# Efficient Mining of Frequent Closures with Precedence Links and Associated Generators 

Laszlo Szathmary, Petko Valtchev, Amedeo Napoli

## To cite this version:

Laszlo Szathmary, Petko Valtchev, Amedeo Napoli. Efficient Mining of Frequent Closures with Precedence Links and Associated Generators. [Research Report] RR-6657, INRIA. 2008, pp.58. inria00322798v2

HAL Id: inria-00322798
https://hal.inria.fr/inria-00322798v2
Submitted on 18 Sep 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

# Efficient Mining of Frequent Closures with Precedence Links and Associated Generators 

Laszlo Szathmary - Petko Valtchev - Amedeo Napoli

$$
\mathbf{N}^{\circ} 6657
$$

May 2008

Thème SYM


# Efficient Mining of Frequent Closures with Precedence Links and Associated Generators 

Laszlo Szathmary* ${ }^{* \dagger}$, Petko Valtchev ${ }^{\dagger}$, Amedeo Napoli* ${ }^{*}$<br>Thème SYM - Systèmes symboliques<br>Équipes-Projets Orpailleur<br>Rapport de recherche $\mathrm{n}^{\circ} 6657$ - May 2008 - 58 pages


#### Abstract

The effective construction of many association rule bases require the computation of frequent closures, generators, and precedence links between closures. However, these tasks are rarely combined, and no scalable algorithm exists at present for their joint computation. We propose here a method that solves this challenging problem in two separated steps. First, we introduce a new algorithm called Touch for finding frequent closed itemsets (FCIs) and their generators (FGs). Touch applies depth-first traversal, and experimental results indicate that this algorithm is highly efficient and outperforms its levelwise competitors. Second, we propose another algorithm called Snow for extracting efficiently the precedence from the output of Touch. To do so, we apply hypergraph theory. Snow is a generic algorithm that can be used with any FCI/FG-miner. The two algorithms, Touch and Snow, provide a complete solution for constructing iceberg lattices. Furthermore, due to their modular design, parts of the algorithms can also be used independently.


Key-words: algorithm, data mining, itemset search, association rule bases, closed itemsets, generators, concept lattice, iceberg lattice

Szathmary.L@gmail.com, valtchev.petko@uqam.ca, napoli@loria.fr

* LORIA UMR 7503, B.P. 239, 54506 Vandœuvre-lès-Nancy Cedex, France
${ }^{\dagger}$ Dépt. d’Informatique UQAM, C.P. 8888, Succ. Centre-Ville, Montréal H3C 3P8, Canada


# Une méthode efficace de recherche de motifs fréquents fermés et générateurs et de la relation d'ordre entre fermés 

Résumé : En fouille de données, la construction effective de la plupart des bases de règles d'association nécessite le calcul des motifs fermés fréquents, des générateurs et des relations de subsomption entre motifs fermés, ce qui donne d'ailleurs l'ordre du treillis des concepts sous-jacent. Ces trois tâches, qui sont entremêlés, sont pourtant rarement combinées et il n'existe aucun algorithme qui propose une telle combinaison qui soit efficace et qui passe à l'échelle. Nous proposons dans ce rapport une façon de résoudre ce problème important, qui s'appuie sur deux étapes principales. D'abord, nous introduisons un nouvel algorithme appelé Touch procède en profondeur, et qui recherche les motifs fermés fréquents (FCIs) et les motifs générateurs. Des résultats expérimentaux montrent que l'algorithme Touch est très efficace et qu'il a de très bonnes performances comparé à ses homologues qui procèdent par niveaux. Ensuite, nous proposons l'algorithme appelé Snow qui calcule la relation de subsomption entre les motifs fermés produit par Touch, en faisant appel à la théorie des hypergraphes. L'algorithme Snow est générique et peut être utilisé avec n'importe quel algorithme de recherche de FCIs/FGs. Les deux algorithmes, Touch et Snow, apportent l'ensemble des éléments nécessaires à la construction des treillis iceberg. En outre, la conception modulaire de ces algorithmes fait qu'ils peuvent être utilisés indépendamment les uns des autres.
Mots-clés : algorithmes pour la fouille de données, motifs fréquents, motifs fermés, motifs générateurs, règles d'association, bases, treillis de concepts, treillis iceberg

## Table of Contents

1 Frequent Itemsets and Formal Concept Analysis ..... 1
1.1 Frequent Itemsets and Frequent Association Rules ..... 1
1.2 Formal Concept Analysis ..... 2
1.3 Relation Between Data Mining and Formal Concept Analysis ..... 4
2 Frequent Itemset Search with Vertical Algorithms ..... 5
3 The Touch Algorithm ..... 9
3.1 Motivation and Contribution ..... 9
3.2 Main Features of Touch ..... 10
3.2.1 Finding Frequent Closed Itemsets ..... 10
3.2.2 Finding Frequent Generators ..... 11
3.2.3 Associating Frequent Generators to Their Closures ..... 12
3.3 The Algorithm ..... 13
3.3.1 Pseudo Code ..... 13
3.3.2 Running Example ..... 13
3.4 Experimental Results ..... 13
3.5 Conclusion ..... 15
4 The Snow and Snow-Touch Algorithms ..... 17
4.1 Basic Concepts of Hypergraphs ..... 17
4.2 Detailed Description of Snow ..... 19
4.2.1 The Snow-Touch Algorithm ..... 21
4.2.2 Pseudo Code ..... 21
4.3 Experimental Results ..... 22
4.4 Conclusion ..... 23
A Test Environment ..... 27
B Detailed Description of Vertical Algorithms ..... 29
B. 1 Eclat ..... 29
B. 2 Charm ..... 33
B. 3 Talky-G ..... 37
C Horizontal and Vertical Data Layouts ..... 45
D Efficient Support Count of 2-itemsets ..... 47
E Computing the Transversal Hypergraph ..... 49
Bibliography ..... 55
Index ..... 57

## Chapter 1

## Frequent Itemsets and Formal Concept Analysis

In this chapter, we present the basic concepts of (i) frequent itemset search, and (ii) formal concept analysis. The chapter is organized as follows. Section 1.1 presents the basic concepts related to frequent itemset search. Section 1.2 sums up the definitions and properties of formal concept analysis (FCA). Section 1.3 points out the close relation between data mining and formal concept analysis.

### 1.1 Frequent Itemsets and Frequent Association Rules

Frequent Itemsets. Below we use standard definitions of data mining. We consider a set of objects or transactions $\mathcal{O}=\left\{o_{1}, o_{2}, \ldots, o_{m}\right\}$, a set of attributes or items $\mathcal{A}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, and a relation $\mathcal{R} \subseteq \mathcal{O} \times \mathcal{A}$, where $\mathcal{R}(o, a)$ means that the object $o$ has the attribute $a$. In formal concept analysis [GW99] the triple $(\mathcal{O}, \mathcal{A}, \mathcal{R})$ is called a formal context. A set of items is called an itemset or a pattern. Each transaction has a unique identifier (tid), and a set of transactions is called a tidset. ${ }^{1}$ The length of an itemset is the cardinality of the itemset, i.e. the number of items included in the itemset. An itemset of length $i$ is called an $i$-long itemset, or simply an $i$-itemset ${ }^{2}$. An itemset $P$ is said to be larger (resp. smaller) than $Q$ if $|P|>|Q|$ (resp. $|P|<|Q|)$. We say that an itemset $P \subseteq \mathcal{A}$ is included in an object $o \in \mathcal{O}$, if $(o, p) \in \mathcal{R}$ for all $p \in P$. Let $f$ be the function that assigns to each itemset $P \subseteq \mathcal{A}$ the set of all objects that include $P: f(P)=\{o \in \mathcal{O} \mid o$ includes $P\}$. The set of objects including the itemset is also known as the image of the itemset. ${ }^{3}$ The (absolute) support of an itemset $P$ indicates how many objects include the itemset, i.e. $\operatorname{supp}(P)=|f(P)|$. The support of an itemset $P$ can also be defined in relative value, which corresponds to the proportion of objects including $P$, with respect to the whole population of objects. An itemset $P$ is called frequent, if its support is not less than a given minimum support (denoted by min_supp), i.e. supp $(P) \geq$ min_supp.

Definition 1.1 (generator) An itemset $G$ is called generator if it has no proper subset $H$ ( $H \subset G$ ) with the same support.

[^0]Definition 1.2 (closed itemset) An itemset $X$ is called closed if has no proper superset $Y$ ( $X \subset Y$ ) with the same support.

The closure of an itemset $X$ (denoted by $\gamma(X)$ ) is the largest superset of $X$ with the same support. Naturally, if $X=\gamma(X)$, then $X$ is closed. The task of frequent (closed) itemset mining consists of generating all (closed) itemsets with supports greater than or equal to a specified min_supp.

Equivalence Classes. Two itemsets $P, Q \subseteq \mathcal{A}$ are said to be equivalent ( $P \cong Q$ ) iff they belong to the same set of objects (i.e. $\gamma(P)=\gamma(Q)$ ). From this definition it follows that equivalent itemsets have the same support values. The set of itemsets that are equivalent to an itemset $P$ ( $P$ 's equivalence class) is denoted by $[P]=\{Q \subseteq \mathcal{A} \mid P \cong Q\}$. Generators are minimal elements in their equivalence classes (w.r.t. set inclusion), i.e. a generator $G \in[G]$ has no proper subset in $[G]$. An equivalence class has at least one generator. Closed itemsets are maximal elements in their equivalence classes (w.r.t. set inclusion), i.e. a closed itemset $X \in[X]$ has no proper superset in $[X]$. An equivalence class has exactly one closed itemset, which means that closed itemsets are unique elements in their equivalence classes. If an equivalence class has only one element, then the equivalence class is called singleton. The only element of a singleton equivalence class is closed as well as generator.

Frequent Association Rules. An association rule is an expression of the form $P_{1} \rightarrow P_{2}$, where $P_{1}$ and $P_{2}$ are arbitrary itemsets $\left(P_{1}, P_{2} \subseteq \mathcal{A}\right), P_{1} \cap P_{2}=\emptyset$ and $P_{2} \neq \emptyset$. The left side, $P_{1}$ is called antecedent, the right side, $P_{2}$ is called consequent. The support of an association rule $r: P_{1} \rightarrow P_{2}$ is defined as: $\operatorname{supp}(r)=\operatorname{supp}\left(P_{1} \cup P_{2}\right)$. An association rule $r$ is called frequent, if its support is not less than a given minimum support (denoted by min_supp), i.e. $\operatorname{supp}(r) \geq$ min_supp. The confidence of an association rule $r: P_{1} \rightarrow P_{2}$ is defined as the conditional probability that an object includes $P_{2}$, given that it includes $P_{1}: \operatorname{conf}(r)=\operatorname{supp}\left(P_{1} \cup P_{2}\right) / \operatorname{supp}\left(P_{1}\right)$. An association rule $r$ is called confident, if its confidence is not less than a given minimum confidence (denoted by min_conf),
$\operatorname{con} \bar{f}(r) \geq$ min_conf. An association rule $r$ with $\operatorname{conf}(r)=1.0$ (i.e. $100 \%$ ) is an exact association rule, otherwise it is an approximate association rule. A frequent association rule is valid (their set is denoted by $\mathcal{A R}$ ) if it is both frequent and confident, i.e. $\operatorname{supp}(r) \geq$ min_supp and $\operatorname{conf}(r) \geq \min \_c o n f$. The problem of mining frequent association rules in a database $\mathcal{D}$ consists of finding all frequent valid rules in the database.

### 1.2 Formal Concept Analysis

We describe here the basic notions of FCA [GW99]. Formal concept analysis considers a triple $\mathbb{K}=(\mathcal{O}, \mathcal{A}, \mathcal{R})$ called context, where $\mathcal{O}=\left\{o_{1}, o_{2}, \ldots, o_{m}\right\}$ is a set of objects, $\mathcal{A}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is a set of attributes, and the binary relation $\mathcal{R}(o, a)$ means that the object $o$ has the attribute $a$. Two operators, both denoted by ${ }^{\prime}$, connect the power sets of objects $2^{\mathcal{O}}$ and attributes $2^{\mathcal{A}}$ as follows:

$$
': 2^{\mathcal{O}} \rightarrow 2^{\mathcal{A}}, Z^{\prime}=\{o \in \mathcal{O} \mid \forall a \in Z, \mathcal{R}(o, a)\}
$$

The operator ' is dually defined on attributes. The pair of 'operators induces a Galois connection between $2^{\mathcal{O}}$ and $2^{\mathcal{A}}$. The composition operators " are closure operators: they are idempotent, extensive, and monotonous.


Figure 1.1: The complete concept lattice (left) and an iceberg concept lattice (right) of the formal context of Table 2.1.

A formal concept of the context $\mathbb{K}=(\mathcal{O}, \mathcal{A}, \mathcal{R})$ is a pair $(\mathrm{X}, \mathrm{Y}) \subseteq \mathcal{O} \times \mathcal{A}$, where $\mathrm{X}^{\prime}=\mathrm{Y}$ and $\mathrm{Y}^{\prime}=\mathrm{X}$. X is called extent, and Y is called intent. A concept $\left(\mathrm{X}_{1}, \mathrm{Y}_{1}\right)$ is a subconcept of a concept $\left(\mathrm{X}_{2}, \mathrm{Y}_{2}\right)$ if $\mathrm{X}_{1} \subseteq \mathrm{X}_{2}$ (or dually $\mathrm{Y}_{2} \subseteq \mathrm{Y}_{1}$ ) and we write $\left(\mathrm{X}_{1}, \mathrm{Y}_{1}\right) \leq\left(\mathrm{X}_{2}, \mathrm{Y}_{2}\right)$. The concept whose extent contains all the objects is called the top concept. The concept whose intent contains all the attributes is called the bottom concept.

Definition 1.3 (concept lattice) The set $\mathfrak{B}$ of all concepts of a formal context $\mathbb{K}$ together with the partial order relation $\leq$ forms a lattice and is called the (complete) concept lattice of $\mathbb{K}$.

A concept lattice can be visualized with a Hasse diagram. For instance, the concept lattice associated to the formal context of Table 2.1 is shown in Figure 1.1 (left).

A concept is called frequent if its intent is frequent.
Definition 1.4 (iceberg lattice [STB $\left.{ }^{+} \mathbf{0 2}\right]$ ) The set of all frequent concepts of a context $\mathbb{K}$ together with the partial order relation $\leq$ forms a so-called iceberg concept lattice of $\mathbb{K}$.

Note that an iceberg lattice is an order filter of the complete concept lattice and in general only a join semi-lattice. However, adding a bottom element makes it a lattice again. For instance, the iceberg lattice of the formal context of Table 2.1 by min_supp $=3$ is shown in Figure 1.1 (right).

Let $\left(X_{j}, Y_{j}\right)$ be a subconcept of $\left(X_{i}, Y_{i}\right)$, i.e. $\left(X_{j}, Y_{j}\right) \leq\left(X_{i}, Y_{i}\right)$. If there is no concept $\left(X_{k}, Y_{k}\right)$ such that $\left(\mathrm{X}_{\mathrm{j}}, \mathrm{Y}_{\mathrm{j}}\right) \leq\left(\mathrm{X}_{\mathrm{k}}, \mathrm{Y}_{\mathrm{k}}\right) \leq\left(\mathrm{X}_{\mathrm{i}}, \mathrm{Y}_{\mathrm{i}}\right)$, then $\left(\mathrm{X}_{\mathrm{i}}, \mathrm{Y}_{\mathrm{i}}\right)$ is said to cover $\left(\mathrm{X}_{\mathrm{j}}, \mathrm{Y}_{\mathrm{j}}\right)$ from above (and dually, $\left(\mathrm{X}_{\mathrm{j}}, \mathrm{Y}_{\mathrm{j}}\right)$ is said to cover $\left(\mathrm{X}_{\mathrm{i}}, \mathrm{Y}_{\mathrm{i}}\right)$ from below). For instance, in Figure 1.1 the concept $(123, A)$ covers the concept $(12, A C D E)$ from above (and dually, $(12, A C D E)$ covers $(123, A)$ from below).

Definition 1.5 (upper cover) The upper cover of a concept $C$ is a set of concepts where each element of the set covers $C$ from above.

The lower cover of a concept is defined dually. For instance, in Figure 1.1 the upper cover of $(12, A C D E)$ is $\{(123, A),(124, D)\}$, and the lower cover of $(123, A)$ is $\{(23, A B),(12, A C D E)\}$.

In other words, the upper cover contains all the "direct parents", and the lower cover contains all the "direct children" of a concept.

When the upper cover (or dually, the lower cover) for each concept is discovered, we say that the order (or covering relation) is found among the concepts.

### 1.3 Relation Between Data Mining and Formal Concept Analysis

In this subsection we review the relation between data mining (DM) and formal concept analysis (FCA). The intents of a formal concept lattice are closed itemsets. The intents of an iceberg lattice are frequent closed itemsets $\left[\mathrm{STB}^{+} 02\right]$. For constructing the Hasse diagram of a concept lattice, extents are not necessary, i.e. the order among concepts can be discovered based upon the intents only.

