modulation methods are allowed to select a starting 

null voltage vector which would minimise the intermediate switching count from the previous 

SVM cycle from the options made available to them from their respective control schemes.  

     The percentage decrease in intermediate switching using the RIS-SVPWM method over the 

D-SVPWM method is given in Figure 6.6(a) for a range of modulation indices and output 

waveform frequencies. The total switching count percentage decrease is shown in Figure 6.6(b).  

 

     The reduction in intermediate switching over the range of waveform frequencies remain 

somewhat comparable when using the RIS-SVPWM scheme. This is because over a single 

Figure 6.6 Switch count reduction over a range of modulation indices  
and output voltage frequencies  for a 5L-CHB inverter , 

(a) Intermediate switch decrease, (b) Total switch decrease 

(a) 

(b) 
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voltage waveform cycle (or one rotation of the ) the same number of enclosing vector 

triangles are crossed. However, the total reduction in switching count increases as the output 

waveform frequency increases. This is because  completes a full rotation faster for high 

output waveform frequencies, the total number of SVM cycles inside an enclosing voltage 

vector is lower and thus there is a lower total switching count. 

   The RIS-SVPWM method significantly reduces the amount of intermediate switching for 

modulation indices  by up to 90%. This is because  crosses the highest 

number of enclosing voltage vector triangles for a 5L inverter in this range with a high number 

of possible null voltage vectors. 

     Due to the linear trend between the energy lost during the turn on-off phases of the power 

electronics and the switching losses for this inverter, it is assumed that the switching losses also 

reduce in proportion to the reduction in switching count [321]. For modulation indices

, the RIS-SVPWM method shows little improvement over the D-SVPWM method 

since the number of available switching vectors suitable for SVPWM decreases in this 

modulation range. 

     It must be noted that as part of this investigation the vector  (the origin of the -

SVM diagram) was not included in the RIS-SVPWM scheme. This was done to avoid adversely 

affecting the THD or DC-voltage balancing. If this vector was included, there would be no 

intermediate switching losses for the RIS-SVPWM method when  if fully contained within 

the 6 innermost voltage vector triangles of the -SVM diagram. The slight increase in 

switching count from the D-SVPWM in the modulation index range  is a result 

of using a constant starting null vector of  at the beginning of all the simulations. The 

results in Figure 6.6 were created over a time period of  s, if the simulation were to continue 

running, this increase in switching count would become negligible. 
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6.2.3 Waveform Harmonic Analysis 

     The WTHD for the phase voltage  is shown in Figure 6.7 for the full range of modulation 

indices and output waveform frequencies. Figure 6.7(a) shows the WTHD using the D-

SVPWM method, Figure 6.7(b) for the RIS-SVPWM method and the percentage difference is 

shown in Figure 6.7(c). The WTHD for the RIS-SVPWM scheme is higher than the D-SVPWM 

method but remains within acceptable tolerances during the sinusoidal region below 1% [322]. 

 

     The THD for the line current  is shown in Figure 6.8 for a range of modulation indices 

and output waveform frequencies. Figure 6.8(a) shows the THD using the D-SVPWM method, 

Figure 6.7 WTHD comparison for  over a range of modulation indices and output 
voltage frequencies for a 5L-CHB inverter using , (a) D-SVPWM, (b) RIS-

SVPWM, (c) Percentage Difference 

(a) 

(b) 

(c) 
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Figure 6.8(b) for the RIS-SVPWM method and the percentage difference is shown in Figure 

6.8(c). The THD for the RIS-SVPWM scheme is again higher than the D-SVPWM method, but 

remains well within acceptable tolerances (according to the IEEE Standard 519-92) for large 

portions of the sinusoidal region of below 5% [322, 323, 324]. This is in part a reflection on the 

research presented by Pahlavani [193] and McGrath [325] who recognise the trade-off between 

lower switching counts and an increase in harmonic distortion. 

 

     Once the inverter enters the overmodulation region, the choice of available switching vectors 

become limited and the modulation methods begin to perform comparably to one another. 

However, the WTHD and THD values for the phase voltage and line currents respectively reach 

Figure 6.8 THD comparison for  over a range of modulation indices and output 
voltage frequencies for a 5L-CHB inverter using , (a) D-SVPWM, (b) RIS-

SVPWM, (c) Percentage Difference 

(a) 

(b) 

(c) 
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unacceptable values. Operation in the overmodulation region has been addressed by previous 

researchers who suggest restricting SVPWM to the sinusoidal region for low speed operation 

and permit overmodulation for high speed operation [326, 327, 328]. The THD for 150 Hz line 

currents in Figure 6.8 are higher in the overmodulation region than the sinusoidal region but 

reduce for low frequencies (i.e. 30-50 Hz). 

 

6.2.4 Inverter Output Waveform Analysis 

     The pole voltage , the line voltage  and line current  for a target waveform 

frequency of 50 Hz and modulation index  is shown in Figure 6.9(a)-(c) respectively. 

The phase voltage WTHD and line current THD harmonic spectrum for these waveforms are 

shown in Figure 6.10(a)-(b) respectively. Similar graphs are shown for waveforms of the same 

output frequency with modulation indices of  (Figure 6.11-Figure 6.12),  

(Figure 6.13-Figure 6.14),  (Figure 6.15-Figure 6.16),  (Figure 6.17-

Figure 6.18) and  (Figure 6.19-Figure 6.20). These graphs show that the inverter is 

producing the correct number of voltage levels (pole and phase) for a respective modulation 

index and inverter voltage level (i.e. 5L-CHB).  
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(a) 

(b) 

Figure 6.9 5L-CHB inverter simulation waveform results m = 0.2, (a) , (b) , (c)  

(c) 

(a) 

(b) 

Figure 6.10 5L-CHB inverter simulation harmonic analysis results m = 0.2, (a) , (b)  
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(a) 

(b) 

Figure 6.11 5L-CHB inverter simulation waveform results m = 0.45, (a) , (b) , (c)  
 

(c) 

(a) 

(b) 

Figure 6.12 5L-CHB inverter simulation harmonic analysis results m = 0.45, (a) , (b)  
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(a) 

(b) 

Figure 6.13 5L-CHB inverter simulation waveform results m = 0.7, (a) , (b) , (c)  
 

(c) 

(a) 

(b) 

Figure 6.14 5L-CHB inverter simulation harmonic analysis results m = 0.7, (a) , (b)  
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(a) 

(b) 

Figure 6.15 5L-CHB inverter simulation waveform results m = 0.907, (a) , (b) , (c)  
 

(c) 

(a) 

(b) 

Figure 6.16 5L-CHB inverter simulation harmonic analysis results m = 0.907, (a) , (b)  
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(a) 

(b) 

Figure 6.17 5L-CHB inverter simulation waveform results m = 0.955, (a) , (b) , (c)  
 

(c) 

(a) 

(b) 

Figure 6.18 5L-CHB inverter simulation harmonic analysis results m = 0.955, (a) , (b)  
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(a) 

(b) 

Figure 6.19 5L-CHB inverter simulation waveform results m = 1, (a) , (b) , (c)  
 

(c) 

(a) 

(b) 

Figure 6.20 5L-CHB inverter simulation harmonic analysis results m = 1, (a) , (b)  
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     The waveform analysis for the voltage waveforms show that the inverter is capable of 

generating waveforms whose fundamental components meet their target respective modulation 

indices as shown in Table 6.5. It should be noted that the THD analysis of the current waveforms 

show that large harmonics are generated at high frequencies. It may be possible to improve the 

THD of the RIS-SVPWM with additional filters to remove these high harmonic components. 

