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Abstract

Here we provide a method for comparing geometric objects. Two objects
of interest are embedded into an infinite dimensional Hilbert space using their
Laplacian eigenvalues and eigenfunctions, truncated to a finite dimensional Eu-
clidean space, where correspondences between the objects are searched for and
voted on. To simplify correspondence finding, we propose using several geo-
metric invariants to reduce the necessary computations. This method improves
on voting methods by identifying isometric regions including shapes of genus
greater than 0 and dimension greater than 3, as well as almost retaining isom-
etry.
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1 Introduction and Previous Work

The use of geometric properties in the study of shapes has been of interest for a

long time. More recently, the field of Riemannian geometry has been used in a

computational aspect in the study of shapes, networks and data. Several algorithms,

such as ISOMAP, Local Linear Embedding, Eigenmap and many others have applied

geometric tools to machine learning and nonlinear dimensionality reduction (NLDR).

The field of graphics processing has also seen a great deal of interest, and has found

the study of 2D surfaces very helpful.

Of particular interest to us here is the voting approach to identify correspondences

on surfaces, which is to say maps between regions that preserve the metric as much

as possible. The Möbius Voting algorithm [LF 09] provides a way to compare regions

of 2D surfaces of genus 0 in three dimensions that are intrinsically similar, thought

possibly extrinsically very different. We are interested here in determining which

components of this algorithm keep the problem a three dimensional one. After this, we

will ask the question of how this method can be generalized to shapes of higher genus

and higher dimension. To that end, our goal here is to develop a voting algorithm

for higher than 3 dimensions based on an almost isometric heat kernel embedding

[BBG 94].
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1.1 Some Background and Use of Shape Comparison

Many of the uses of shape comparison in 3 dimensions are obvious, as most physical

objects that we deal with are 3D. Less clear are the applications of shape comparison

in higher dimensions. We’ll go over a few places where this may be of interest.

1.1.1 The Differential Geometry Perspective

This perspective looks at such matters as Gromov-Hausdorff and spectral distance

estimates, which measure isometry, as well as Yamabe flow, which preserves conformal

structures, and anisotropic indicators, which measure conformality.

[Chan 14] provides a framework for measuring deviations from conformality in

higher dimensions. For 2 dimensional surfaces, the Beltrami coefficient serves this

role. For higher dimensions, an anisotropic indicator is defined, giving a method to

measure conformal deformations between two objects.

The Yamabe flow is a geometric flow on a compact manifold, that if it converges,

does so to to a metric of constant scalar curvature. The metric evolving from the

Yamabe flow is conformally equivalent to the initial metric.

1.1.2 3D Graphics

The techniques described here, while formulated trying to solve the problems asso-

ciated with high dimensions, can certainly be used on 3D problems. Certainly, the

Möbius Voting approach is a very good algorithm, but heat kernel voting has its

own advantages stemming from its emphasis on isometry rather than conformality.
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Additionally, the heat kernel method is capable of handling surfaces of genus greater

than 0.

In the field of 3D computer graphics, our process is variously referred to as shape

comparison, tracking, alignment, and registration, all having similar meanings. The

3D objects of interest in this field are dealt with from the perspective of Riemannian

geometry as 2 dimensional surfaces embedded in 3 dimensions. Here, the Riemann

Mapping Theorem ensures that any genus 0 closed 2D surface can be mapped to the

unit sphere S2 or the unit disk D2 conformally. This, in addition to the closed form

Möbius transformation for point alignment has created a vibrant body of work on

conformal geometry for 3D surfaces. While the loss of some computational tools in

higher genus and higher dimensions is ultimately what pushes us toward the isometric

approach, we maintain that the isometry approach can still yield relevant information.

1.2 Möbius Voting-Shape Registration in Three Dimensions

Möbius Voting [LF 09] handles the problem of comparing two genus 0 metric surfaces

in a computationally simple way. Their solution is to conformally embed the two

meshes into S2 or C ∪ {∞} (uniformization). From here, random sets of 3 points on

each mesh representation of the surfaces are matched via Möbius transformations,

then the Möbius transform defined by this matching is used to map the remaining

points. The correspondence error for the remaining points is measured and stored for

comparison with different samples in the process of voting.

The fact that Möbius voting is the primary motivator for this one, and that we are
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following a very similar process, we’ll go into some details. Specifically, the process

is carried out as follows.

1.2.1 Sampling and Embedding the Meshes

The process begins with two discrete meshes in 3D. To reduce computation, sample

vertices are taken first from local maxima of Gauss curvature, then from the most

isolated point from all previous points until the desired number of samples have been

taken.

Now the meshes are mapped conformally to the unit sphere using the discrete

harmonic map and its conjugate given in [PP]. The specific manner of the embedding

is to create a midedge mesh from the original. The midpoints of the original edges

become the vertices of the mid-edge mesh, so that a vertex vi is associated with each

edge. Within each face fijk in the original, a midedge face is constructed inside with

the same orientation. So for a face fijk in the original mesh, mid-edge construction

is as follows

vi → Vq vj → Vr vk → Vs

fijk → Fqrs

eij → Eqr ejk → Ers eki → Esq

Constructing the embedding function requires these notions to be defined. How-
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ever, the embedding will only take the vertices. So it is helpful to have the explicit

formula for the midedge vertex

Vr =
vi + vj

2

Now this is used in the computation of the harmonic function. The function

u(vi) =
∑
j

ujφ(vi)

is discrete harmonic if it satisfies

∑
j∈N (i)

(u(vi)− u(vj))(cotαij + cot βij) = 0 ∀vi ∈ V

Here, ui = u(vi), φi(vj) is the indicator function; φi(vj) = 1 if i = j and 0 otherwise.

αij and βij are the supporting angles for the edge eij. The function u is initialized

for two vertices u(vi) = −1, u(vj) = 1, and the remaining values are solved for.

The conjugate function, u∗ takes mid-edge vertices Vi, and is defined in terms of

the harmonic function u

u∗q − u∗r =
1

2
((u(vi)− u(vj)) cot(θk) + (u(vk)− u(vj)) cot θi)

θk is the angle of vertex vk. The embedding is then

Φ(Vr) =
u(vi + vj)

2
+ iu∗(Vr)
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1.2.2 Aligning

After performing the process described previously on each input mesh, there are two

meshes embedded conformally into Ĉ = S2. The process of voting requires defining

maps from one mesh to another. From each mesh, 3 points should be sampled. The

goal is not simply to align these points, rather, we want an explicit Möbius map

between the spheres that aligns these points. A Möbius transformation is defined in

[Schwertfeger 1962]

Definition 1 (Möbius Transformation ). Given z ∈ Ĉ, a Möbius transformation is

given

M(z) =
az + b

cz + d

where a, b, c, d are from C and ad− bc 6= 0.

In matrix language, M acts on each z ∈ Ĉ by

M(z) =

[
a b

c d

][
z

1

]

here considering homogeneous coordinates on CP 1 ∼= Ĉ.

A useful tool here is the cross ratio

Definition 2 (Cross Ratio). Given four points z1, z2, z3, z4 ∈ C, the cross ratio is

defined

(z1, z2; z3, z4) =
(z3 − z1)(z4 − z2)

(z3 − z2)(z4 − z1)
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Then the following will help specify point alignment:

Theorem 1 (Cross-Ratio Invariance [Möbius 1855]). Given four points z1, z2, z3, z4 ∈

Ĉ, and a Möbius transformation M , and wj = M(zj). Then the cross ratio is invari-

ant under the Möbius transform M , i.e.

(w1, w2;w3, w4) = (z1, z2; z3, z4)

Theorem 2 (3-Transitivity [Schwertfeger 1962]). Given three unique points z1, z2, z3

in Ĉ and w1, w2, w3 be three different unique points. The Möbius transformation M

providing

w1 = M(z1), w2 = M(z2), w3 = M(z3)

is uniquely determined. M is found explicitly be solving the cross ratio problem

(w,w1;w2, w3) = (z, z1; z2, z3)

for w.

In general, this gives the explicit formulation:

M =

[
a b

c d

]
=

[
w2 − w3 w1w3 − w1w2

w2 − w1 w1w3 − w3w2

]−1 [
z2 − z3 z1z3 − z1z2

z2 − z1 z1z3 − z3z2

]

In this way, w1, w2, w3 and z1, z2, z3 are mapped to 0, 1, and ∞ for comparison

(keeping in mind that we have embedded our meshes in the extended complex plane).
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Clearly, these points match. Next, the rest of the sampled points σ1 and σ2 are

mapped by M to this space.

1.2.3 Voting

Having aligned three points, it is time to ‘vote’ on the remaining samples. The process

is given by [LF 09]. Our first task is to look for correspondences between points. To

do so, we do the following:

1. Some small radius is chosen.

2. The nearest point correspondences are found. If the radius about a point is

empty, we consider no correspondence found.

3. A threshold K should be chosen for the desired number of correspondences, if

the correspondences found by a map M does not meet this threshold, no vote

is taken. Otherwise, a vote is taken and the matrix needs to be updated.

Caution is necessary when measuring the deformation. The embedding is con-

formal, and does not preserve isometry in general. Point correspondences may be

close, but carry isometric distortion. A first proposal for measuring the error is given,

taking into account the conformal factor.

E(c) =
∑
k

dS(zk, c(zk))

∫
Φ(Ωk)

κ1dxdy

Here, dS(zk,M(zk)) = |zk−M(zk)|
|1+zkM(zk)| is the distance on S2, and κ1 is the conformal
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factor for Φ1. Ωk represents a cell inM1, and Σk is a cell in a partition of the surface

M1 = ∪kΣk where each Σk contains a single point. c(zk) is correspondence with zk,

two mutually closest points from different meshes. Then

area(Ωk) =

∫
Φ1(Ωk)

λdxdy

However, because points were sampled uniformly, the area of each region ΩK is

roughly the same. So the error formula has the simpler form

E(c) =
∑
l

dS(zk, c(zk))

This quantity is used for voting in the following way. The process begins with a

correspondence matrix C with all entries initialized to 0. Some small e is given. Each

time a map M is found and the number of correspondences meets the threshold K,

C is updated according to the rule

[cxy]← [cxy] +
1

e+ E(M)/n

for each found correspondence between x and y. After a number of iterations on

M , the matrix is normalized so that each entry cxy represents the confidence that

two points x and y have correspondence. Lower amounts of global distortion provide

stronger votes, while high amounts of global distortion provide weak votes.



10

1.3 Limitations of Möbius Voting

Attempting to apply this algorithm to higher dimensions fails for two reasons.

1. Pinkall and Poltier’s conjugate harmonic functions, used for uniformization, are

defined for 2 dimensional meshes. Generally speaking, the uniformization step is

based on the Riemann mapping theorem, which does not generalize to surfaces

of genus greater than 0, or manifolds higher than 2 dimensions.

2. Möbius transformations are not point-transitive for more than three points.

Resolving this then, is to find a computationally tractable manner of shape

comparison that does not rely on these particular tools.

This algorithm also works only for surfaces of genus 0. In our approach, we

will develop an method that can compare surfaces of any genus. It is also worth

considering the distortion of the metric in conformal transformations. While this

nonrigid property has its advantages for shapes with large deviation, the metric still

contains useful information. Our approach will still use conformality, but we also

turn an eye more toward almost isometry as a tool.