Discovering the set of all intents in FCA is equivalent to the DM problem of finding all closed itemsets by min_supp $=0$. Most DM algorithms only concentrate on itemsets, thus the order must be established in an additional step. When min_supp $>0, \mathrm{DM}$ algorithms will extract frequent closed itemsets. Finding the order among them results in an iceberg concept lattice.

As a summary, we can state that the general schema for using DM algorithms for building formal concept lattices (either complete or iceberg) consists of two main steps: (1) extracting (frequent) closed itemsets, and then (2) finding the order among them.

## Chapter 2

## Frequent Itemset Search with Vertical Algorithms

In this chapter, we present the common parts of three vertical algorithms namely Eclat, Charm, and Talky- $G$. The detailed description of these algorithms can be found in Appendix B. This chapter mainly relies on [ZPOL97], [Zak00], and [ZH02].

## Overview of Vertical Algorithms

Eclat was the first successful algorithm proposed to generate all frequent itemsets in a depth-first manner. Charm is a modification of Eclat to explore frequent closed itemsets only. Talky-G is an adaptation of Eclat and Charm. Talky-G extracts frequent generators only. All three algorithms use a vertical layout of the database. In this way, the support of an itemset can be easily computed by a simple intersection operation.

Consider the following dataset $\mathcal{D}$ (Table 2.1) that we will use for our examples throughout the paper.

|  | A | B | C | D | E |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | x |  | x | x | x |
| 2 | x | x | x | x | x |
| 3 | x | x |  |  |  |
| 4 |  |  |  | x |  |
| 5 |  | x |  |  |  |

Table 2.1: A sample dataset $(\mathcal{D})$ for the examples.

Basic concepts. Here we would like to present the necessary notions specific to Eclat, Charm, and Talky- $G$, using the terminology of Zaki. Let $\mathcal{I}$ be a set of items, and $\mathcal{D}$ a database of transactions, where each transaction has a unique identifier (tid) and contains a set of items. The set of all tids is denoted as $\mathcal{T}$. A set of items is called an itemset, and a set of transactions is called a tidset. For convenience, we write an itemset $\{A, B, E\}$ as $A B E$, and a tidset $\{2,3\}$ as 23 . For an itemset $X$, we denote its corresponding tidset as $t(X)$, i.e. the set of all tids that contain $X$ as a subset. For a tidset $Y$, we denote its corresponding itemset as $i(Y)$, i.e. the set of items


Figure 2.1: IT-tree: Itemset-Tidset search tree of dataset $\mathcal{D}$ (Table 2.1).
common to all the tids in $Y$. Note that $t(X)=\bigcap_{x \in X} t(x)$, and $i(Y)=\bigcap_{y \in Y} i(y)$. For instance, using our dataset $\mathcal{D}$ (Table 2.1), $t(A B E)=t(A) \cap t(B) \cap t(E)=1235 \cap 1345 \cap 1345=135$ and $i(23)=i(2) \cap i(3)=A C \cap A B C E=A C$. The support of an itemset $X$ is equal to the cardinality of its tid-list, i.e. $\operatorname{supp}(X)=|t(X)|$.

Lemma 2.1 Let $X$ and $Y$ be two itemsets. Then, $X \subseteq Y \Rightarrow t(X) \supseteq t(Y)$.
Proof. Follows from the definition of support.
Itemset-tidset search tree and prefix-based equivalence classes. Let $\mathcal{I}$ be the set of items. Define a function $p(X, k)=X[1: k]$ as the $k$ length prefix of $X$, and a prefix-based equivalence relation $\theta_{k}$ on itemsets as follows: $\forall X, Y \subseteq \mathcal{I}, X \equiv_{\theta_{k}} Y \Longleftrightarrow p(X, k)=p(Y, k)$. That is, two itemsets are in the same $k$-class if they share a common $k$-length prefix.

Eclat (resp. Charm and Talky-G) performs a search for frequent itemsets (resp. frequent closed itemsets and frequent generators) over a so-called IT-tree search space, as shown in Figure 2.1. While most previous methods exploit only the itemset search space, Eclat, Charm, and Talky- $G$ simultaneously explore both the itemset space and the transaction space. Each node in the IT-tree, called an IT-node, represented by an itemset-tidset pair, $X \times t(X)$, is in fact a prefix-based equivalence class (or simply a prefix-based class). All the children of a given node $X$ belong to its prefix-based class, since they all share the same prefix $X$. We denote a prefix-based class as $[P]=\left\{l_{1}, l_{2}, \ldots l_{n}\right\}$, where $P$ is the parent node (the prefix), and each $l_{i}$ is a single item, representing the node $P l_{i} \times t\left(P l_{i}\right)$. For example, the root of the tree corresponds to the class [ ] $=\{A, B, C, D, E\}$. The left-most child of the root consists of the class $[A]$ of all itemsets containing $A$ as the prefix. Each class member represents one child of the parent node. A class represents items that the prefix can be extended with to obtain a new frequent node. Clearly, no subtree of an infrequent prefix has to be examined. The power of the prefix-based class approach is that it breaks the original search space into independent sub-problems. When all direct children of a node $X$ are known, one can treat it as a completely new problem; one can enumerate the itemsets under it and simply prefix them with the item $X$, and so on.

Lemma 2.1 states that if $X$ is a subset of $Y$, then the cardinality of the tid-list of $Y$ (i.e. its support) must be less than or equal to the cardinality of the tid-list of $X$. A practical and important consequence of this lemma is that the cardinalities of intermediate tid-lists shrink as we descend in the IT-tree. This results in very fast intersection and support counting.

Vertical layout. It is necessary to access the dataset in order to determine the support of a collection of itemsets. Itemset mining algorithms work on binary tables, and such a database can
be represented by a binary two-dimensional matrix. There are two commonly used layout for the implementation of such a matrix: horizontal and vertical data layout. Levelwise algorithms use horizontal layout. Eclat, Charm, and Talky-G use instead vertical layout, in which the database consists of a set of items and their tid-lists. To count the support of an itemset $X$ using the horizontal layout, we need one full database pass to test for every transaction $T$ if $X \subseteq T$. For a large collection of itemsets, this can be done at once using the trie data structure. The vertical layout has the advantage that the support of an itemset can be computed by a simple intersection operation. In [Zak00], it is shown that the support of any $k$-itemset can be determined by intersecting the tid-lists of any two of its $(k-1)$-long subsets. A simple check on the cardinality of the resulting tid-list tells us whether the new itemset is frequent or not. It means that in the IT-tree, only the lexicographically first two subsets at the previous level are required to compute the support of an itemset at any level. One layout can be easily transformed to the other layout on-the-fly (see Appendix C for more details).

## Other Optimizations

Element reordering. As pointed out in [Goe03] and [CG05], Eclat does not fully exploit the monotonocity property. It generates a candidate itemset based on only two of its subsets, thus the number of candidate itemsets is much larger as compared to breadth-first approaches such as Apriori. Eclat essentially generates candidate itemsets using only the join step of Apriori, since the itemsets necessary for the prune step are not available due to the depth-first search. A technique that is regularly used is to reorder the items in support ascending order, which leads to the generation of less candidates. In Eclat, Charm, and Talky-G such reordering can be performed on the children of a node $N$ when all direct children of $N$ are discovered. Experimental evaluations show that item reordering results in significant performance gains in the case of all three algorithms.

Support count of 2-itemsets. It is well known that many itemsets of length 2 turn out to be infrequent. A naïve implementation for computing the frequent 2 -itemsets requires $n(n-1) / 2$ intersection operations, where $n$ is the number of frequent 1-items. Considering that 1-items have the largest tid-lists (see Lemma 2.1), these operations are quite expensive. Here we present a method that can be used not only for depth-first, but for breadth-first algorithms too, such as Apriori. First, the database must be transformed in horizontal format (see Appendix C). Second, through a database pass on the horizontal layout, an upper-triangular 2D matrix is built containing the support values of 2-itemsets [ZH02] (see Appendix D for a detailed description and an example).

Diffsets for further optimizing memory usage. Recently, Zaki proposed a new approach to efficiently compute the support of an itemset using the vertical data layout [ZG03]. Instead of storing the tidset of a $k$-itemset $P$ in a node, the difference between the tidset of $P$ and the tidset of the $(k-1)$-prefix of $P$ is stored, denoted by the diffset of $P$. To compute the support of $P$, we simply need to subtract the cardinality of the diffset from the support of its $(k-1)$-prefix. Support values can be stored in each node as an additional information. The diffset of an itemset $P \cup\{i, j\}$, given the two diffsets of its subsets $P \cup\{i\}$ and $P \cup\{j\}$, with $i<j$, is computed as follows: $\operatorname{diffset}(P \cup\{i, j\}) \leftarrow \operatorname{diffset}(P \cup\{j\}) \backslash \operatorname{diffset}(P \cup\{i\})$. Diffsets also shrink as larger itemsets are found. Diffsets can be used together with the other optimizations presented above. This technique can significantly reduce the size of memory required to store intermediate results. Diffsets can be used for Eclat, Charm, and Talky-G resulting in dEclat, dCharm, and dTalky-G,
respectively. Note that we have not used diffsets in our implementations yet. ${ }^{4}$

## Conclusion

In this chapter we presented the common parts of Eclat, Charm, and Talky-G. Detailed description of Eclat can be found in Appendix B.1. Charm is presented in Appendix B.2. Talky-G is detailed in Appendix B.3.

[^1]
## Chapter 3

## The Touch Algorithm

In this chapter, we introduce a very efficient new algorithm called Touch that can find frequent equivalence classes in a dataset. The chapter is organized as follows. First, we present the motivation and contribution of the algorithm. This is followed by the description of the three main features of Touch. We then present the pseudo code of the algorithm and give a running example. Next, we provide experimental results for comparing the efficiency of Touch to some other algorithms. Finally, we draw conclusions.

### 3.1 Motivation and Contribution

Finding association rules is one of the most important tasks in data mining. Generating valid association rules from frequent itemsets (FIs) often results in a huge number of rules, which limits their usefulness in real life applications. To solve this problem, different concise representations of association rules have been proposed, e.g. generic basis [ $\left.\mathrm{BTP}^{+} 00 \mathrm{~b}\right]$, informative basis $\left[\mathrm{BTP}^{+} 00 \mathrm{~b}\right]$, minimal non-redundant association rules $\left[\mathrm{BTP}^{+} 00 \mathrm{~b}\right]$, representative rules [Kry98], DuquennesGuigues basis [GD86], Luxenburger basis [Lux91], proper basis [PBTL99a], structural basis [PBTL99a], etc. A very good comparative study of these bases can be found in [Kry02], where it is stated that a rule representation should be lossless (should enable derivation of all valid rules), sound (should forbid derivation of rules that are not valid), and informative (should allow determination of rules parameters such as support and confidence).

In this present work, we are more interested in finding minimal non-redundant association rules $(\mathcal{M N} \mathcal{R})$. Rules in this set have the following form: $P \rightarrow Q \backslash P$, where $P \subset Q$ and $P$ is a generator and $Q$ is a closed itemset. These rules are particularly interesting because of the following reasons. First, this set of rules is lossless, sound, and informative. In [Kry02], it is shown that with the so-called cover operator, which is an inference mechanism, all valid rules can be restored from these rules with their proper support and confidence values. Second, among rules with the same support and same confidence, these rules contain the most information and these rules can be the most useful in practice [Pas00].

The minimal non-redundant association rules were introduced in $\left[\mathrm{BTP}^{+} 00 \mathrm{~b}\right]$. In $\left[\mathrm{BTP}^{+} 00 \mathrm{a}\right]$, Bastide et al. presented the Pascal algorithm and claimed that $\mathcal{M N R}$ can be extracted with this algorithm. However, to obtain $\mathcal{M N R}$ from the output of Pascal, one has to do a lot of computing. First, from the form of $\mathcal{M N \mathcal { N }}$ it can be seen that frequent closed itemsets must also be known. Second, frequent generators must be associated to their closures. Recently we proposed the algorithm Zart, an extension of Pascal, that gives a solution for these two extra needs [SNK07]. With the output of Zart, one can easily construct the set of $\mathcal{M} \mathcal{N} \mathcal{R}$.

Pascal is very efficient among levelwise frequent itemset mining algorithms. This is due to its pattern counting inference mechanism that can significantly reduce the number of expensive database passes. In [SNK07] we showed that Zart, in spite of its additional features, is almost as efficient as Pascal. Furthermore, as it was argued in [Sza06], the idea introduced in Zart can be generalized, and thus it can be applied to any frequent itemset mining algorithm.

However, Zart has a drawback too. It traverses the whole set of frequent itemsets in order to filter generators and closed itemsets. It can be a serious waste in dense, highly correlated datasets, in which the number of FCIs and the number of FGs is usually much less than the number of FIs. That is, if we only want the frequent equivalence classes with their minimal and maximal elements (FGs and FCIs), it is no good enumerating the whole set of FIs.

Here we present an algorithm that gives an elegant solution for this problem. The algorithm Touch reduces the search space to frequent generators and frequent closed itemsets only. Then, we use a novel method for associating the frequent generators to their closures, thus the algorithm produces exactly the same output as Zart. Experimental results show that our new method is very efficient, especially on dense, highly correlated datasets.

### 3.2 Main Features of Touch

Touch has three main features, namely (1) extracting frequent closed itemsets, (2) extracting frequent generators, and (3) associating frequent generators to their closures, i.e. identifying frequent equivalence classes.

### 3.2.1 Finding Frequent Closed Itemsets

This part of Touch relies on Charm. Charm is a vertical algorithm that can find FCIs very efficiently in a database. Charm traverses the IT-tree in a depth-first manner in a pre-order way, from left-to-right. As detailed in Appendix B.2, Charm collects FCIs in the main memory in a special hash data structure. This data structure is taken over from Charm by Touch. That is, the hash structure containing all FCIs is one of the two inputs of Touch.

Charm builds this hash structure for filtering non-closed itemsets. When a new candidate IT-node is created (let us call it current node), Charm checks if a proper superset with the same support is already stored in the hash. If yes, then the current node is not closed. Charm performs this test the following way. First, it assigns a hash key to the current node. It takes the sum of the tids in the tidset, and then it calculates the modulo of the sum with the size of the hash table. The resulting hash key gives a position in the hash table, where a list of closed itemsets is stored. Finally, Charm checks if this list includes a proper superset of the current node with the same support. For a running example, please consult Appendix B.2. The hash structure of Charm has the following important property:

Property 3.1 If the hash key of an itemset is calculated as above (i.e. taking the sum of the tids in the tidset of the itemset, and calculating the modulo of the sum with the size of the hash table), then itemsets with the same image are to be stored in the same slot of the hash table.

Example. Let us see the left part of Figure 3.1 (Charm) that depicts the hash structure of FCIs extracted from dataset $\mathcal{D}$ (Table 2.1). For this example, the size of the hash table is set to four. To demonstrate Property 3.1, let us investigate the itemsets $A B C D E$ and $B D$ (see also Figure B.2). The two itemsets are included in transaction 2 (see also Table 2.1). Charm finds $A B C D E$ first. Its hash key is 2 , thus it is stored in the hash structure at position 2. Later,


Figure 3.1: Hash tables for dataset $\mathcal{D}$ (Table 2.1) by min_supp $=1$. Left: hash table of Charm containing all FCIs. Right: hash table of Talky- $G$ containing all FGs.
in another branch of the IT-tree, Charm finds $B D$, whose hash key is also 2 by Property 3.1. Charm checks the list of itemsets at position 2 in the hash structure, but since the list already includes a proper superset of $B D$ with the same support $(A B C D E), B D$ is not inserted in the hash since it it not closed.

### 3.2.2 Finding Frequent Generators

This part of Touch relies on Talky-G. Talky-G is a vertical algorithm that can find FGs very efficiently in a database. Talky- $G$ traverses the IT-tree in a depth-first manner in a reverse preorder way, from right-to-left. As detailed in Appendix B.3, this traversal has the advantage that when an itemset $X$ is found, all subsets of $X$ are treated before $X$ itself. Talky- $G$ collects FGs in the main memory in a special hash data structure. This data structure is taken over from Talky- $G$ by Touch. That is, the hash structure containing all FGs is the second input of Touch.

Talky- $G$ builds this hash structure for filtering non-generator itemsets. When a candidate IT-node is created (let us call it current node), Talky- $G$ checks if a proper subset with the same support is already stored in the hash. If yes, then the current node is not generator. Talky- $G$ performs this test the following way. First, it assigns a hash key to the current node. It takes the sum of the tids in the tidset, and then it calculates the modulo of the sum with the size of the hash table. The resulting hash key gives a position in the hash table, where a list of generators is stored. Finally, Talky- $G$ checks if this list includes a proper subset of the current node with the same support. For a running example, please consult Appendix B.3.

Since Talky- $G$ calculates the hash key of an itemset exactly the same way as Charm does (see Section 3.2.1), Property 3.1 also holds for Talky-G. That it, itemsets having the same image are to be stored in the same slot of the hash table.