Table 6.5 Inverter output waveform harmonic magnitude and quality analysis 
 Target  

Harmonic 
(V) 

Actual  
Harmonic 

(V) 

Error 
(%) 

 WTHD 
(%) 

Actual  
Harmonic 

(A) 

 THD 
(%) 

0.2 50.92 50.83 -0.17 1.01 28.07 5.63 
0.45 114.59 114.55 -0.03 0.41 62.15 3.32 
0.7 178.25 178.22 -0.01 0.19 96.01 1.41 

0.907 230.96 230.86 -0.04 0.2 125.1 1.54 
0.955 243.18 243.57 0.16 0.94 130.15 9.08 

1 254.64 256.14 0.58 4.59 148.98 40.93 
 

 Summary 

     An on-line Reduced Intermediate Switching Space Vector Pulse Width Modulation (RIS-

SVPWM) scheme for multilevel DC-AC inverters for HEV/EV applications was presented. The 

RIS-SVPWM scheme is applicable to multiple inverter topologies for HEV/EVs of any voltage 

level. By advancing upon a previous popular on-line SVPWM method, the RIS-SVPWM 

method included a strategy to reduce the intermediate switching and increase the inverter 

efficiency. This was achieved by extending the mapping process to calculate alternative 

switching patterns enclosing the reference voltage vector. 

     The RIS-SVPWM scheme reduces the intermediate switching by up to 90% and the total 

switching count by 30% over the previous on-line SVPWM method. This increases the 

inverter’s efficiency while maintaining acceptable levels of voltage and current waveform 

harmonic distortion. A wide range of voltage and current waveform harmonics was presented 

and showed that the output waveforms matched their target harmonic component magnitude at 

the correct frequency 
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7. Chapter Seven – Fuzzy Logic HEV/EV Stability Control  

Fuzzy Logic HEV/EV Stability Control 

 

     In this chapter, the author proposes a Fuzzy Logic (FL) based Vehicle Stability Control 

(VSC) system which aims to improve the controllability and stability of an HEV/EV during 

combined emergency braking and steering manoeuvres. A new gradient command controller 

assigns target operating gradients to a modified wheel slip controller using information obtained 

from a pre-existing popular FL Yaw Moment Controller (YMC). 

     In comparison to other VSC systems, the FL based VSC (FL-VSC) system aims to offer; 

minimal constant vehicle data to be used within the control algorithm, high robustness for 

superior and stable control over various driving scenarios. The FL-VSC scheme in this work is 

only implemented into a vehicle utilising four independent traction motors to fully highlight the 

level of control freedom only obtainable by the traction motors and the FL-VSC scheme. 

However, future research is planned to investigate this control scheme with various other 

HEV/EV powertrain architectures. It is expected that minimal changes to the control 

architecture presented in this chapter would be required.  

     This chapter is sectioned as follows; Section 7.1-7.2 presents the control architecture and 

controllers used for the FL-VSC system respectively. Section 7.3 discusses the results of the 

simulation study by investigating various emergency braking scenarios with a comparison 

against other VSC systems. 
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 Operating principles of the FL-VSC 

     The FL-VSC comprises of a FL YMC, FL gradient command controller and four 

independent FL gradient based wheel slip controllers. The top-level vehicle control flowchart 

for the FL-VSC system is shown in Figure 7.1 and is explained as follows: 

1) The vehicle’s instantaneous longitudinal velocity , lateral velocity , front wheel steer 

angle  and the yaw rate  are all exported from the CarSim vehicle model and imported 

into MATLAB/Simulink (see Section 3.2.4.1 for further CarSim details). 

 

 

 

2) The FL YMC subsystem in Figure 7.2 (explained in Section 7.2.1) generates an ideal 

additional yaw moment  which if applied directly to the vehicle’s yaw axis would reduce 

the yaw rate error and the sideslip angle. 

3) A FL gradient command controller (Section 7.2.2) uses the additional yaw moment  to 

calculate appropriate target operating gradients  and assigns them to the independent 

wheel slip controllers. If  is positive, then  becomes the new target operating gradient 
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Figure 7.1 Top level FL-VSC control flow architecture 



167 
 

for both the front right (fr) and rear right (rr) wheels. If is negative, then its magnitude 

becomes the new target gradient for the front left (fl) and rear left (rl) wheels. 

 

 

 

4) The new target operating gradient is sent to the FL gradient based wheel slip controllers in 

Figure 7.3 (explained in Section 7.2.3). These controllers calculate appropriate brake 

torques that would enable the wheels to operate around the target operating gradients.  

5) The target brake torque goes to the braking and tyre system in Figure 7.3 (Section 3.2.4.2). 

The traction motors are modelled using the simplified models described in Section 3.2.5.1. 

This subsystem calculates the respective tractive and lateral tyre forces for each wheel to 

export to the CarSim vehicle model.  
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Figure 7.2 YMC and Gradient Command control flowcharts 
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Figure 7.3 Gradient Controller with the Braking and Tyre Model control flowchart 
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 Fuzzy Logic Controllers for the FL-VSC 

     The FL membership functions and rules in this investigation use the linguistic terms; 

Negative Large (NL), Negative Medium (NM), Negative Small (NS), Zero (Z), Positive Small 

(PS), Positive Medium (PM) and Positive Large (PL). 

 

7.2.1 Fuzzy Logic YMC 

     The FL YMC developed by Boada [234, 235] uses the yaw rate error  (89) and vehicle 

sideslip error  (90) as inputs. The membership functions for this controller are shown in 

Figure 7.4 and the rule base in Table 7.1.  

     The target yaw rate  is dependent on the vehicle’s longitudinal velocity , front wheel 

steer angle , wheelbase  and a stability factor . The stability factor  allows for the steering 

responsiveness of the vehicle to be tuned to meet the vehicle’s target dynamic objectives. The 

vehicle’s sideslip error is the angle made between the velocity vectors  and the lateral 

velocity . The target value for  remains zero for all driving scenarios in this investigation. 

The FL YMC controller outputs an ideal yaw moment . 

 

 
(89) 

 (90) 

          The input-output ranges for this controller are used because they offer stable and accurate 

control of the vehicle throughout the various braking manoeuvres. The output range is a unit 

value, this is scaled to achieve to the desired sensitivity of the FL YMC system. 

 

 



169 
 

 

 

Table 7.1 FL YMC rule base  [234, 235] 
  

NL NS Z PS PL 

 

NL PL PL PM PL PL 
NS PL PM PS PM PL 
Z NS NS Z PS PS 
PS NM NM NS NM NM 
PL NL NL NM NL NL 

(a) 

(b) 

(c) 

Figure 7.4 FL YMC membership functions [239, 240], (a) Input 1 - , (b) Input 2 - , 
(c) Output -   
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Some examples of the rules for the FL YMC in Table 7.1 are explained as follows: 

- If  is (Z) and  is (Z) then  is (Z). If there is no yaw rate error and the sideslip 

angle is zero, then the vehicle is following a target trajectory, no additional yaw moment 

is required. 

