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Abstract

We will explore an approach to modular programming language descriptions and extensions in a denotational style.
Based on a language core, language features are added stepwise on the core. Language features can be described
separated from each other in a self-contained, orthogonal way. We present an extension semantics framework con-
sisting of mechanisms to adapt semantics of a basic language to new structural requirements in an extended language
preserving the behaviour of programs of the basic language. Common templates of extension are provided. These
can be collected in extension libraries accessible to and extendible by language designers. Mechanisms to extend
these libraries are provided. A notation for describing language features embedding these semantics extensions is
presented.

1 Introduction

When we are faced with the task of formally describing a programming language, we could start from a simple
language core, which exhibits the main principles of the language, and add a number of language features onto that
core in amodular, property preserving way. This process of extending languages is similar to refinement approaches
in software development. A language core and language features can be specified separately. Features will be specified
as parameterised operators, thus allowing them to be applied to a number of basic languages. Features are specified
as independent constructs only referred to by a formal parameter interface to the languages which should be extended
by them. Languages and their extensions are presented in a denotational semantics style. Properties are expressed in
an equational metalanguage, represented by equational theories.

Peter Mosses [1] criticises the lack of modularity in traditional denotational semantics. David Schmidt [2, 3]
suggests structuring semantics into units (semantics algebras) and to base extensions on these algebras. These ideas
will be picked up and implemented in a framework called extension semantics. The approach will allow us to define
languages in a formal and modular way. The general purpose of this framework ofextension semanticsis to support
the exploration of and experimentation with semantics. The development of a new, or the description of an existing
full-blown language is not our aim, but features and their interaction can be studied with our approach. Danvy and
Hatcliffe have used the notion of aprogramming language workbench[4]. The development of a whole language is an
industrial process, but certain prototypical aspects can be extracted a priori in order to be analysed formally in depth
with appropriate tools. Sample case studies will illustrate these ideas.

The preservation of behaviour of programs is one of the central issues in language extensions. It guarantees
that programs written in the basic language can be reused in the extended language, i.e. they are be executable.
Furthermore, they are also executed in a way similar to the execution as a program of the base language. The similarity
is formally captured by a notion of observability. We will provide a number of common templates for extensions which
guarantee behaviour preservation. Behaviour preservation is of particular importance since it guaranteesorthogonality
of the new feature with the basic language. A new feature can be added to a language such that there are no conflicts
and, thus, the semantics of the basic constructs will remain. Extending by simply adding elements is easy and should
not cause difficulties, but consider redefinitions: these might have side-effects on other constructs which use the
redefined one. We will concentrate in particular on this issue.
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Facilitating Modular Property-Preserving Extensions of Programming Languages

We are aiming at a usable framework for the extension of languages defined in the style of classical denotational
semantics. We will provide a notation based on a library of predefined extension operators, called templates. The
application of these operators will guarantee the preservation of properties. We will provide a mathematical frame-
work which allows the language designer to extend the given library by adding new templates easily. The notation
supports the extension by providing a variety of powerful constructs. This allows the language designer to focus on
the specification of new features rather than on some tedious extension and reformulation of existing elements.

Our framework formalises ideas for modular development and presentation of denotational semantics suggested
by David Schmidt [2, 3] and Peter Mosses [1] and also provides notational support. A comprehensive framework for
language engineering, i.e. the extension, restriction and combination of languages or language aspects, including a
formal theory and an applicable notational and methodological support, does not exists at the moment. Certain aspects
are currently under investigation in the project DESTIJL [5].

Section 2 introduces basic ideas of language extension together with our formal framework. A more comprehen-
sive explanation of the framework and more properties are presented in section 3. Section 4 introduces equational
theories as a representation of a simple equational language used to express properties of the semantics. Effects of
semantics extensions on these theories are investigated. This is followed by a sample extension in section 5. Some
specific problems such as operator combinations are addressed in section 6. Section 7 presents three case studies
which illustrate the area of applications of our approach. We conclude with comparing similar approaches and some
summarising thoughts.