Example. Let us see the right part of Figure $3.1($ Talky- $G)$ that depicts the final state of the hash structure of FGs extracted from dataset $\mathcal{D}$ (Table 2.1). For this example, the size of the hash table is set to four. To demonstrate that Property 3.1 is also true for Talky-G, let us investigate the itemsets $B D$ and $A B D$ (see also Figure B.5). The two itemsets are included in transaction 2 (see also Table 2.1). Talky- $G$ finds $B D$ first because of the reverse pre-order strategy. Its hash key is 2, thus it is stored in the hash structure at position 2. Later, in another branch of the IT-tree, Talky- $G$ finds $A B D$, whose hash key is also 2 by Property 3.1. Talky- $G$ checks the list of itemsets at position 2 in the hash structure, but since the list already includes a proper subset of $A B D$ with the same support $(B D), A B D$ is not inserted in the hash since it it not generator.

## Algorithm 1 (Touch):

Description: finds frequent equivalence classes

1) hashFCI $\leftarrow($ call Charm and get its hash data structure $)$; // see Appendix B. 2
2) hashFG $\leftarrow($ call Talky- $G$ and get its hash data structure); // see Appendix B. 3
3) loop over the FCIs in hashFCI (c)
4) $\{$
5) $\quad i \leftarrow($ index position of $c)$;
6) $\quad c$.generators $\leftarrow \emptyset$; // empty set
7) loop over the list of FGs in hashFG at index $i(g)$
8) \{
9) $\quad$ if $(c$. support $=g$.support $)\{$
10) if $g$ is a subset of $c$, then
11) $\}$
12) \}

### 3.2.3 Associating Frequent Generators to Their Closures

In the previous two steps (Sections 3.2.1 and 3.2.2) we managed to extract FCIs and FGs. There is one more step to do namely associating frequent generators to their closures, i.e. identifying the equivalence classes. If we had two simple sets of FCIs and FGs, the following naïve method could be used for instance. Enumerate all FCIs, and find their FG subsets with the same support. Unfortunately, this approach is very expensive.

In our method, instead of simple sets, we take over FCIs and FGs in a special hash data structure. The reason is that we use these hash structures for the association process. The idea is the following:

Property 3.2 If both Charm and Talky-G use the same size for the hash tables (i.e., same number of slots), and if both algorithms use the same image-based hashing method (i.e., sum of tids in the tidset modulo with the size of the hash table), then from Property 3.1 and from the definition of equivalence classes it follows that a frequent closed itemset and its generators are in different tables but they are at the same index position.

Example. Let us see Figure 3.1 that depicts the two inputs of Touch, i.e. the hash structure of Charm and the hash structure of Talky-G. Say we want to determine the generators of the closed itemset $A C D E$. $A C D E$ is stored at position 3 in the hash structure of Charm. By Property 3.2 , its generators are stored in the list at position 3 in the other hash structure, i.e. in the hash structure of Talky-G. In this list, there are three itemsets that are subsets of $A C D E$ and that have the same support values: $E, C$, and $A D$. It means that these three itemsets are the generators of $A C D E$.

| FCI | support | associated FG(s) |
| :--- | :---: | :--- |
| $A B$ | 2 | $A B$ |
| $A B C D E$ | 1 | $B E ; B D ; B C$ |
| $A$ | 3 | $A$ |
| $B$ | 3 | $B$ |
| $A C D E$ | 2 | $E ; C ; A D$ |
| $D$ | 3 | $D$ |

Table 3.1: Output of Touch on dataset $\mathcal{D}$ by min_supp $=1$.

### 3.3 The Algorithm

### 3.3.1 Pseudo Code

The pseudo code of Touch is given in Algorithm 1. Line 1 corresponds to Section 3.2.1. Line 2 is explained in Section 3.2.2. The block between lines 3 and 14 is detailed in Section 3.2.3.

### 3.3.2 Running Example

Here we demonstrate the execution of Touch on dataset $\mathcal{D}$ with min_supp $=1(20 \%)$. First, Charm and Talky- $G$ are called on $\mathcal{D}$ with the given min_supp value. As a result, they return FCIs and FGs in two hash structures, as shown in Figure 3.1. Then, Touch associates generators to their closures the following way. Processing $A B$. The frequent closed itemset $A B$ has one subset with the same support in the other hash structure at index $1(A B)$. This means that $A B$ is a closed itemset and a generator at the same time, i.e. the equivalence class of $A B$ has one element only (singleton equivalence class). Processing $A B C D E$. The frequent closed itemset $A B C D E$ has three generators: $B E, B D$, and $B C$. Etc. The output of Touch is shown in Table 3.1. Recall that due to the property of equivalence classes, the support of a generator is equal to the support of its closure.

### 3.4 Experimental Results

We evaluated Touch against Zart [SNK07] and $A$-Close [PBTL99b]. The algorithms were implemented in Java in the Coron data mining platform [SN05]. ${ }^{5}$ The experiments were carried out on a bi-processor Intel Quad Core Xeon 2.33 GHz machine running under Ubuntu GNU/Linux operating system with 4 GB of RAM. For the experiments we have used the following datasets: T20I6D100K, C20D10K, and Mushrooms. The T20I6D100K ${ }^{6}$ is a sparse dataset, constructed according to the properties of market basket data that are typical weakly correlated data. The C20D10K is a census dataset from the PUMS sample file, while the Mushrooms ${ }^{7}$ describes mushrooms characteristics. The last two are highly correlated datasets.

Table 3.2 contains detailed information about the execution of Touch. The first three columns correspond to the three main steps of Touch namely (1) getting FCIs using Charm, (2) getting FGs using Talky-G, and (3) associating FGs to their closures. Column 4 indicates the total execution time of the algorithm including input and output. In the sparse dataset T20I6D100K, almost all frequent itemsets are closed and generators at the same time. It means that most

[^2]

Table 3.2: Detailed execution times of Touch and other statistics (number of FCIs, number of FGs, number of FIs, proportion of the number of FCIs to the number of FIs, proportion of the number of FGs to the number of FIs). Note that the number of FIs is shown for comparative reasons only. Touch does not need to extract all FIs.
equivalence classes are singletons. It is known that Charm is less efficient on sparse datasets. The reason is that Charm performs four tests on each candidate for reducing the IT-tree. However, in sparse datasets the number of FCIs is almost equivalent to the number of FIs, thus the search space cannot be reduced significantly. Consequently, the four tests give some overhead to the algorithm. Talky- $G$ is also less efficient on sparse datasets, but still much faster than Charm. It can be due to the less number of tests on a candidate. In dense, highly correlated datasets (C20D10K and Mushrooms), both Charm and Talky- $G$ are very efficient, even at low minimum support values. Since the number of FCIs and FGs is much less than the number of FIs, the two algorithms can take advantage of exploring a much smaller search space. The association of FCIs and FGs is done extremely efficiently in all cases. That is, the association step gives absolutely no overhead to Touch.

Table 3.3 contains the experimental evaluation of Touch against Zart and $A$-Close. All times reported are real, wall clock times as obtained from the Unix time command between input and output. We have chosen Zart and $A$-Close because they represent two efficient algorithms that produce exactly the same output as Touch. Zart and A-Close are both levelwise algorithms. Zart is an extension of Pascal, i.e. first it finds all FIs, then it filters FCIs, and finally the algorithm associates FGs to their closures. A-Close reduces the search space to FGs only, then it calculates the closure for each generator. Both algorithms have advantages and disadvantages. Zart, due to its pattern counting inference, can enumerate FIs very efficiently. As shown in [SNK07], the extra computations of Zart give no significant overhead to the algorithm. Thus, when the number of FIs is not too high, Zart proves to be quite efficient. $A$-Close, on the other hand, requires much less memory since it reduces the search space to FGs only. This reduction of the memory usage is more spectacular in the case of dense, highly correlated datasets. However, the way $A$-Close computes the closures of generators is very expensive because of the huge number of intersection operations. Thus, in spite of reducing the search space, $A$-Close is less efficient than Zart in most cases. Touch, just like $A$-Close, reduces the search space to the strict minimum, i.e. it only extracts what it really needs namely the set of FCIs and the set of FGs. Then, Touch associates

|  | execution time (sec.) |  |  |
| :---: | :---: | :---: | :---: |
| min_supp | Touch | Zart | A-Close |
| T20I6D100K |  |  |  |
| $1 \%$ | 22.76 | 7.33 | 31.25 |
| $0.75 \%$ | 28.32 | 14.96 | 39.49 |
| $0.5 \%$ | 42.45 | 45.52 | 100.60 |
| $0.25 \%$ | 121.60 | 159.78 | 285.41 |
| C20D10K |  |  |  |
| $30 \%$ | 1.06 | 8.17 | 15.78 |
| $20 \%$ | 1.42 | 15.84 | 29.88 |
| $10 \%$ | 2.27 | 36.66 | 59.41 |
| $5 \%$ | 3.37 | 75.28 | 94.18 |
| MUSHROOMS |  |  |  |
| $30 \%$ | 0.82 | 3.65 | 7.17 |
| $20 \%$ | 0.98 | 10.69 | 15.28 |
| $10 \%$ | 1.57 | 75.36 | 36.83 |
| $5 \%$ | 2.53 | 641.54 | 63.37 |

Table 3.3: Response times of Touch, compared to Zart and A-Close.
the two sets in a very efficient way. Since Touch is based on Charm and Talky-G, the algorithm is very efficient on dense, highly correlated datasets. We must admit however that levelwise algorithms like Zart are sometimes more suitable for sparse datasets.

### 3.5 Conclusion

In this chapter we presented a new algorithm called Touch for exploring the frequent equivalence classes in a dataset. The algorithm has three main features namely (1) extraction of FCIs, (2) extraction of FGs, and (3) association of FGs to their closures. The algorithm is very competitive because each one of the three steps is solved in a very efficient way. First, FCIs are extracted with Charm, and Charm is considered to be one of the most efficient FCI-mining algorithms. Second, for the extraction of FGs we propose a new algorithm called Talky-G. Talky$G$ concentrates on FGs only in the search space. Third, we found a very efficient solution for associating FCIs and FGs together that gives no overhead at all to the algorithm. That is, the association can be done in almost no time. Moreover, the memory footprint of Touch is low since, unlike Zart for instance, the algorithm does not need to extract all frequent itemsets. Experimental results prove the interest of Touch, especially on dense, highly correlated datasets.

To sum up, Touch is a very efficient new algorithm that has two original parts: (1) the algorithm Talky-G for finding FGs in a depth-first manner with a reverse pre-order traversal, and (2) the association of FCIs and FGs for identifying frequent equivalence classes.

## Chapter 4

## The Snow and Snow-Touch Algorithms

In this chapter, we present the Snow and Snow-Touch algorithms. Snow can find order among concepts in a formal lattice, and Snow-Touch is a combination of two algorithms namely Snow and Touch. The chapter is organized as follows. Section 4.1 presents the basic concepts of hypergraphs. This short overview of hypergraph theory is necessary for understanding the Snow algorithm that is detailed in Section 4.2. Section 4.2 also includes the pseudo code of Snow and Snow-Touch. Experimental results of the two algorithms are provided in Section 4.3. Finally, we draw conclusions in Section 4.4.

### 4.1 Basic Concepts of Hypergraphs

In this subsection we mainly rely on [EG95]. Hypergraph theory [Ber89] is an important field of discrete mathematics with many relevant applications in applied computer science. A hypergraph is a generalization of a graph, where edges can connect arbitrary number of vertices. Formally:

Definition 4.1 (hypergraph) $A$ hypergraph is a pair $(V, \mathcal{E})$ of a finite set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and a family $\mathcal{E}$ of subsets of $V$. The elements of $V$ are called vertices, the elements of $\mathcal{E}$ edges.

Note that some authors, e.g. [Ber89], state that the edge-set as well as each edge must be nonempty and that the union of all edges results in the vertex set.

Definition 4.2 (partial hypergraph) Let $\mathcal{H}=\left\{\mathcal{E}_{1}, \mathcal{E}_{2}, \ldots, \mathcal{E}_{m}\right\}$ be a hypergraph. The partial hypergraph $\mathcal{H}_{i}$ of $\mathcal{H}(i=1, \ldots, n)$ is the hypergraph that contains the first $i$ edges of $\mathcal{H}$, i.e. $\mathcal{H}_{i}=\left\{\mathcal{E}_{1}, \ldots, \mathcal{E}_{i}\right\}$.

A hypergraph is simple if none of its edges is contained in any other of its edges. Formally:
Definition 4.3 (simple hypergraph) A hypergraph is called simple if it satisfies $\forall \mathcal{E}_{i}, \mathcal{E}_{j} \in \mathcal{E}$ : $\mathcal{E}_{i} \subseteq \mathcal{E}_{j} \Rightarrow i=j$.

Example. The hypergraph $\mathcal{H}$ in Figure 4.1 is not simple because the edge $\{a\}$ is contained in the edge $\{a, c, d\}$.

Definition 4.4 Let $\mathcal{H}=(V, \mathcal{E})$ be a hypergraph. Then $\min (\mathcal{H})$ denotes the set of minimal edges of $\mathcal{H}$ w.r.t. set inclusion, i.e. $\min (\mathcal{H})=\left\{E \in \mathcal{E} \mid \nexists E^{\prime} \in \mathcal{E}: E^{\prime} \subset E\right\}$, and $\max (\mathcal{H})$ denotes the set of maximal edges of $\mathcal{H}$ w.r.t. set inclusion, i.e. $\max (\mathcal{H})=\left\{E \in \mathcal{E} \mid \nexists E^{\prime} \in \mathcal{E}: E^{\prime} \supset E\right\}$.


Figure 4.1: A sample hypergraph $\mathcal{H}$, where $V=\{a, b, c, d\}$ and $\mathcal{E}=\{\{a\},\{b, c\},\{a, c, d\}\}$.

Clearly, for any hypergraph $\mathcal{H}, \min (\mathcal{H})$ and $\max (\mathcal{H})$ are simple hypergraphs. Moreover, every partial hypergraph of a simple hypergraph is simple, too.

Example. In the case of hypergraph $\mathcal{H}$ in Figure $4.1, \min (\mathcal{H})=\{\{a\},\{b, c\}\}$ and $\max (\mathcal{H})=$ $\{\{b, c\},\{a, c, d\}\}$.

The problem that is of high interest for us concerns hypergraph transversals. A transversal of a hypergraph $\mathcal{H}$ is a subset of the vertex set of $\mathcal{H}$ which intersects each edge of $\mathcal{H}$. A transversal is minimal if it does not contain any transversal as proper subset. Formally:

Definition 4.5 (transversal) Let $\mathcal{H}=(V, \mathcal{E})$ be a hypergraph. A set $T \subseteq V$ is called $a$ transversal of $\mathcal{H}$ if it meets all edges of $\mathcal{H}$, i.e. $\forall E \in \mathcal{E}: T \cap E \neq \emptyset$. A transversal $T$ is called minimal if no proper subset $T^{\prime}$ of $T$ is a transversal.

Note that Pfaltz and Jamison call transversal (resp. minimal transversal) as blocker (resp. minimal blocker) in [PJ01]. Outside hypergraph theory, a transversal is usually called a hitting set.

Example. The hypergraph $\mathcal{H}$ in Figure 4.1 has two minimal transversals: $\{a, b\}$ and $\{a, c\}$. For instance, the sets $\{a, b, c\}$ and $\{a, c, d\}$ are transversals but they are not minimal.

Definition 4.6 (transversal hypergraph) The family of all minimal transversals of $\mathcal{H}$ constitutes a simple hypergraph on $V$ called the transversal hypergraph of $\mathcal{H}$, which is denoted by $\operatorname{Tr}(\mathcal{H})$.

Example. Considering the hypergraph $\mathcal{H}$ in Figure 4.1, $\operatorname{Tr}(\mathcal{H})=\{\{a, b\},\{a, c\}\}$. See Appendix E for an algorithm and further examples.

The following propositions capture important relations between a hypergraph and its transversal hypergraph (for proofs see [Ber89]).

Proposition 4.1 Let $\mathcal{H}=(V, \mathcal{E})$ be a hypergraph. Then $\operatorname{Tr}(\mathcal{H})$ is a simple hypergraph, and $\operatorname{Tr}(\mathcal{H})=\operatorname{Tr}(\min (\mathcal{H}))$.

Proposition 4.2 Let $\mathcal{G}$ and $\mathcal{H}$ be two simple hypergraphs. Then $\mathcal{G}=\operatorname{Tr}(\mathcal{H})$ if and only if $\mathcal{H}=\operatorname{Tr}(\mathcal{G})$.

Corollary 4.1 Let $\mathcal{G}$ and $\mathcal{H}$ be two simple hypergraphs. $\operatorname{Then} \operatorname{Tr}(\mathcal{G})=\operatorname{Tr}(\mathcal{H})$ iff $\mathcal{G}=\mathcal{H}$.