- If  is (PL) and  is (PL) then  is (NL). If the vehicle’s yaw rate error and the 

sideslip angle is positive large, then a large negative additional yaw moment is required to 

reduce these understeering characteristics. 

- If  is (NL) and  is (Z) then  is (NM). If the vehicle’s yaw rate error is positive 

large and the sideslip angle is zero, then an additional medium negative yaw moment is 

required. This is giving priority to the tracking ability of the yaw rate error over the 

sideslip angle. 

 

7.2.2 Fuzzy Logic Gradient Command Controller 

     A FL gradient command controller is used to assign the target operating gradient  to the 

individual wheels  ( ). This controller uses the membership functions 

in Figure 7.5 and the rule base in Table 7.2. This FLC uses the additional yaw moment 

calculated by the FL YMC in Section 7.2.1 and its time derivative as the two inputs to 

generate .  

     The input and output ranges for this controller are of unit value, the yaw moment input  

is scaled according to the target yaw performance of the vehicle under control. The output target 

gradient is also scaled by a factor of . As  increases, the wheel’s target operating gradient 

gets closer to the free-rolling condition . To compromise between steering control and 

braking force a gradient scale of 6 was used in this investigation. 
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     Some examples of the rules for the FL gradient command controller in Table 7.2 are 

explained as follows: 

- If  is (Z) and  is (Z) then  is (Z). If no additional yaw moment is required and this 

value has not changed since the last time step, then the controller outputs a command 

gradient of zero. This is applied to the four wheel slip controllers. 

- If  is (PL) and  is (Z) then  is (NL). The command additional yaw moment is 

positive large and has not changed since the last time step, the controller outputs a large 

(a) 

(b) 

(c) 

Figure 7.5 FL Gradient control, (a) Input 1 - , (b) Input 2 - , (c) Output -  



172 
 

negative gradient. The magnitude of this gradient is applied to the wheels on the left of the 

vehicle. 

- If  is (NS) and  is (PM) then  is (NS). Even though the command yaw moment is 

negative, the rate of change is positive and larger in magnitude. The controller sends a small 

negative gradient to be used in the wheels on the left of the vehicle. 

 

 

 

7.2.3 Fuzzy Logic Wheel Slip Controller 

     The gradient based FL TCS by Colli [256, 257] is modified for use during braking scenarios. 

The membership functions for this controller are shown in Figure 7.6 and the rule base in Table 

7.3. The brake pedal activation level  and the error in operating gradient  (91) 

are used as the two inputs. The controller calculates an ideal brake torque  which would 

reduce the operating gradient error. This brake torque must be generated by the Electrohydraulic 

Braking (EHB) system. 

Table 7.2 FL Gradient controller rule base 
  

NL NM NS Z PS PM PL 

 

NL PL PL PL PL PM PS Z 
NM PL PL PL PM PS Z NS 
NS PL PL PM PS Z NS NM 
Z PL PM PS Z NS NM NL 
PS PM PS Z NS NM NL NL 
PM PS Z NS NM NL NL NL 
PL Z NS NM NL NL NL NL 

 (91) 
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     The input range for the gradient error offers stable and acceptable control of the wheel 

operating gradient throughout all the braking manoeuvres. Both the brake pedal input activation 

level and output brake torque are unit values. The output brake torque is scaled with respect to 

the maximum brake torque allowed by the vehicle’s braking system . 

 

 

(a) 

(b) 

(c) 

Figure 7.6 Gradient based wheel slip controller membership functions, (a) Input 1 –  
(b) Input 2 – , (c) Output –  
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     Some examples of the rules in Table 7.3 are explained as follows: 

- If  is (Z) and  is (Z) then  is (Z). If the operating gradient error is zero and 

the driver has no intent on decelerating the vehicle, no brake torque is supplied to the 

wheels. 

- If  is (PL) and  is (PL) then  is (PL). If the gradient error is positive and 

large, then the wheel is much closer to the free rolling condition of the wheel and far from 

the target operating point. Because the brake pedal is also large, the driver aims to decelerate 

the vehicle quickly. A large brake torque is required to decelerate the wheel and reduce the 

operating gradient error. 

Table 7.3 Gradient based wheel slip controller rule base 

 
 

N Z PS PL 

 

Z Z Z Z PS 
PS Z Z PS PM 
PM Z Z PM PM 
PL Z PS PM PL 

 

     The EHB system utilises the independent in-wheel traction motor’s regenerative brake 

torque and the vehicle’s hydraulic braking system to generate . The traction motors and 

hydraulic braking systems are modelled using first order filters with time constants 

 and  respectively [245]. The traction motor’s time constant is lower than the hydraulic 

system because they are able to modulate the brake torque at a much higher frequency. These 

time constants offer a good representation of the brake torque responsiveness of a typical EHB 

system. If the command  from the FL wheel slip controller is larger than the brake torque 

of the traction motor for a given motor speed , then the excess brake torque is 
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compensated by the hydraulic braking system [329]. The control flowchart for the EHB system 

is shown in Figure 7.3. 

 

 FL-VSC Performance Evaluation 

7.3.1 Simulation Setup and Evaluation Criteria 

     A vehicle containing the new FL-VSC system is compared against identical vehicles using 

other VSC systems during numerous different braking maneuvers. A vehicle using  on 

all four wheels is labelled Z-GR (Zero-Gradient) and one which uses a Conventional-ABS is 

labelled C-ABS. The C-ABS vehicle applies full brake torque when the wheel slip is 0.09 or 

lower and releases the brake torque at a wheel slip of 0.15. To show how the controllers are 

affected by hardware limitations and compiler errors, a series of PIL simulations are conducted 

alongside the main investigation. Since only one controller can operate in PIL mode at a single 

time, multiple PIL simulations are required for each braking scenario. Simulations where the 

gradient command controller is implemented in hardware are labelled FL-VSC-GR. 

Simulations where the front right and real left wheel slip controllers are implemented in 

hardware are labeled FL-VSC-FR and FL-VSC-RL respectively. During these PIL, the 

remaining controllers in the FL-VSC system operate in software in MIL mode. 

     All three vehicles use identical vehicle parameters in Table 7.4. The vehicle model uses four 

independent 35 kW traction motors with torque-speed characteristics given in Table 7.4. The 

traction motors are simulated using 2D lookup tables as described in Section 3.2.5.1.  
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Table 7.4 Vehicle parameters for CarSim vehicle model [234, 235] 
Symbol Value Symbol Value 

 1412 kg  30 kN/m 
 1270 kg  240 kN/m 
 36 kg  240 kN/m 
 36 kg  0.96 kNs/m 

 1.675 m  0.8 kNs/m 
 1.675 m  5 kNs/m 

 2.91 m  5 kNs/m 
 1.01 m  6.7 kNm/rad 
 1.9 m  6.7 kNm/rad 

 0.54 m  6.6 kNm/rad 
 0.45 m  3.5 kNs/rad/s 
 1536 kg.m2  8 
 1540 kg.m2  35 kW 

 490 kg.m2  1675 rpm 
 0.01  6000 rpm 
 2 kg.m2  0.01 

 0.3 m  0.05 
 27 kN/m   

 

7.3.2 Scenario 1 – Straight Line Braking 

     The first braking scenario simulates a straight-line braking manoeuvre from 120 km/h on a 

surface with peak COF . The brake pedal is applied at time  ( ). Figure 

7.7 shows the braking force on all four wheels for the three vehicles. Figure 7.8(a)-(b) shows 

the longitudinal velocity and the total distance travelled  for the three vehicles respectively. 