2 Extension of Semantics and Preservation of Properties

In this section, we will introduce the basic ideas of our approach illustrated by thecsh -language. The Unix C-shell
csh is a shell command interpreter with a C-like syntax [6]. The interactive shell reads commands from the terminal.
The input is parsed into words. Two languages for a csh-like language shall be investigated: the first, calledcore
(figure 1), describes the principle idea of the language of processing the commandsecho andpipe on input- and
output-streams (essentially strings in this core). The second language, calledextension, includes basic elements such
as success values for commands. Other features that might be included are for example environments to store values
in variables. This extended language shall be developed in the remainder using our approach of extension semantics.

LANGUAGE DESCRIPTION
syntax

Cmd ::= ’echo’ StrExprj
’pipe’ Cmd Cmdj

StrExpr ::= Chr�

semantic algebras
domain String

domain Stream
4
= String

semantic functions
S : StrExpr ! String

S[[se]]
4
= if se = <> then <> elsehd se ^ S[[tl se]]

C : Cmd! Stream! Stream

C[[echo(se)]]i
4
= S[[se]]

C[[pipe(c1; c2)]]i
4
= let o1 = C[[c1]]i inC[[c2]]o1

END

Figure 1: Core

Semantics of a language can be structured into semantic algebras. This approach was already proposed by Schmidt
[2]. Structured extensions of the language will be carried out based on this semantical structuring, rather than the
classical viewpoint of obtaining structure by syntax.
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Definition 2.1 A semantic algebrais a heterogeneous algebra consisting of

� semantic domainsD1; : : : ; Dn (possibly compound)

� functions on these domains

Semantic domains are sets. A typical semantic algebra would for example consist of a set of states and operations,
such as an update on states (with the usual substitution or override semantics). LetAlg be the collection of all
semantic algebras. With each semantic algebraA we have associated asignaturesig(A), sometimes denoted�. The
symbols for semantic entities are used as syntactic elements. An equational metalanguage based on�-terms will be
introduced later (see section 4). For extensions to be applied to a core language, we might want to identify adomain
of interest S 2 fD1; : : : ; Dng. It serves to denote that part of the basic language semantics that shall be redefined.
The redefinition of a domain, which represents the structure of some language feature, is not always aimed at, but – as
already mentioned – is the complicated case and, thus, addressed here. Based on the domainS, a domain extension
will be carried out.

Modularity is a key objective of our approach, thus complete features shall be added onto the basic language step
by step. As in similar refinement approaches, the preservation of properties is essential. Behaviour (of programs)
is the property we are interested in when languages are extended. Some of the principal ideas of extension shall be
illustrated by using theecho command of thecsh core language as a very primitive program whose behaviour has to
be preserved in an extension of the notion of streams:

C[[echo(se)]]i
4
= S[[se]]

echo(se) is a phrase of the syntactic domainCmd. The semantic functionC maps fromCmd to Stream !
Stream. An input streami is mapped to an output stream whenecho(se) is executed. Let us now consider an
extension of thecore language. Commands shall work on a configuration consisting of streams and file systems, the
extension is expressed by an operatorT 1.

T : Stream 7! Stream� FileSys

The semantic function forecho has to be adapted

� : C[[echo(se)]] 7! C[[echo(se)]]�

such thatC[[echo(se)]]� : TStream ! TStream. A Stream � FileSys-based algebra certainly preserves the
behaviour of theecho command onStream, if the following diagram commutes:

Stream� FileSys
C[[echo(se)]]�- Stream� FileSys

Stream

6

�Stream

C[[echo(se)]] - Stream

6

�Stream

where�Stream maps streams into the extensionTStream. A streams 2 Stream is mapped to a pair(s; f) consisting
of the stream and some elementf representing the file system. An injection shall be used to extend the domain
Stream:

INJECT Stream INTO Stream� FileSys

Streamss shall be refined to equivalence classes[(s; f)]E , expressed by a mappingr, where[(s; f)]E
4
= f(a; b) j a =

sg � Stream � FileSys. We associate equivalence classes instead of single pairs(s; f) to each streams. We use
an equivalenceE onStream� FileSys to define relevant or observable behaviour. Two pairs are equivalent if their

1If not mentioned otherwise,T will be the identity on all domains except the domain of interest, hereStream.
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Stream-parts are equal. This equivalence defines a notion ofobservability. We can now relax our formulation of
behaviour preservation. Extended functions are only expected to behave correctly with respect to these classes, i.e.