Corollary 4.2 (duality property) Let $\mathcal{H}$ be a simple hypergraph. Then $\operatorname{Tr}(\operatorname{Tr}(\mathcal{H}))=\mathcal{H}$.
Corollary 4.2 states that calculating the transversal hypergraph $\mathcal{H}^{\prime}$ of a simple hypergraph $\mathcal{H}$, and calculating once again the transversal hypergraph $\mathcal{H}^{\prime \prime}$ of $\mathcal{H}^{\prime}$, we get back the original hypergraph $\mathcal{H}$, i.e. $\mathcal{H}^{\prime \prime}=\mathcal{H}$.

Example. Consider the hypergraph $\mathcal{H}$ in Figure 4.1. Since $\mathcal{H}$ is not $\operatorname{simple}$, let $\mathcal{G}=\min (\mathcal{H})=$ $\{\{a\},\{b, c\}\}$. Then,

$$
\begin{gathered}
\mathcal{G}^{\prime}=\operatorname{Tr}(\mathcal{G})=\operatorname{Tr}(\{\{a\},\{b, c\}\})=\{\{a, b\},\{a, c\}\} \\
\mathcal{G}^{\prime \prime}=\operatorname{Tr}\left(\mathcal{G}^{\prime}\right)=\operatorname{Tr}(\{\{a, b\},\{a, c\}\})=\{\{a\},\{b, c\}\} .
\end{gathered}
$$

That is, $\mathcal{G}^{\prime \prime}=\mathcal{G}$.

### 4.2 Detailed Description of Snow

The goal of the Snow algorithm is to find order among concepts, i.e. provided a set of concepts, construct the corresponding concept lattice. As shown in Section 1.3, the order is uniquely determined by the set of concept intents. In a concept, in addition to its intent, we also need its associated generators (see Def. 1.1). It is important to note that Snow does not require concept extents. To give an overview of the algorithm, Snow performs the following operations. As input, it takes a set of concepts, where a concept contains the intent and its generators. As output, Snow provides a concept lattice, i.e. it finds the order among concepts.

For the examples of Snow we will use the concept lattice depicted in Figure 4.2. In a concept, the following details are provided: intent, support of the intent (in parentheses), and below the list of generators of the intent (separated by hashmarks). For instance, the bottom concept's intent is $A B C D E$, and it has three generators namely $B C, B D$, and $B E$. Since they belong to the same equivalence class, the support of all these four itemsets is the same, which is 1 in this example.

Now, let us see the theoretical background of Snow.
Definition 4.7 (face [Pfa02]) Let $C_{1}$ and $C_{2}$ be two concepts where $C_{2}$ covers $C_{1}$ from above. The difference between the intents of $C_{1}$ and $C_{2}$ is called a face of $C_{1}$.

A concept has as many faces as the number of concepts in its upper cover.

Example. Let us consider the bottom concept in Figure 4.2. This concept has two faces: $F_{1}=A B C D E \backslash A B=C D E$, and $F_{2}=A B C D E \backslash A C D E=B$.

A basic property of the generators of a closed itemset $X$ states that they are the minimal blockers of the family of faces associated to $X$ [Pfa02]:

Theorem 4.1 Assume a closed itemset $X$ and let $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots, F_{k}\right\}$ be its family of associated faces. Then a set $Z \subseteq X$ is a minimal generator of $X$ iff $X$ is a minimal blocker of $\mathcal{F}$.

As indicated in Section 4.1, a minimal blocker of a family of sets is an identical notion to a minimal transversal of a hypergraph. This trivially follows from the fact that each hypergraph $(V, \mathcal{E})$ is nothing else than a family of sets drawn from $\wp(V)$. Now following Theorem 4.1,


Figure 4.2: Concept lattice of the context of Table 2.1. Concepts are labeled with their generators.
we conclude that given a closed itemset $X$, the associated generators compose the transversal hypergraph of its family of faces $\mathcal{F}$ seen as the hypergraph $(X, \mathcal{F})$.

Next, further to the basic property of a transversal hypergraph, we conclude that $(X, \mathcal{F})$ is necessarily simple. In order to apply Proposition 4.2 , we must also show that the family of generators associated to a closed itemset, say $\mathcal{G}$, forms a simple hypergraph. Yet this holds trivially due to the definition of generators. We can therefore advance that both families represent two mutually corresponding hypergraphs.

Property 4.1 Let $X$ be a closure and let $\mathcal{G}$ and $\mathcal{F}$ be the family of its generators and the family of its faces, respectively. Then, for the underlying hypergraphs it holds that $(a) \operatorname{Tr}(X, \mathcal{G})=(X, \mathcal{F})$ and (b) $\operatorname{Tr}(X, \mathcal{F})=(X, \mathcal{G})$.

The Snow algorithm is based on part (a) of Property 4.1, which says that computing all the minimal transversals of the generators of a concept, one obtains the family of faces of the concept. By taking the difference between the concept intent and its family of faces, we get the intents of the concepts in the upper cover. This is the principal idea of Snow.

Example 4.1 Let us consider the bottom concept in Figure 4.2 whose intent is $A B C D E$. First, we compute the transversal hypergraph of its generators: $\operatorname{Tr}(\{B C, B D, B E\})=\{C D E, B\}$. This means that the bottom concept has two faces namely $F_{1}=C D E$ and $F_{2}=B$. The number of faces indicates that the bottom concept is covered by two concepts $C_{1}$ and $C_{2}$ from above. By Def. 4.7, $\operatorname{intent}\left(C_{1}\right)=A B C D E \backslash C D E=A B$, and intent $\left(C_{2}\right)=A B C D E \backslash B=A C D E$. Applying this procedure for all concepts, the order relation among concepts can easily be discovered.

Note that part (b) of Property 4.1 can be applied to determine the generators of concepts in a concept lattice (that is, order is known this time). First, the family of faces $\mathcal{F}$ of a concept $C$ must be computed by using Def. 4.7. Then, calculating all the minimal transversals of $\mathcal{F}$ results in the family of generators of $C$.

### 4.2.1 The Snow-Touch Algorithm

By Snow we refer to the algorithm that finds the order among concepts, i.e. the input is a set of concepts $^{8}$ and the output is a concept lattice (either complete or iceberg). By Snow-Touch we refer to our complete solution as described in this paper. In addition to Snow, Snow-Touch also includes the call of Touch for extracting the set of concepts, i.e. the input of Snow-Touch is a context and a minimum support value, and the output is a concept lattice (either complete or iceberg).

### 4.2.2 Pseudo Code

The pseudo code of Snow (lines 3-12) and Snow-Touch (lines 1-12) is given in Algorithm 2.
Algorithm 2 (Snow and Snow-Touch):
Description (Snow): build a concept lattice from a set of concepts (lines 3-12)
Description (Snow-Touch): build a concept lattice from a context (lines 1-12)

```
setOf Itemsets \(\leftarrow\) getItemsets(context, min_supp); // only for Snow-Touch
setOfConcepts \(\leftarrow\) convertToConcepts(setOf Itemsets); // only for Snow-Touch
identifyOrCreateTopConcept(setOfConcepts); // Snow starts here
loop over the elements of setOfConcepts (c) // find the upper cover for each concept
\{
    setOfFaces \(\leftarrow\) getMinTransversals(c.generators);
    intentsInUpperCover \(\leftarrow\) getIntentsInUpperCover(c.intent, setOf Faces);
    upperCover \(\leftarrow\) getCorrespondingConcepts(intentsInUpperCover);
    loop over the concepts in upperCover \((p)\{\)
        createLink \((c, p)\);
    \}
\}
```

getItemsets function: this method calls an itemset mining algorithm that returns (frequent) closed itemsets and their associated generators. In our implementation we used the Touch algorithm for this purpose (see Chapter 3 for more details). Table 3.1 depicts a sample output of Touch. This function is specific for Snow-Touch.
convertToConcepts function: this method converts the set of itemsets obtained from Touch to a set of concepts. A sample output of Touch is shown in Table 3.1. A concept is an object with the following properties: intent, support, list of generators, list of references to concepts in the upper cover, list of references to concepts in the lower cover. The lists of references are initialized empty; the other properties are provided by Touch. This function is specific for Snow-Touch.
identifyOrCreateTopConcept procedure: this method tries to identify the top concept in the set of concepts. If it fails to find it, then it creates the top concept. The top concept is somewhat special, that is why it requires special attention. By definition, the intent of the top concept is the itemset that is present in all the objects of the input dataset, i.e. whose support is $100 \%$. If there is no full column in the input context, then this itemset is the empty set, because by definition its support is $100 \%$. The empty set is always a generator. If the input context has a closed

[^3]itemset $X$ (different from the empty set) with support $100 \%$, then $X$ is the closure of the empty set; otherwise the empty set is a closed itemset. If the closure of the empty set is itself (like this is the case in Figure 4.2), then it is considered to be a trivial case, thus data mining algorithms often omit the empty set in their output (like Touch for instance in Table 3.1). However, the top concept is important in the case of concept lattices, thus the identifyOrCreateTopConcept procedure performs the following task. It enumerates the concepts looking for a concept whose support is $100 \%$. If it does not find such a concept, then it creates a concept whose intent and generator is the empty set. The support value of this newly created concept is set to $100 \%$ (see Figure 4.2 for an example).
getMinTransversals function: this method computes the transversal hypergraph of a given hypergraph. More precisely, given the family of generators of a concept $c$, the function returns the family of faces of $c$ (by Property 4.1). For a detailed description of this function, see Algorithm 9 in Appendix E.
getIntentsInUpperCover function: this method calculates the differences between the intent of the current concept $c$ and the family of faces of $c$ (by Def. 4.7). The function returns a set of itemsets that are the intents of the concepts that form the upper cover of $c$.
getCorrespondingConcepts function: this method gets a set of intents as input, and it returns their concept objects. This correspondence can be easily done with a hash table where intents are keys and concept objects are values.
createLink procedure: this method links together the current concept and its upper cover. Links are established with references in both directions.

For a running example, see Example 4.1.

### 4.3 Experimental Results

Experiments were carried out on three different databases, namely T20I6D100K, C20D10K and Mushrooms. Detailed description of these datasets and the test environment can be found in Appendix A. It must be noted that T20I6D100K is a sparse, weakly correlated dataset imitating market basket data, while the other two datasets are dense and highly correlated.

Response time of Snow. The first two columns of Table 4.1 contain the following information: (1) number of concepts, and (2) execution time of Snow for finding the order among the concepts. Recall that the execution time of Snow does not include the extraction of concepts, i.e. we suppose that the set of concepts is already given.

As can be seen, Snow is able to discover the order very efficiently in sparse as well as in dense datasets. That is, the efficiency of Snow is independent of the density of the input dataset. This is due to the following reason. Looking at Algorithm 2, we can see that Snow only has one expensive step namely the computation of all minimal transversals of a given hypergraph (line 6). As seen before, Snow considers the family of generators of a concept as a hypergraph. Thus, the response time of Snow mainly depends on how efficiently it can compute the transversal hypergraphs. In Appendix E, we presented an optimized version of Berge's original algorithm called BergeOpt. BergeOpt is very efficient when the input hypergraph does not contain too many edges. Figure $4.3,4.4$, and 4.5 indicate the distribution of hypergraph sizes in the three different datasets. ${ }^{9}$ These figures show that most hypergraphs only have 1 edge, which is a trivial

[^4]| min_supp | \# concepts <br> (including top) | Snow <br> (finding order) | total time <br> (Snow-Touch with I/O) |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| T20I6D100K |  |  |  |  |
| $1 \%$ | 1,535 | 0.04 | 22.80 |  |
| $0.75 \%$ | 4,711 | 0.11 | 29.02 |  |
| $0.5 \%$ | 26,209 | 0.36 | 44.75 |  |
| $0.25 \%$ | 149,218 | 3.24 | 137.06 |  |
| C20D10K |  |  |  |  |
| $30 \%$ | 951 | 0.03 | 1.22 |  |
| $20 \%$ | 2,519 | 0.07 | 1.67 |  |
| $10 \%$ | 8,777 | 0.29 | 3.07 |  |
| $5 \%$ | 21,213 | 0.54 | 4.93 |  |
| MUSHROOMS |  |  |  |  |
| $30 \%$ | 425 | 0.02 | 0.87 |  |
| $20 \%$ | 1,169 | 0.05 | 1.17 |  |
| $10 \%$ | 4,850 | 0.17 | 1.15 |  |
| $5 \%$ | 12,789 | 0.47 | 2.26 |  |

Table 4.1: Response times of Snow and Snow-Touch.
case for BergeOpt, and large hypergraphs are rare. As a consequence, BergeOpt, and thus Snow can work very efficiently. Note that we obtained similar hypergraph-size distributions on two further datasets namely T25I10D10K and C73D10K.

Response time of Snow-Touch. The last column of Table 4.1 contains the execution time of the Snow-Touch algorithm. These response times include the following operations: reading the input dataset; extracting the set of concepts with Touch; finding order among concepts with Snow; writing the description of the lattice in a file.

Table 4.1 shows that the efficiency of Snow is similar on both sparse and dense datasets. As seen in Chapter 3, Touch is very efficient on dense, highly correlated datasets, and performs well on sparse datasets too. From this it follows that Snow-Touch represents a very efficient solution, especially on dense datasets.

### 4.4 Conclusion

In this paper, we presented a complete and efficient solution for constructing a concept lattice from a given context. With our approach, one can build not only complete, but iceberg lattices too. In addition to most lattice-building algorithms, our method labels concept intents with their generators, thus the resulting concept lattice can easily be used to generate interesting association rules for instance.

Our combined and complete algorithm Snow-Touch is a combination of two algorithms namely Snow and Touch. Touch is a new algorithm that extracts frequent equivalence classes, i.e. frequent closed itemsets and their associated generators. This way Touch provides the concepts of the corresponding formal lattice. The second algorithm, Snow, can find the order

[^5]among the previously found concepts using hypergraph theory. Experimental results show that the combination of the two algorithms gives a very efficient solution.


Figure 4.3: Distribution of hypergraph sizes for T20I6D100K. C20D10K


Figure 4.4: Distribution of hypergraph sizes for C20D10K.
Mushrooms
min_supp $=5 \%$


Figure 4.5: Distribution of hypergraph sizes for Mushrooms.

## Appendix A

## Test Environment

## Test Platform

All the experiments in this paper were carried out on the same bi-processor Intel Quad Core Xeon 2.33 GHz machine running under Ubuntu GNU/Linux operating system with 4 GB of RAM. All the experiments were carried out with the Coron system, which is a domain and platform independent, multi-purposed data mining toolkit implemented entirely in Java. ${ }^{10}$ All times reported are real, wall clock times, as obtained from the Unix time command between input and output. Time values are given in seconds.

## Test Databases

For testing and comparing the algorithms, we chose several publicly available real and synthetic databases to work with. Table A. 1 shows the characteristics of these datasets, i.e. the name and size of the database, the number of transactions, the number of different attributes, the average transaction length, and the largest attribute in each database.

| database <br> name | database <br> size (bytes) | \# of transactions | \# of attributes | \# of attributes <br> in average | largest attribute |
| :---: | :---: | :---: | :---: | :---: | :---: |
| T20I6D100K | $7,833,397$ | 100,000 | 893 | 20 | 1,000 |
| T25I10D10K | 970,890 | 10,000 | 929 | 25 | 1,000 |
| C20D10K | 800,020 | 10,000 | 192 | 20 | 385 |
| C73D10K | $3,205,889$ | 10,000 | 1,592 | 73 | 2,177 |
| MuSHROOMS | 603,513 | 8,416 | 119 | 23 | 128 |

Table A.1: Database characteristics.
The T20I6D100K and T25I10D10K ${ }^{11}$ are sparse datasets, constructed according to the properties of market basket data that are typically sparse, weakly correlated data. The number of frequent itemsets is small, and nearly all the FIs are closed. The C20D10K and C73D10K are census datasets from the PUMS sample file, while the MUSHROOMS ${ }^{12}$ describes the characteristics of various species of mushrooms. The latter three are dense, highly correlated datasets. Weakly correlated data, such as synthetic data, constitute easy cases for the algorithms that extract frequent itemsets, since few itemsets are frequent. On the contrary, correlated data constitute

[^6]far more difficult cases for the extraction due to the large number of frequent itemsets. Such data are typical of real-life datasets.

## Appendix B

## Detailed Description of Vertical Algorithms

## B. 1 Eclat

This appendix is based on Chapter 2, where we presented Eclat [ZPOL97, Zak00] in a general way. As seen, Eclat is a vertical algorithm that traverses a so-called itemset-tidset search tree (IT-tree) in a depth-first manner in a pre-order way, from left-to-right. The IT search tree of dataset $\mathcal{D}$ (Table 2.1) is depicted in Figure 2.1. The goal of Eclat is to find all frequent itemsets in this search tree. Eclat processes the input dataset in a vertical way, i.e. it associates to each attribute its tidset pair. Here we present the algorithm in detail through an example.

## The Algorithm

Eclat uses a special data structure for storing frequent itemsets called IT-search tree. This structure is composed of IT-nodes. An IT-node is an itemset-tidset pair, where an itemset is a set of items, and a tidset is a set of transaction identifiers. That is, an IT-node shows us which transactions (or objects) include the given itemset.

