776 research outputs found

    NC Algorithms for Computing a Perfect Matching and a Maximum Flow in One-Crossing-Minor-Free Graphs

    Full text link
    In 1988, Vazirani gave an NC algorithm for computing the number of perfect matchings in K3,3K_{3,3}-minor-free graphs by building on Kasteleyn's scheme for planar graphs, and stated that this "opens up the possibility of obtaining an NC algorithm for finding a perfect matching in K3,3K_{3,3}-free graphs." In this paper, we finally settle this 30-year-old open problem. Building on recent NC algorithms for planar and bounded-genus perfect matching by Anari and Vazirani and later by Sankowski, we obtain NC algorithms for perfect matching in any minor-closed graph family that forbids a one-crossing graph. This family includes several well-studied graph families including the K3,3K_{3,3}-minor-free graphs and K5K_5-minor-free graphs. Graphs in these families not only have unbounded genus, but can have genus as high as O(n)O(n). Our method applies as well to several other problems related to perfect matching. In particular, we obtain NC algorithms for the following problems in any family of graphs (or networks) with a one-crossing forbidden minor: \bullet Determining whether a given graph has a perfect matching and if so, finding one. \bullet Finding a minimum weight perfect matching in the graph, assuming that the edge weights are polynomially bounded. \bullet Finding a maximum stst-flow in the network, with arbitrary capacities. The main new idea enabling our results is the definition and use of matching-mimicking networks, small replacement networks that behave the same, with respect to matching problems involving a fixed set of terminals, as the larger network they replace.Comment: 21 pages, 6 figure

    Space Complexity of Perfect Matching in Bounded Genus Bipartite Graphs

    Get PDF
    We investigate the space complexity of certain perfect matching problems over bipartite graphs embedded on surfaces of constant genus (orientable or non-orientable). We show that the problems of deciding whether such graphs have (1) a perfect matching or not and (2) a unique perfect matching or not, are in the logspace complexity class \SPL. Since \SPL\ is contained in the logspace counting classes \oplus\L (in fact in \modk\ for all k2k\geq 2), \CeqL, and \PL, our upper bound places the above-mentioned matching problems in these counting classes as well. We also show that the search version, computing a perfect matching, for this class of graphs is in \FL^{\SPL}. Our results extend the same upper bounds for these problems over bipartite planar graphs known earlier. As our main technical result, we design a logspace computable and polynomially bounded weight function which isolates a minimum weight perfect matching in bipartite graphs embedded on surfaces of constant genus. We use results from algebraic topology for proving the correctness of the weight function.Comment: 23 pages, 13 figure

    Counting Shortest Two Disjoint Paths in Cubic Planar Graphs with an NC Algorithm

    Get PDF
    Given an undirected graph and two disjoint vertex pairs s1,t1s_1,t_1 and s2,t2s_2,t_2, the Shortest two disjoint paths problem (S2DP) asks for the minimum total length of two vertex disjoint paths connecting s1s_1 with t1t_1, and s2s_2 with t2t_2, respectively. We show that for cubic planar graphs there are NC algorithms, uniform circuits of polynomial size and polylogarithmic depth, that compute the S2DP and moreover also output the number of such minimum length path pairs. Previously, to the best of our knowledge, no deterministic polynomial time algorithm was known for S2DP in cubic planar graphs with arbitrary placement of the terminals. In contrast, the randomized polynomial time algorithm by Bj\"orklund and Husfeldt, ICALP 2014, for general graphs is much slower, is serial in nature, and cannot count the solutions. Our results are built on an approach by Hirai and Namba, Algorithmica 2017, for a generalisation of S2DP, and fast algorithms for counting perfect matchings in planar graphs

    On the expected number of perfect matchings in cubic planar graphs

    Get PDF
    A well-known conjecture by Lov\'asz and Plummer from the 1970s asserted that a bridgeless cubic graph has exponentially many perfect matchings. It was solved in the affirmative by Esperet et al. (Adv. Math. 2011). On the other hand, Chudnovsky and Seymour (Combinatorica 2012) proved the conjecture in the special case of cubic planar graphs. In our work we consider random bridgeless cubic planar graphs with the uniform distribution on graphs with nn vertices. Under this model we show that the expected number of perfect matchings in labeled bridgeless cubic planar graphs is asymptotically cγnc\gamma^n, where c>0c>0 and γ1.14196\gamma \sim 1.14196 is an explicit algebraic number. We also compute the expected number of perfect matchings in (non necessarily bridgeless) cubic planar graphs and provide lower bounds for unlabeled graphs. Our starting point is a correspondence between counting perfect matchings in rooted cubic planar maps and the partition function of the Ising model in rooted triangulations.Comment: 19 pages, 4 figure