�EStream(C[[echo(se)]](i)) E C[[echo(se)]]�(�EStream(i))

or expressed diagrammatically:

(Stream� FileSys)=E
C[[echo(se)]]�E- (Stream� FileSys)=E

Stream

6

�EStream

C[[echo(se)]] - Stream

6

�EStream

The mapping�EStream maps to equivalence classes instead of mapping to single pairs. It compares to a retrieve
function (e.g. known from VDM [7]). The retrieve function would map all elements from one equivalence class to the
associated element inStream. We prefer the representation with explicit equivalence classes since the equivalence
will be used later on in the construction of appropriate templates.

Equivalence relations on the extension are used to define the property that certain elements are similar with respect
to some observation. In particular, we will express behaviour preservation requirements by equivalence relations. A
quotient algebra is obtained from applying the equivalence to a given algebra. The equivalence has to be a congruence.
A congruence relationE on a setS is an equivalence relation which satisfies the substitution property with respect
to functionsf on that set (leta; b 2 S): aEb) f(a)Ef(b). LetA be an algebra andE a congruence relation on the
setsDi in A. Thequotient algebraA=E is defined by

Di=E
4
= f[a]E j a 2 Dig and fE([a]E)

4
= [f(a)]E

We can say that the quotient structure is anabstract interpretationabstracting from specific implementation details
of the extension. The quotient structure focuses on those properties which express the behaviour preservation. Note,
that properties of the basic algebra are preserved. The abstract interpretation is a homomorphic image of the extended
algebra.

Let us look at the existence of the mappings involved now. The canonical mappingc : (s; f) 7! [(s; f)]E does
always exist,p : s 7! (s; f) can be constructed fromc andr. These set-based mappingsr; c; p can be extended to
morphisms�; �; � on algebras by using the constructs congruenceE and quotient algebraState=E:

Stream� FileSys
�- (Stream� FileSys)=E

�
�
�
�

�

�

Stream

6

�

� is normally denoted as�E . � is a morphism which preserves behaviour and� is a canonical morphism onto the
quotient algebra. Assume� is surjective as well (we can consider working on the redefined partB of an extension
B0). In this case, we can construct an onto-mapping��1.

Proposition 2.1 If � and� are morphisms, then there exists a behaviour preserving morphism� : A ! B such that
� � � = � for � : B ! B=E and� : A! B=E.

Proof: See e.g. [8]. ut
A special morphism on algebras shall be introduced which formalises the idea of behaviour preservation.

Definition 2.2 Let A andB be semantic algebras. LetB=E be a quotient algebra with respect to a congruence
relationE onB. LetT : Ai 7! Bi be an association between semantic domains. Anextension morphism� : A! B
is calledbehaviour preserving, if
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� � is a sorted set of mappings:�
4
= f�i : Ai ! Bi j Ai is a domain inAg,

� � preserves the operation behaviour with respect to the congruenceE, e.g. forop : Ai ! Aj andx 2 Ai it
holds �Ej (op(x)) =E op�E(�

E
i (x)).

The equality=E is the equality on the equivalence classes. Behaviour preservation requires only equivalence, not
identity of results on the extended level (cf. the commuting diagrams above). As we will see later, this construction
will allow us to define orthogonal language extensions.

Remark 2.1 The lifting of functions�, �, and the equivalenceE depend on each other. These dependencies will
be further investigated when templates are introduced in section 3. Behaviour preserving extensions of equational
theories are analysed in section 4. Usually associated with a set of operations is a set of operation combinators
(higher order operators). The definition of semantic algebras and behaviour preservation given above does not involve
these combinators. We will argue that the separated treatment of composition operators will lead to an improvement
of the presented extension techniques (see section 6).