1.4 Heat Kernel Voting

In the interest of bypassing the limitations described previously, we propose a method

of different flavor than Möbius voting. We have two different classes of shape that we

could work with.
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1. n dimensional Riemannian manifolds embedded in Rm, (M, g) ⊂ Rm. We will

often refer to this as the smooth case.

2. Graphs embedded in Rm, G = {V,E}. Here V is the vertex set and E is the

edge set. In this situation, G is typically weighted. In practice, the edge weights

we encounter are usually the Euclidean distance. From here, we use the heat

kernel to transform the weights, a process which will be described in Section

1.4.2. We will often refer to this as the discrete case.

2.5 One other consideration must be made, given the growing interest in using

geometric properties in data analysis. Provided the input data is a point cloud,

ie a set of points p = {p1, . . . pn} ⊂ Rn, no edges will be defined. To consider

either method, a graph or manifold structure is required, so provisions must be

made. If the data has no edges [BN 02] has proposed either connecting points

within some ε ball, or using a K-nearest neighbor algorithm to connect points.

At the point when the points have some edge structure, this is treated as a

discrete graph.

The methods for smooth manifolds and discrete graphs are parallel; occasionally

the methods will look fairly different, but the broad outline of the methods are the

same.
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1.4.1 Embedding a Smooth Manifold

The heat kernel embedding proposed by [BBG 94] approaches an isometry into l2 as

the heat flow time t goes to 0. We’ll make use of this almost isometry and expand

our view into isometric transformations. We’ll begin by defining a few things.

The space L2 is the space of square-integrable functions

∫
X

|f(x)|2dx <∞

with inner product f, g ∈ L2 defined,

〈f, g〉 =

∫
X

f(x)g(x)dµ(x)

It will be helpful to think about the space of square-summable real sequences in

l2

{ai}i≥1 so that
∞∑
i=1

|ai|2 <∞

considering the Fourier expansion of functions in L2. The heat kernel embedding

embeds a manifold into l2, hence our interest.

This extends the concept of Euclidean distance for an infinite dimensional space in

the following way. The distance in RN is given by
√
x2

1 + x2
2 + · · ·+ x2

N . It’s natural

to think about this process extending to the infinite dimensional vector space by

considering N →∞. In this case, we should only consider sequences that converge.

The Laplace operator (Laplacian), ∆ is of central importance for our goals here.
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The familiar Laplacian of a real valued function f is given

∆f = ∇ · ∇f =

(
∂2f

∂x2
1

+
∂2f

∂x2
2

+ · · ·+ ∂2f

∂x2
N

)

Here ∇ gives the gradient and · is the dot product. For this reason, the Laplacian

is often described as the divergence of the gradient.

∆f = div ∇f

This concept is the same for the Laplacian on a manifold. However, the coordinate

representation looks quite a bit different.

Definition 3 (Smooth Laplacian on a Manifold). Given an n dimensional Rieman-

nian manifold (Mn, g), the Laplacian is defined

∆g = −divg · ∇g

Where ∇g is the gradient

∇gϕ =
n∑

i,j=1

gij
∂ϕ

∂xi

∂

∂xj

and divg is the divergence at the point X =
∑n

i=1 bi
∂
∂xi

divgX =
a√
| det g|

n∑
i=1

∂

∂xi
(bi
√
| det g|)
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So the Laplacian is given with local coordinates

∆g = − 1√
| det g|

n∑
ij=1

∂

∂xi

(
gij
√
| det g| ∂

∂xj

)

Henceforth, when we say “Laplacian”, we will be specifically referring to the

Laplace operator on Riemannian manifolds.

The eigenvalues of the Laplacian are the numbers λ that satisfy the eigenvalue

equation

∆φ = λφ

If λj is an eigenvalue then φj is it’s corresponding eigenfunction. With this, we cite

the following

Theorem 3 (Sturm-Liouville Decomposition [Chavel 84]). For a compact manifold

M, there exists a complete orthonormal basis {φ1, φ2, φ3, . . . } of L2(M) consisting of

eigenfunctions of ∆ with φj having eigenvalue λj satisfying

0 < λ1 ≤ λ2 ≤ . . . ↑ +∞

In particular, each eigenvalue has finite multiplicity.

We begin with two n dimensional Riemannian manifolds (M1, g1) and (M2, g2).

We want to embed our objects in a more manageable space. Recall that for a 2 di-

mensional, genus 0 manifold, the Riemann mapping theorem posits the existence of a

conformal map to the sphere or unit disk. For higher dimensional Riemannian man-
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ifolds, we can use heat kernel methods to approximate an isometric embedding into

a canonical target for each mesh. Our approach is to use the heat kernel embedding

to embed each manifold into l2.

A selection of eigenfunctions {φaj}j≥1 form an orthonormal basis for the Hilbert

space l2. We consider the spectrum, where 0 = λ0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λi ≤ . . . . Then

[BBG 94] gives the embedding

Definition 4 (Heat Kernel Embedding [BBG 94]). Given an n-dimensional closed

Riemannian manifold (M, g) and an orthonormal basis of real eigenfunctions of the

Laplacian ∆g, define the family of maps

Φa
t : M → l2 (1)

x→
√

2(4π)n/4t(n+2)/4{e−λjt/2φaj (x)}j≥1 (2)

The heat kernel embedding embeds a manifold into an infinite dimensional Hilbert

space l2, at which point we truncate the embedding to RN or SN−1, for a suitable N .

The driving factor in our use of this embedding is due to the following theorem.

Theorem 4 ([BBG 94]: Theorem 5). Fix an n-dimensional closed Riemannian man-

ifold (M, g) and an orthonormal basis of real eigenfunctions of its Laplacian. Let gcan

be the Euclidean scalar product on l2.

1. For all positive t, the map Φa
t is an embedding of M into l2.
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2. The pulled-back metric (Φa
t )
∗g

(Φa
t )
∗gcan = g +

t

3

(
1

2
Scalg · g − Ricg

)
O(t2)

When t→ 0+.

Here Scal is the scalar curvature and Ric is the Ricci curvature tensor.

The key factor is that the heat kernel embedding approaches isometric as t→ 0.

For this reason, we will tailor our approach to preserve isometry as much as possible.

In general, computing an l2 basis of eigenfunctions is unfeasible, and it will be

necessary to work with a finite basis of N eigenfunctions. It is possible to truncate

the embedding to get within some ε to an isometry. [Portegies 13] holds the promise

of working with in an almost isometric embedding into a finite dimensional space in

the Truncation Lemma (Lemma 1, Section 1.4.3).

1.4.2 Eigenmap Method for Embedding a Graph

The exact method of heat kernel embedding will differ from the continuous case

slightly in the discrete case . The embedding uses the eigenfunctions of the Laplacian,

similar to the smooth case. It is the character of the Laplacian that varies. The

continuous uses the Laplace-Beltrami operator; meshes will use the graph Laplacian.

In the case of a graph as a manifold, there are several formulations for the graph or

mesh Laplacian. The eigenmap method for embedding is for weighted graphs, so we’ll

consider our graph having edge weights, although we have the implicit assumption
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that the location of points in space is important. For now, we’ll give the Laplacian for

a graph with general edge weight w. Later, we will ammend this to refer specifically

to a Gaussian edge weight.

Let G = (V,w) be a graph, where V is the vertex set, or nodes, and has size

|V | = K and w is the set of edge weights. Specifically, if x and y are vertices, the

weight of the edge between them is denoted wxy. We also need to consider the weight

of a vertex x, defined w(x) =
∑

y wxy, where y is a neighbor of x.

In general we have the following definition for the weighted graph Laplacian used

in Eigenmap as follows

Definition 5 (Weighted Graph Laplacian [BN 02]). Let (V,w) be a locally finite

weighted graph without isolated points. For any function f : V → R, define the

function ∆wf by

∆wf(x) =
∑
x∼y

(f(x)− f(y))wxy

Here x ∼ y indicates that x and y are adjacent.

It is necessary to construct this in an operator form. To do so, begin by defining

the degree matrix

Dxx = w(x)
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and the weighted adjacency matrix

Wxy =


wxy if x ∼ y

0 otherwise

Then the Laplacian matrix is given

L = D −W (3)

The normalized Laplacian is formed by factoring out D−1:

∆G = D−1L = I −D−1W (4)

Since D is diagonal and G has no isolated points, D−1 always exists. It is worth

pointing out that there are several normalization procedures that seem to suit the

purposes required of them. The differences are small. As we are using Belkin and

Niyogi’s Eigenmap, we will use their formulation.

Having defined the graph Laplacian, we can now narrow our focus to the particular

embedding that we are using. Consider a graph G = {V,E} embedded in Rn. Notice

here that we are not looking at a weighted graph. The specific procedure for eigenmap

embedding requires us to specify the nature of the edge weight as follows.
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The heat kernel of the graph is given [BN 02]

k(x, y, t) = exp

(
−||x− y||

2

t

)

In the interest of using eigenmap, [BN 02] gives the edge weight function by the

kernel wxy(t) = k(x, y, t). As before, the vertex weight of x is defined wt(x) =∑
y k(x, y). For the remainder of this document, the weight w of and edge will refer

specifically to this weight scheme.

A few observations should be made about k(x, y, t). The first is that it is inverse

to the distance between two vertices: if ||x − y|| is large, k(x, y, t) will be small, if

||x− y|| is small, k(x, y, t) will be large. Another fact is that as t→ 0, k(x, y, t)→ 0.

For this reason, the vertex degree also goes to 0 as t→ 0.

As with the normalized Laplacian, there are several variations of the heat kernel

in spectral graph theory that differ slightly. Again, we’ll be using the one deemed

favorable to eigenmap, but the use of different formulas in other areas is no cause for

alarm.

1.4.3 Truncating to Finite Dimensional Space

While a remarkable result, the embedding (1) leaves our manifolds in an infinite

dimensional space. To continue with our goals, it will be necessary to work in a finite

dimensional vector space. To do this, a result from [Portegies 13] will give us some

hope.
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Definition 6 (Dilatation). The local dilatation at p of a function f from a Rieman-

nian manifold M, g to a finite dimensional vector space V is given

|(df)p| = lim
r→0

sup
x,y∈Br(p)

d(f(x), f(y)

d(x, y)

An embedding is close to isometric if the local dilatation is close to one.

Lemma 1 (Truncation Lemma [Portegies 13]). Given an n-dimensional Riemannian

manifold (M, g), with Volume bounded above by V , Ricci curvature bounded below by

k, and injective radius bounded below by i, we have the following.

Let ε > 0. Then there exists a t0 = t0(n, k, i, ε) so that for all 0 < t < t0, there is

an NE = NE(n, k, i, V, ε, t) so that if N ≥ NE, the map

ΦN
t (p) := (2t)(n+2)/4

√
2(4π)n/4{eλjtφj(p)}Nj≥1

is an embedding of (M, g) into RN so that

1− ε < |(dΦN
t )p| < 1 + ε

In reality, explicit values for the necessary geometric quantities may not be avail-

able. However, given that the truncation is done with heuristics in either case, we

consider the lemma above an improvement, as now it is clear that the truncation

dimension depends only on the geometry of the object under consideration. In the

case of a metric network, N is uniform while the number of nodes in the network can
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be much larger.

The fact that we our embedding is a near isometry will influence some of our later

methods. The heat kernel embedding also (nearly) balances the points, which will be

helpful when it comes to aligning the points.

