54,986 research outputs found

    Facilitating modular property-preserving extensions of programming languages

    Get PDF
    We will explore an approach to modular programming language descriptions and extensions in a denotational style. Based on a language core, language features are added stepwise on the core. Language features can be described separated from each other in a self-contained, orthogonal way. We present an extension semantics framework consisting of mechanisms to adapt semantics of a basic language to new structural requirements in an extended language preserving the behaviour of programs of the basic language. Common templates of extension are provided. These can be collected in extension libraries accessible to and extendible by language designers. Mechanisms to extend these libraries are provided. A notation for describing language features embedding these semantics extensions is presented

    Modular Composition of Language Features through Extensions of Semantic Language Models

    Get PDF
    Today, programming or specification languages are often extended in order to customize them for a particular application domain or to refine the language definition. The extension of a semantic model is often at the centre of such an extension. We will present a framework for linking basic and extended models. The example which we are going to use is the RSL concurrency model. The RAISE specification language RSL is a formal wide-spectrum specification language which integrates different features, such as state-basedness, concurrency and modules. The concurrency features of RSL are based on a refinement of a classical denotational model for process algebras. A modification was necessary to integrate state-based features into the basic model in order to meet requirements in the design of RSL. We will investigate this integration, formalising the relationship between the basic model and the adapted version in a rigorous way. The result will be a modular composition of the basic process model and new language features, such as state-based features or input/output. We will show general mechanisms for integration of new features into a language by extending language models in a structured, modular way. In particular, we will concentrate on the preservation of properties of the basic model in these extensions

    A thread calculus with molecular dynamics

    Get PDF
    We present a theory of threads, interleaving of threads, and interaction between threads and services with features of molecular dynamics, a model of computation that bears on computations in which dynamic data structures are involved. Threads can interact with services of which the states consist of structured data objects and computations take place by means of actions which may change the structure of the data objects. The features introduced include restriction of the scope of names used in threads to refer to data objects. Because that feature makes it troublesome to provide a model based on structural operational semantics and bisimulation, we construct a projective limit model for the theory.Comment: 47 pages; examples and results added, phrasing improved, references replace

    Issues about the Adoption of Formal Methods for Dependable Composition of Web Services

    Full text link
    Web Services provide interoperable mechanisms for describing, locating and invoking services over the Internet; composition further enables to build complex services out of simpler ones for complex B2B applications. While current studies on these topics are mostly focused - from the technical viewpoint - on standards and protocols, this paper investigates the adoption of formal methods, especially for composition. We logically classify and analyze three different (but interconnected) kinds of important issues towards this goal, namely foundations, verification and extensions. The aim of this work is to individuate the proper questions on the adoption of formal methods for dependable composition of Web Services, not necessarily to find the optimal answers. Nevertheless, we still try to propose some tentative answers based on our proposal for a composition calculus, which we hope can animate a proper discussion

    Mastering Heterogeneous Behavioural Models

    Full text link
    Heterogeneity is one important feature of complex systems, leading to the complexity of their construction and analysis. Moving the heterogeneity at model level helps in mastering the difficulty of composing heterogeneous models which constitute a large system. We propose a method made of an algebra and structure morphisms to deal with the interaction of behavioural models, provided that they are compatible. We prove that heterogeneous models can interact in a safe way, and therefore complex heterogeneous systems can be built and analysed incrementally. The Uppaal tool is targeted for experimentations.Comment: 16 pages, a short version to appear in MEDI'201

    UV dimensional reduction to two from group valued momenta

    Full text link
    We describe a new model of deformed relativistic kinematics based on the group manifold U(1)ƗSU(2)U(1) \times SU(2) as a four-momentum space. We discuss the action of the Lorentz group on such space and and illustrate the deformed composition law for the group-valued momenta. Due to the geometric structure of the group, the deformed kinematics is governed by {\it two} energy scales Ī»\lambda and Īŗ\kappa. A relevant feature of the model is that it exhibits a running spectral dimension dsd_s with the characteristic short distance reduction to ds=2d_s =2 found in most quantum gravity scenarios.Comment: 15 pages, 1 figur