3 The Construction of Extension Morphisms and Templates

A notation for defining languages has been implicitly introduced in the previous section in Figure 1. This section
contains notation and formal background for extensions of languages. Before we dive into technical details, let us
sketch the outline of our extension approach. Alanguage descriptionconsists ofsyntax, semantic entitiesandsemantic
functions. We see semantics as the main aspect on which a language definition should be based and also on which a
language extension should be based. Thus, we will provide two major constructs for language definition:semantic
algebrasandlanguage descriptions, and also two constructs for extension:semantics extensionson semantic algebras
andlanguage extensionson language descriptions.

base language equivalence)

language extension
(new and redefined elements)

lifted base language

(based on domain extension,
semantics extension

A language extension is the construct which serves to specify a new language feature in its semantics, and also in
its syntactical interface. A language extension is a self-contained specification of a language feature. Before any new
elements are added or existing elements are redefined, the semantics extension can be applied. Based on the domain
construction and an equivalence relation specifying how behaviour has to be preserved, the semantics extension lifts
the semantics of the basic language such that the domain constructions are adapted and behaviour is preserved. This
is a complete redefinition of existing language elements. The semantics extension is a construct which does not
depend on or refers to the basic language semantics directly.Extension templateswill be introduced to facilitate the
definition of such semantics extensions. The language extensions are based on semantics extensions. The latter would
be executed first when applied to a basic language. Then additions and further redefinitions on the lifted base language
can be carried out.

This two-tiered approach is one of the essential characteristics of our approach. It provides strong support for the
extension and allows the language designer to concentrate on the description of the new feature.
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3.1 Semantics Extensions

A language description based semantically on semantic algebras can be extended to another language defined by other
semantic algebras. This involves defining the extending morphism, describing the relevant behaviour and proving the
that the defined morphism is behaviour preserving with respect to the relevant behaviour expressed by the equivalence.
This procedure shall be facilitated for the language designer by providing operators working on semantic algebras
which adapt the basic semantic algebra to some extended domain construction. These operators will take as argument
some basic information about the intended extension. They will allow the construction of an extension morphism from
this information.

A semantics extensionis an operator on semantic algebras. The operator has to satisfy some properties (congru-
ence, behaviour preservation) in order to allow us to construct a behaviour preserving morphism (see definition 2.2).
A semantics extension shall allow us to provide a morphism on algebras which lifts a basic algebra according to a do-
main extension, e.g. fromStream toStream�FileSys including a lifting of existing functions. New functionality,
e.g. operations usingFileSys, is not added by this construct.

Definition 3.1 A semantics extensionfrom semantic algebraA toB is a 5-tuple(T; �E ; E; �; d) where

� T : A 7! B is a type constructor on semantic algebras,

� �E : Alg ! Alg=E is a mapping on algebras,

� E is a binary relation onT (S) if S is domain of interest ofA,

� � is a function lifting fromf : A! B to f� : TA! TB,

� d is a collection of default values for each equivalence class inT (S)=E.

For all domainsD not equal toS, ED is assumed to be the equality (i.e. a congruence) and�D is assumed to be the
identity mapping. Using the result from section 2 we can for instance derive� from �E andd.

3.2 Extension Templates

In this subsection, some properties shall be investigated allowing the derivation of behaviour preserving semantics ex-
tensions from a reduced amount of information in some particular situations. It will be proven for each particular case,
that using a canonical construction for the equivalenceE and for the extended functionsf�, an extension morphism
can be derived such that behaviour preservation is guaranteed. In general, all elements of a semantics extension are
necessary to define an extension on semantic algebras. A semantics extension provides a frame to derive behaviour
preserving semantics extensions. The process of constructing semantics extensions shall be looked at: properties
simplifying this process shall be elaborated and a library of common semantics extensions, called templates, shall be
introduced.

Definition 3.2 LetS 7! T (S) be the domain extension. Based on the given type extensionT of a semantics extension
(T; �E ; E; �; d), we can use standard constructions for the remaining elements. Atemplateallows the generation of
a behaviour preserving semantics extension based on predefined constructions for type extensions.

Examples of these templates based on type extensions are injectionS 7! S � T (see figure 2) or indexingS 7! (I !
S). These templates can form alibrary of extension operatorsfor the language designer. A sample application of this
template was already presented in section 2 to inject streams into a product of streams and file systems. The extension
morphism� is constructed from�E and a default valuer0. The equivalenceE expresses that only the first component,
e.g. a stream, is relevant for behaviour preservation.

The idea behind templates is to reduce the amount of information that a language designer has to give as a param-
eter for an extension. The operatorT (domain type extension) is essential, but then, based on the type constructor, we
can start using standard constructions.