1.4.4 Sampling

Samples must then be generated. We need some heavier tools than simple random

sampling to approach this problem due to the very high number of points under

consideration (this will become more apparent later). We should begin with samples

that we deem to be more important. To do this, we consider three methods.

1. Sampling based on scalar curvature. Regions of high unsigned (positive or

negative) scalar curvature are determined to be more ‘important’. Obviously,

this term is ambiguous, but we later give some motivation that should clear

things up. We begin by sampling the critical points of scalar curvature. If there

are still too few points, we sample from the scalar curvature flows between these

regions.

2. Sampling the critical points and zeros of the eigenfunctions.

3. Using a Vitali covering approach to reduce the number of samples in a uniform

way. Details are given in the main body.
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1.4.5 Point Matching

After acquiring samples, the next task is to align these points. The issue of aligning

more than 3 points with O(n, 1) transformations is limited. Möbius transformations

do exist in n dimensions in the form of O(n, 1), often called the Lorentz group. This

group is of dimension n(n+1)
2

(with 3 dimensions for O(3, 1)). By way of example,

the case of Möbius transformations on R3 is the action of O(3, 1). In Möbius voting,

points are in S2 ⊂ R3. O(3, 1), by the above formula, has 3(4)
2

= 6, corresponding with

3 point alignment, with each point having 2 degrees of freedom. The shortcoming

here is generalized Möbius transformations align only 3 points.

The motivation for using Möbius transformations in Möbius voting is that in 3

dimensions, it is possible to align 3 points with any other 3 points with no other in-

formation, and the formula for doing so is very simple. Regardless, this is a conformal

tranformation. Given that our embedding is almost isometric, it will be prudent to

maintain this quality as much as possible. Keeping this goal in mind, we can develop

alternative strategies to solve these problems.

Without Möbius transformations, we can still align more than 3 points. It is

always possible to align N generic points with another N points with an N × N

matrix. The case in aligning N points becomes a matrix inverse problem, since the

alignment operation in this case is unique.

Let [p1, . . . , pM ] and [q1, . . . , qM ] be two sets of points from each manifold, trans-

lated so that p1 = q1. Keeping in mind that each pi is a vector with N coordinates,
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we find the L that aligns these points

L = [q1 . . . qN ]([p1 . . . pN ])−1

This is worthwhile to consider, and will be the typical approach we consider.

However, this is rigid. Aligning the points is not an issue, rather, it is possible that the

transformation is far from isometric. If we want to loosen the type of transformation

used, we can align a subset of k points and see where particular regions fall. For this

reason, we can consider isometric or almost isometric transformations that align k

points, with k < N . Then we need to find Lk×k that minimizes ||LLT − I||F subject

to

L[p1, . . . , pk]
T = [q1, . . . , qk]

T (5)

For high dimensions, this process can be computationally costly. Options are

solving (5) subject to the given constraints, or further truncating the embedding

at the expense of losing isometry. To reduce computation in all cases, we will in

Section 2.5 provide some schemes based on geometric properties to eliminate the

possibility of correspondence before we attempt to align points. By reducing the

possible correspondences before calculating any alignment, we can reduce this problem

further.
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1.4.6 Summing up the Process

1. Construct a mesh (if necessary). If the data is a point cloud, we will want to

determine edges in a manner that turns the data into a connected graph.

2. Embed each manifold into l2. Use heat kernel embedding to embed each mani-

fold into an infinite dimensional space.

3. Truncate to RN . Currently lacking a way to determine all the parameters that

determine the dimension in which to truncate our embedding, according to the

geometric qualities provided by [Portegies 13], determining this dimension will

be determined by heuristics until such time that the relevant quantities can be

reliably found in general.

4. Sample points. Uniform samples are good, but for complicated data, the sheer

number of samples necessary renders this unfeasible. Instead, we’ll rely on

regions of high positive or negative scalar curvature, nearest orthogonal trans-

formation, and spectral comparison.

5. Align points or get close. Depending on what your purposes, we can rely with

orthogonal transforms, with voting thresholds to identify wholly isometric ob-

jects, or objects with isometric regions. The number of points aligned will

depend on the truncation dimension.

6. Check similarity. The deviations from isometry (or conformality) tells us how

“good” our transformation is. The heaviest tool for this is the Hausdorff dis-
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tance.

7. Vote and update the fuzzy correspondence matrix.

8. Repeat steps 5 through 7 for a predetermined number of times, or until all

combinations of points are exhausted.

1.5 Our Contributions

The field of shape comparison is vibrant and active. We hope to contribute material

in the following ways.

1. We intend to extend voting algorithms to higher genus surfaces and higher

dimensional manifolds.

2. We propose using geometric properties to improve computational speed. High

dimensional information can be very complicated, and processing time threat-

ens to be an issue if we are not careful. We intend to reduce the amount of

information to process by considering several invariants that will allow us to

discard unreasonable points or correspondences.

We find that the scalar curvature can tell us what points are ‘important’ so

we can narrow the scope of computing alignments. On the other hand, we

can use the cross ratio, eigenfunctions, and center of mass to tell us whether a

correspondence is worth considering.

3. We hope to develop some manner of using generalized Lorentz transformations,
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ie transformations in O(n, 1), to attempt conformal transformations in higher

than 3 dimensions.

1.6 Computational Considerations

It is one thing to show the existence of something, another to compute it. Here we

seek to assure the reader that the necessary computations are possible in the scheme

that we have proposed.

1.6.1 Laplacian Computation

The embedding of smooth manifolds and graphs is similar in that each method re-

quires computing the eigenfunctions of the Laplacian. In general, the method of

Rayleigh quotients can find the eigenvalues of the Laplacian on a smooth manifold.

Let H1,2
0 denote the Sobolev space consisting of functions u, v ∈ H1,2

0 and with inner

product

〈u, v〉1,2 =

∫
Ω

(∇u · ∇v + uv)dx

Definition 7 (Rayleigh Quotient). Let w be a function on the region Ω ⊂ Rn. Then

the Rayleigh quotient of w is defined

||∇w||2L2(Ω)

||w||2L2(Ω)

=

∫
Ω
|∇w|2dx∫
Ω
w2dx

Theorem 5 (Maximum-Minimum Property for jth Eigenvalue[CH 89]). Let u1, u2, . . . , uj−1
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be the first j − 1 eigenfunctions of ∆, chosen to be orthonormal. Let

Y = {w : w ∈ C2(Ω), w 6= 0, w(x) = 0 for x ∈ ∂Ω, 〈w, vi〉 = 0 for i = 1, 2, . . . , j − 1}

Let uj be a function so that

λj =
||∇uj||2

||uj||2
= min

wj∈Y

{
||∇w||2

||w||2

}

Then λj is the jth eigenvalue and uj is a corresponding eigenfunction.

The first eigenpair is found by the min-max principle for all functions on Ω.

This method will give the eigenvalues for a smooth manifold. For graphs, the

problem is to find the eigenvalues of the Laplacian matrix, which is a real symmetric

matrix. There are many algorithms for finding this, including Rayleigh Quotient

Iteration (RQI). Since this has cubic convergence (fast for eigenvalue problems), RQI

is a reasonable choice of method, and is preferred for aesthetic reasons. The packages

SLEPc and IETL each provide implementaions of RQI.

1.6.2 Truncation

While infinite dimensional spaces give plenty of room to stretch out in, for practical

purposes we usually want to work in finite dimensions.

Lemma 1 tells us that the dimension of truncation is based on the Ricci curvature,

injective radius, volume, dimension of n and time. These are fixed quantities, so some

dimension N to which we wish to truncate the embedding does exist, based on hour
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desired ε within isometry. In practice, this number may be hard, or impossible to

determine. We will find ourselves relying on heuristics to choose the value of N . For

examples of this, see [Sharma 12], where the author finds success using the first three

to five eigenfunctions.

2 Shape Comparison

Now it is time to discuss specifically our method for comparing shapes. As we men-

tioned earlier, the motivation for this comes from Möbius Voting. Our plan is to

extend a voting method to shapes of genus higher than 0, and dimension more than

3. There are of course, several technical challenges, and quite a few computational

challenges; overcoming these issues constitutes most of the details of the outline given

previously.

Before we talk about comparing shapes, we need a metric by which to compare

them. This, as it turns out is not so simple from a computational standpoint, but a

strong theoretical method exists.

2.1 Measuring Similarity: The Gromov-Hausdorff Distance

Gromov-Hausdorff distance (dGH) is a commonly used method for matching shapes,

and will be the distance that we’ll use here. The Gromov-Hausdorff distance gives a

sense of how far two shapes are from being isometric.

To begin the discussion, we first consider the Hausdorff distance of two subsets of



29

a metric space.

Definition 8 (Hausdorff Distance [Gromov 81]). For two subsets X and Y of a metric

space Z with metric d, the Hausdorff distance is defined as

dZH(X, Y ) = inf{ε ≥ 0;X ⊂ Nε(Y ), Y ⊂ Nε(X)}

Where Nε is an ε neighborhood of a set.

This metric gives a method of measuring the distance between subsets of a metric

space. Our task however, will ultimately be to compare manifolds, which we generally

won’t expect to be embedded in the same space or have the same metric. We want to

know how similar two shapes are. For this we turn to the Gromov-Hausdorff distance.

This can be defined in terms of the Hausdorff distance as follows

Definition 9 (Gromov-Hausdorff Distance [Gromov 81]). Given two metric spaces

X and Y , the Gromov-Hausdorff distance is given

dGH(X, Y ) = inf
f,g,Z

dZH(f(X), g(Y ))

where f : X → Z and g : Y → Z are isometric embeddings into Z and dZH is the

Hausdorff distance in Z

In particular

dGH(X, Y ) = 0 if and only if X and Y are isometric
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Now we can compare correspondences. Computing the Gromov-Hausdorff dis-

tance is now a matter of computing the distortion between all possible isometric

correspondences between manifolds. Our method here involves embedding two mani-

folds in the same space via heat kernel embedding (which is almost isometric), aligning

points, then computing the Hausdorff distance of the sets. The reader will notice that

the theoretical motivation for what we are doing is in fact estimating the Gromov-

Hausdorff distance described here.

2.2 Spectral-Hausdorff Distance

The eigenfunctions and eigenvalues of our manifolds play a central role in the process

of shape comparison. The spectral Hausdorff distance describes the distance between

manifolds in terms of the Laplacian eigenfunctions. From these distances, we can find

some helpful continuity results.

2.2.1 Smooth Spectral Hausdorff Distance

[BBG 94] gives a measure for isometry between manifolds. Given a Riemannian

manifold (M, g) with an orthonormal basis of eigenfunctions a = {φaj}j≥1, define the

maps

Iat (x) =
√

Vol(M){e−λjt/2φaj (x)}j≥1 (6)

describing the action of the volume form of the manifold on a basis of eigenfunc-

tions, φa. Using this, we have a definition of spectral distance:



31

Definition 10 (Spectral Distance [BBG 94]). Given two Riemannian manifolds (M1, g1)

and (M2, g2), the spectral distance is defined

dt(M1,M2) = max
{

sup
a1

(
inf
a2
dH(Ia1t (M1), Ia2t (M2))

)
,

sup
a2

(
inf
a1
dH(Ia2t (M2), Ia1t (M1))

)}
(7)

Where Iat is given above and dH is the Hausdorff distance in l2. ai, i = 1, 2 is an

orthonormal basis of eigenfunctions {φaj}j≥1 in L2(M, g).