Pseudo code. The main block of the algorithm ${ }^{13}$ is given in Algorithm 3. First, the IT-tree is initialized, which includes the following steps: the root node, representing the empty set, is created. By definition, the support of the empty set is equal to the number of transactions in the dataset ( $100 \%$ ). Eclat transforms the layout of the dataset in vertical format, and inserts under the root node all frequent attributes. After this the dataset itself can be deleted from the main memory since it is not needed anymore. Then we call the extend procedure recursively for each child of the root. At the end, all frequent itemsets are discovered in the IT-tree.
addChild procedure: this method inserts an IT-node under the current node.
save procedure: this procedure has an IT-node as its parameter. This is the method that is responsible for processing the itemset. It can be implemented in different ways, e.g. by simply printing the itemset and its support value to the standard output, or by saving the itemset in a file, in a database, etc.
delete procedure: this method deletes a node from the IT-tree, i.e. it removes the reference on the node from its parent, and frees the memory that is occupied by the node.

[^7]getCandidate function: this function has two nodes as its parameters (curr and other). The function creates a new candidate node, i.e. it takes the union of the itemsets of the two nodes, and it calculates the intersection of the tidsets of the two nodes. If the support of the candidate is less than the minimum support, it returns "null", otherwise it returns the candidate as an IT-node. In Chapter 2 we presented an optimization method for the support count of 2 -itemsets. This technique can be used here: if the itemset part of curr and other consists of one attribute only, then the union of their itemsets is a 2 -itemset. In this case, instead of taking the intersection of their tidsets, we consult the upper-triangular matrix to get its support. Naturally, this matrix had been built before in the initialization phase.
sortChildren procedure: this procedure gets an IT-node as parameter. The method sorts the children of the given node in ascending order by their support values. This step is highly recommended since it results in a much less number of non-frequent candidates (see also Chapter 2).

Algorithm 3 (main block of Eclat \& Charm):
) root.itemset $\leftarrow \emptyset ; \quad / /$ root is an IT-node whose itemset is empty
2) root.tidset $\leftarrow\{$ all transaction IDs\}; // the empty set is present in every transaction
3) root.support $\leftarrow|\mathcal{O}| ; \quad / /$ where $|\mathcal{O}|$ is the total number of objects in the input dataset
4) root.parent $\leftarrow$ null; // the root has no parent node
5) loop over the vertical representation of the dataset (attr) \{
6) if (attr.supp $\geq$ min_supp) then root.addChild(attr);
7) $\}$
8) delete the vertical representation of the dataset; // free memory, not needed anymore
9) sortChildren(root); // optimization, results in a less number of non-frequent candidates
10)
11) while root has children
12) \{
13) child $\leftarrow$ (first child of root);
14) extend(child);
15) save(child); // process the itemset
16) delete(child); // free memory, not needed anymore
17) $\}$

## Algorithm 4 ("extend" procedure of Eclat):

Method: extend an IT-node recursively (discover FIs in its subtree)
Input: curr - an IT-node whose subtree is to be discovered

1) loop over the "brothers" (other children of its parent) of curr (other)
2) $\{$
3) candidate $\leftarrow$ getCandidate (curr, other);
4) if (candidate $\neq$ null) then curr.addChild(candidate);
5) $\}$
6) 
7) sortChildren(curr); // optimization, results in a less number of non-frequent candidates
8) 
9) while curr has children
10) \{
11) $\quad$ child $\leftarrow$ (first child of curr);
12) extend(child);
13) save(child); // process the itemset
14) delete(child); // free memory, not needed anymore
15) \}

Running example. The execution of Eclat on dataset $\mathcal{D}$ (Table 2.1) with min_supp $=2$ $(40 \%)$ is illustrated in Figure B.1. The execution order is indicated on the left side of the nodes in circles. For the sake of easier understanding, the element reordering optimization is not applied.


Figure B.1: Execution of Eclat on dataset $\mathcal{D}$ (Table 2.1) with min_supp $=2(40 \%)$.
The algorithm first initializes the IT-tree with the root node, which is the smallest itemset, the empty set, that is present in each transaction, thus its support is $100 \%$. Using the vertical representation of the dataset, frequent attributes with their tidsets are added directly under the root. The children of the root node are extended recursively one by one in a pre-order way, from left-to-right. Let us see the prefix-based equivalence class of attribute $A$. This class includes all frequent itemsets that have $A$ as their prefix. 2-long supersets of $A$ are formed by using the "brother" nodes of $A$ (nodes that are children of the parent of $A$, i.e. $B, C, D$, and $E$ ). As $A B, A C, A D$, and $A E$ are all frequent itemsets, they are added under $A$. The extend procedure is now called recursively on $A B$. It turns out that none of its 3-long supersets are frequent, thus $A B C, A B D$, and $A B E$ are discarded. Then, extend is called on $A C$. Its 3-long supersets are frequent, thus they are added in the IT-tree. Extending $A C D$ results in another frequent itemset, $A C D E$. Finally, extend is called on $A D$ and $A D E$ is added in the IT-tree. With this, the subtree of $A$ is completely discovered. After processing the nodes, this subtree can be deleted from main memory. Extension of nodes continues with $B$, etc. When the algorithm stops, all frequent itemsets are discovered.

## Conclusion

We presented here the frequent itemset mining algorithm Eclat that is based on a different approach. Eclat is not a levelwise, but a depth-first, vertical algorithm. As such, it makes only one database scan. Eclat requires no complicated data structures, like trie, and it uses simple intersection operations to generate candidate itemsets (candidate generation and support counting happen in a single step). Apriori has been followed by lots of optimizations, extensions. The same is true for Eclat. Experimental results show that Eclat outperforms levelwise, frequent itemset mining algorithms. It also means that Eclat can be used on such datasets that other levelwise algorithms cannot simply handle.

## B. 2 Charm

This appendix is based on Chapter 2, where we presented the common parts of Eclat and Charm [ZH02]. Eclat was designed to find all frequent itemsets in a dataset. Charm is a modification of Eclat, allowing one to find frequent closed itemsets only. Since Charm is based on Eclat, reading Appendix B. 1 is highly recommended for an easier understanding. Charm is a vertical algorithm that traverses the itemset-tidset search tree (IT-tree) in a depth-first manner in a pre-order way, from left-to-right. The IT search tree of dataset $\mathcal{D}$ (Table 2.1) is depicted in Figure 2.1. The goal of Charm is to find frequent closed itemsets only in this search tree. Charm, just like Eclat, processes the input dataset in a vertical way, i.e. it associates to each attribute its tidset pair. Here we present the algorithm in detail. This subsection mainly relies on [ZH02], where the proof of Theorem B. 2 can also be found.

## Basic Properties of Itemset-Tidset Pairs

There are four basic properties of IT-pairs that Charm exploits for efficient exploration of closed itemsets. Assume that we are currently processing a node $P \times t(P)$, where $[P]=\left\{l_{1}, l_{2}, \ldots, l_{n}\right\}$ is the prefix class. Let $X_{i}$ denote the itemset $P l_{i}$, then each member of $[P]$ is an IT-pair $X_{i} \times t\left(X_{i}\right)$.

Theorem B. 2 Let $X_{i} \times t\left(X_{i}\right)$ and $X_{j} \times t\left(X_{j}\right)$ be any two members of a class $[P]$, with $X_{i} \leq_{f} X_{j}$, where $f$ is a total order (e.g. lexicographic or support-based). The following four properties hold:

1. If $t\left(X_{i}\right)=t\left(X_{j}\right)$, then $\gamma\left(X_{i}\right)=\gamma\left(X_{j}\right)=\gamma\left(X_{i} \cup X_{j}\right)$
2. If $t\left(X_{i}\right) \subset t\left(X_{j}\right)$, then $\gamma\left(X_{i}\right) \neq \gamma\left(X_{j}\right)$, but $\gamma\left(X_{i}\right)=\gamma\left(X_{i} \cup X_{j}\right)$
3. If $t\left(X_{i}\right) \supset t\left(X_{j}\right)$, then $\gamma\left(X_{i}\right) \neq \gamma\left(X_{j}\right)$, but $\gamma\left(X_{j}\right)=\gamma\left(X_{i} \cup X_{j}\right)$
4. If $t\left(X_{i}\right) \neq t\left(X_{j}\right)$, then $\gamma\left(X_{i}\right) \neq \gamma\left(X_{j}\right) \neq \gamma\left(X_{i} \cup X_{j}\right)$

## The Algorithm

Pseudo code. The main block of the algorithm is exactly the same as the main block of Eclat (see Algorithm 3), thus we do not repeat it here. The difference is in the extend procedure (Algorithm 5). While Eclat finds all frequent itemsets in the subtree of a node, Charm concentrates on frequent closed itemsets only.

The initialization phase is equivalent to Eclat's: first the root node is created that represents the empty set. By definition, the empty set is included in every transaction, thus its support is equal to the number of transactions in the dataset ( $100 \%$ ). Charm transforms the layout of the dataset in vertical format, and inserts under the root node all frequent attributes. After this, the dataset itself can be deleted from main memory since it is not needed anymore. Then the extend procedure is called recursively for each child of the root. At the end, all frequent closed itemsets are discovered in the IT-tree.

The following methods are equivalent to the methods of Eclat with the same name: addChild, delete, getCandidate, sortChildren. Their description can be found in Appendix B.1.
replaceInSubtree procedure: it has two parameters, an IT-node (curr), and an itemset $X$ (the itemset part of another node). The method is the following: let $Y$ be the union of $X$ and the itemset part of curr. Then, traverse recursively the subtree of curr, and replace everywhere the itemset of curr (as a sub-itemset) with $Y$.
save procedure: this procedure is a bit different from the procedure described in Eclat. First, it must be checked whether the current itemset is closed or not. It can be done by testing if a
proper superset of the current node with the same support was found before. If yes, then the current node is not closed. If the test is negative, i.e. the current itemset is closed, we can process the itemset as we want (print it to the standard output, save it in a database, etc.).

## Algorithm 5 ("extend" procedure of Charm):

Method: extend an IT-node recursively (discover FCIs in its subtree)
Input: curr - an IT-node whose subtree is to be discovered

```
loop over the "brothers" (other children of its parent) of curr (other)
{
    if (curr.tidset = other.tidset) { // Property 1 of Theorem B.2
        replaceInSubtree(curr, other.itemset);
        delete(other);
    }
    else if (curr.tidset \subset other.tidset) { // Property 2 of Theorem B.2
        replaceInSubtree(curr, other.itemset);
    }
    else if (curr.tidset \supset other.tidset) { // Property 3 of Theorem B.2
        candidate }\leftarrow\mathrm{ getCandidate(curr,other);
        delete(other);
        if (candidate }\not=\mathrm{ null) then curr.addChild(candidate);
    }
    else { // if (curr.tidset }=\mathrm{ other.tidset) // Property 4 of Theorem B.2
        candidate }\leftarrow\mathrm{ getCandidate(curr, other);
        if (candidate }\not=\mathrm{ null) then curr.addChild(candidate);
    }
    }
    21) sortChildren(curr); // optimization, results in a less number of non-frequent candidates
    23) while curr has children
    25) child }\leftarrow(\mathrm{ first child of curr);
    26) extend(child);
    27) save(child); // process the itemset
    28) delete(child); // free memory, not needed anymore
```

    22)
    24) \{
    29) \(\}\)
    Running example. The execution of Charm on dataset $\mathcal{D}$ (Table 2.1) with min_supp $=1$ $(20 \%)$ is illustrated in Figure B.2. The execution order is shown in circles. Numbers on the left side indicate the step when the node is inserted in the IT-tree, while numbers on the right side signal when the node is removed. For instance, $C$ is inserted at step 3 , and it is removed from the IT-tree at step $7 / \mathrm{b}$. For the sake of easier understanding, the element reordering optimization is not applied.


Figure B.2: Execution of Charm on dataset $\mathcal{D}$ (Table 2.1) with min_supp $=1(20 \%)$.
The algorithm first initializes the IT-tree with the root node, and adds all frequent attributes under it. The children of the root node are extended recursively one by one in a pre-order way, from left-to-right. Extending $A$. The tidsets of $A$ and $B$ have no relation (Property 4), thus $A B$ is generated and inserted under $A$ (step 6). The tidset of $A$ is a proper superset of the tidset of $C$ (Property 3), thus the following tasks are executed: first, $A C$ is inserted under $A$ (step $7 / \mathrm{a}$ ), and then $C$ is removed from the IT-tree (step $7 / \mathrm{b}$ ). Step 8 is similar to step 6 , and step 9 is like step 7. Now, extend is called on $A B$. By Property $4, A B C, A B D$, and $A B E$ are inserted under $A B$. The tidset of $A B C$ is equivalent to the tidset of $A B D$ (Property 1), thus in the subtree of node $A B C$ the sub-itemset "ABC" is replaced by "ABCD" everywhere (step $13 / a)$. Since the subtree of node $A B C$ consists of one node only, this replacement only concerns one node $(A B C \times 2$ becomes $A B C D \times 2)$. After the replacement, the node $A B D$ is removed (step $13 / \mathrm{b}$ ). The following three steps (steps 14,15 , and 16 ) are similar to step 13 . With step 16 the subtree of $A$ is completely discovered, i.e. all frequent closed itemsets are found in this subtree. Extending $B$. After applying Property 4, we get the itemset $B D$ (remember, node $C$ was removed in step 7). With $B D$ there is a "problem": although it is frequent, this itemset is not closed because we already found a proper superset of it with the same support $(A B C D E)$, thus $B D$ is not added to the IT-tree. Extending $D$. Since this node has no "brother" nodes (node $E$ was removed in step 9), the algorithm stops. At this point, all frequent closed itemsets are discovered.

## Fast Subsumption Checking

Let $X_{i}$ and $X_{j}$ be two itemsets. We say that $X_{i}$ subsumes $X_{j}$ (or $X_{j}$ is subsumed by $X_{i}$ ), iff $X_{j} \subset X_{i}$ and $\operatorname{supp}\left(X_{i}\right)=\operatorname{supp}\left(X_{j}\right)$. Recall that in the save procedure, before adding an itemset $X$ to the set of closed itemsets, Charm checks if $X$ is subsumed by a previously found closed itemset. In other words, Charm can find itemsets that are actually not closed. It might seem to
be a problem, but Zaki managed to find a very efficient way to filter these non-closed itemsets.
Zaki proposes a hash structure for storing FCIs in order to perform fast subsumption checking. It also means that Charm stores the found frequent closed itemsets in the main memory. The idea is the following. Charm computes a hash function on the tidset and stores in the hash table a closed set with its support value. Let $h\left(X_{i}\right)$ denote the hash function on the tidset of $X_{i}$. This hash function has one important criteria: it must return the same value for itemsets that are included by the same set of objects. Several hash functions could be possible, but Charm uses the sum of the tids in the tidset (note that this is not the same as support, which is the cardinality of the tidset). Itemsets having the same hash value are stored in a list at the same position of the hash. Before adding $X$ to the set of closed itemsets, we retrieve from the hash table all entries with the hash key $h(X)$. For each element $C$ in this list, check if $\operatorname{supp}(X)=\operatorname{supp}(C)$. If yes, check if $X \subset C$. If yes, then $X$ is subsumed by $C$, and we do not register $X$ in the hash table.


Figure B.3: Hash table for the IT-tree in Figure B.2.

Example. Let us see Figure B. 3 that depicts the hash structure of the IT-tree in Figure B.2. For this example, the size of the hash table is set to four. ${ }^{14}$ At each position of the hash table there are pointers to lists. In each list we can find itemsets that have the same hash key. In the running example we saw that $B D$ is not closed. Using the hash table it can be determined the following way. First, compute the sum of the tids in its tidset (its tidset has one element only, so the sum is 2 ); then modulo this sum by the size of the hash table to get its hash value: $2 \bmod 4=2$. Traverse the list of the hash table at position 2 . We find that $A B C D E$ has the same support value as $B D$, thus check if $B D$ is a proper subset of $A B C D E$. As the answer is positive, it means that $B D$ is not closed.

## Experimental Results

Experimental results of Charm are reported in Chapter 3 together with the Touch algorithm.

[^8]
## B. 3 Talky-G

This appendix is based on Chapter 2, where we presented the common parts of vertical algorithms. Talky- $G$ is an adaptation of Eclat and Charm, allowing one to find frequent generators only. Talky- $G$ is a vertical algorithm that traverses the itemset-tidset search tree (IT-tree) in a depth-first manner, in a reverse pre-order way. The IT search tree of dataset $\mathcal{D}$ (Table 2.1) is depicted in Figure 2.1. The goal of Talky- $G$ is to find frequent generators only in this search tree. Talky- $G$, just like Eclat, processes the input dataset in a vertical way, i.e. it associates to each attribute its tidset pair. Here we present the algorithm in detail.