It will be shown first that the function lifting� can always be defined in a way such that behaviour preservation is
guaranteed. Once the equivalence classes exist, the defaults can be obtained just by selecting one for each class.
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EXTENSION TEMPLATE

INJECTS INTO S �R = (
T : S 7! S �R
� : fi

c
7! f�i

(s; r)E(s0; r0) iff s = s0

�ES (s) = [(s; r0)]E
(s; r0) for each [(s; r0)]

)

Figure 2: Extension template INJECT

Proposition 3.1 The operator for function lifting� for a functionf : A! B anda 2 A

f�(�A(a)) := �B(f(a))

guarantees behaviour preservation for a semantics extension(T; �E ; E; �; d).

Proof: The definition off� is partial, but total on required subset ofTA. This definition guaranteesf�(�A(a)) =
�B(f(a)), i.e. equality as a particular equivalence (more than the behaviour preservation criterion requires).ut

Common templatesbased on a particular domain extension are the following (we will giveE; �E ; �; dE for each
T on a domainS):

1. T : S 7! S �R : (s; r)E(s0; r0) iff s = s0; �E : s 7! [(s; r)]E ; (s; r0) is default for[(s; r0)]

2. T : S 7! S +R : xEx0 iff x = x0; �E : s 7! [s]; s is default for[s]

3. T : S 7! (I ! S) : tEt0 iff 8i 2 I:t(i) = t0(i); �E : s 7! t with t(i) = s for all i 2 I ;
f0 with f0(i) = s is default for[f0]

4. T : S 7! P(S) : pEp0 iff p = p0; �E : s 7! [fsg]; fsg is default for[fsg]

The first case is an injection INJECT which has already been used in section 2 (see also figure 2 where the template
is represented in our extension notation). All templates follow classical ways of injecting or embedding simple values
into more complex domain constructions. For a more thorough investigation, more general constructions such as
indexed products could be investigated.

The templates so far are purely set-based, but using the function lifting, the congruence property for the equivalence
can be shown and, thus, the set-based mappings can be extended to homomorphisms.

Proposition 3.2 Given a template(T; �E ; E; �; d) based on a set-based mapping�E , we can

� obtain a set-based mapping� : S ! TS and

� extend� to homomorphism on algebras whereS is mapped toTS and each functionf to f�.

Proof: � is obtained by using the defaultsd for each equivalence class. The mapping on set and function symbols (T
and �) is a signature morphism. The function lifting guarantees the substitution property (i.e. congruences) regarding
the signature morphism. ut

All suggested templates allow us to derive behaviour preserving semantics extensions. The templates have to
satisfy a number of constraints: the relationE is an equivalence, there is a default value for each equivalence class.

Proposition 3.3 The templates allow us to obtain behaviour preserving semantics extensions.
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Proof: The well-formedness of the template components for the four templates is easy to see, classical injections or
embeddings are used. ut

Some knowledge from universal algebra is required for the construction ofE and�. A retrieval function :
TS ! S can be seen as the central function. This could be used to derive an equivalenceE onTS. Given a function
 : TS ! S, we define theequivalence relationE( ) of  onTS by

E( ) = f(s; s0) 2 TS � TS j  (s) =  (s0)g

We have chosen to separateE and� (the inverse of ) to distinguish the activities ofpartitioning (obtainingE)
andassociating(obtaining�E) in the process of constructing a template. Universal algebra shows the equivalence of
representations. For example,�E can be derived from� andE or, the other way round,� can be derived from�E

and the default values. Analysing the powerset template shows the following propertyrng(�) � dom( ) � TS for
� : S ! TS and : TS ! S. Partiality has to be considered ( for the powerset, for example, is only total on
singleton sets, but is certainly onto).

3.3 Language Extensions

In section 3.1, we have introduced semantics extensions on semantic algebras. Now, we will introduce operators on
whole language descriptions, calledlanguage extensions, including syntax, semantic algebras and semantic functions.