    Counting Problems in Parameterized Complexity

    Get PDF
    This survey is an invitation to parameterized counting problems for readers with a background in parameterized algorithms and complexity. After an introduction to the peculiarities of counting complexity, we survey the parameterized approach to counting problems, with a focus on two topics of recent interest: Counting small patterns in large graphs, and counting perfect matchings and Hamiltonian cycles in well-structured graphs. While this survey presupposes familiarity with parameterized algorithms and complexity, we aim at explaining all relevant notions from counting complexity in a self-contained way

    Exact Covers via Determinants

    Full text link
    Given a k-uniform hypergraph on n vertices, partitioned in k equal parts such that every hyperedge includes one vertex from each part, the k-dimensional matching problem asks whether there is a disjoint collection of the hyperedges which covers all vertices. We show it can be solved by a randomized polynomial space algorithm in time O*(2^(n(k-2)/k)). The O*() notation hides factors polynomial in n and k. When we drop the partition constraint and permit arbitrary hyperedges of cardinality k, we obtain the exact cover by k-sets problem. We show it can be solved by a randomized polynomial space algorithm in time O*(c_k^n), where c_3=1.496, c_4=1.642, c_5=1.721, and provide a general bound for larger k. Both results substantially improve on the previous best algorithms for these problems, especially for small k, and follow from the new observation that Lovasz' perfect matching detection via determinants (1979) admits an embedding in the recently proposed inclusion-exclusion counting scheme for set covers, despite its inability to count the perfect matchings

    Welfare Maximization with Limited Interaction

    Full text link
    We continue the study of welfare maximization in unit-demand (matching) markets, in a distributed information model where agent's valuations are unknown to the central planner, and therefore communication is required to determine an efficient allocation. Dobzinski, Nisan and Oren (STOC'14) showed that if the market size is nn, then rr rounds of interaction (with logarithmic bandwidth) suffice to obtain an n1/(r+1)n^{1/(r+1)}-approximation to the optimal social welfare. In particular, this implies that such markets converge to a stable state (constant approximation) in time logarithmic in the market size. We obtain the first multi-round lower bound for this setup. We show that even if the allowable per-round bandwidth of each agent is nϵ(r)n^{\epsilon(r)}, the approximation ratio of any rr-round (randomized) protocol is no better than Ω(n1/5r+1)\Omega(n^{1/5^{r+1}}), implying an Ω(loglogn)\Omega(\log \log n) lower bound on the rate of convergence of the market to equilibrium. Our construction and technique may be of interest to round-communication tradeoffs in the more general setting of combinatorial auctions, for which the only known lower bound is for simultaneous (r=1r=1) protocols [DNO14]

    Approximately Counting Embeddings into Random Graphs

    Get PDF
    Let H be a graph, and let C_H(G) be the number of (subgraph isomorphic) copies of H contained in a graph G. We investigate the fundamental problem of estimating C_H(G). Previous results cover only a few specific instances of this general problem, for example, the case when H has degree at most one (monomer-dimer problem). In this paper, we present the first general subcase of the subgraph isomorphism counting problem which is almost always efficiently approximable. The results rely on a new graph decomposition technique. Informally, the decomposition is a labeling of the vertices such that every edge is between vertices with different labels and for every vertex all neighbors with a higher label have identical labels. The labeling implicitly generates a sequence of bipartite graphs which permits us to break the problem of counting embeddings of large subgraphs into that of counting embeddings of small subgraphs. Using this method, we present a simple randomized algorithm for the counting problem. For all decomposable graphs H and all graphs G, the algorithm is an unbiased estimator. Furthermore, for all graphs H having a decomposition where each of the bipartite graphs generated is small and almost all graphs G, the algorithm is a fully polynomial randomized approximation scheme. We show that the graph classes of H for which we obtain a fully polynomial randomized approximation scheme for almost all G includes graphs of degree at most two, bounded-degree forests, bounded-length grid graphs, subdivision of bounded-degree graphs, and major subclasses of outerplanar graphs, series-parallel graphs and planar graphs, whereas unbounded-length grid graphs are excluded.Comment: Earlier version appeared in Random 2008. Fixed an typo in Definition 3.
    corecore