2.2.2 Graph Spectral Distance

Consider now the case of a graph. Consider a finite, connected graph G = (V, µ). In

this model, the similarity between points (vertices) is given by the weight of the edge

joining them. Spectral graph theory [Gu] looks at what can be inferred by studying

the spectrum of the Laplacian of a graph.

Let λ1 ≤ λ2 ≤ · · · ≤ λn be the set of eigenvalues of ∆G1 , the graph Laplacian (4)

of G1, and µ1 ≤ µ2 ≤ · · · ≤ µn be the set of eigenvalues of ∆G2 , defined the same

way.

If |G1| = |G2|, the spectral measure is defined for graphs G1 and G2

d(G1, G2) =
1

n

(
n∑
i=1

(λi − µi)2

)1/2
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where n is the number of vertices in each graph.

If the number of vertices is not the same, define a spectral measure,

mσ(G1) =
1

N

∑
i

δλi

with associated cumulative distribution function FG1 . The inverse CDF is defined

F−1
G1

(x) = inf{t ∈ R : FG1 > x}

Then the spectral distance is the Wasserstein distance between the spectral mea-

sures of G1 and G2

dW (mσ(G1),mσ(G2)) =

(∫ 1

0

||F−1
G1

(x)− F−1
G2

(x)||2dx
) 1

2

2.2.3 Conclusions

The problem of shape comparison ultimately comes down to solving one of these

problems. The most direct way is to use the Gromov-Hausdorff distance. Shapes

with a small Gromov-Hausdorff distance are similar; those with a large distance

are dissimilar. However, the simplicity of this ends here. Actually computing the

Gromov-Hausdorff distance requires us to find the best possible correspondence with

respect to the Hausdorff distance, a number that is itself hard to compute. The reader

can imagine that there are far too many correspondences to consider this tractable.
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Our method is entirely concerned with finding the best correspondence between

meshes (the continuous case is viewed as a mesh of sampled points). So long as we

can achieve this goal reasonably simply, estimating the Gromov-Hausdorff distance

becomes significantly more achievable.

The next possibility that we are presented with is spectral Hausdorff distance. We

can compare shapes in this way; small spectral Hausdorff distance indicates similar

shapes; the converse is true for large distances. The discrete case initially looks

promising, we just need to sum the difference of all the eigenvalues. However, it’s

important to remember that there may be lots of eigenvalues, there are methods and

software packages (SLEPc, IETL) to calculate this, but each eigenvalue calculation

adds non-trivial software overhead.

The smooth case has challenges of its own. The method exists for finding eigen-

functions; though it may be difficult. In some instances, the eigenfunctions may

already be known, such as SN and CPN . The maps Iat (see (6))are possible to com-

pute; an instance of Iat is the same as a heat kernel map, differing only by a constant.

The next problem may not be so simple to solve. It is necessary to find the supre-

mum and infinum over all possible choices of eigenfunction basis for each manifold,

and calculate the Hausdorff distance each time. Attempting this directly is not a

suitable approach.

However, this gives us tools to work with. Spectral Hausdorff distance tells us

something about the continuous dependence of the distance on the eigenfunctions.

This gives us some tools for excluding certain correspondences before wasting com-
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putational resources on them.

2.3 Embedding

Let (M1, g1) and (M2, g2) be two manifolds in m dimensions. Ultimately, we want

to compare these shapes as they exist in some ambient space. In order to do so, we

need to embed them into some canonical target, such as RN or SN−1. The heat kernel

embedding is the first step in doing so. Given below is the method for smooth and

discrete manifolds.

2.3.1 Smooth Manifolds

Ideally, we consider manifolds as they exist in a Euclidean space. For our embedding

however, we need to make a detour to l2 before truncating. Berard, Besson and

Gallot [BBG 94] give a method of embedding a manifold into the Hilbert space of

square summable sequences, l2. Given a Riemannian manifold (M, g), the Laplacian

eigenvalue equation is given

∆gφ = λφ

Where ∆g is the Laplacian of M with respect to the metric g. If λj is a solution

to this equation, the corresponding function φj is the eigenfunction associated with

λj. Using these eigenpairs, the embedding described in (1) approaches isometric as

t→ 0

It is worth noting that [BBG 94] also provides a renormalized embedding from M
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to l2 that embeds the manifold into S∞, the infinite dimensional sphere.

Ka
t : x→ 1√∑

j≥1 e
−λjtφ2

j(x)

{
e−λjt/2φj(x)

}
j≥1

This embedding approaches isometry by

(Ka
t )∗can =

1

2t

(
g − t

3
Ricci +O(t2)

)

The map into S∞ will be of interest with respect to Möbius geometry on spheres.

At this point finding the embedding is a matter of solving the eigenvalue problem

above. For some structures, these are known, in other cases, they must be computed

explicitly, using Rayleigh-Quotient methods. The fact that this embedding is nearly

an isometry will inform all of our further actions. We can’t exactly work with infinite

dimensional data, but there are results for truncation, which we will look at later.

2.3.2 Heat Kernel Embedding of a Graph

The general formulation of isometric comparison for discrete manifolds is similar to

smooth manifolds. The main thrust in using the eigenfunctions of the Laplacian to

embed a manifold into l2 is the the same for discrete and smooth manifolds. For the

specific procedure we’ll be following the Eigenmap method, given by [BN 02].

The general case is for a graph G = {V,E} embedded in Rn, which is to say that

every vertex has a coordinate in Rn.

Those working with point clouds will find that the edge set is not defined for the
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points. In order to create a graph structure, [BN 02] provides two solutions.

1. One approach is to form edges from one vertex to all vertices within some ε disk

of the vertex. The difficulty is in picking a value for ε: the ideal value may not

be obvious. It is also possible that this method will disconnect the graph.

2. It is possible to connect edges using the k-nearest neighbors algorithm (KNN).

Given a point x, KNN will classify k closest points in the class connected to

x. Here, k may be hard to determine, however we are guaranteed a connected

graph.

Once edges are determined, the next step is to calculate the weights. First, we

use the Gaussian function will give the edge weights as we did earlier

µxy(t) = k(x, y, t) = exp

(
−||x− y||

2

t

)

This takes a higher value for close points, in a sense giving a notion of the strength

for a given connection.

Now consider a map

Φ : G→ RN

Φ(vi) = φi

Where N is the number of vertices in G. Φ has the matrix representation: Φ =

[φ1, φ2, . . . , φN ]. Note that at this point we aren’t necessarily considering φj to be an
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eigenvector of the Laplacian, although we will soon show that this is the case. The

goal of our embedding is to minimize

∑
i,j

||φ(vi)− φ(vj)||2Wij

Here, Wij can be thought of as a penalty for separating points with strong con-

nections. We can reformulate the problem

∑
i,j

||φ(vi)− φ(vj)||2 =
∑
i,j

(
(φ1(vi)− φ1(vj))

2 + · · ·+ (φN(vi)− φN(vj))
2
)

=
∑
i,j

(φ1(vi)
2 + φ1(vj)

2 − 2φ1(vi)φ1v(j) + . . .

· · ·+ φN(vi)
2 + φN(vj)

2 − 2φN(vi)φN(vj))Wij

=
∑
i

∑
k

φk(vi)
2Dii +

∑
j

∑
k

φk(vj)
2Djj − 2

∑
i,j

∑
k

φk(vi)φk(vj)Wij

= Tr(ΦTDΦ) + Tr(ΦTDΦ)− 2Tr(ΦTWΦ)

= 2Tr(ΦTLΦ)

So the best embedding is the one that minimizes

Tr(ΦtLΦ)

subject to

ΦTDΦ = I
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[BN 02] gives the solution to this by the eigenvalue problem:

Lφ = λDφ

To find the embedding then, we need to find the eigenvalues of the normalized

Laplace operator, given in Section 1.4.2, (4). The eigenvalue problem for ∆ is given

by

∆φ = λφ

(D−1L)φ = λφ

Lφ = λDφ

Since the graph consists of a finite number of elements, the spectrum is finite. So

the eigenfunctions are the columns of the matrix:

[φ1, φ2, . . . , φN ]

corresponding to eigenvalues

0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λN
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The embedding (Eigenmap) is then given [BN 02]

Φ : G→ RN

defined by

x→ (φ1(x), φ2(x), . . . , φN(x))

Remark: It is important to note here that the solution in the discrete embed-

ding is that the above eigenvalue problem minimizes, but does not necessarily fully

eliminate metric distortion in mapping a graph to Euclidean space. We don’t find an

isometry, just the closest to isometry that we can get in RN .

2.3.3 Theoretical Basis

We will later like to align our Riemannian manifolds (M1, g1) and (M2, g2) with

orthogonal transformations. To do this, we need the following result

Theorem 6. If Riemannian manifolds (M1, g1) and (M2, g2) are isometric and Φg1
t

and Φg2
t are isometric embeddings, then there exists an orthogonal transform A of l2

so that A(Φg1
t (M1)) = Φg2

t (M2).

Proof. Assume that M1 = (M1, g1) and M2 = (M2, g2) are isometric, so that

f : M1 →M2

is an isometry.
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By the Sturm-Liouville theorem, the eigenvalues of the Laplacian have finite mul-

tiplicity, each basis of eigenfunctions α = {φg1j }j≥1 and β = {φg2j }j≥1 consists only of

eigenfunctions of finite multiplicity. Since M1 and M2 are isometric, the eigenvalues

are identical and the eigenfunctions are the same up to isometry in each eigenspace.

So for eigenfunctions φg1i and φg2i with multiplicity m, define Ai ∈ O(m) satisfying

φg1i = Aiφ
g2
i

Define the block matrix A, where the ith block is the matrix Ai

A =


A1 0

A2

. . .

0 AN


So A is an orthogonal transform, and

A[φg21 , φ
g2
2 , . . . φ

g2
N ] = [φg11 , φ

g1
2 , . . . , φ

g1
N ]

For each coordinate x ∈ M1, f(x) ∈ M2. So the embedded manifolds can be

mapped to one another

Φg1
t (M1) = AΦg2

t (f(M2))
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This ensures that the images of almost isometric manifolds under the heat kernel

embedding can be related by almost orthogonal linear transformations in l2 or RN .

2.4 Sampling

For finding our alignments, we need to sample a number of points from each manifold.

Let Σ1 be the set of sampled points from Φg1
t (M1), and let |Σ1| = s1. Shape compar-

ison in high dimensions has size issues. For an object in N dimensions, the maximum

number of k samples that can be aligned is N . A vital part of voting is comparing

unmatched points, so the k aligned points are only a part of Σ1. In addition, the

Truncation lemma gives the notion that the total number of points in the mesh, s,

will be much higher than N , in the sense that the truncation dimension is based on

the geometric complexity of the object.

Clearly, for smooth manifolds, it is necessary to sample points to find correspon-

dences. Even for graphs, in which the points are discrete sets, the number of vertices

will often be too high to feasibly find possible correspondences for all points. It is

clear that a sampling method is necessary to overcome these issues.

