26,849 research outputs found

    Algorithmic Thomas Decomposition of Algebraic and Differential Systems

    Full text link
    In this paper, we consider systems of algebraic and non-linear partial differential equations and inequations. We decompose these systems into so-called simple subsystems and thereby partition the set of solutions. For algebraic systems, simplicity means triangularity, square-freeness and non-vanishing initials. Differential simplicity extends algebraic simplicity with involutivity. We build upon the constructive ideas of J. M. Thomas and develop them into a new algorithm for disjoint decomposition. The given paper is a revised version of a previous paper and includes the proofs of correctness and termination of our decomposition algorithm. In addition, we illustrate the algorithm with further instructive examples and describe its Maple implementation together with an experimental comparison to some other triangular decomposition algorithms.Comment: arXiv admin note: substantial text overlap with arXiv:1008.376

    The rational canonical form of a matrix

    Get PDF
    ABSTRACT. The purpose of this paper is to provide an efficient algorithmic means of determining the rational canonical form of a matrix using computational symbolic algebraic manipulation packages, and is in fact the practical implementation of a classical mathematical method

    Faster Geometric Algorithms via Dynamic Determinant Computation

    Full text link
    The computation of determinants or their signs is the core procedure in many important geometric algorithms, such as convex hull, volume and point location. As the dimension of the computation space grows, a higher percentage of the total computation time is consumed by these computations. In this paper we study the sequences of determinants that appear in geometric algorithms. The computation of a single determinant is accelerated by using the information from the previous computations in that sequence. We propose two dynamic determinant algorithms with quadratic arithmetic complexity when employed in convex hull and volume computations, and with linear arithmetic complexity when used in point location problems. We implement the proposed algorithms and perform an extensive experimental analysis. On one hand, our analysis serves as a performance study of state-of-the-art determinant algorithms and implementations. On the other hand, we demonstrate the supremacy of our methods over state-of-the-art implementations of determinant and geometric algorithms. Our experimental results include a 20 and 78 times speed-up in volume and point location computations in dimension 6 and 11 respectively.Comment: 29 pages, 8 figures, 3 table
    corecore