## Reverse Pre-Order Traversal

While Eclat traverses the IT-tree in a pre-order way, Talky- $G$ uses a so-called reverse pre-order traversal. In [CG05], Calders and Goethals made the following important observation. Let $X$ be the itemset of a node in the IT-tree. The nodes of the subsets of $X$ are either on the path from the root node to the node of $X$, or are in a branch that comes after $X$, never in a branch that comes before the branch of $X$. Hence, the traversal can be changed as follows: the same tree is processed, still in a depth-first manner, but from right-to-left. This order is called reverse preorder. As pointed out in [CG05], using reverse pre-order traversal, all subsets of $X$ are handled before $X$ itself. Though no name was given in [CG05] to this modified version of Eclat, we will refer to this algorithm as Talky. That is, Talky is Eclat with reverse pre-order traversal. As we will see, our algorithm Talky- $G$ also uses the reverse pre-order strategy.

The reverse pre-order traversal does not have any drawback on performance or memory usage. Furthermore, all the optimization methods described in Chapter 2 can be combined with the reverse pre-order traversal namely (1) element reordering, (2) support count of 2 -itemsets, and (3) diffsets.

Example. See Figure B. 4 for a comparison between the two traversals namely pre-order with Eclat (left) and reverse pre-order with Talky (right). The order of traversal is indicated in circles on the left side of the nodes.

## Basic Property of Generators

As defined in Def. 1.1, an itemset is called generator if it has no proper subset with the same support. Talky-G exploits the following property of generators in order to reduce the search space in the IT-tree:

Property B. 2 If an itemset is not generator, then none of its supersets are generators $\left[B T P^{+} 00 a\right]$.

## The Algorithm

Pseudo code. The main block of the algorithm is given in Algorithm 6. First, the IT-tree is initialized, which includes the following steps: the root node, representing the empty set, is created. By definition, the support of the empty set is equal to the number of transactions in the dataset $(100 \%)$. Talky-G transforms the layout of the dataset in vertical format, and inserts under the root node all frequent attributes. In addition to Eclat, Talky- $G$ has to determine whether an attribute is generator or not. If the support of an attribute is equal to the total number of transactions in the database, then the attribute is not generator since it has a proper subset


Figure B.4: Left: pre-order traversal with Eclat. Right: reverse pre-order traversal with Talky.
(the empty set) with the same support. After the insertion of all frequent 1-long generators, the dataset itself can be deleted from the main memory since it is not needed anymore. Then, the extend procedure is called recursively for each child of the root in a reverse pre-order way from right-to-left. While Eclat finds all frequent itemsets in the subtree of a node, Talky-G concentrates on frequent generators only. At the end, all frequent generators are discovered in the IT-tree.

The following methods are equivalent to the methods of Eclat with the same name: addChild, sortChildren, and delete. The description of these methods can be found in Appendix B.1.
extend procedure: this method (see Algorithm 7) discovers all frequent generators in the subtree of the current node. First, the procedure forms new generators with the "brother" nodes of the current node. Then, these generators are added below the current node and are extended recursively in a reverse pre-order way from right-to-left.
getNextGenerator function: this method (see Algorithm 8) is a bit different from the getCandidate function of Eclat. The function has two nodes as input parameters. The function either returns a new frequent generator, or "null" if no frequent generator can be produced from the two input nodes. A candidate node is created by taking the union of the itemsets of the two input nodes, and by calculating the intersection of their tidsets. The input nodes are also called as the parents of the candidate. Then, the candidate undergoes a series of tests. First, a frequency test is used to eliminate non-frequent itemsets. Second, the candidate is compared to its parents. If its tidset is equivalent to the tidset of one of its parents, then the candidate is not generator by Def. 1.1. If an itemset passed these two tests, it is still not sure that it is generator. As seen before, the reverse pre-order traversal guarantees that when an itemset is reached in the IT-tree, all its subsets are handled before. Talky- $G$ collects frequent generators in a "list" too (see also the save procedure). The third test checks if the candidate has a proper subset with the same support in this "list". If yes, then the candidate is not generator by Def. 1.1. This last step might seem to be a very expensive step, but as we will see later, it can be done very efficiently with a special hash data structure. If a candidate survives all the tests, then it is sure that the candidate is a frequent generator. If a candidate fails a test, then it is not added to the IT-tree, and thus none of its supersets are generated (see Prop. B.2). This way the search space is reduced to frequent generators only.

In Chapter 2 we presented an optimization method for the support count of 2 -itemsets. This technique can be used here: if the itemset parts of the parents of a candidate consist of one attribute only, then the union of their itemsets is a 2-itemset. In this case, instead of taking the intersection of their tidsets, we consult the upper-triangular matrix to get its support. Naturally, this matrix had been built before in the initialization phase. For the sake of easier understanding, this optimization is not included in Algorithm 8.

Algorithm 6 (main block of Talky-G):
root.itemset $\leftarrow \emptyset ; \quad / /$ root is an IT-node whose itemset is empty
root.tidset $\leftarrow$ \{all transaction IDs\}; // the empty set is present in every transaction
root.support $\leftarrow|\mathcal{O}| ; \quad / /$ where $|\mathcal{O}|$ is the total number of objects in the input dataset
root.parent $\leftarrow$ null; // the root has no parent node
loop over the vertical representation of the dataset (attr) \{
if $(($ attr.supp $\geq$ min_supp $)$ and (attr.supp $<|\mathcal{O}|))\{\quad / /$ frequent and generator root.addChild(attr);
\}
\}
delete the vertical representation of the dataset; // free memory, not needed anymore
sortChildren(root); // optimization, results in a less number of non-frequent candidates
loop over the children of root from right-to-left (child) \{
save(child); // process the itemset
extend(child); // discover and then destroy the subtree below child
\}
delete the children of root; // only 1-long itemsets are left below the root
delete root; // destroy the IT-tree

Algorithm 7 ("extend" procedure of Talky-G):
Method: extends an IT-node recursively (discovers FGs in its subtree)
Input: curr - an IT-node whose subtree is to be discovered

1) loop over the "brothers" (other children of its parent) of curr from left-to-right (other) \{
2) generator $\leftarrow$ getNextGenerator (curr, other);
3) if (generator $\neq$ null) then curr.addChild(generator);
4) $\}$
sortChildren(curr); // optimization, results in a less number of non-frequent candidates
loop over the children of curr from right-to-left (child) \{
save(child); // process the itemset
extend(child); // discover and then destroy the subtree below child
\}
delete the children of curr; // free memory
save procedure: this method has an IT-node as its parameter representing a frequent generator. The method has two tasks to perform. First, this is the method that is responsible for processing the itemset. It can be implemented in different ways, e.g. by simply printing the itemset and its support value to the standard output, or by saving the itemset in a file, in a database, etc. Second, the save procedure will also store the current frequent generator in a "list". Due to the reverse pre-order traversal, it can be possible that later on in another branch of the IT-tree we will find a proper superset (call it $X$ ) of the current itemset with the same support. According to Def. 1.1, $X$ is not generator, and thanks to the "list" $X$ can be pruned.

Algorithm 8 ("getNextGenerator" function of Talky-G):

Method: create a new frequent generator
Input: two IT-nodes (curr and other)
Output: a frequent generator or null

1) cand.tidset $\leftarrow$ curr.tidset $\cap$ other.tidset;
2) if (cardinality(cand.tidset) < min_supp) \{ // test 1
3) return null; // not frequent
4) $\}$
5) // else, if it is frequent
6) if $(($ cand.tidset $=$ curr.tidset $)$ or $($ cand.tidset $=$ other.tidset $)$ \{ // test 2
7) return null; // not generator (its supp. is equal to the supp. of one of its proper subset)
8) $\}$
9) // else, if it is a potential generator
10) cand.itemset $\leftarrow$ curr.itemset $\cup$ other.itemset;
11) if (cand has a proper subset with the same support in the hash) \{ // test 3
12) return null; // not generator
13) $\}$
14) // if cand passed all the tests then cand is a frequent generator
15) return cand;

When the algorithm stops, all frequent generators are stored in the "list". That is, Talky-G finds all frequent generators and nothing else.

Running example. The execution of Talky- $G$ on dataset $\mathcal{D}$ (Table 2.1) with min_supp $=1$ $(20 \%)$ is illustrated in Figure B.5. The execution order is indicated on the left side of the nodes in circles. For the sake of easier understanding, the element reordering optimization is not applied.


Figure B.5: Execution of Talky-G on dataset $\mathcal{D}$ (Table 2.1) with min_supp $=1(20 \%)$.
The algorithm first initializes the IT-tree with the root node. Since there is no full column in the input dataset, all attributes are generators, thus they are added under the root. The children of the root node are extended recursively one by one from right-to-left. Node $E$ has no "brother" nodes on its right side, thus it cannot be extended. Node $D$ is extended with $E$, but
the resulting itemset $D E$ is not generator since its support is equal to the support of its parent $E$. Node $C$ is extended with $D$ and $E$, but neither $C D$ nor $C E$ is generator because of the previous reason. 2-long supersets of $B$ are formed by using its "brother" nodes on its right side. When a new candidate is created, it is also tested if it has a previously found proper subset with the same support. If the test is negative, then the candidate is added to the IT-tree and to the "list" of generators. Thus, the nodes $B C, B D$, and $B E$ are added below $B$. Node $B E$ cannot be extended. The extensions of $B D$ and $B C$ produce no new generators. 2-long supersets of $A$ are added to the IT-tree. The candidates $A C$ and $A E$ are not generators because of $C$ and $E$, respectively. The combination of $A B$ and $A D$ produces the candidate $A B D$, which represents a special case. Its support is different from its parents, but we already found a proper subset of it with the same support $(B D)$ in a previous branch. According to Def. 1.1, $A B D$ is not generator, thus it is not added to the IT-tree. When the algorithm stops, all frequent generators (and only frequent generators) are inserted in the IT-tree and in the "list" of generators.

## Fast Subsumption Checking

Let $X_{i}$ and $X_{j}$ be two itemsets. We say that $X_{i}$ subsumes $X_{j}$ (or $X_{j}$ is subsumed by $X_{i}$ ), iff $X_{j} \subset X_{i}$ and $\operatorname{supp}\left(X_{i}\right)=\operatorname{supp}\left(X_{j}\right) . X_{i}\left(\right.$ resp. $\left.X_{j}\right)$ is also known as subsumer (resp. subsumee). By Def. 1.1, if an itemset subsumes another itemset, then the subsumer is not generator. Recall that in the getNextGenerator function, when a new candidate itemset $C$ is created, Talky- $G$ checks if $C$ subsumes a previously found generator. If the test is positive, then clearly $C$ is not generator. This subsumption test might seem to be an expensive step, but we found a very efficient way to filter these non-generator itemsets.

In Charm, Zaki proposed a hash structure for storing FCIs in order to perform fast subsumption checking. In Talky- $G$ we adapted this hash structure for storing frequent generators. Our motivation is the same: we want to perform subsumption checks very efficiently. It also means that Talky-G, just like Charm, stores the found frequent generators in the main memory (see also the save procedure). The idea is the following. Talky- $G$ computes a hash function on the tidset and stores in the hash table a generator with its support value. Let $h\left(X_{i}\right)$ denote the hash function on the tidset of $X_{i}$. This hash function has one important criteria: it must return the same value for itemsets that are included by the same set of objects. Several hash functions could be possible, but Talky- $G$ uses the sum of the tids in the tidset (note that this is not the same as support, which is the cardinality of the tidset). Itemsets having the same hash value are stored in a list at the same position of the hash. For the subsumption check of a candidate itemset $C$, we retrieve from the hash table all entries with the hash key $h(C)$. For each element $G$ in this list, test if $\operatorname{supp}(C)=\operatorname{supp}(G)$. If yes, test if $C \supset G$. If yes, then $C$ subsumes $G$, i.e. $C$ is not generator. If $C$ subsumes no entries in the list, then $C$ is generator, thus $C$ is added to the end of the list.

Example. Let us see Figure B. 6 that depicts the hash structure of the IT-tree in Figure B.5. This hash table contains all frequent generators of dataset $\mathcal{D}$. For this example, the size of the hash table is set to four. ${ }^{15}$ At each position of the hash table there are pointers to lists. In each list we can find itemsets that have the same hash key. In the running example we saw that $A B D$ is not generator. Using the hash table it can be determined the following way. First, compute the sum of the tids in its tidset (its tidset has one element only, so the sum is 2 ); then modulo this sum by the size of the hash table to get its hash value: $2 \bmod 4=2$. Traverse the list of

[^9]

Figure B.6: Hash table for the IT-tree in Figure B.5.
the hash table at position 2. The support of $B$ differs from the support of $A B D$, thus we take the next element of the list. We find that $B E$ has the same support value as $A B D$, but $A B D$ is not a proper superset of $B E$, thus we continue. $B D$ has the same support as $A B D$, and $A B D$ is a proper superset of $B D$, thus $A B D$ is not generator. At this point the traversal of the list is finished.

## Pre-Order Traversal

One might ask the question if it is possible to produce the same result with Eclat, i.e. with a preorder traversal of the IT-tree. The answer is positive, but this approach has several drawbacks. ${ }^{16}$ First, in the case of pre-order traversal, all subsets of the current node are not yet available, i.e. it cannot be decided whether a candidate is a generator or not. However, this problem can be solved the following way. Candidate generators that passed the first two tests in the getNextGenerator function are added to the hash structure. In the hash such itemsets are stored that are likely to be generators, but their generator status is not yet sure. Hence, we call them candidate generators. When a new candidate $C$ is found, non-generators that are proper supersets of $C$ with the same support are removed from the hash, and $C$ is added to the end of the list. Note that the hash can contain several subsumers of $C$, thus all the entries in the corresponding list must be compared to $C$. Furthermore, each potential generator $C$ must be added to the hash. The second drawback is that the search space is larger. This is due to the fact that the IT-tree can contain non-generators too. Third, the hash contains candidate generators whose generator status only becomes clear when the algorithm terminates. However, with the reverse pre-order strategy, all these drawbacks can be eliminated in Talky-G.

## Experimental Results

Experimental results of Talky- $G$ are reported in Chapter 3 together with the Touch algorithm.

## Conclusion

Here we presented a new algorithm for extracting frequent generators from a dataset. The proposed algorithm called Talky-G is a vertical, depth-first algorithm that traverses its IT-tree in a reverse pre-order way. Talky- $G$ has several advantages: (1) Due to the reversed traversal, it is guaranteed that when an itemset $X$ is found, all its subsets are handled before $X$. This property allows us to quickly eliminate non-generators. (2) As non-generators are eliminated, only frequent generators are added to the IT-tree, i.e. the search space is reduced to the minimum. (3) At each time, the hash structure contains the already found frequent generators. Once an

[^10]itemset $G$ is added to the hash, it is sure that $G$ is generator. When the algorithm terminates, all frequent generators are collected in the hash.

As a summary, we can say that Talky- $G$ is a very efficient solution for finding the family of frequent generators.

## Appendix C

## Horizontal and Vertical Data Layouts

Most itemset mining algorithms use a horizontal database layout, such as the one shown in Figure C. 1 (left), consisting of a list of transactions (or objects), where each transaction has an identifier followed by a list of items that are included in that transaction. Some algorithms, like Eclat, Charm, or Talky-G, use a vertical database layout, such as the one shown in Figure C. 1 (right), consisting of a list of items (or attributes), where each item is associated with a list of transactions that include the given item. One layout can easily be converted into the other on-the-fly, with very little cost. This process requires only a trivial amount of overhead.


Figure C.1: Horizontal and vertical layouts of dataset $\mathcal{D}$ (Table 2.1).

## Horizontal to Vertical Database Transformation

For each transaction $t$, we read its item list. During the transformation process, we build an array that is indexed by items of the database. We insert the ID of $t$ in those positions of the array that are indexed by the items present in the associated list of $t$.

Example. Consider the item list of transaction 1, shown in Figure C. 1 (left). We read its first item, $A$, and insert 1 in the array indexed by item $A$. We repeat this process for all other items in the list and for all other transactions. Figure C. 2 shows the transformation process step by step. ${ }^{17}$

[^11]

Figure C.2: Horizontal to vertical database transformation.


Figure C.3: Vertical to horizontal database transformation.

## Vertical to Horizontal Database Transformation

For each item $i$, we read its transaction list. During the transformation process, we build an array that is indexed by transaction IDs. We insert item $i$ in those positions of the array that are indexed by the transactions present in the associated list of $i$.

Example. Consider the transaction list of item $A$, shown in Figure C. 1 (right). We read its first transaction ID, 1, and insert $A$ in the array indexed by transaction 1 . We repeat this process for all other transaction IDs in the list and for all other items. Figure C. 3 shows the transformation process step by step.

## Appendix D

## Efficient Support Count of 2-itemsets

Here we present an optimization of the support count of 2-itemsets. This method was proposed by Zaki in [ZH02] for the Charm algorithm. However, this optimization can also be used with Eclat and Talky-G, as well as with breadth-first algorithms, such as Apriori.

In the case of vertical algorithms (e.g. Eclat, Charm, Talky-G), this method significantly reduces the number of intersection operations. The idea is that the support of 2 -itemsets is calculated and stored in a matrix. Then, an intersection operation is performed only if it surely results in a frequent itemset.