     The Z-GR and FL-VSC vehicles operate identically to one another. Because the vehicle 

travels in a straight line on an even COF surface, no steering intervention or YMC is required. 

The target operating gradient for all the wheels of FL-VSC vehicle is zero. All four wheels 

generate maximum braking force and are balanced on either side of the vehicle. Table 7.5 shows 

that the Z-GR and FL-VSC vehicles are able to reduce the stopping distance by 10% and 

braking time by 11% down from the C-ABS vehicle. 
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     The PIL simulations in Figure 7.7-Figure 7.8 produce numerically identical control signals 

to their simulated MIL counterparts, this shows that the controllers have been unaffected by the 

code compiler and the FL-VSC system is ready for HIL experimentation in a straight-line 

braking scenarios. In addition, the braking forces in Figure 7.7 for the C-ABS vehicle pulsate 

at a much higher frequency and magnitude than the other two vehicles, this may induce a panic 

release response from drivers who do not know that the juddering pedal feedback is from the 

ABS activating.  

Figure 7.7 Longitudinal braking forces for scenario 1, (a) rl, (b) fl, (c) rr, (d) fr 

(a) (b) 

(c) (d) 
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Table 7.5 Performance Indices comparison for braking scenario 1. Units in brackets represent 
percentage change from the C-ABS vehicle. 

Index C-ABS Z-GR FL-VSC 

 3.73 3.32 
(-10.99%) 

3.32 
(-10.99%) 

 63.6 57.2 
(-10.06%) 

57.2 
(-10.06%) 

 

     The animation screenshots from CarSim for this braking scenario are shown in Figure 7.9 

and offers a representation of how the braking distances are reduced in proportion to the 

vehilce’s scale. The Z-GR (Blue vehicle) and FL-VSC (Red Vehicle) vehicles come to a 

complete stop  car lengths shorter than the C-ABS (Green Vehcile) . 

 

 

Figure 7.8 Vehicle dynamics for scenario 1, (a) , (b)  

(a) 

(b) 

(k
m

/h
) 
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C-ABS  

Z-GR  

FL-VSC  

Figure 7.9 Animation preview for the accident avoidance braking manoeuvre 
scenario 4, (a)  (start), (b) , (c)  final resting position 

(a) 

(b) 

(c) 
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7.3.3 Scenario 2 – Split  Braking 

    The vehicle initially travelling at 120 km/h fully activates the brake pedal at time  

( ) on a split  surface. The roads peak COF is 0.5 and 1 on the left and right hand side 

of the vehicle respectively. Ideally, the FL-VSC system would enable the FL-VSC vehicle to 

travel straight with no yaw and minimal driving steering intervention.  

    The individual wheel gradient control in Figure 7.10 shows that the FL wheel slip controllers 

are able to control the wheel slip around positive operating gradients. The wheels on the right 

of the vehicle in Figure 7.10(c)-(d) have a positive operating gradient where wheels on the left 

in Figure 7.10(a)-(b) have a zero target operating gradient. The FL and RL wheels are thus 

operating at the maximum brake force available to them on their respective surface (the low 

COF surface).  

 
Figure 7.10 Independent gradient control for the FL-VSC 

vehicle during braking scenario 2, (a) rl, (b) fl, (c) rr, (d) fr 

(a) (b) 

(c) (d) 
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     Although the fr and rr wheels on the high COF surface are able to generate higher brake 

forces, the FL-VSC reduces the operating wheel slip to produce a lower brake force and match 

the braking forces on the other side of the vehicle. This reduces the additional yaw moment 

generated from asymmetrical brake forces. Figure 7.11 shows that the Z-GR vehicle overall 

achieves higher brake forces than the FL-VSC vehicle because it attempts to operate around 

maximum brake for the duration of the braking manoeuvre. 

 

 

 

     The vehicle dynamics in Figure 7.12 and the performance indices in Table 7.6 show that 

the and  are 6.7% and 9.8 % higher respectively for the FL-VSC vehicle over the C-

ABS vehicle. However, the IYRE, ISSE and ISC indices are 43%, 53% and 39% lower 

Figure 7.11 Longitudinal braking forces for scenario 2, (a) rl, (b) fl, (c) rr, (d) fr 

(a) (b) 

(c) (d) 
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respectively. The performance index  for the FL-VSC vehicle is 36% lower over the C-ABS 

vehicle. These indices show that the additional braking distance of the FL-VSC vehicle is 

justified because there is a greater trade-off for vehicle stability and controllability. The C-ABS 

and Z-GR vehicles both have a much higher sideslip angle and much more driver steering 

intervention as seen in Figure 7.12(c)-(d). The PIL simulations in Figure 7.11-Figure 7.12 show 

comparable control and stability after code compiling to their software counterparts. 

 

 

 

 

Figure 7.12 Vehicle Dynamics comparison for braking scenario 2, (a) , (b) , (c) , 
(d) Steering wheel angle 

(a) 

(b) 

(c) 

(d) 

(k
m

/h
) 
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     The animation screenshots from CarSim for this braking scenario are shown in Figure 7.13. 

The FL-VSC vehicle has a consistanly straight heading throughout the simulation. The FL-VSC 

vehicle comes to a complete stop  car lengths more than the Z-GR vehicle, this might 

be perceived as having poor braking perfomance. However, it’s unlikely that an average driver 

in the C-ABS or Z-GR vehicle is able to control the vehicle’s heading, but instead more likely 

to spin out of control as shown by the ISC values in Table 7.6 and the steer angle in Figure 

7.12(d). For the results shown, there was no limit to the steering wheel angle in this braking 

scenario. Previous simulations which included a steer limit of  - investigated during the 

development of this control system - showed the C-ABS vehicle and Z-GR vehicles spinning 

out of control during this braking scenario. 

 

Table 7.6 Performance Indices comparison for braking scenario 2. Units in brackets represent 
percentage change from the C-ABS vehicle. 

Index C-ABS Z-GR FL-VSC 

 4.87 4.39 
(-9.85%) 

5.20 
(6.77%) 

 81.90 75.05 
(-8.36%) 

89.97 
(9.85%) 

 0.574 0.506 
(-11.84%) 

0.364 
(-36.6%) 

IYRE 0.89 1.33 
(49.4%) 

0.51 
(-42.7%) 

ISC 367.19 536.34 
 (46.1%) 

224.2 
(-38.9%) 

ISSE 16.42 26.12 
  (59.1%) 

7.76 
(-52.74%) 
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Figure 7.13 Animation preview for the accident avoidance braking manoeuvre scenario 
2, (a)  C-ABS greatest positive sideslip, (b)  Z-GR greatest positive 
sideslip, (c)  C-ABS greatest negative sideslip, (d)  Z-GR greatest 

negative sideslip, (e)   final resting position 

(a) 

(b) 

(c) 

(d) 

(e) 

C-ABS  

Z-GR  

FL-VSC  
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7.3.4 Scenario 3 – Double Lane Change on a Low  Surface 

     At time , the vehicle applies the brake pedal ( ) and begins following the 

target path of a Double Lane Change (DLC) manoeuvre. The vehicle has an initial velocity of 

80 km/h and the test track has an average peak COF of 0.5 to replicate wet driving conditions. 