2.4.1 Vitali Samplings

This method is less precise than the others, but is well suited for entirely discrete

data, such as point clouds or rasters. We’ll begin with a useful result, e.g. [Tao 11]

Lemma 2 (Vitali Covering Lemma). Let B1, B2, . . . , Bn be a finite collection of open

balls in RN (not necessarily disjoint). Then there exists a subcollection B′1, . . . B
′
m of
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disjoint balls in this collection such that

∪ni=1Bi ⊂ ∪nj=13B′j

The Vitali covering lemma tells us that it is possible to create a family of balls

C, of size ε that is both disjoint, and has the property that tripling the radius of the

balls in C so that they cover our space, with the idea that the centers of the balls

provide a semi-uniform sampling of the region. The proof of the covering lemma is

constructive; an algorithm for covering can be extracted from the proof. For this

reason, we cite it here

Proof. Let B1, B2, . . . BM be open balls in RN . Define B = {B1, B2, . . .MM}. Pick

the largest ball and give it the name B′1. Now assume inductively that a subcollection

B′1, B
′
2, . . . B

′k have been chosen. If there is no Bi disjoint from B′1, B
′
2, . . . B

′k, we

are done. Otherwise, pick the largest Bi disjoint from B′1, B
′
2, . . . B

′k and add it to

the collection so that Bi = B′k+1. This is continued until no balls are remaining. Call

the final set B′ = {B′1, B′2, . . . , B′m}.

This completes the algorithm for choosing a covering. Next is to show that this

works and satisfies the condition ∪Bi ⊂ ∪3B′j

Pick a ball Bi in the original collection B. Bi must intersect with at least one ball

in B′, let B′j be the first such ball. Then Bi is disjoint from B′1, . . . B
′
j−1. Therefore,

the radius of Bi is no larger than that of B′j. Let Bi have radius ri and center pi and

let B′j have radius rj and center pj.
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We have established that ri ≤ rj. It is clear that ||pi − pj|| ≤ ri + rj ≤ 2rj. Since

Bi has radius ri, the furthest extent of Bi is 2rj + ri ≤ 3rj from pj. Hence, Bi ⊂ 3B′j.

According the the Vitali covering lemma, each center point is between 2− ε and

6− ε away from any other point. At this point, edges can be specified as connecting

points within 6− ε of one another.

Two significant issues must be addressed with this method: complexity and loss of

precision. Ultimately, the latter problems depend on the choice of ε, so we’ll address

that.

By clearing wide radii around a point, it may be that the sampling is missing

some important structure to the data. For instance, consider the situation

•
•

•
•
•
•
•
•

Figure 1:

Here we can see that in the first image, the choice of ε is too small to capture

the overall arrangement of the points. The second image shows an arguably more

accurate image. However, smaller choice of epsilon requires more computation, and

is more sensitive to noise.
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•
•

•
•
•
•
•
•

Figure 2:

The tradeoff to using a smaller epsilon is that the net construction increases in

complexity. Every additional point requires checking that it is at least 2 − ε away

from all previously added points.

This could also be used to sample points on a smooth manifold by doing this pro-

cess in the embedding space. This may produce uniform samples because the second

fundamental form is close to constant in the embedded space [WZ 15]. Consider why

this is tractable. Provided we use the renormalized embedding so that the target

space is S∞, truncated to SN−1. A circle packing scheme on the sphere is a very

difficult problem to solve. Generally, we can’t hope to achieve this. However, using

the Vitali covering method, we can provide a loose circle packing on the sphere.

If the truncated space is too high of dimension, and if the number of samples is too

high, the balancing act between sampling enough so that the geometry is captured,

while keeping the number of computations as low is possible, is delicate. For this

reason, our sampling method should probably have some focus on more ‘important’

regions of the mesh, particularly for high dimensional objects. In the event that this

sampling is still too dense for our computers to work with, we can use the following
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methods to reduce this point set.

2.4.2 Scalar Curvature

We claim that regions of high scalar curvature have greater importance than regions

of low scalar curvature. There are several ways to come to this conclusion, we will

use the following.

The reason for this can be explained from the perspective of uniform sampling in

an ambient space. This itself is a difficult problem, and has issues. To see how scalar

curvature relates to this, consider the following expression for scalar curvature:

Vol(Bε(p) ⊂M)

Vol(Bε(0) ⊂ Rn)
= 1− S(p)

6(n+ 2)
ε2 +O(ε4)

For a fixed dimension n and radius ε.

If the scalar curvature is 0 (Euclidean space) the ball in M is the same volume as in

Rn. If the scalar curvature is high and positive, then Vol(Bε(p) ⊂ M) <Vol(Bε(0) ⊂

Rn). On the other hand, if the scalar curvature is high and negative, then Vol(Bε(p) ⊂

M) >Vol(Bε(0) ⊂ Rn). In either case, the geometry of the manifold differs from that

of Euclidean space. In other words, there is more geometric complexity in these highly

curved regions.

This perspective of scalar curvature leads us to see another benefit. Based on the

idea that regions of high scalar curvature correspond to more ‘important’ regions,

forcing rigid correspondences here makes sure that important parts of shapes are
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compared, while less important regions have the freedom to be quite different. This

can be adapted to more pose invariant comparisons.

2.5 Filtering Correspondences

Given point samples Σ1 ⊂ Φg1
t (M1) and Σ2 ⊂ Φg2

t (M2), the next task is to align them;

the details of this are given in the next section. Before this, it is worth considering that

some correspondences are immediately not valid. This is especially important in our

case, as filtering correspondences can cut down the number of matrix computations

in finding a best alignment. The near isometry of the embedding, and the goal of

near isometric correspondence allow us to use some tools to disregard correspondences

immediately.

2.5.1 Cross Ratio

We’ll begin with the well known concept of the cross ratio as it’s used in 2 dimensions.

Definition 11 (Cross Ratio in Rn). Given 4 points A,B,C,D in R2 or Ĉ, the cross

ratio is given

[A,B;C,D] =
(C − A)(D −B)

(C −B)(D − A)

Typically, this is defined for points on the number line or (extended) complex

plane. We seek a formulation of the cross ratio in RN . We first need to define a

particular metric.
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Definition 12 (Chordal Metric). The Chordal metric

dπ : R̂n → R

Is defined as the Euclidean distance under stereographic projection π:

dπ(x, y) = |π(x)− π(y)|

More explicitly, for x, y ∈ Rn, the chordal distance is expressed:

dπ(x, y) =
2|x− y|√

1 + |x|2
√

1 + |y|2

With the special case

dπ(x,∞) =
2√

1 + |x|2

Then the cross ratio can be defined by multiplying distances rather than scalars.

Definition 13 (Cross Ratio on Rn). [Ratcliffe 06] Let u, v, x, y be points in R̂n with

u 6= v and x 6= y. The cross ration of these points is the number

[u, v, x, y] =
dπ(u, x)dπ(v, y)

dπ(u, v)dπ(x, y)

It is easy to check that two sets that differ by an orthogonal (isometric) transform

have the same cross ratio. In this sense, the cross ratio can be used to develop a filter

for isometric transformations. A stronger result also holds:
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Theorem 7 ([Lie 1871]). A transformation is conformal if and only if it preserves

cross ratios.

This property provides a filter for conformal registration as well. Better still,

the cross ratio is continuous. So nearly isometric sets of points will have similar

cross ratios. From this, if the cross ratios between nearby points are excessive, the

correspondence should be discarded. Given the points specified earlier, we propose

the filter based on the cross ratio. If given 4 points from each embedded manifold

z1, z2, z3, z4 ∈ ΦN
t ⊂ Rn and w1, w2, w3, w4 ∈ ΦN

t ⊂ Rn, the cross ratio satisfies for

some ε ≥ 0.

|[z1, z2, z3, z4]− [w1, w2, w3, w4]| < ε

then there may be a good correspondence between the points. Otherwise not, and

computational resources should not be spent calculating a map aligning them.

2.5.2 Scalar Curvature Matching

We have determined that the scalar curvature is an important quantity for sampling.

We now propose that the critical points of scalar curvature should be close for similar

manifolds. Describing the scalar curvature in local coordinates;

Given Christoffel symbols

Γikl =
1

2
gim
(
∂gmk
∂xl

+
∂gml
∂xk

+
∂gkl
∂xm

)
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Then the scalar curvature is written

S = gab
(
∂Γcab
∂xc

− ∂Γcac
∂xb

+ ΓdabΓ
c
cd − ΓdacΓ

c
bd

)

What we see from this is that the scalar curvature is continuous with respect to

the metric. So isometric manifolds will have the same extrema. Also, nearly isometric

manifolds should have extrema that are close to each other.

With this in mind, we propose the following scheme. These critical points can be

ordered from least to greatest. Now because we don’t have an explicit error term for

the scalar curvature with respect to the metric, it would be unwise to try to measure

the ‘amount’ of isometry between (M1, g1) and (M2, g2). However, if these terms

are wildly off, especially in the early terms, we can quite confidently disregard the

correspondence.

After this, point correspondences can be calculated between these points of high

scalar curvature, based on the justification given in Section 2.4.2. This is to say that

the local critical points of scalar curvature can be used as a subset to sample for

alignment.

2.5.3 Discrete Scalar Curvature

We’ll now give a measure of scalar curvature for graphs. As is often the case in the

discrete setting, there are multiple, non-equivalent formulations for scalar curvature.

We will be looking at two notions of Ricci Curvature:



50

1. Ollivier-Ricci (OR) Curvature [Ollivier 09].

2. Forman-Ricci (FR) Curvature [Forman 03].

Often, notions carried from the smooth setting to the discrete realm, in this case

Ricci curvature, capture different qualities about the curvature [CW 17]. However,

the relation between Olivier-Ricci and Forman-Ricci curvature is not clear. In the

medical imaging setting, both formulations performed similarly. For this reason, we’ll

recommend use of the FR formulation, since it is easier to compute.

Take G = (V, µ) to be a graph with edge weights µ, and let x ∈ V . Then the

Forman-Ricci curvature of G is given explicitly as

RicFR(x, y) = µxy

(
µ(x)

µxy
−
∑
z 6=y

µ(x)
√
µxyµxz

+
µ(y)

µxy
−
∑
s6=y

µ(y)
√
µxyµsy

)

Where z is a neighbor of x and s is a neighbor of y [WSJ 16]. From here, we have

the Forman-Ricci formulation of scalar curvature

SFR(x) =
∑
y

RicFR(x, y)

where y is a neighbor of x. Again in this explicit formula, we find that scalar

curvature is a continuous function of the metric µ on G.
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2.5.4 Critical Points of Eigenfunctions

Recall the spectral distance given earlier by [BBG 94], (7). From this, we may be

able to get useful information from the eigenfunctions. This motivates us to compare

the zeros and critical points of the jth eigenfunction for each manifold. We hope to

infer some result about the relative locations of the zeros and critical points of the

eigenfunctions, provided we can find continuity results.

The continuity of the eigenfunctions is only guaranteed if the multiplicity is 1.

There is a specific case when this is true.

Theorem 8 ([Uhlenbeck 72]). The eigenspaces of the Laplacian are one dimensional

for a generic metric.

Generic here means that the metric is in the set of residuals of the metrics on a

manifold, the complement of which is meager. If g is generic, we are done. Otherwise,

since the non-generic metrics are in a meager set of all metrics, g should be able to

be made generic by a small perturbation.

Theorem 9 ([Abdalla 12]). Let (M, g(t)) be a family of Riemannian manifolds such

that g(t) is analytic in t ∈ (0, T ), and let {φj(t)}j≥0 be a complete orthonormal basis

of eigenfunctions of ∆g(t), with corresponding eigenvalues λj, all analytic in t ∈ (0, T ).