In the case of levelwise algorithms, with this method we can read the support from the matrix directly, and we do not need to use a trie for finding the subsets of each transacation in $C_{2}$ (where $C_{2}$ contains the potentially frequent 2-itemsets). Note that this optimization only concerns the support count of 2-itemsets in $C_{2}$. The support values of larger candidates are determined by a trie.

## The Algorithm

The algorithm requires that the database be in horizontal format. In the case of vertical algorithms it means that first the database must be transformed (see Appendix C). If the database has $n$ attributes, then an $(n-1) \times(n-1)$ upper triangular matrix is built, such as the one shown in Figure D.1. This matrix will contain the support values of 2-itemsets, thus its entries are initialized by 0 . A row (transaction) of the database is decomposed into a list of 2 -itemsets. For each element in this list, the value of its corresponding entry in the matrix is incremented by 1 . This process is repeated for each row of the database.


Figure D.1: Initialized upper triangular matrix for counting the support of 2-itemsets.


Figure D.2: Support count of 2-itemsets of dataset $\mathcal{D}$ (Table 2.1) with an upper triangular matrix.

Example. The first row of dataset $\mathcal{D}$ (Table 2.1) includes the itemset $A C D E$. This itemset is decomposed into the following list of 2-itemsets: $\{A C, A D, A E, C D, C E, D E\}$. We read the first element of this list, $A C$, and increment its entry in the triangular matrix. We repeat this process for all other itemsets in the list and for all other rows of the database. Figure D. 2 shows the process step by step.

## Appendix E

## Computing the Transversal Hypergraph

This appendix presents an optimized version of Berge's algorithm [Ber89] for solving the transversal hypergraph problem (see Def. 4.6). Before presenting the algorithm, we show the correspondance between itemsets and hypergraphs, and we also review Berge's algorithm.

## Relation Between Itemsets and Hypergraphs

In this paper we present several itemset mining algorithms, e.g. Eclat, Charm, Talky-G, etc. These algorithms extract specific subsets of frequent itemsets from a given context. Here we show that a family of itemsets can be treated as a hypergraph, and vice versa. As seen in Def. 4.1, a hypergraph $\mathcal{H}$ is a pair $(V, \mathcal{E})$, where $V$ is a finite set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $\mathcal{E}$ is a family of subsets of $V$. The elements of $V$ are called vertices, the elements of $\mathcal{E}$ edges. In Section 1.1 we saw that a formal context is a triple $(\mathcal{O}, \mathcal{A}, \mathcal{R})$, where $\mathcal{O}=\left\{o_{1}, o_{2}, \ldots, o_{m}\right\}$ is a set of objects, $\mathcal{A}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is a set of items, and $\mathcal{R} \subseteq \mathcal{O} \times \mathcal{A}$ is a relation between $\mathcal{O}$ and $\mathcal{A}$, where $\mathcal{R}(o, a)$ means that the object $o$ has the item $a$. A set of items is called an itemset.

The set $\mathcal{A}$ can be considered as a set of vertices $V$. An itemset corresponds to an edge $E \in \mathcal{E}$. From this it follows that a set of itemsets can be considered as a family of edges $\mathcal{E}$.

Example. Consider the hypergraph $\mathcal{H}$ in Figure 4.1 , where $V=\{a, b, c, d\}$ and $\mathcal{E}=\{\{a\},\{b, c\}$, $\{a, c, d\}\}$. This hypergraph corresponds to the following set of itemsets: $\{\{a\},\{b, c\},\{a, c, d\}\}$. For convenience, we will use separator-free set notations, and we will indicate itemsets with capital letters. That is, the hypergraph $\mathcal{H}$ can be considered as the following set of itemsets: $\{A, B C, A C D\}$. This holds in the other direction too, i.e. the hypergraph representation of the family of itemsets $\{A, B C, A C D\}$ is depicted in Figure 4.1.

In the rest of the paper, we will treat a family of itemsets as a hypergraph and vice-versa if there is no danger of ambiguity. Thus for a set of itemsets $\{A, B C, A C D\}$, we write "the hypergraph $\{A, B C, A C D\}^{\prime \prime}$, etc.

## The Algorithm of Berge

In this subsection we review the basic algorithm of Berge [Ber89], which is the most simple and direct scheme for generating all minimal transversals of a hypergraph. First, let us see two useful operations on hypergraphs:

Definition E. 8 Let $\mathcal{H}=\left\{\mathcal{E}_{1}, \ldots, \mathcal{E}_{n}\right\}$ and $\mathcal{G}=\left\{\mathcal{E}_{1}^{\prime}, \ldots, \mathcal{E}_{n^{\prime}}^{\prime}\right\}$ be two hypergraphs. Then,

$$
\begin{aligned}
& \mathcal{H} \cup \mathcal{G}=\left\{\mathcal{E}_{1}, \ldots, \mathcal{E}_{n}, \mathcal{E}_{1}^{\prime}, \ldots, \mathcal{E}_{n^{\prime}}^{\prime}\right\}, \text { and } \\
& \mathcal{H} \vee \mathcal{G}=\left\{\mathcal{E}_{i} \cup \mathcal{E}_{j}^{\prime}, i=1, \ldots, n, j=1, \ldots, n^{\prime}\right\} .
\end{aligned}
$$

The first operation is the union of $\mathcal{H}$ and $\mathcal{G}$, i.e. the hypergraph whose edges are the edges of both hypergraphs. The second operation is very similar to the Cartesian product, i.e. the union of all possible pairs of edges, where one element of a pair is from the first hypergraph, and the other element is from the second hypergraph.

Proposition E. 3 ([Ber89]) Let $\mathcal{H}$ and $\mathcal{G}$ be two simple hypergraphs. Then,

$$
\operatorname{Tr}(\mathcal{H} \cup \mathcal{G})=\min (\operatorname{Tr}(\mathcal{H}) \vee \operatorname{Tr}(\mathcal{G})) .
$$

Let $\mathcal{H}_{i}=\left\{\mathcal{E}_{1}, \ldots, \mathcal{E}_{i}\right\}, i=1, \ldots, n$ be the partial hypergraph of the hypergraph $\mathcal{H}$. It holds that $\mathcal{H}_{i}=\mathcal{H}_{i-1} \cup\left\{\mathcal{E}_{i}\right\}$, for all $i=2, \ldots, n$, where $\mathcal{H}_{1}=\left\{\mathcal{E}_{1}\right\}$ and $\mathcal{H}_{n}=\mathcal{H}$. Thus, $\operatorname{Tr}\left(\mathcal{H}_{i}\right)=\operatorname{Tr}\left(\mathcal{H}_{i-1} \cup\left\{\mathcal{E}_{i}\right\}\right)$, and by Prop. E.3,

## Equation E. 1

$$
\begin{aligned}
\operatorname{Tr}\left(\mathcal{H}_{i}\right) & =\min \left(\operatorname{Tr}\left(\mathcal{H}_{i-1}\right) \vee \operatorname{Tr}\left(\left\{\mathcal{E}_{i}\right\}\right)\right) \\
& =\min \left(\operatorname{Tr}\left(\mathcal{H}_{i-1}\right) \vee\left\{\{v\}, v \in \mathcal{E}_{i}\right\}\right)
\end{aligned}
$$

The algorithm of Berge is based on this equation. The algorithm computes all minimal transversals of a given hypergraph $\mathcal{H}$ in two steps. First, it computes the minimal transversals of the partial hypergraph $\mathcal{H}_{i-1}$ and then it calculates the Cartesian product of the set $\operatorname{Tr}\left(\mathcal{H}_{i-1}\right)$ by the $i^{\text {th }}$ edge $\mathcal{E}_{i}$ of $\mathcal{H}$. Finally, non-minimal elements are removed. Thus, the algorithm starts with the computation of $\operatorname{Tr}\left(\mathcal{H}_{1}\right)$, which is a trivial case ( $\mathcal{H}_{1}$ has one edge only, $\mathcal{E}_{1}$, whose minimal transversals are its vertices). Then, the algorithm adds one by one the rest of the edges, computing at each step the set of minimal transversals of the new partial hypergraph. The algorithm terminates when the last edge $\mathcal{E}_{n}$ is added. The algorithm of Berge outputs at the end all minimal transversals of the input hypergraph $\mathcal{H}$ [Ber89].

## BergeOpt: An Optimized Version of Berge's Algorithm

In the previous subsection we reviewed the algorithm of Berge, which implements the most simple and direct approach for calculating the minimal transversals of a hypergraph. Here we present an optimized version of Berge's algorithm that we call BergeOpt.

In [LFFM $\left.{ }^{+} 03\right]$, Le Floc'h et al. presented an algorithm called $J E N$ whose goal is to efficiently extract generators from a concept lattice for mining exact and approximate association rules. As part of $J E N$, the aforementioned authors presented a simple algorithm without a name for calculating all the minimal transversals of a hypergraph. In the rest of this appendix we present this algorithm in an extended and completed way. In addition to [LFFM $\left.{ }^{+} 03\right]$, (i) we show that this algorithm is actually an optimization of Berge's original algorithm (hence the name Berge $O p$ t), and (ii) we provide a proposition (see Prop. E.4) and its proof.

Optimization idea. One drawback of Berge's algorithm is that after calculating the Cartesian product of the set $\operatorname{Tr}\left(\mathcal{H}_{i-1}\right)$ by the $i^{\text {th }}$ edge $\mathcal{E}_{i}$ of $\mathcal{H}$ (see Equation E.1), it stores the resulting elements together in the same set, i.e. it has no information whether an element is minimal or not. As a consequence, the filtering of non-minimal elements can be quite expensive when the resulting set has a large number of elements because the algorithm must test the minimality of all elements, including also such elements that are actually minimal.

Our optimization is based on the idea to separate minimal and potentially minimal transversals in two different lists $L_{1}$ and $L_{2}$, respectively. This way, our optimized algorithm only has to check the minimality of the potentially minimal elements in $L_{2}$. As a result, the number of expensive subset checks can be reduced.

The BergeOpt algorithm exploits the following proposition:
Proposition E. 4 In the BergeOpt algorithm, the potentially minimal transversals stored in the list $L_{2}$ form a simple hypergraph, i.e. $L_{2}$ has no two elements $e_{i}$ and $e_{j}$ such that $e_{i} \subseteq e_{j}$.

Proof. Assume $X, Y \subseteq V$ are two distinct subsets in $\operatorname{Tr}\left(\mathcal{H}_{i-1}\right)-\operatorname{Tr}\left(\mathcal{H}_{i}\right)$, i.e., they are minimal transversals of $\mathcal{H}_{i-1}$ that lost this status in the $i$-th partial hypergraph. Assume also that $X \cup\{a\}$ and $Y \cup\{b\}$ are two candidates for $\operatorname{Tr}\left(\mathcal{H}_{i}\right)$ produced by the algorithm (i.e., $\{a, b\} \subseteq \mathcal{E}_{i}$ whereby $a \notin X$ and $b \notin Y)$.

Notice that any element of the $L_{2}$ list will have the form $X \cup\{a\}$ for some $X$ and $a$.
Now, without loss of generality we can hypothesize $X \cup\{a\} \subseteq Y \cup\{b\}$, and show this leads to a contradiction. First, notice that $a \neq b$, otherwise we would have $X \subseteq Y$ hence a contradiction with the minimal transversal status. Next, we deduce that $Y=\bar{X} \cup \bar{Y}$ where $\bar{X}=X-\{b\}$ hence $X=\bar{X} \cup\{b\}$. Yet this means that $b \in X \cap \mathcal{E}_{i}$ which contradicts $X \notin \operatorname{Tr}\left(\mathcal{H}_{i}\right)$.

Pseudo code. The pseudo code of the algorithm is given in Algorithm 9. Let $\mathcal{H}_{i}=\left\{\mathcal{E}_{1}, \ldots, \mathcal{E}_{i}\right\}$, $i=1, \ldots, n$ be the partial hypergraph of the hypergraph $\mathcal{H}$. It holds that $\mathcal{H}_{i}=\mathcal{H}_{i-1} \cup\left\{\mathcal{E}_{i}\right\}$, for all $i=2, \ldots, n$, where $\mathcal{H}_{1}=\left\{\mathcal{E}_{1}\right\}$ and $\mathcal{H}_{n}=\mathcal{H}$. Let $\mathcal{M} \mathcal{T}_{\mathcal{H}_{i}}$ denote the set of all minimal transversals of the partial hypergraph $\mathcal{H}_{i}$.

As input, we have a set of itemsets that we treat as a hypergraph. The goal is to compute all the minimal transversals of this hypergraph. The algorithm performs this task in an incremental way. First, the algorithm takes the first itemset $\mathcal{E}_{1}$ of the input and it calculates its minimal transversals. This is a trivial case; we only have to decompose the itemset into its 1-long subsets. For instance, the itemset $A B C$ has three minimal transversals namely $A, B$, and $C$. Then, the algorithm takes the next itemset $\mathcal{E}_{i}$ of the input and it updates the list of minimal transversals $\mathcal{M} \mathcal{T}_{\mathcal{H}_{i-1}}$ if necessary. This is done the following way. Each minimal transversal $m$ found so far, i.e. each element of $\mathcal{M} \mathcal{T}_{\mathcal{H}_{i-1}}$, is tested if it has a common part with the current itemset $\mathcal{E}_{i}$. If it has, then $m$ is a minimal transversal of $\mathcal{H}_{i}$ too, thus $m$ is added to the list $L_{1}$. In the list $L_{1}$ we collect those itemsets that are minimal transversals of the partial hypergraph processed so far, including the current itemset $\mathcal{E}_{i}$ too. Prop. 4.1 guarantees that $L_{1}$ has no two elements $e_{1}$ and $e_{2}$ such that $e_{1} \subseteq e_{2}$. If the test was negative, i.e. $m$ has no common part with the current itemset $\mathcal{E}_{i}$, then it means that $m$ is not a transversal of $\mathcal{E}_{i}$, thus $m$ must be extended to have an intersection with $\mathcal{E}_{i}$ (in other words, $m$ is a transversal of $\mathcal{H}_{i-1}$, but not a transversal of $\mathcal{H}_{i}$ ). This can be done by decomposing $\mathcal{E}_{i}$, and generating the one-size larger supersets of $m$ using the 1-long subsets of $\mathcal{E}_{i}$ (Cartesian product of $m$ with the vertices of $\mathcal{E}_{i}$ ). For instance, if $\mathcal{E}_{i}=B C H$, and the minimal transversal to be updated is $A D$, then the following potentially minimal transversals are generated: $A B D, A C D$, and $A D H$. We call these itemsets "potentially
minimal transversals", because with this extension it is guaranteed that they became transversals of $\mathcal{H}_{i}$, but it is not sure that they are minimal, thus they are put in another list $L_{2}$. It can be possible that they have subsets among the minimal transversals in $L_{1}$. When all elements of $\mathcal{M} \mathcal{T}_{\mathcal{H}_{i-1}}$ are tested against the current itemset $\mathcal{E}_{i}$, the lists $L_{1}$ and $L_{2}$ are filled. At this point, there are three possibilities (lines 20-23 of Algorithm 9): (1) $L_{1}$ is non-empty and $L_{2}$ is empty, or (2) $L_{1}$ is empty and $L_{2}$ is non-empty, or (3) both $L_{1}$ and $L_{2}$ are non-empty. In the first case, $L_{1}$ contains all the minimal transversals of $\mathcal{H}_{i}$. By Prop. 4.1, $L_{1}$ is a simple hypergraph. In the second case, $L_{2}$ contains all the minimal transversals of $\mathcal{H}_{i}$. Since $L_{1}$ is empty, all elements in $L_{2}$ are minimal. Moreover, from Prop. E. 4 it follows that $L_{2}$ is a simple hypergraph. In the third case, the list $L_{2}$ must be cleaned first, i.e. if an element $e_{1}$ in $L_{1}$ is a subset of an element $e_{2}$ in $L_{2}$, then $e_{2}$ must be removed because $e_{2}$ is not minimal. Prop. E. 4 guarantees that the elements of $L_{2}$ are not comparable w.r.t. set inclusion. Then, taking the union of the lists $L_{1}$ and $L_{2}$, we have all the minimal transversals of $\mathcal{H}_{i}$.

The algorithm continues by taking the next itemset of the input set (next current itemset) and it updates again the list of minimal transversals. The algorithm terminates when all elements of the input set are processed. At this point, the algorithm collected all the minimal transversals of the input set, i.e. it calculated the transversal hypergraph of the input hypergraph.
cleanSupersets procedure: this method removes non-minimal transversals from the list $L_{2}$, i.e. itemsets that have subsets in $L_{1}$. The procedure works as follows. It enumerates all elements of $L_{2}$. If the current element $e_{2}$ in $L_{2}$ has a subset in $L_{1}$, then $e_{2}$ is removed from $L_{2}$. When the procedure terminates, $L_{2}$ only contains minimal transversals.