This scenario replicates a driver attempting to avoid a head-on collision by manoeuvring around 

an obstacle. It would be unlikely that the driver in this scenario would use extreme steering 

angles, therefore the steering wheel angle is limited to ±100°. 

    The gradient control for the four wheels in Figure 7.14 show that the FL gradient command 

controller is able to change the target operating gradient between the wheels on the left and 

right hand side of the vehicle during a braking manoeuvre. Figure 7.15 shows the corresponding 

brake forces generated by the four wheels. 

 
Figure 7.14 Independent wheel gradient control for FL-VSC vehicle during 

scenario 3, (a) rl, (b) fl, (c) rr, (d) fr 

(a) (b) 

(c) (d) 
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     The vehicle’s yaw rate and sideslip angle for the three vehicles is given in Figure 7.17(a)-

(b) respectively, it shows that the FL-VSC vehicle follows its respective target yaw rate (dotted 

line) closer than the C-ABS or Z-GR vehicles. It must be noted that Z-GR has the lowest sideslip 

angle over the entire manoeuvre, but this is a by-product from its poor yaw rate control.  Figure 

7.16(a)-(c) shows the global co-ordinates, steering wheel input and longitudinal velocity 

respectively for all three vehicles. The global co-ordinates in Figure 7.16(a) show that the FL-

VSC vehicle follows the target path closer than C-ABS or the Z-GR vehicle. 

     Table 7.7 shows that  and  are similar for all three vehicles with the Z-GR vehicle 

having the lowest braking distance. However, the way these values are achieved are different 

for each vehicle system. The IYRE and ISSE for the FL-VSC vehicle are 48% and 22% lower 

Figure 7.15 Longitudinal braking forces for scenario 3, (a) rl, (b) fl, (c) rr, (d) fr 

(a) (b) 

(c) (d) 
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respectively over the C-ABS vehicle, this is achieved with 7% less steering intervention. The 

advantage of the FL-VSC vehicle in this scenario being that not only does it follow the DLC 

test track with the greatest accuracy, stability and controllability, but it also requires the least 

amount of steering control to do so.  

 

Table 7.7 Performance indices comparison for braking scenario 3. Units in brackets represent 
percentage change from the C-ABS vehicle. 

Index C-ABS Z-GR FL-VSC 

 4.931 4.716 
(-4.36%) 

4.852 
(-1.6%) 

 56.97 54.75 
(-3.89%) 

56.44 
(-0.93%) 

 4.08 3.72 
(-8.82%) 

3.67 
(-10.05%) 

 0.087 0.07 
(-12.5%) 

0.017 
(-85%) 

IYRE 0.151 0.31 
(105.3%) 

0.078 
(-48.3%) 

ISC 299.8 284.4 
(-5.1%) 

278.1 
(-7.2%) 

ISSE 8.46 7.27 
(-14.1%) 

6.54 
(-22.7%) 

 

 

     The FL-VSC vehicle has a better trade-off between braking and steering control by reducing 

the  index by 85%. In addition, the FL-VSC vehicle also reduces the peak global Y-coordinates 

( ) by 10% which shows the FL-VSC vehicle’s ability to regain control after the initial 

steering input and doesn’t overshoot the target path. This might avoid collision with a barrier 

or another obsticle outside of the target trajectory. 

     The high IYRE for the Z-GR in Table 7.7 shows poor yaw rate control. Although the ISC 

for the Z-GR and FL-VSC vehicles are similar, examination of Figure 7.16(b) shows that the 
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FL-VSC vehicle responds quicker to the steering input and begins applying a counter steering 

angle sooner than the Z-GR vehicle. The shorter braking distance of the Z-GR vehicle is a by-

product of poor steering controllabilty which cannot be relied on for every braking scenario. 

 

 

 

Figure 7.16 Vehicle dynamics comparison for braking scenario 3, (a) Global 
co-ordinates, (b) Steering wheel angle, (c)  

(a) 

(b) 

(c) 

(k
m

/h
) 
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     The animation screenshots from CarSim for this braking scenario are shown in Figure 7.18. 

It appears that all three vehicles follow similar global trajectories with the Z-GR vehicle having 

the shortest braking distance. However, a major part of this braking scenario is the manoeuvre 

around an obstacle and the vehicles responsiveness to steering control. 

 

Figure 7.17 Vehicle yaw and stability control variables for braking 
scenario 3, (a) , (b)  

(a) 

(b) 
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45 

40 

60 

(a) 

(b) 

(c) 

(d) 

Figure 7.18 Animation preview for the accident avoidance braking manoeuvre 
scenario 3, (a)  FL-VSC greatest negative sideslip, (b)  C-ABS 
greatest negative sideslip, (c)  C-ABS and FL-VSC greatest corrective 

sideslip, (d)  final resting position 

C-ABS  

Z-GR  

FL-VSC  
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7.3.5 Scenario 4 – Distracted Driver Accident Avoidance 

    The final braking scenario is an accident avoidance manoeuvre where the driver tries to exit 

a 6 m danger zone on a road with an even COF of 1. This scenario may occur in the real-world 

if a driver is distracted from the road and quickly turns the steering wheel in a panic to avoid 

an obstacle. The vehicle with an initial velocity of 120 km/h begins steering at time  

and applies the brake pedal at  ( ). The steering wheel input is limited to ±100°. 

Once the vehicle has exited the 6 m danger zone, the driver attempts to regain steering control 

and position the vehicle on the 6 m target line. Ideally, the vehicle would exit the danger zone 

quickly with minimal overshoot. This would not only avoid the head-on collision inside the 

danger zone but also avoids a collision with a road barrier or other vehicles once it has exited 

the 6 m area.  

     The yaw rate and sideslip angle for the three vehicles are given in Figure 7.19(a)-(b) 

respectivley and show that only the C-ABS vehicle is unable to regain control after the intial 

steering input. The varying braking forces across the vehicle using the FL-VSC is shown in 

Figure 7.20. The global co-ordinates, steering wheel input and longitudinal velocity for the 

three vehicles in Figure 7.21(a)-(c) respectivley show that for similar steering wheel inputs, the 

FL-VSC vehicle has a superior path tracking ability than the Z-GR vehicle. Since the C-ABS 

vehicle did not complete the manoeuvre, its performance indices were negated from this 

comparison.  

     Table 7.8 shows that the for similar ISC, the FL-VSC vehicle reduces IYRE, ISSE and  

indicies by 65%, 33% and 46% respectivly over the Z-GR vehicle. In addition, from Figure 

7.21(c) and the  in Table 7.8, the FL-VSC reduces lateral overshoot over the Z-GR vehicle 

by 28%. This may see the Z-GR vehicle colliding with either a road barrier or other vehicles 
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outside the 6 m danger zone, whereas the FL-VSC vehicle is able to quickly regain yaw control 

and maneouver the vehicle back towards its target path. 

