678 research outputs found

    Visualizing and Interacting with Concept Hierarchies

    Full text link
    Concept Hierarchies and Formal Concept Analysis are theoretically well grounded and largely experimented methods. They rely on line diagrams called Galois lattices for visualizing and analysing object-attribute sets. Galois lattices are visually seducing and conceptually rich for experts. However they present important drawbacks due to their concept oriented overall structure: analysing what they show is difficult for non experts, navigation is cumbersome, interaction is poor, and scalability is a deep bottleneck for visual interpretation even for experts. In this paper we introduce semantic probes as a means to overcome many of these problems and extend usability and application possibilities of traditional FCA visualization methods. Semantic probes are visual user centred objects which extract and organize reduced Galois sub-hierarchies. They are simpler, clearer, and they provide a better navigation support through a rich set of interaction possibilities. Since probe driven sub-hierarchies are limited to users focus, scalability is under control and interpretation is facilitated. After some successful experiments, several applications are being developed with the remaining problem of finding a compromise between simplicity and conceptual expressivity

    Mining process factor causality links with multi-relational associations

    Get PDF
    International audienceTo make knowledge-supported decisions, industrial actors often need to examine available data for suggestive patterns. As industrial data are typically unlabeled and involve multiple object types, unsupervised multi-relational (MR) data mining methods are particularly suitable for the task. Current MR association miners merely produce singleton-conclusions rules hence might miss multi-way dependencies. Our novel MR miner builds upon a relational extension of concept analysis to extract general associations. While successfully dealing with circularity in data, it avoids producing cyclic rules by limiting the description depth of relational concepts. Our rules' relevance was validated by an application to aluminum die casting

    Efficient Mining of Frequent Closures with Precedence Links and Associated Generators

    Get PDF
    The effective construction of many association rule bases require the computation of frequent closures, generators, and precedence links between closures. However, these tasks are rarely combined, and no scalable algorithm exists at present for their joint computation. We propose here a method that solves this challenging problem in two separated steps. First, we introduce a new algorithm called Touch for finding frequent closed itemsets (FCIs) and their generators (FGs). Touch applies depth-first traversal, and experimental results indicate that this algorithm is highly efficient and outperforms its levelwise competitors. Second, we propose another algorithm called Snow for extracting efficiently the precedence from the output of Touch. To do so, we apply hypergraph theory. Snow is a generic algorithm that can be used with any FCI/FG-miner. The two algorithms, Touch and Snow, provide a complete solution for constructing iceberg lattices. Furthermore, due to their modular design, parts of the algorithms can also be used independently

    Tool-supported identification of functional concerns in object-oriented code

    Get PDF
    Concern identification aims to find the implementation of a functional concern in existing source code. In this work, concerns are described, using the Hierarchic Concern Model, as gray-boxes containing subconcerns, inputs, and outputs. The inputs and outputs are used as concern seeds to identify data-oriented abstractions of concern implementations, called concern skeletons. The identification approach is based on context free language reachability and supported by a tool, called CoDEx

    A provenance task abstraction framework

    Get PDF
    Visual analytics tools integrate provenance recording to externalize analytic processes or user insights. Provenance can be captured on varying levels of detail, and in turn activities can be characterized from different granularities. However, current approaches do not support inferring activities that can only be characterized across multiple levels of provenance. We propose a task abstraction framework that consists of a three stage approach, composed of (1) initializing a provenance task hierarchy, (2) parsing the provenance hierarchy by using an abstraction mapping mechanism, and (3) leveraging the task hierarchy in an analytical tool. Furthermore, we identify implications to accommodate iterative refinement, context, variability, and uncertainty during all stages of the framework. A use case describes exemplifies our abstraction framework, demonstrating how context can influence the provenance hierarchy to support analysis. The paper concludes with an agenda, raising and discussing challenges that need to be considered for successfully implementing such a framework

    A provenance task abstraction framework

    Get PDF
    Visual analytics tools integrate provenance recording to externalize analytic processes or user insights. Provenance can be captured on varying levels of detail, and in turn activities can be characterized from different granularities. However, current approaches do not support inferring activities that can only be characterized across multiple levels of provenance. We propose a task abstraction framework that consists of a three stage approach, composed of (1) initializing a provenance task hierarchy, (2) parsing the provenance hierarchy by using an abstraction mapping mechanism, and (3) leveraging the task hierarchy in an analytical tool. Furthermore, we identify implications to accommodate iterative refinement, context, variability, and uncertainty during all stages of the framework. A use case describes exemplifies our abstraction framework, demonstrating how context can influence the provenance hierarchy to support analysis. The paper concludes with an agenda, raising and discussing challenges that need to be considered for successfully implementing such a framework

    Proceedings of the ECAI Workshop on Formal Concept Analysis for Artificial Intelligence (FCA4AI)

    Get PDF
    International audienceFormal Concept Analysis (FCA) is aimed at data analysis and classification. FCA proposes various efficient tools for concept lattice design and visualization, and is related to many research fields and application domains, including several fields of Artificial Intelligence (AI), e.g. knowledge discovery, knowledge representation and reasoning. In recent years, a series of work emerged for extending the possibilities of FCA w.r.t. knowledge processing, e.g. pattern structures and relational context analysis. Such extensions should allow FCA to deal with complex data from the knowledge discovery and the knowledge representation points of view. Moreover, these extensions of the capabilities of FCA offer new possibilities for AI activities in the framework of FCA. Accordingly, this workshop will be interested in two main issues: (i) how can FCA support AI activities and especially knowledge processing and (ii) how can FCA be extended for solving new and complex problems in AI

    The representation of sequential patterns and their projections within Formal Concept Analysis

    Get PDF
    International audienceNowadays data sets are available in very complex and heterogeneous ways. The mining of such data collections is essential to support many real-world applications ranging from healthcare to marketing. In this work, we focus on the analysis of "complex" sequential data by means of interesting sequential patterns. We approach the problem using an elegant mathematical framework: Formal Concept Analysis (FCA) and its extension based on "pattern structures". Pattern structures are used for mining complex data (such as sequences or graphs) and are based on a subsumption operation, which in our case is defined with respect to the partial order on sequences. We show how pattern structures along with projections (i.e., a data reduction of sequential structures), are able to enumerate more meaningful patterns and increase the computing efficiency of the approach. Finally, we show the applicability of the presented method for discovering and analyzing interesting patients' patterns from a French healthcare data set of cancer patients. The quantitative and qualitative results are reported in this use case which is the main motivation for this work
    corecore