477 research outputs found

    Book reports

    Get PDF

    Spectral Generalized Multi-Dimensional Scaling

    Full text link
    Multidimensional scaling (MDS) is a family of methods that embed a given set of points into a simple, usually flat, domain. The points are assumed to be sampled from some metric space, and the mapping attempts to preserve the distances between each pair of points in the set. Distances in the target space can be computed analytically in this setting. Generalized MDS is an extension that allows mapping one metric space into another, that is, multidimensional scaling into target spaces in which distances are evaluated numerically rather than analytically. Here, we propose an efficient approach for computing such mappings between surfaces based on their natural spectral decomposition, where the surfaces are treated as sampled metric-spaces. The resulting spectral-GMDS procedure enables efficient embedding by implicitly incorporating smoothness of the mapping into the problem, thereby substantially reducing the complexity involved in its solution while practically overcoming its non-convex nature. The method is compared to existing techniques that compute dense correspondence between shapes. Numerical experiments of the proposed method demonstrate its efficiency and accuracy compared to state-of-the-art approaches

    Pattern Recognition

    Get PDF
    Pattern recognition is a very wide research field. It involves factors as diverse as sensors, feature extraction, pattern classification, decision fusion, applications and others. The signals processed are commonly one, two or three dimensional, the processing is done in real- time or takes hours and days, some systems look for one narrow object class, others search huge databases for entries with at least a small amount of similarity. No single person can claim expertise across the whole field, which develops rapidly, updates its paradigms and comprehends several philosophical approaches. This book reflects this diversity by presenting a selection of recent developments within the area of pattern recognition and related fields. It covers theoretical advances in classification and feature extraction as well as application-oriented works. Authors of these 25 works present and advocate recent achievements of their research related to the field of pattern recognition

    Heat Kernel Voting with Geometric Invariants

    Get PDF
    Here we provide a method for comparing geometric objects. Two objects of interest are embedded into an infinite dimensional Hilbert space using their Laplacian eigenvalues and eigenfunctions, truncated to a finite dimensional Euclidean space, where correspondences between the objects are searched for and voted on. To simplify correspondence finding, we propose using several geometric invariants to reduce the necessary computations. This method improves on voting methods by identifying isometric regions including shapes of genus greater than 0 and dimension greater than 3, as well as almost retaining isometry

    Canonical tensor model through data analysis -- Dimensions, topologies, and geometries --

    Get PDF
    The canonical tensor model (CTM) is a tensor model in Hamilton formalism and is studied as a model for gravity in both classical and quantum frameworks. Its dynamical variables are a canonical conjugate pair of real symmetric three-index tensors, and a question in this model was how to extract spacetime pictures from the tensors. We give such an extraction procedure by using two techniques widely known in data analysis. One is the tensor-rank (or CP, etc.) decomposition, which is a certain generalization of the singular value decomposition of a matrix and decomposes a tensor into a number of vectors. By regarding the vectors as points forming a space, topological properties can be extracted by using the other data analysis technique called persistent homology, and geometries by virtual diffusion processes over points. Thus, time evolutions of the tensors in the CTM can be interpreted as topological and geometric evolutions of spaces. We have performed some initial investigations of the classical equation of motion of the CTM in terms of these techniques for a homogeneous fuzzy circle and homogeneous two- and three-dimensional fuzzy spheres as spaces, and have obtained agreement with the general relativistic system obtained previously in a formal continuum limit of the CTM. It is also demonstrated by some concrete examples that the procedure is general for any dimensions and topologies, showing the generality of the CTM.Comment: 44 pages, 16 figures, minor correction

    Trends in Mathematical Imaging and Surface Processing

    Get PDF
    Motivated both by industrial applications and the challenge of new problems, one observes an increasing interest in the field of image and surface processing over the last years. It has become clear that even though the applications areas differ significantly the methodological overlap is enormous. Even if contributions to the field come from almost any discipline in mathematics, a major role is played by partial differential equations and in particular by geometric and variational modeling and by their numerical counterparts. The aim of the workshop was to gather a group of leading experts coming from mathematics, engineering and computer graphics to cover the main developments

    The art of building a smooth cosmic distance ladder in a perturbed universe

    Full text link
    How does a smooth cosmic distance ladder emerge from observations made from a single location in a lumpy Universe? Distances to Type Ia supernovae in the Hubble flow are anchored on local distance measurements to sources that are very nearby. We described how this configuration could be built in a perturbed universe where lumpiness is described as small perturbations on top of a flat Friedmann-Lema{\i}tre Robertson-Walker spacetime. We show that there is a non-negligible modification (about 11\%) to the background Friedmann-Lema{\i}tre Robertson-Walker area distance due to the presence of inhomogeneities in the immediate neighbourhood of an observer. We find that the modification is sourced by the electric part of the Weyl tensor indicating a tidal deformation of the local spacetime of the observer. We show in detail how it could impact the calibration of the Type Ia supernova absolute magnitude in the Hubble flow. We show that it could potentially resolve the Type Ia supernova absolute magnitude and Hubble tensions simultaneously without the need for early or late dark energy.Comment: Version accepted for publication by JCA
    corecore