 

    The yaw rate error in Figure 7.19(a) is large for all three vehicles in the time between the 

initial steering input and the brakes being applied. The FL-VSC is not operating during this 

time period as it relies on the braking pedal activation level. It may be possible for future 

iterations of the FL-VSC to consider both constant velocity and braking scenarios. 

      The animation screenshots from CarSim for this braking scenario are shown in Figure 7.22. 

The scale of how much the FL-VSC vehicle improves upon the Z-GR vehicle clearly shows 

that there is a high likelyhood that the Z-GR vehicle might collide with either a barrier or 

another obsticle. The final resting positions of the FL-VSC vehilce is  car widths closer 

to target path than the Z-GR vehilce. 

Figure 7.19 Vehicle controllability and stability variables for braking 
scenario 4, (a) , (b)  

(a) 

(b) 
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Table 7.8 Performance indices comparison for braking scenario 4. Units in brackets represent 
percentage change from the Z-GR vehicle. 

Index C-ABS Z-GR FL-VSC 

 2.81 4.189 4.287 
(2.34%) 

 70.3 75.379 76.49 
(1.47%) 

 18.77 14.598 10.54 
(-27.79%) 

 - 0.205 0.11 
(-46.34%) 

IYRE - 0.652 
0.229 

(-64.9%) 

ISC - 410.7 411.2 
(0.12%) 

ISSE - 20.89 13.89 
(-33.5%) 

 Figure 7.20 Longitudinal braking forces for scenario 4, (a) rl, (b) fl, (c) rr, (d) fr 

(a) (b) 

(c) (d) 
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Figure 7.21 Vehicle dynamics comparison for braking scenario 4, 
(a) Global co-ordinates, (b) Steering wheel angle, (c)  

(a) 

(b) 

(c) 

(k
m

/h
) 
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(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

Figure 7.22 Animation preview for the accident avoidance braking manoeuvre scenario 4, 
(a)  Brake pedal activation, (b)  FL-VSC crosses the target lateral 
position, (c) , (d)  greatest FL-VSC lateral position, (e)   

Greatest Z-GR lateral position, (f)  final resting position 

C-ABS  

Z-GR  

FL-VSC  
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 Summary 

     A FL based VSC (FL-VSC) system was developed to improve the controllability and 

stability of an HEV/EV during an emergency braking manoeuvre. A FL YMC controller 

produced a target additional yaw moment which would reduce the yaw rate error and vehicle 

sideslip angle. This additional moment was sent to a new FL gradient command controller 

which assigned target operating gradients to the wheels on either side of the vehicle. A FL 

gradient based wheel slip controller regulated the wheels operating gradient via a combined 

Electrohydraulic Braking (EHB) system. 

     The FL-VSC scheme requires minimal vehicle parameters to be used within the control 

system, is insensitive to variable parameters or changing vehicle-road conditions and is able to 

be tuned to meet a vehicle’s target dynamic objectives. A series of PIL experiments verify that 

the FLCs within this control system are unaffected by the code compiler and therefore ready to 

move onto the next stage of HIL validation.  

     In comparison to a conventional vehicle ABS system, the FL-VSC system; reduces the 

straight-line braking distance by 10%; requires little driver steering intervention when braking 

on split  surfaces; increases stability for double lane change braking manoeuvres; and recovers 

control of the vehicle during an accident avoidance manoeuvre.  

 

  

 

 

 

 



197 
 

8. Chapter Eight – Summary and Conclusions 

Summary and Conclusions 

 

     This chapter summarizes the major outcomes of the research presented in chapters four-

seven in Section 8.1, plans for future research are then given in Section 8.2. 

 

 Summary of the Main Outcomes 

8.1.1 Summary of Chapter Four 

     The research conducted within Chapter Four satisfies the first research objective set out in 

Section 2.5 by investigating a single FOC algorithm that is able to control multiple vehicle 

systems without the need for re-tuning with a further investigation into the effects of variable 

motor parameters on HEV/EV applications. A Fuzzy Logic (FL) based Field-Oriented Control 

(FOC) scheme for the traction motor/s of an HEV/EV was developed which consists of 

independent vehicle speed, traction motor q-axis current, d-axis current and magnetic flux (for 

IM) FL controllers. Developed in MATLAB/Simulink in conjunction with CarSim vehicle 

models, the FL based FOC (FL-FOC) scheme showed that it would be a useful tool during the 

development of an HEV/EV where multiple vehicle designs are under consideration, but its 

insensitivity to real-world variable motor parameters would make it a viable option for 

continuous control of the traction motors in the final production vehicle. The main outcomes 

from the FL-FOC scheme are as follows: 

1) The FLC’s showed to be unaffected by the code compiling via a series of PIL simulations 

which produced comparable performance to their software-based counterparts and ready to 

move onto the HIL validation. 
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2) The FL-FOC system is able to maintain the control objectives within acceptable error 

tolerances for multiple vehicle systems and traction motor topologies without the need for 

re-tuning.  

3) The FL-FOC system has greater robustness over a PI controller based FOC system, not only 

through continual control of the various vehicle systems, but also with the inclusion of 

variable stator resistances.  

4) The FL-FOC system is able to control the vehicle’s velocity closer to how a real driver 

would control the vehicle over a PI based FOC scheme. This offers a better representation 

of how the physical vehicle would perform in the real world. 

     Not only would the FL-FOC scheme act as a useful control technique during the 

development of an HEV/EV where multiple vehicle designs are under consideration, but its 

insensitivity to real-world variable motor parameters would make it a viable option for 

continuous control of the traction motors in the final production vehicle. 

 

8.1.2 Summary of Chapter Five 

     The research conducted within Chapter Five satisfies the second research objective set out 

in Section 2.5 by creating an empirical data based traction motor model to characterise the 

dynamic and thermal constraints of a motor operating in the overcurrent region.  The model 

was able to narrow down the choice of prospective traction motors and optimise the choice of 

powertrain components as explained using a case study. A new traction motor sizing strategy 

for HEV/EVs based on an overcurrent-tolerant prediction model was developed. Using the 

motor’s overcurrent torque-speed curve time constraints, the motor’s temperature was 

estimated between safe upper and lower working boundaries. The rate of change in temperature 

is dependent on the position of the motor’s output torque between the continuous and 
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overcurrent torque-speed curves to represent the supply current magnitude. The main outcomes 

of this chapter are summarised as followed: 

1) The overcurrent-tolerant prediction model is able to estimate the dynamic and thermal 

characteristics of a motor operating in the overcurrent region requiring minimal detailed 

motor parameters. 

2) A case study was explored where an aeroplane pushback vehicle was converted into a series 

HEV using this sizing strategy. Two possible HEV configurations using different traction 

motors and powertrain configurations were then analysed.  

3) The advantages of operating in the overcurrent region and its effect on the HEV/EVs driving 

range, fuel consumption and emissions is revealed. The HEV using traction motors 

operating in the overcurrent region shows a reduction in fuel consumption by 5.7% and a 

reduction in electrical energy consumption of nearly 7% over a large motor confined to the 

continuous torque region.  

     This modelling technique would be more applicable during the early development stages 

where a wide range of traction motors are under consideration. The FL-FOC scheme of Chapter 

Five could then be used for control of the real model or once more detailed motor parameters 

become available. 