    The Two-fold Role of Observables in Classical and Quantum Kinematics

    Get PDF
    Observables have a dual nature in both classical and quantum kinematics: they are at the same time \emph{quantities}, allowing to separate states by means of their numerical values, and \emph{generators of transformations}, establishing relations between different states. In this work, we show how this two-fold role of observables constitutes a key feature in the conceptual analysis of classical and quantum kinematics, shedding a new light on the distinguishing feature of the quantum at the kinematical level. We first take a look at the algebraic description of both classical and quantum observables in terms of Jordan-Lie algebras and show how the two algebraic structures are the precise mathematical manifestation of the two-fold role of observables. Then, we turn to the geometric reformulation of quantum kinematics in terms of K\"ahler manifolds. A key achievement of this reformulation is to show that the two-fold role of observables is the constitutive ingredient defining what an observable is. Moreover, it points to the fact that, from the restricted point of view of the transformational role of observables, classical and quantum kinematics behave in exactly the same way. Finally, we present Landsman's general framework of Poisson spaces with transition probability, which highlights with unmatched clarity that the crucial difference between the two kinematics lies in the way the two roles of observables are related to each other.Comment: Corrected typos; revised final arguments of section 2.2 and added a figure at the end of this sectio

    Massless particles on supergroups and AdS3 x S3 supergravity

    Get PDF
    Firstly, we study the state space of a massless particle on a supergroup with a reparameterization invariant action. After gauge fixing the reparameterization invariance, we compute the physical state space through the BRST cohomology and show that the quadratic Casimir Hamiltonian becomes diagonalizable in cohomology. We illustrate the general mechanism in detail in the example of a supergroup target GL(1|1). The space of physical states remains an indecomposable infinite dimensional representation of the space-time supersymmetry algebra. Secondly, we show how the full string BRST cohomology in the particle limit of string theory on AdS3 x S3 renders the quadratic Casimir diagonalizable, and reduces the Hilbert space to finite dimensional representations of the space-time supersymmetry algebra (after analytic continuation). Our analysis provides an efficient way to calculate the Kaluza-Klein spectrum for supergravity on AdS3 x S3. It may also be a step towards the identification of an interesting and simpler subsector of logarithmic supergroup conformal field theories, relevant to string theory.Comment: 16 pages, 10 figure

    Physics of Deformed Special Relativity: Relativity Principle revisited

    Full text link
    In many different ways, Deformed Special Relativity (DSR) has been argued to provide an effective limit of quantum gravity in almost-flat regime. Some experiments will soon be able to test some low energy effects of quantum gravity, and DSR is a very promising candidate to describe these latter. Unfortunately DSR is up to now plagued by many conceptual problems (in particular how it describes macroscopic objects) which forbids a definitive physical interpretation and clear predictions. Here we propose a consistent framework to interpret DSR. We extend the principle of relativity: the same way that Special Relativity showed us that the definition of a reference frame requires to specify its speed, we show that DSR implies that we must also take into account its mass. We further advocate a 5-dimensional point of view on DSR physics and the extension of the kinematical symmetry from the Poincare group to the Poincare-de Sitter group (ISO(4,1)). This leads us to introduce the concept of a pentamomentum and to take into account the renormalization of the DSR deformation parameter kappa. This allows the resolution of the "soccer ball problem" (definition of many-particle-states) and provides a physical interpretation of the non-commutativity and non-associativity of the addition the relativistic quadrimomentum. In particular, the coproduct of the kappa-Poincare algebra is interpreted as defining the law of change of reference frames and not the law of scattering. This point of view places DSR as a theory, half-way between Special Relativity and General Relativity, effectively implementing the Schwarzschild mass bound in a flat relativistic context.Comment: 24 pages, Revtex
    • ā€¦
    corecore