Running example. Consider the following hypergraph $\mathcal{H}=\{A C D, A C H, B C D, D F, F H\}$. Let $\mathcal{E}_{i}$ denote the $i^{t h}$ element (edge) of the hypergraph, i.e. $\mathcal{E}_{1}=A C D, \mathcal{E}_{2}=A C H, \ldots, \mathcal{E}_{5}=F H$. Let $\mathcal{H}_{i}$ denote the partial hypergraph that contains the first $i$ elements of $\mathcal{H}$, i.e. $\mathcal{H}_{1}=\{A C D\}$, $\mathcal{H}_{2}=\{A C D, A C H\}, \ldots, \mathcal{H}_{5}=\{A C D, A C H, B C D, D F, F H\}=\mathcal{H}$. The notation $\mathcal{M} \mathcal{T}_{\mathcal{H}_{i}}$ denotes the set of all minimal transversals of the partial hypergraph $\mathcal{H}_{i}$.

The execution of the algorithm is depicted in Table E.1. First, the algorithm takes $\mathcal{E}_{1}$ $(A C D)$ and computes its minimal transversals that are $A, C$, and $D$. The algorithm continues with processing $\mathcal{E}_{2}(A C H)$. Each time when a new element of $\mathcal{H}$ is handled, the already found minimal transversals are tested. The itemsets $A$ and $C$ have common parts with $\mathcal{E}_{2}$, thus they are minimal transversals of $A C H$, so they are added to the list $L_{1}$. However, $D$ has no common part with $\mathcal{E}_{2}$, which means that $D$ is a minimal transversal of $\mathcal{H}_{1}$, but not a transversal of $\mathcal{H}_{2}$. In order to make $D$ a transversal of $\mathcal{H}_{2}, D$ is extended with the 1-long subsets of $A C H$, thus the following candidates are generated: $A D, C D$, and $D H$. These three itemsets are put in the list $L_{2}$. Then, the algorithm removes itemsets from $L_{2}$ that have subsets in $L_{1}$ since they are not minimal transversals $(A D$ and $C D)$. The union of $L_{1}$ and $L_{2}$, which is stored in the list $\mathcal{M} \mathcal{T}_{\mathcal{H}_{2}}$, gives all the minimal transversals of $\mathcal{H}_{2}$. The same steps are repeated with the other elements of $\mathcal{H}\left(\mathcal{E}_{3}\right.$, $\mathcal{E}_{4}$, and $\mathcal{E}_{5}$ ). When the algorithm terminates, all minimal transversals of the hypergraph $\mathcal{H}$ are discovered. In this example, the transversal hypergraph of $\mathcal{H}$ is $\operatorname{Tr}(\mathcal{H})=\{D H, C F, A B F, A D F\}$.

Conclusion. In this appendix we presented an optimization of Berge's original algorithm [Ber89] called BergeOpt that can significantly reduce the number of expensive inclusion tests. Since Berge's algorithm several other, more efficient algorithms have been introduced. As pointed out in [KS05] for instance, the simple method of Berge needs exponential many steps to produce the whole output. It generates the first minimal transversal near the end of the procedure and its high memory requirements make it suitable only for small problem cases. However, as we pointed

Algorithm 9 ("getMinTransversals" function):
Description: BergeOpt algorithm (computing all minimal transversals of a hypergraph) Input: a hypergraph $(\mathcal{H})$
Output: all minimal transversals of $\mathcal{H}(\mathcal{M T})$

1) $\mathcal{M T} \leftarrow \emptyset$; // initialisation; no minimal transversals are found yet
2) loop over the elements of $\mathcal{H}\left(\mathcal{E}_{i}\right)$ // an element of $\mathcal{H}$ is an edge (an itemset)
3) $\{$
4) if $\left(\mathcal{E}_{i}\right.$ is the first element of $\left.\mathcal{H}\right)$ \{
5) $\mathcal{M T} \leftarrow\left\{\right.$ vertices of $\left.\mathcal{E}_{i}\right\} ; / /$ decomposition (1-itemsets of $\mathcal{E}_{i}$ )
6) $\}$
7) else
8) \{
$L_{1} \leftarrow \emptyset ; L_{2} \leftarrow \emptyset ; \quad / /$ two empty lists
9) loop over the elements of $\mathcal{M T}(m)$
10) \{
11) if $\left(m \cap \mathcal{E}_{i} \neq \emptyset\right)\left\{\quad / / m\right.$ has a common vertex with $\mathcal{E}_{i}$
12) $L_{1} \leftarrow L_{1} \cup m$; // $m$ is a minimal transversal of $\mathcal{E}_{i}$
13) 
14) 
15) 
16) 
17) 
18) 
19) 
20) 
21) 
22) 
23) 

\}
else \{
$S \leftarrow\left\{\right.$ one-size larger supersets of $m$ using the vertices of $\left.\mathcal{E}_{i}\right\}$;
$L_{2} \leftarrow L_{2} \cup S ;$
\}
\}
if $\left(L_{1} \neq \emptyset\right.$ and $\left.L_{2} \neq \emptyset\right)\{$
cleanSupersets $\left(L_{1}, L_{2}\right) ; \quad / /$ removing non-minimal transversals from $L_{2}$
\}
$\mathcal{M T} \leftarrow L_{1} \cup L_{2} ;$
\}
25)
26)
27) return $\mathcal{M T}$;
out in the Snow algorithm in Section 4.2, our hypergraphs are usually very small, thus we did not have to face these efficiency problems. Experimental results show that BergeOpt provides a very efficient solution for the problem instance that we had to deal with in the Snow algorithm.

| $\mathcal{E}_{1}=A C D$ | $\mathcal{M} \mathcal{T}_{\mathcal{H}_{1}}=\{A, C, D\}$ |
| :--- | :--- |
| $\mathcal{E}_{2}=A C H$ | $L_{1}=\{A, C\}$ |
|  | $L_{2}=\{A D, C D, D H\}$ |
|  | $\mathcal{M} \mathcal{T}_{\mathcal{H}_{2}}=\{A, C, D H\}$ |
| $\mathcal{E}_{3}=B C D$ | $L_{1}=\{C, D H\}$ |
|  | $L_{2}=\{A B, A G, A D\}$ |
|  | $\mathcal{M} \mathcal{T}_{\mathcal{H}_{3}}=\{C, D H, A B, A D\}$ |
| $\mathcal{E}_{4}=D F$ | $L_{1}=\{D H, A D\}$ |
|  | $L_{2}=\{C D, C F, A B D, A B F\}$ |
|  | $\mathcal{M} \mathcal{T}_{\mathcal{H}_{4}}=\{D H, A D, C D, C F, A B F\}$ |
| $L_{5}=F H$ | $L_{1}=\{D H, C F, A B F\}$ |
|  | $L_{2}=\{A D F, A D H, C D F, C D H\}$ |
|  | $\mathcal{M} \mathcal{T}_{\mathcal{H}_{5}}=\{D H, C F, A B F, A D F\}=\mathcal{M} \mathcal{T}_{\mathcal{H}}=\operatorname{Tr}(\mathcal{H})$ |

Table E.1: Incremental computation of the transversal hypergraph of $\mathcal{H}=\{A C D, A C H, B C D$, $D F, F H\}$ with the BergeOpt algorithm.

## Bibliography

[Ber89] C. Berge. Hypergraphs: Combinatorics of Finite Sets. North Holland, Amsterdam, 1989.
$\left[\mathrm{BTP}^{+} 00 \mathrm{a}\right]$ Y. Bastide, R. Taouil, N. Pasquier, G. Stumme, and L. Lakhal. Mining frequent patterns with counting inference. SIGKDD Explor. Newsl., 2(2):66-75, 2000.
[BTP $^{+}$00b] Y. Bastide, R. Taouil, N. Pasquier, G. Stumme, and L. Lakhal. Mining Minimal Non-Redundant Association Rules Using Frequent Closed Itemsets. In J. Lloyd et al., editor, Proc. of the Computational Logic (CL '00), volume 1861 of LNAI, pages 972-986. Springer, 2000.
[CG05] T. Calders and B. Goethals. Depth-first non-derivable itemset mining. In Proc. of the SIAM Intl. Conf. on Data Mining (SDM '05), Newport Beach, USA, Apr 2005.
[EG95] T. Eiter and G. Gottlob. Identifying the Minimal Transversals of a Hypergraph and Related Problems. SIAM Journal on Computing, 24(6):1278-1304, 1995.
[GD86] J. L. Guigues and V. Duquenne. Familles minimales d'implications informatives résultant d'un tableau de données binaires. Mathématiques et Sciences Humaines, 95:5-18, 1986.
[Goe03] B. Goethals. Survey on Frequent Pattern Mining. Manuscript, 2003.
[GW99] B. Ganter and R. Wille. Formal concept analysis: mathematical foundations. Springer, Berlin/Heidelberg, 1999.
[Kry98] M. Kryszkiewicz. Representative Association Rules. In Proc. of the 2nd PacificAsia Conf. on Research and Development in Knowledge Discovery and Data Mining (PAKDD '98), pages 198-209, London, UK, 1998. Springer-Verlag.
[Kry02] M. Kryszkiewicz. Concise Representations of Association Rules. In Proc. of the ESF Exploratory Workshop on Pattern Detection and Discovery, pages 92-109, 2002.
[KS05] D. J. Kavvadias and E. C. Stavropoulos. An Efficient Algorithm for the Transversal Hypergraph Generation. Journal of Graph Algorithms and Applications, 9(2):239264, 2005.
[LFFM $\left.{ }^{+} 03\right]$ A. Le Floc'h, C. Fisette, R. Missaoui, P. Valtchev, and R. Godin. JEN : un algorithme efficace de construction de générateurs pour l'identification des règles d'association. Numéro spécial de la revue des Nouvelles Technologies de l'Information, 1(1):135-146, 2003.
[Lux91] M. Luxenburger. Implications partielles dans un contexte. Mathématiques, Informatique et Sciences Humaines, 113:35-55, 1991.
[Pas00] N. Pasquier. Mining association rules using formal concept analysis. In Proc. of the 8th Intl. Conf. on Conceptual Structures (ICCS '00), pages 259-264. Shaker-Verlag, Aug 2000.
[PBTL99a] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Closed set based discovery of small covers for association rules. In Proc. 15emes Journees Bases de Donnees Avancees (BDA), pages 361-381, 1999.
[PBTL99b] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed itemsets for association rules. Lecture Notes in Computer Science, 1540:398-416, 1999.
[Pfa02] J. L. Pfaltz. Incremental Transformation of Lattices: A Key to Effective Knowledge Discovery. In Proc. of the First Intl. Conf. on Graph Transformation (ICGT '02), pages 351-362, Barcelona, Spain, Oct 2002.
[PJ01] J. L. Pfaltz and R. E. Jamison. Closure Systems and their Structure. Information Sciences, 139(3-4):275-286, 2001.
[SN05] L. Szathmary and A. Napoli. CORON: A Framework for Levelwise Itemset Mining Algorithms. In B. Ganter, R. Godin, and E. Mephu Nguifo, editors, Supplementary Proc. of the 3rd Intl. Conf. on Formal Concept Analysis (ICFCA '05), Lens, France, pages 110-113, Feb 2005.
[SNK07] L. Szathmary, A. Napoli, and S. O. Kuznetsov. ZART: A Multifunctional Itemset Mining Algorithm. In Proc. of the 5th Intl. Conf. on Concept Lattices and Their Applications (CLA '07), pages 26-37, Montpellier, France, Oct 2007.
$\left[\mathrm{STB}^{+} 02\right] \quad$ G. Stumme, R. Taouil, Y. Bastide, N. Pasquier, and L. Lakhal. Computing Iceberg Concept Lattices with TITANIC. Data and Knowledge Engineering, 42(2):189-222, 2002.
[Sza06] L. Szathmary. Symbolic Data Mining Methods with the Coron Platform. PhD Thesis in Computer Science, University Henri Poincaré - Nancy 1, France, Nov 2006.
[Zak00] M. J. Zaki. Scalable Algorithms for Association Mining. IEEE Transactions on Knowledge and Data Engineering, 12(3):372-390, 2000.
[ZG03] M. J. Zaki and K. Gouda. Fast vertical mining using diffsets. In Proc. of the 9th ACM SIGKDD Intl. Conf. on Knowledge discovery and data mining (KDD '03), pages 326-335, New York, NY, USA, 2003. ACM Press.
[ZH02] M. J. Zaki and C.-J. Hsiao. CHARM: An Efficient Algorithm for Closed Itemset Mining. In SIAM Intl. Conf. on Data Mining (SDM' 02), pages 33-43, Apr 2002.
[ZPOL97] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New Algorithms for Fast Discovery of Association Rules. In Proc. of the 3rd Intl. Conf. on Knowledge Discovery in Databases, pages 283-286, August 1997.

## Index

A-Close, 13
associating FCIs and FGs, 12
association rule, 2
association rule bases, 9

Berge's algorithm, 49
BergeOpt, 50
blocker, 18

Charm, 5, 10, 33
closed itemset, 1
closure, 2
concept lattice, 3
confidence, 2
context, 1
covering relation, see order
data mining, 1, 4
dCharm, 8
dEclat, 8
diffset, 7
dTalky-G, 8
duality property of hypergraphs, 19

Eclat, 5, 29
Eclat-G, 42
element reordering, 7
equivalence class, 2
example dataset, 5
extent, 3
face, 19
formal concept analysis, 2,4
Galois connection, 2
generator, 1

Hasse diagram, 3
hitting set, see transversal
horizontal layout, 7,45
hypergraph, 17
iceberg lattice, 3
image, 1
intent, 3
IT-tree, 6
itemset, 1
itemset-tidset search tree, see IT-tree
lower cover, 4
minimal blocker, 18
minimal non-redundant association rules, 9
minimal transversal, 18
minimum confidence, 2
minimum support, 1
order, 4
partial hypergraph, 17
Pascal, 9
pre-order traversal, 37
prefix-based equivalence class, 6
reverse pre-order traversal, 37
sample dataset, see example dataset
simple hypergraph, 17
singleton equivalence class, 2
Snow, 17
Snow-Touch, 17
subsumption checking, 35, 41
support, 1
support count of 2 -itemsets, 7, 47
Talky, 37
Talky-G, 5, 11, 37
test environment, 27
tidset, 1
Touch, 9
transversal, 18
transversal hypergraph, 18
transversal hypergraph problem, 49
upper cover, 3
vertical layout, 6,45
Zart, 9, 13


## Centre de recherche INRIA Nancy - Grand Est

LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101-54602 Villers-lès-Nancy Cedex (France)
Centre de recherche INRIA Bordeaux - Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex Centre de recherche INRIA Grenoble - Rhône-Alpes : 655, avenue de l'Europe - 38334 Montbonnot Saint-Ismier
Centre de recherche INRIA Lille - Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d'Ascq Centre de recherche INRIA Paris - Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105-78153 Le Chesnay Cedex Centre de recherche INRIA Rennes - Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex Centre de recherche INRIA Saclay - Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex Centre de recherche INRIA Sophia Antipolis - Méditerranée : 2004, route des Lucioles - BP 93-06902 Sophia Antipolis Cedex

## Éditeur

INRIA - Domaine de Voluceau - Rocquencourt, BP 105-78153 Le Chesnay Cedex (France)
http://www.inria.fr


[^0]:    ${ }^{1}$ For convenience, we will use separator-free set notations throughout the paper, e.g. $A B$ stands for $\{A, B\}$, 13 stands for $\{1,3\}$, etc.
    ${ }^{2}$ For instance, $A B E$ is a 3 -itemset.
    ${ }^{3}$ For instance, in dataset $\mathcal{D}$ (Table 2.1), the image of $A B$ is 23 .

[^1]:    ${ }^{4}$ We plan to investigate this technique as a future perspective.

[^2]:    ${ }^{5}$ http://coron.loria.fr
    ${ }^{6}$ http://www.almaden.ibm.com/software/quest/Resources/
    ${ }^{7}$ http://kdd.ics.uci.edu/

[^3]:    ${ }^{8}$ Recall that concept intents are labeled by their generators.

[^4]:    ${ }^{9}$ For instance, the dataset T20I6D100K by min_supp $=0.25 \%$ contains 149,019 1-edged hypergraphs, 171 2 -edged hypergraphs, 253 -edged hypergraphs, 0 4-edged hypergraphs, 15 -edged hypergraph, and 16 -edged

[^5]:    hypergraph.

[^6]:    ${ }^{10}$ http://coron.loria.fr
    ${ }^{11}$ http://www.almaden.ibm.com/software/quest/Resources/
    ${ }^{12}$ http://kdd.ics.uci.edu/

[^7]:    ${ }^{13}$ Note that the main block of Charm is exactly the same.

[^8]:    ${ }^{14}$ In our implementation, we set the size of the hash table to $100,000$.

[^9]:    ${ }^{15}$ In our implementation, we set the size of the hash table to $100,000$.

[^10]:    ${ }^{16}$ We refer to this algorithm as Eclat-G. That is, Eclat- $G$ produces the same result as Talky- $G$ by using an Eclat-like traversal.

[^11]:    ${ }^{17}$ In the figure, "tid" stands for "transaction ID".