 

8.1.3 Summary of Chapter Six 

     The research conducted within Chapter Six satisfies the third research objective set out in 

Section 2.5 to develop an on-line SVPWM scheme without impeding upon computational 

burden and examination of the control scheme over the full operating region applicable to 

HEV/EV applications. An on-line Reduced Intermediate Switching Space Vector Pulse Width 

Modulation (RIS-SVPWM) scheme for multilevel DC-AC inverters for HEV/EV applications 
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was developed. This was achieved by extending the mapping process to calculate alternative 

switching patterns enclosing the reference voltage vector. The switching vector which required 

a lower number of intermediate switching from the previous SVPWM cycle was chosen to 

reduce the total switching losses and increase the inverters efficiency. The main outcomes of 

this chapter are summarised as followed: 

1) The RIS-SVPWM method operates on-line for any inverter level or topology without the 

need for large look-up tables. 

2) The new RIS-SVPWM scheme managed to reduce the intermediate switching by 90% over 

the previous on-line modulation method.  

3) The new RIS-SVPWM scheme managed to reduce the total number of switching by 32% 

for an output waveform of 150 Hz over the previous on-line modulation method. The 

switching losses are therefore reduced proportionally. 

4) The line current THD and phase voltage WTHD for the RIS-SVPWM method are well 

within acceptable tolerances for the sinusoidal operating region over the full range of 

modulation indices and output waveform frequencies. 

5) The RIS-SVPWM shows a similar linear growth in time-complexity with increasing 

inverter voltage levels to previous on-line SVPWM methods. 

6) The RIS-SVPWM method is able to generate voltage waveforms in the sinusoidal and 

overmodulation regions of the inverter. 

 

8.1.4 Summary of Chapter Seven 

     The research conducted within Chapter Seven satisfies the fourth research objective set out 

in Section 2.5 by developing a gradient based wheel slip controller which incorporates yaw 

control in order to improve the safety of an HEV/EV during an emergency manoeuvre. 
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Furthermore, the system developed required little information about the vehicle system it was 

implemented into that could not be estimated. A FL based Vehicle Stability Control (VSC) 

system (FL-VSC) was developed to improve the controllability and stability of an HEV/EV 

during an emergency braking manoeuvre. A FL YMC controller produced a target additional 

yaw moment which would reduce the yaw rate error and vehicle sideslip angle. This additional 

moment was sent to a new FL gradient command controller which assigned target operating 

gradients to the wheels on either side of the vehicle. A FL gradient based wheel slip controller 

regulated the wheels operating gradient via a combined Electrohydraulic Braking (EHB) 

system. The outcomes of this chapter are summarised as followed: 

1) The FL-VSC requires minimal vehicle information as part of the control algorithm and 

whose robustness make it insensitive to time varying parameters. 

2) The sensitivity of the control scheme is able to be tuned to meet the target dynamic 

objectives of a vehicle. 

3) A series of PIL simulations showed that the FLCs were unaffected by the code compiler 

verifying that the control system is ready for HIL validation.  

4) For straight line braking scenarios, the FL-VSC system reduced the braking distance by 

10% over a conventional Anti-Lock Braking System (C-ABS). 

5) For straight line split  braking scenarios, the FL-VSC showed a 36% improved trade-off 

between braking distance and yaw rate control. The FL-VSC system also reduced the yaw 

rate error (IYRE) by 42%, driver steering intervention (ISC) by 39% and sideslip angle 

(ISSE) by 52% over this braking scenario. 

6) For a double-lane change manoeuvre on a wet surface, the FL-VSC system showed an 85% 

greater trade-off between braking distance and yaw rate control. The FL-VSC system also 

reduced the IYRE by 48% and the ISSE by 23% with 7.2% less ISC. 
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7) For a distracted driver accident avoidance manoeuvre, the FL-VSC system showed a 28% 

greater trade-off between braking distance and yaw rate control over a vehicle which 

achieved peak longitudinal coefficient of friction (Z-GR). The FL-VSC system also reduced 

the IYRE by 64% and the ISSE by 33% over this braking scenario. The C-ABS vehicle 

could not regain control during this manoeuvre whereas the FL-VSC remained in control at 

all times. 

 

 Further Discussion and Future Work 

8.2.1 Further Discussion for Chapter Four 

     Even though the SMAPE values using the FL-FOC system are within acceptable error 

tolerances, the SMAPE values for the PI-FOC system are still lower. The PI controllers 

continually integrate the input error which gives them the advantage during steady-state 

conditions. The input-output ranges of the FL controllers used within this work were all chosen 

as they offered the greatest trade-off between control stability and relatively low steady-state 

error. Future investigation of the FL-FOC system would involve improving the steady-state 

error performance of these controllers. One way to do this would be to construct an optimisation 

problem out of the FL-FOC scheme to tune the membership function shapes and input-output 

ranges in a similar manner to Hannan [85]. This may produce a FOC system that is not only 

more robust than a PI based FOC system, but also have comparably low steady-state error.  

     To fully validate the FL-FOC system, further research into how the system performs 

experimentally with real motors is required. The FL-FOC system has shown to work with 

physical hardware on a microcontroller, but any further physical limitations imposed by the 

motor, inverter or sensors may cause further problems. It is the intent of the author to investigate 

these problems in the future when more data, infrastructure, and equipment become available. 
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8.2.2 Further Discussion for Chapter Five 

     The overcurrent tolerant prediction model currently only utilises the time limits imposed by 

the overcurrent torque-speed curves which is ideal for when only these time limits are available 

from a motor manufacturer. However, it may be possible for the prediction model to incorporate 

the motor’s efficiency map into how the temperature increases and decreases over time. Which 

observes the overall heat dissipation of the motor over the entire torque-speed curve. If the 

motor operates within an inefficient region of the continuous torque speed curve (  

efficiency), it might decrease the total time allowed in the overcurrent region before overheating 

than if the motor operated in a more efficient region of the continuous torque speed curve 

(  efficiency). This would increase the accuracy of the prediction model and offer a 

greater representation of the motors thermal and torque characteristics.  

 

8.2.3 Further Discussion for Chapter Six 

     At the current time of this research, the hardware (switching devices, DC sources, etc.) 

required to construct a working inverter was unavailable. It is the intent of future research to 

conduct a full hardware investigation into the RIS-SVPWM method to fully validate the 

scheme. In addition, a wider comparison into other on-line SVPWM methods and even offline 

methods which seek to reduce switching losses, harmonic distortion, audible noise and DC 

voltage balancing will be undertaken to offer a greater understanding and comparison into the 

current state-of-the-art SVPWM techniques. 

     A future Reduced Switching Loss SVPWM method is planned which directly calculates the 

appropriate switching pattern to reduce switching losses using switching loss equations [181]. 

In contrast to the RIS-SVPWM method, the Reduced Switching Loss SVPWM scheme may 
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not reduce the intermediate switching losses but might reduce the overall switching losses and 

increase the efficiency further.  

 

8.2.4 Further Discussion for Chapter Seven 

     To fully validate the FL-VSC system, a complete experimental investigation is required. 

This would be carried out in various levels which aim to validate the various parts of the FL-

VSC system: 

1) The FL-VSC system is reliant on accurate estimation of the wheel slip ratio and longitudinal 

coefficient of friction. Finding a method which works well within this control scheme must 

be found and implemented into the control system. 