Then the map

Φt : (M, g(t))→ l2, t ∈ (0, T )

x→
√

2(4π)n/4t(n+2)/4

{
e−

λj(t)t

2 φj(t, x)

}
j≥1
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is an embedding for all t ∈ (0, T ) and

(Φt)
∗
can = g(t)(V, V ) +

t

3

(
1

2
Scalg(t)g(t)− Ricg(t)

)
+O(t2)

when t→ 0+

The eigenfunctions φ(t, x) of ∆g(t) are continuous with respect to t (since they are

analytic with respect to t). With this, we see that it is possible to perturb the metric

in a continuous manner, and since g is in a meager set, this perturbation based on

t can be made small enough that g(t) is generic so that all eigenvalues of ∆g(t) have

multiplicity one.

We should then expect that the critical points of eigenfunctions of nearly isometric

manifolds should be close to each other, or those of perturbed eigenfunctions g(t).

Interpreted as a part of our filter, any large deviation between critical points of φg1j

and φg2j is grounds for disregarding a correspondence. Specifically, if ci is a critical

point of φgij , i = 1, 2, we should see, for some ε, the critical values

|φg1j (c1)− φg2j (c2)| < ε

If this fails, the correspondence should be reconsidered. Another purpose that

this can serve is to evaluate the choice of basis for the embedding. Almost isometric

is not the same as isometric. Analyzing the critical points of the eigenfunctions can

also be used to evaluate the choice of eigenfunctions, specifically whether the choice
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for each embedding is reasonable for matching.

Remark: Note that it is necessary here to consider the eigenfunctions, and not

simply the eigenvalues. It is possible, and in fact counterexamples have been found, of

non-isometric manifolds with identical Laplacian spectrums. Comparing eigenvalues

alone will not serve our purpose.

2.5.5 Orthogonal Procrustes Error

We wish to see how close two shapes are to isometric. Our perspective has us looking

to align a number of points and then measure the deviation from isometry. We may be

able to disregard point correspondences by working from the other direction. Given a

set of points X from one shape and Y from the other, we can try to find an orthogonal

transformation that most closely matches the points X to the points Y .

Considering matrices X and Y in which the rows of X are the vectors x and the

rows of Y are the vectors y which we would like to send them to. Then we phrase

the problem: how can we find A that minimizes

||X − AY ||F

withA orthogonal? This is known as the orthogonal Procrustes problem [Schönemann 66].

The solution to this problem, given by Peter Schönemann in 1964, is described as fol-

lows.

Theorem 10 (Orthogonal Procrustes Problem [Schönemann 66]). Let X and Y be
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matrices. Define the matrix M = Y X t. The singular value decomposition is given

M = USV t

Define

A = UV t

Then A minimizes ||X − AY ||F subject to AAT = I.

In this way, we can find the orthogonal matrix A that most closely matches the

chosen samples ΣX to ΣY . If the deviation between some x ∈ ΣX and y ∈ ΣY

|x− Ay| > ε,

then orthogonal transformations are not capable of aligning x with y to a reasonable

amount, and the sampled points should be reconsidered. This method is particularly

well suited when the number of points being aligned is much smaller than the trun-

cated dimension, as this is an underdetermined problem and there is more flexibility

in mapping points.

2.6 k-Point Alignment

Having embedded each mesh into a canonical domain and truncated to a suitable

amount, we now come to the point that in Möbius voting corresponds to Möbius

matching.
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2.6.1 The Shortcoming of Möbius Alignment

It is important to note that Möbius transformations exist in higher than three dimen-

sions. These are typically defined

Definition 14 (General Möbius Transformation [Ratcliffe 06]). A Möbius Transfor-

mation of R̂n is a finite composition of reflections of R̂n in spheres.

More interesting for us is the following result:

Theorem 11 (Liouville’s Theorem on Conformal Maps in Higher Dimensions [Lie 1871]).

Every conformal mapping in a domain Ω ⊂ RN for N ≥ 3 is a Möbius transformation

The Möbius transform on R̂n is capable of matching 3 points with any other 3

points, since the Möbius group is 3 transitive.

Conformal transformations naturally exist in dimension greater than 3. These

transformations form a group O(n, 1), which is exactly the special orthogonal group

with signature n, 1. [Hall 03] gives the definition:

Definition 15 (Indefinite Orthogonal Group O(n, 1)). Define the bilinear form on

Rn+1 by

〈x, y〉 = x1y1 + x2y2 + · · ·+ xnyn − xn+1yn+1

The set of real matrices A that preserve this form so that 〈Ax,Ay〉 = 〈x, y〉 is the

special orthogonal group O(n, 1).

If A is an (n+ 1)× (n+ 1) matrix, let A(i) denote the ith column of A. Then A

is in O(n, 1) if and only if the following conditions are satisfied
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〈A(i), A(j)〉 = 0 if i 6= j

〈A(i), A(i)〉 = 1 if 1 ≤ i ≤ n

〈A(j), A(j)〉 = −1 if j = n+ 1

The bilinear form 〈x, y, 〉 is often called the Lorentz inner product. The group

O(n, 1) is sometimes called the general Möbius group, or general Lorentz group.

In higher dimensions, O(n, 1) has dimension n(n+1)
2

; while apparently a unique

transformation can be determined by selecting such a number of points from each

manifold, it is found that this transformation does not align more than three points.

Why is this? Part of the problem has to do with our perspective. It is convenient

to say that Möbius transformations can match 3 points, but a more general statement

is to say that conformal transformations preserve the cross ratio between points. This

happens to be convenient for 3 points, since the cross ratio is between 4 points. With

3 points chosen and one left variable, it is possible to match this cross ratio with

another while defining a map.

Note that the Möbius transformation hasn’t “failed”, it just doesn’t align points

more than 3 points in the manner that we would like. There is still some geometric

invariant under this transformation, and have put this to use to simplify the matching

problem.
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2.6.2 Orthogonal Alignment

Consider the samples from the embedded meshes Σ1 and Σ2, containing s1 and s2

samples, respectively. Suppose the embedding space is RN (we already know that the

truncated space is Euclidean, we’re just assuming the dimension is N .

First, note that likely s >> N . Again, see the truncation lemma. Here we see

that the truncated dimension N depends on the geometry of the structure. We don’t

expect to see much complicated geometry with a few points. Many points are needed

to describe a complicated structure on the manifold. The conclusion is that there are

(or should be, if we sampled appropriately) far more vertices than the dimension.

The orthogonal group on RN has dimension N(N−1)
2

. We try to force N points on

each manifold to be as close to each other as possible using some orthogonal transform

A. As long as N ≥ 5, 2N ≤ N(N−1)
2

.

In the most straightforward case, we align N points. Consider a subset of sampled

points {p1, p2, . . . pN} ⊂ Σ1 and {q1, q2, . . . , qN} ⊂ Σ2, with the points qi translated

so that p1 = q1. Then it is a simple matter to find LN×N so that

L[p1 p2 . . . pN ]T = [q1 q2 . . . qN ]T

LP = Q

Since each point pi and qi has N coordinates, the matrices P and Q are square.

As long as the matrices P and Q have full rank, these can be inverted so the solution
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is given L = QP−1. If desired, the deviation from isometry can be calculated

||LTL− I||F

where || · ||F is the standard matrix (Frobenius) norm, i.e. the square root of the

summation of squares of all entries.

If the number of aligned points is less than the truncated dimension, the matrix

solution will not be unique. Then it is worth it to consider the optimization which

minimizes

||LTL− I||F

Subject to LP = Q

This is looser than N point alignment, which may be use when there are few

orthogonal transforms between N points.

2.6.3 Spectral Graph Matching

A robust framework for matching graphs has been developed by [Sharma 12]. This

method is based in the work of [Umeyama 88], who has greatly simplified the com-

putation of graph similarity. We’ll begin with a discussion of Umeyama’s relaxation

method.
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Let G1 and G2 be graphs with weight matrices W1 and W2, degree matrices D1

and D2, and spectra λ1 ≤ λ2 ≤ · · · ≤ λn and µ1 ≤ µ2 ≤ · · · ≤ µn respectively. Let

W1 = D−1
1 W1 and W2 = D−1

2 W2 be the normalized adjacency matrices, and let P be

a permutation matrix on the vertices.

The problem of finding an exact match for graphs can be described as finding a

permutation matrix P ∗ which minimizes

||W1 − PW2P
T || (8)

The issue here is that there are too many choices for P (2n in fact). To overcome

this, begin by noting

W1 − PW2P
t = I −∆1 − P (I −∆2)P t

= I −∆1 − PIP t + P∆2P
t

= −(∆1 − P∆2P
t)

So solving (8) is the same as minimizing

||∆1 − P∆2P
t||
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Consider the eigendecomposition

W1 = U1Λ1U
t
1

W2 = U2Λ2U
t
2

Then [Umeyama 88] finds the solution is

Q∗ = U1SU
t
2

where S is the diagonal matrix with all entries either 1 or −1. To resolve the sign

ambiguity in S, [Umeyama 88] proposes using the matrices U1 and U2, in which each

entry of U is the absolute value of U . For the special case in which the graphs are

exact, we have the following:

Theorem 12 ([Umeyama 88]). IfW1 andW2 are isomorphic, the following inequality

holds:

Tr(U1U2P
T ) ≤ n

and the optimal matching is found by solving the minimization problem

Tr(PU1U2)

[Umeyama 88] suggests using the Hungarian Algorithm to find P ∗.

In the event that the graphs are not exactly isomorphic (which is to say, most
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cases), the approach is slightly different. [Sharma 12] shows that for graphs that are

not isomorphic

Tr(U1SU
T
2 Q

T ) ≤ Tr(U1U2Q
T ) ≤ n

where Q is a orthogonal matrix (contrast the isometric case, in which the inequality

was based on permutation matrix). In the case where graphs are close to isometric,

solving the optimization problem in the permutation case gets close to the optimal

solution. [Umeyama 88] suggests using this as an initial estimate for a hill climbing

algorithm applied to Q if further improvements on the estimate are necessary.

2.6.4 Subgraph Spectral Isomorphism

Graph isomorphism or near isomorphism is an acceptable standard for some situa-

tions, but is too rigid for some of the applications that we consider. In addition,

solving the eigenvalue problem for large matrices is computationally intractable. As

a final issue, the reader may have noticed that the method above relies on each graph

having the same number of nodes (isomorphisms are between graphs of the same

cardinality). These issues demand a workaround to be useful to us.

[KSMH 09] provides a method for reducing the dimension. Consider two graphs,

G1 and G2, having m and n vertices respectively. We want to work with k eigenvectors

with k << m, n. Define the matrix

Uk
x = [u1 u2 . . . uk]
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i.e. the N × k truncated matrix where the k columns are k eigenvectors of x. First,

ordering eigenvalues and working with the largest will not work due to the presence

of multiplicity in the eigenvalues. For this reason, a permutation matrix is added to

the minimization problem:

Q∗ = Uk
xS

kP k(Uk
y )T

The elements of Q are given by

Qij = xTi yj

where xi is a row of Ux and yi is a column of SkP k(Uk
x )T . Then [KSMH 09] gives the

expectation minimization problem, with missing variables αij, and Rk will be in the

orthogonal group, i.e. finding Rk minimizing

∑
i,j

||xi − αijRkyj||2

Full details for implementing this expectation minimization problem are found in

[MHKCB 08].

2.7 Measuring Error in Global Matching

The matrix L suggests a correspondence, since the points are chosen at random, there

is the possibility that L aligns points that should not have been aligned in the first

place. It is necessary to measure deformation of points outside of the sample sets.
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The metric that we will use is the Hausdorff distance. Having embedded each shape

into RN , we now consider each mesh in the same space. Recall that for our embedded

shapes X and Y , each a subset of Z, the Hausdorff distance is computed

dZH(X, Y ) = inf
ε
{ε ≥ 0;X ⊂ Nε(Y ), Y ⊂ Nε(X)}

where Nε(X) is the ε-tubular neighborhood of X in Z, likewise for Nε(Y ). That is,

we want to find the smallest ‘thickening’ so that X is fully contained within ε of

Y ’s boundary, and Y is fully contained within ε of X’s boundary. One may wish to

express the Hausdorff distance more explicitly in terms on the Euclidean distance.

The following definition is equivalent to Definition 7 [Henrikson 99]

Definition 16 (Hausdorff Distance (Euclidean expression)).

dZH(X, Y ) = max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(y, x)}

Here, d(x, y) indicates the Euclidean distance between the points x and y, both in

the metric space Z, typically a Euclidean space.

While it appears that this is difficult to compute, it is important to keep in mind

that the use of filters described in the previous sections will cut this number down

significantly.

If two shapes are isometric, the best correspondence will have have Hausdorff error

0. Alternatively, we may say that if two shapes are isometric, the Gromov-Haudorff
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distance will be 0. The existing work on Gromov-Hausdorff distance tells us that

nearly isometric objects will have a small distance, and not-very isometric objects

will have a large distance [Mémoli 07].

This is a good way of measuring isometry if this is what we are interested in.

In the following section, we’ll show a way to loosen this standard by use of a fuzzy

matrix.

2.8 Voting

For shapes that have isometric regions, ‘votes’ are taken to find such regions. The

process of voting rather than finding the minimum Hausdorff error allow for the

setting of a threshold for closeness, rather than exact matches. This helps to loosen

some of the rigidity of the isometry focused matching to some extent. The procedure

here differs from Möbius voting as there is no conformal factor to consider, since our

transformations have been nearly isometric.

2.8.1 Finding Correspondences

After aligning N points, we need to see how good this correspondence is. The idea is

that there are enough points x ∈ X and y ∈ Y so that

|x− L(y)| < ε

These neighbors give correspondences, ie c(x) = L(y). If two points are not
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within ε of each other, no correspondence exists for these points. If the number of

these correspondences given by L is greater than some threshold K, we compute the

‘cost’ of this correspondence and add it to a matrix. The cost is given with the simple

error calculation

E(c) =
∑
k

|x− c(x)|

Setting a threshold loosens the rigidity in the following way. We may be comparing

two shapes that share similar regions, but are not entirely similar. We would expect

some of these shapes to be isometric, but not others. K is some percentage of the total

points; this percentage can be adjusted based on the amount of isometry expected

between the objects. In addition, if we use scalar curvature in our filter, we can make

sure that the most complicated geometry of the objects is required to be similar,

while the less complicated regions have more freedom.

In practice, the size of ε and K will be determined by heuristics, although ε should

at least be as large as the largest error in matching x− Ly for x ∈ X and y ∈ Y .

2.8.2 Fuzzy Correspondence Matrix

The object which we will use to compare our objects is a matrix Cs1×s2 , with s being

the number of samples. The matrix C is initialized to 0. Each time L is recalculated,

correspondences are found, and if the number of correspondences is above K, C is

updated by the rule

Cx,y ← Cx,y +
1

e+ E(c)/n



66

Here, e is a small positive number.

After a number of iterations, the correspondence matrix provides, for each possible

correspondence between x and y, a value predicting the strength of the correspon-

dence. Strong correspondences are points that are most likely in an isometric region.

The interested user might find it worthwhile to normalize the matrix to associate a

probability for this notion. Note that this process is identical to that described in

[LF 09].

3 Discussion

3.1 Sampling Methods

The sampling problem was resolved in our approach by considering the regions of high

scalar curvature, corresponding to the importance of a particular point. This certainly

has advantages, as we should be comparing more important regions, ie regions of high

scalar curvature. On the other hand, this is unlikely to provide uniform sampling.

We also described a Vitali sampling approach that provides something near a

uniform sampling. This provides regions between 2ε and 6ε apart. Obviously, the

size of ε can be reduced so that the regions are sufficiently uniform, however, this

introduces more samples, making this method more complicated and slow to compute.

We’ll spend some time here exploring several ideas related to the sampling problem.
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3.1.1 Nodal Domains and the Extrema of Eigenfunctions

Here we explore the use of using the zeros of eigenfunctions, particularly of high

frequency eigenfunctions as sample points.

Let φj be the eigenfunction of the Laplacian of (M, g) corresponding to the eigen-

value λj.

Definition 17 (Nodal Set [Chavel 84]). The nodal set of a function f : M → R is

the set f−1(0).

Nodal sets are defined for any C∞ function on M, however, our focus is only on

the eigenfunctions. In essence, the Nodal sets for the eigenfunction φ are the values

x so that φ(x) = 0.

A connected component of the complement of a nodal set is referred to as a nodal

domain, in other words, the nodal sets partition M into a set of nodal domains. For

this we have the following

Theorem 13 (Courant’s Nodal Domain Theorem [Chavel 84]). The number nj of

nodal domains of the jth eigenvalue satisfies nj ≤ j

There are results on the size of these zero sets. The most well known is a conjecture

from Yau.

Theorem 14 (Yau’s conjecture on nodal set’s sizes). Given a compact manifold

(M, g), there exist constants c, C so that

c
√
λj ≤ vol(Nφj) ≤ C

√
λj
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as j →∞

Note that Yau’s conjecture refers to all manifolds. The case for an analytic metric

has been proved by [DF 88]. In addition, [Logunov 18 1] proved the lower bound in

the general case, as well as improving the previously known upper bound.

Theorem 15 (Logunov’s Boundaries on the Size of Nodal Sets [Logunov 18 1],

[Logunov 18 2]). Let (M, g) be a compact smooth manifold. Then

c
√
λj ≤ vol(Nφj) ≤ Cλαj

where α > 1/2 depends only on n, and C > 0, c > 0 depend only on the metric on

M.

The result above gives something that begins to look like a circle packing on

(M, g), possibly not a very good one. Consider where we stand so far. We have an

upper bound on the number of nodal domains, and we know that there are boundaries

on the volume of the nodal sets, although we don’t know where they are at. What we

have is the vague hope that the nodal sets of high frequency eigenfunctions provide

a good sampling.

In one particular case, the situation is very good. Ergodic flow has influenced the

direction of research in the distribution of eigenfunctions [Zelditch 11], in particular

the random wave conjecture [Zelditch 05]. The best case is for manifolds with con-

stant, negative sectional curvature. These have ergodic geodesic flow, and so quantum

ergodicity holds.
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Theorem 16 (Quantum Ergodicity [Colin de Verdiere 85]). Given a compact Rie-

mannian manifold (M, g) with ergodic geodesic flow, there is a subsequence of eigen-

functions {φjk}k of density one, so that for any D ⊂M ,

lim
k→∞

∫
D

|φjk |2 =
V ol(D)

V ol(M)

This essentially tells us that high frequency eigenfunctions are equally distributed,

if (M, g) has ergodic flow. As elegant as the result is, its application for our purposes is

very limited, and questions pertaining to the distribution of high frequency eigenfunc-

tions remain an area of interest. Realistically, we shouldn’t expect eigenfunctions for

non-ergodic manifolds to always tend toward uniform distribution. Eigenfunctions for

2 dimensional surfaces have known useful properties, but the study of critical points

and critical values of eigenfunctions in higher dimensions remains active.

3.1.2 Sampling from the Truncated Space RN

Recall from Courant’s nodal domain theorem that the number of nodal domains of

the jth eigenfunction is less than or equal to j. This tells us that the jth eigenfunction

changes sign no more than j−1 times. Our truncated embedding of the n-dimensional

smooth manifold takes the form

ΦN
t (x) =

√
2(4π)n/4t(n+2)/4{e−λjt/2φj(x)}Nj=1

Observe that the action on x is determined entirely by the eigenfunctions. Based
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on Courant’s nodal domain theorem, the total number of times that any eigenfunction

changes sign is no more than (n − 1)!. This gives us hope that a suitably small ε

can be chosen for a uniform sampling from RN that does not miss any important

information from the embedded shape.

3.1.3 Scalar Curvature and the Second Fundamental Form

There is another approach relying on a special property of the embedding. [WZ 15]

(Corollary 38) showed that under heat kernel embedding, the second fundamental

form approaches uniform asymptotically with time.

Corollary 1 (WZ). for any x ∈M , let (x1, . . . , xn) be the normal coordinates near x.

The second fundamental form A(x, y) =
∑

1≤i≤j≤n hij(x, t)dx
idxj of the submanifold

Φt(M) ⊂ l2 can be written as

A(x, y) =
1√
2t

(
n∑
i=1

√
3aii(x, t)(dx

i)2 +
∑

1≤j<k≤n

2ajk(x, t)dx
jdxk

)

where ajk(x, t) (1 ≤ j < k ≤ n) are vectors in l2. Then as t → 0+, we have the

following

1. For any two subsets {i, j} and {k, l} ⊂ {1, 2, . . . , n},
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〈aij, aij〉 →1

〈aij, akl〉 →0 if {i, j} 6= {k, l} and {i, k} 6= {j, l}

〈aii, ajj〉 →
1

3
if i 6= j

2. The mean curvature vector H(x, t) = 1
n

∑n
i=1 hii(x, t) after scaling by a factor

√
t, converges to constant length:

√
t|H(x, t)| →

√
n+ 1

2n

The convergence is uniform for all x on M in the Cr-norm for any r ≥ 0

In this sense, we expect the mean curvature vector length to be close to uniform,

and the embedded shape to have no significant regions of more or less geometric

complexity, at least with regards to the ambient space. Therefore, we can sample

points in the embedding space in a regular manner with little concern.

3.2 Reconstructing the Geometry From the Heat Kernel Em-

bedding

The heat kernel method embeds a manifold into l2 almost isometrically. Consider that

the output of Φ is a set of points. When working with Riemannian manifolds however,
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the structure of the points is very important, and here structure is referring to the

Riemann curvature tensor. The work of [AT 07] and [Nicolaescu 12] have provided a

probabilistic study of Riemannian manifolds, and [Zhu 13] has drawn the connection

to the heat kernel embedding.

Definition 18 (Random Field [AT 07]). Let (Ω,F ,P) be a complete probability space

and T a topological space. Then a measurable mapping f : Ω → RT is called a

real-valued random field. Measurable mappings from Ω to (RT )d, d > 1 are called

vector-valued random fields. If T ⊂ RN , we call f an (N, d) random field, and if

d = 1, simply an N-dimensional random field.

The Riemannian metric and curvature tensor can be expressed as an expectation.

Lemma 3 ([AT 07]). If f is a zero-mean, C2 random field on a C3 Riemannian

manifold equipped with the metric induced by f , given as

g(X, Y ) = E(Xf, Y f)

then the curvature tensor R on M is given by

−2R = E
{(
∇2f

)2
}

In general, the random field f used should be Gaussian, for which explicit com-
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putation is possible. A random variable X is Gaussian if it has the density function

ϕ(x) =
1√
2πσ

e−(x−µ)2/2σ2

and a Gaussian field is a random field in which each component (f1, f2, . . . , fn) is

Gaussian.