2) Small scale bench top experimental tests to validate the estimation methods and EHB 

systems ability to control the wheel gradient around different operating gradients.  

3) Full scale validation – A full experimental investigation with a physical vehicle, traction 

motors and braking system to fully validate the controller’s performance. 

     It is the intention of the author to conduct these experimental validations in the future when 

the infrastructure and equipment becomes available.  
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Appendix: Nomenclature 
 

Simulation setup  
 Time 
 Initial time 

  
Motor Parameters 

 Maximum motor power 
 Synchronous speed 
 Electrical angle 
 d-axis supply voltage (flux) 
 q-axis supply voltage (torque) 

 Rated supply voltage 
 d-axis supply voltage unit value (flux) 
 q-axis supply voltage unit value (torque) 

 Maximum q-axis voltage 
 Rated supply current 
 q-axis current (torque) 

 Maximum target q-axis current 
 d-axis current (flux) 
 d-axis rotor current 
 q-axis rotor current 
 d-axis stator current 
 q-axis stator current 
 Stator winding resistance 
 Rotor winding resistance 
 Number of motor magnetic poles 
 Magnetic flux linkage 
 d-axis stator magnetic flux linkage 
 q-axis stator magnetic flux linkage 
 d-axis rotor magnetic flux linkage 
 q-axis rotor magnetic flux linkage 
 Rotor electrical rotational velocity 
 Stator leakage inductance 
 Rotor leakage inductance 
 Magnetising inductance 
 Stator inductance 
 Rotor inductance 
 q-axis inductance 
 d-axis inductance 

 Saliency ratio 
 Rotor magnetic flux wave magnitude 
 Permanent magnet flux magnitude 

 Supply voltage waveform frequency 
 Base speed voltage supply frequency 
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 Motor base speed 
 Critical speed 

 Maximum motor rotational velocity 
 Rotational velocity of prime mover 
 Dropped motor speed 

 Rate of d-axis current decline 
 Temperature 
 Temperature factor 
 Relative output torque position 
 Peak overcurrent time curve time limit 
 Cool down time limit 
 Maximum motor temperature 
 Cool down motor temperature lower limit 

 Traction motor output torque 
 Overcurrent torque curve 
 Continuous torque curve 
 Rotor inertia 
 Motor efficiency 

  
Vehicle Parameters 

 Accelerator pedal activation level 
 Brake pedal activation level 

 Longitudinal vehicle velocity 
 Vehicle lateral velocity 
 Longitudinal acceleration 

 Sprung mass yaw rate 
 Vehicle Side-slip angle 
 Maximum global lateral distance 

 Wheel slip ratio 
 Velocity at road-wheel contact patch 
 Rotational velocity of wheel  
 Rotational velocity of the motor 

 Sideslip angle of wheel 
 Brake torque at wheel  
 Drive torque at wheel  

 Load torque 
 Torque from prime mover 
 ICE output torque 
 Aerodynamic drag 
 Wheel rolling resistance 
 Combined Tractive force 

 Tyre-road reaction force 
 Brake pedal applied force 

 Brake force 
 Wheel rolling radius 

 Total vehicle mass 
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 Total aeroplane mass 
 Wheelbase 
 Centre of gravity to rear axle 
 Centre of gravity to front axle 

 Centre of gravity height 
 Sprung mass 

 Rear axle unsprung mass 
 Front axle unsprung mass 

 Sprung mass yaw angle 
 Sprung mass roll angle 
 Centre of gravity to roll axis 
 Centre of gravity Lateral position 
 Centre of gravity vertical position 
 Centre of gravity longitudinal position 
 Sprung mass pitch angle 

 Wheel steer angle 
 Rear track width 
 Front track width 

 Suspension damping coefficient 
 Tyre damping coefficient 
 Suspension spring coefficient 
 Tyre spring coefficient 

 Vertical height of sprung mass 
 Vertical height of unsprung mass 
 Vertical height of road 
 Sprung mass roll inertia 
 Sprung mass pitch inertia 
 Sprung mass yaw inertia 
 Rotational inertia of prime mover 

 Rotational inertia of transmission 
 Rotational inertia of final drive 
 Rotational inertia of wheel 
 Final drive gear ratio 
 Transmission gear ratio 

 Combined transmission final drive gear ratio 
 Final drive efficiency 

 Tyre rolling resistance coefficient 
 Coefficient of aerodynamic drag 
 Density of air 

 Vehicle frontal area 
 Effective additional vehicle mass 

 Wheel tractive force 
 Wheel side force 

 Tyre magic formula peak value 
 Tyre magic formula shape factor 



208 
 

 Tyre magic formula stiffness factor 
 Tyre magic formula curvature factor 
 Tyre magic formula shape factor modifier 
 Tyre magic formula stiffness factor modifier 
 Wheel operating gradient 

 Independent wheel operating gradient 
 Wheel operating gradient scale function 
 Traction motor braking time constant 
 Hydraulic braking system time constant 
 Braking force scale function 

 Stability factor 
 Road coefficient of friction 

 Longitudinal coefficient of friction 
 Lateral coefficient of friction 

 Front anti-roll bar stiffness 
 Rear anti-roll bar stiffness 
 Roll axis torsional stiffness 
 Roll axis torsional damping 

 Acceleration of gravity 
 Output motor power 
 Auxiliary power load 
 Generator output power 
 Battery pack energy 

 Maximum battery pack energy 
  
Inverter and electric circuit parameters 

 DC source voltage 
,  and  Line voltages 
,  and  Pole voltages 

 and  or  and  Phase voltages 
,  and  Line currents 

 Alpha axis voltage 
 Beta axis voltage 
 Alpha axis 
 Beta axis 

 Initial reference voltage vector 
 Reference rotating voltage on alpha -beta axis  

 Voltage vector of -SVM diagram 
 2-Level reference voltage vector 

 2-Level enclosing voltage vector 
 6 step waveform fundamental 

 Optimal null voltage vector 
 Inverter phase switching state 

 and  3-Phase AC voltage axis 
 Maximum inverter potential difference 
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 Modulation index 
 Extended reference voltage magnitude 
 Modified reference voltage angle 
 Reference voltage holding angle 
 Crossover angle 
 Inverter voltage level 
 SVM hexagon number 
 Mapping iteration 

 Inner sector voltage vector 
 SVM hexagon sector 

 2-level triangular sector 
,  and  Inverter phase on-time pulses 

 2-level modulation index 
 Inverter voltage vector on-times 

 Inverter SVPWM cycle time 
 Inverter SVPWM switching cycle frequency 

 2LTS reference voltage vector angle 
 Initial alpha axis reference voltage angle 

N Neutral point 
 and  Example voltage vectors 

, or  Example 2LTS reference voltage vectors 
 Fundamental component 

 Harmonic component 
 Harmonic fundamental component 

 Maximum harmonic component 
 Change in current error since last time step 

  
Analysis tools and operators 

 Maximum data points 
 Data point 
 Actual value at data point 
 Forecast value at data point 
 Total braking time 
 Start and end braking times 
 Total braking longitudinal distance 
 Initial velocity at the start of braking 
 Braking distance to yaw rate weighting value 

 Braking distance-yaw rate trade-off value 
 Error 

 Time derivative 

 Peak value 
 Complimentary switch position 
 Target value 
 Magnitude 
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