For our purposes, it makes sense to consider the random function with consider-

ation to a basis, in our case the basis consisting of eigenfunctions of the Laplacian,

given independent Gaussian function ϕj, each with mean zero and variance 1 (stan-

dard independent Gaussian).

f =
∑
j

ϕj
√

2(4π)n/4t(n+1)/4φj

i.e., using the heat kernel embedding.

3.2.1 Sectional Curvature by Way of Random Morse Functions

[Nicolaescu 12] gives the following method for finding the sectional curvatures of a

manifold.

Let ϕj be standard independent Gaussian random variables, φj and λj be the

jth eigenfunction and eigenvalue, respectively. w(s) is an even measurable function

satisfying

lim
s→∞

snw(s) = 0
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for all n.

Then random Morse functions are defined

ut =
∑
j≥1

ϕj

√
w(t
√
λj)φj

Define the tensor ĝt satisfying.

ĝt(X, Y ) =
tm+2

dm
E(Xut, Y ut), p ∈M, X, Y ∈ Vect(M)

where Xu denotes the derivative of u on the vector X, and E is the expectation.

Then the following holds

Theorem 17 (Probabilistic Reconstruction of the Geometry [Nicolaescu 12], The-

orem 1.7). The sectional curvatures on ĝt converge to the corresponding sectional

curvatures of g as t↘ 0

Note that w(s) can be any fast-decaying function, but we can use w(s) = e−s
2
,

satisfying the condition required for w, and more importantly for our purposes, since

ϕj is standard, w(s) has the property that
√
w(t
√
λj) gives the coefficients for the

heat kernel embedding. Now, we may use u = Φt.

The at this point, it is possible to recover the geometry from the heat kernel

embedding.
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3.2.2 Asymptotic Gauss Formula By Way of the Heat Kernel Embedding

Given a manifold M in a Euclidean space, with Riemann curvature tensor R and

second fundamental form h, the Gauss formula for vector fields X, Y , Z and Y in

the tangent space is as follows

R(X, Y, Z,W ) = 〈h(X,W ), h(Y, Z)〉 − 〈h(X,Z), h(W,Y )〉

Given Φt is an almost isometric embedding into l2, it is possible to think of l2 as

an ∞-dimensional Euclidean space, the analogue result follows:

Proposition 1 (Riemannian Curvature [Zhu 13]). For any X, Y, Z,W of TM, we

have

R(X, Y, Z,W ) = lim
t→0+

[〈∇X∇Wφt,∇Y ,∇Zφt〉 − 〈∇X∇Zφt,∇Y∇Wφt〉]

Here is clearly seen the relation between eigenfunctions and the Riemann curvature

tensor. From here it is possible to recover the Ricci curvature and the scalar curvature.

3.3 The Conformal Model

The Möbius voting method favors the conformal model due to its ease of calculation.

We can’t this method in dimension higher than 3 as it does not align more than three

points. The approach itself is very elegant however, and more so with the use of

Clifford numbers.
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Clifford algebras are quite broad. Here, we will take a less abstract approach

than is common and consider the n dimensional Clifford algebra over R, denoted as

Cn. Several analogies can be put together before the general definition. The Clifford

algebra C2 is C, with orthonormal basis {1, i}. The Clifford algebra C3 is H, the

quaternions, with orthonormal basis {1, i, j, k}. We don’t consider octonions, as the

step from quaternions to octonions loses associativity.

Now we move to the definition.

Definition 19 (Clifford Algebra over R, [LM 90]). The Clifford algebra Cn is the

associative algebra over R generated by elements i1, . . . , in−1 subject to the relations

1. ijik = −ikij j 6= k

2. i2j = −1

There are two structures that are considered under this algebra. The first we

consider are vectors, x ∈ Rn, of the form

x = x0 + x1i1 + x2i2 + · · ·+ xn−1in−1, x0, x1, . . . , xn−1 ∈ R

The second type are numbers a ∈ Cn, the Clifford numbers. Define the product

I = ij1ij2 . . . ijp , with 0 < j1 < j2 < · · · < jp < n. Then the Clifford number has the

representation

a =
∑
I

aII
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3.3.1 The Clifford Group

We consider three involutions

1. Main Involution If a ∈ Cn, the main involution â of a is the action of replacing

every ik with −ik.

2. Second Involution

The second involution at of a is the action of reversing the order of terms in

I = ij1ij2 . . . ijp

3. Third Involution

The third involution is obtained by combining the action of the main and second

involution a = ât.

A nonzero vector can be inverted

x−1 =
x

|x|2

The product of invertible vectors is invertible. With this notion we can classify

an important group on the Clifford Algebra.

Definition 20 (Clifford-Lipshitz Group [VdR, 16]). The subgroup Γn < Cn consists

of invertible a ∈ Cn:

Γn = {a ∈ { invertible elements of Cn}|axa−1,∀x ∈ Rn}
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It is useful to note that if a ∈ Γn, then |a|2 =
∑
a2
I = aa

Now we come to the main part. We can use the familiar form for Möbius trans-

formations, where a, b, c, d are in the Clifford-Lipschitz group:

g =

[
a b

c d

]

The action on x ∈ Rn is defined by

gx = (ax+ b)(cx+ d)−1

The following theorem is given by Ahlfors.

Theorem 18 ([Ahlfors 84]). 1. x → gx = (ax + b)(cx + d)−1 with a, b, c, d ∈

Γn ∪ {0} is a bijective mapping g : Rn → Rn
if and only if aĉ), bd̂ ∈ Rn and

det(g) = ad̂− bĉ ∈ R

2. This mapping extends to a bijection g′ : Rn+1 → Rn+1
by adjoining in to Cn. If

det(g) > 0, the upper half-space Un+1 is mapped on itself.

3. These mappings are conformal, and so are given by Möbius transformations in

M(Rn) and M(Un+1) respectively. Conversely, every sense preserving Möbius

transformation can be expressed in the form gx = (ax + b)(cx + d)−1 with

det(g) > 0.

In this way, the general Möbius transformations have the same simple represen-

tation as in the typical case in C. However, it is important to consider that in spite



79

of the elegance of this form, computationally there are some difficulties, among them

determining what falls in the Clifford group, as well as the combinatorial issue of

expressing I for high values of n.

3.4 The Yamabe Problem

The Riemann mapping theorem posits the existence of a conformal map from a 2

dimensional surface to the unit sphere or unit disk. [Ahlfors 84] gives the theorem:

Theorem 19 (Riemann Mapping Theorem ). Given any simply connected region

Ω which is not the whole plane, and a point z0 ∈ Ω, there exists a unique analytic

function f(z) in Ω normalized by the conditions f(z0) = 0 and f ′(z0) > 0 such that

f(z) defines a one-to-one mapping of Ω onto the disk |w| < 1.

This is the theoretical foundation for the uniformization in Möbius voting, ex-

pressed by Pinkall’s Harmonic maps. A more general result is the uniformization

theorem

Theorem 20 (Uniformization Theorem [Poincaré 1907]). Every simply connected

Riemann surface is conformally equivalent to the Riemann sphere, the complex plane,

or the unit disk

As we’ve mentioned before, this is not possible in general for surfaces of higher

genus. The question of whether a uniformization-type result exists in higher dimen-

sions has been asked earlier.
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The Yamabe Problem Given a compact Riemannian manifold (M, g) of di-

mension n ≥ 3, is there a metric conformal to g so that the scalar curvature is

constant?

Several individuals worked to attain this result. The approach concerns the Yam-

abe Invariant

Definition 21 (Yamabe Invariant). Given a metric g, and a metric conformal, g̃,

denote the respective scalar curvatures S and S̃. Define

Q(g̃) =

∫
M
S̃dVg̃(∫

M
dVg̃
)2/p

Then the Yamabe Invariant is defined

λ(M) = inf{Q(g̃) : g̃ conformal to g}

[Yamabe 60], [Trudinger 68], and [Aubin 76] proved the result for compact mani-

folds with λ(M) < λ(Sn).

[Aubin 76] showed that for manifolds of dimension greater than 6, λ(M) < λ(Sn)

[Schoen 84] completed the proof by showing that manifolds of dimension 3, 4 or

5 have λ(M) < λ(Sn).

The final result gives:

Theorem 21 (Yamabe Problem). For any compact Riemannian manifold, there ex-
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ists a function f so that the metric

g̃ = e2fg

has constant scalar curvature.

This gives a theoretical foundation to a conformal approach for higher dimensions.

Given a compact Riemannian manifold, it is possible to deform the metric conformally

so that it has constant scalar curvature.

4 A Simple Example

Here we’ll provide a small example of the discrete case. Consider the two graphs, G2

and G2, embedded in R4, with coordinates

G1

a (.1, 2.4, -.3, 1.5)

b (.6, 1.9, .1, 2.1)

c (.3, 2.6, 0, 2)

d (3.1, -5.7, .8, .1)

e ( 2.6, -5.5, 1.2, -.3)

f (2.5, -5.5, 1.2, .2)

g (.5, -.3, .3, 1.9)

h (-.1, -.1, .4, 2.2)

i (3.9, -7.1, 1.3, -7)

j (3.1, -6.9, 2.4, .7)

k (-.1, 3, -.8, -2.4)

l (-.5, 3.6, -1.1, -2.8)

m (-5.2, 6.1, -2.8, -3.9)

G2

a (4.1, 3.2, -5.6, 1)

b (3.7, 2.3, -5.5, 1.3)

c (3.5, 3, -5.7, 1.2)

d (8.5, -2.2, -7.2, 5.3)

e (8.9, -2.7, -8.8, 6.8)

f (13.3, -7.1, -14.2, 9.7)

g (5.1, 1.4, -6.1, 2.9)

h (4.67, 1.02, -5.9, 2.5)

i (14.2, -8.3, -15.6, 9.9)

j (14.6, -6.9, -14.8, 8.6)

k (3.9, 2.9, -5.5, 2.6)

l (5.1, 1, -2.6, -3)

m (6.1, .5, .1, -2.6)

Each having the configuration:
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b

f

a

e

c

d

g h

i

j

k

l

m

1.0

.65

8.3

.78

.68

.78
.67

9.0

2.8
2.7

.71

2.1

1.9

2.0

4.8

4.0

4.6

.88
5.7

6.5

Figure 3: Edge Diagram of G1

b

f

a

e

c

d

g h

i

j

k

l

m

1.0

.67

7.9

.76

8.7

2.3
10

8.4

2.9
2.6

.73

2.1

1.9

1.9

1.4

1.6

5.6

6.7
3.0

8.3

Figure 4: Edge Diagram of G2

We first embed the graph in 3 dimensions, using the eigenmap framework. Voting

is performed for all possible alignments of 3 vertices (3-alignment because that is the

embedding dimension). We set the threshold K to be 6, and ε to be .3. The following

is the fuzzy correspondence matrix
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a b c d e f g h i j k l m

Figure 5: Fuzzy Correspondence Matrix

Here we see strong correspondences in the regions where the edge lengths in each

graph are similar, in particular the a, b, c region and the g, h areas. The weakest (or

nonexistent) correspondences are in the k, l,m region, in which the distortion in edge

length is the greatest.
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