Figure 3 contains an example which introduces variables and an environment in which these variables can be
stored into thecsh -language. String expressions consist now of either strings or variables. To evaluate variables,
string expressions and streams are indexed with environments. Here, we have used the templates UNION, INDEX,
and MAP INJECT to express these extensions. Due to the lack of space, their full definition will not be presented.
The application of templates is explained in detail in section 5. UNION is based on the disjoint union of two domains;
INDEX indexes a given domain by an index domain (elements of the new function space are considered equivalent, if
they map to the same element). MAP INJECT is an adaptation of INJECT for domainS to functions mapping from
S to S. UNION is used to allow variables as string expressions. String expressions, now including variables, are
indexed by environments in order to substitute variables by their values during execution. MAP INJECT defines an
extension which makes environments modifiable. The application of these templates within the language extension
guarantees that the resulting language description preserves the behaviour of the basic language description. Some
specific templates for the extension of operation combinators, such aspipe (see sectioncompositionin figure 3), are
used. They are explained in section 6.

The application of templates prepare the definition of the new feature (seeNew Feature in the example). The
semantics ofse includes the interpretation of variables,setenv modifies (overwrites) an environment.

A language extension is divided into two parts. The first part ’Extension’ deals with a potential base language and
its adaptation to the requirements. The second part ’New Feature’ contains the definition of the new feature. The first
part is divided into three subsections:

� Syntax: A renaming operator for syntactical identifiers might be applied2.

� Semantic algebra: Semantic algebras of a basic language can be lifted to the extension level, normally by
applying templates. Templates can be used in aconstrainedform applicable to particular semantics entities and
in anunconstrainedform.

� Composition: Application of specific extension templates for higher-order operators.

The second part is also structured into three, but slightly different parts:

� Syntax: Syntactical constructions for the new feature can be specified. When the extension is applied to a basic
language, these elements will be added.

� Semantics: Semantic algebras can be provided. A simple semantic domain is considered as a semantic algebra
without functions. Note, that domains can always be named, i.e. specified by an equation.

2In principle, a signature morphism is appropriate. We will ignore syntactical issues here.
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LANGUAGE EXTENSION

ABSTRACTION =
Extension

syntax
semantic algebras

( for S : StrExpr ! String do
UNION StrExpr = Chr� INTO StrExpr = (V ariable+ Chr)� ;

for S : StrExpr ! String do
INDEX String BY Env ! String ) ;

forC : Cmd! Stream! Stream�Exit do
MAP INJECTEnv INTO Stream! Stream�Exit

composition
use STANDARD� SEQUENCE for argumentC[[cond]] ;
use STANDARD� DISTRIBUTE for argumentC[[pipe]] ;
use STANDARD� LAST RESULT for resultC[[pipe]]; C[[cond]]

New Feature
syntax

StrExpr ::= (Chrj Variable)�

Cmd ::= ’setenv’ Variable StrExpr
semantic algebras

domainVariable;
domainEnv = Variable! String

semantic functions
V : V ariable! Env ! String

V[[v]]e
4
= e(v) ;

S[[se]]e
4
= if se =<> then <> else lets = casehd se in

var(v) ) if v 2 dom(e) thenV[[v]]e else <>
chr(c) ) < c >

in s ^ S[[tl se]](e) ;

C[[setenv(v; s)]](e; i)
4
= (e y [v 7! S[[s]]e]; <>; true)

END

Figure 3: Extension by environments

� Semantic functions: New semantic functions can be defined, existing ones can be redefined.

Two orthogonal operators are provided for the notation: ’,’ and ’;’. ’,’ is a separator for denoting independent specifi-
cations, its semantics is union. ’;’ is a sequencing operator, its semantics is override. The override semantics allows
the redefinition of elements. The full semantics of this language extension notation will not be presented formally.
The semantics extensions underlying the extension have already been presented. The next section will investigate an
equational metalanguage which is in fact the basis for the description of language operators.

The following diagram shows the main constituent parts of language extensions and their dependencies.
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Syntax

Functions

compositionsemantic
algebrasyntax

Semantics

Semantic

One of the objectives of our approach is a modular presentation of semantics. Separating core and extensions is
one way of achieving this. An aim of our approach is to allow language features to be specified as entities of their own
which can be reused in different contexts3. We have here increased the degree of modularity by introducing aparame-
terisationconcept. Identifiers of the feature specification will be associated with identifiers in the basic language, thus
forming formal parameters of the operator. This allows the definition of language features independently of concrete
core languages. David Schmidt uses the notion oforthogonalityof language features to indicate the aim of having
standardised language parts that can be assembled to a larger language in a predictable way.

4 An Equational Metalanguage for Expressing Properties

In this section, some foundations underlying the extension notation, which was presented in the previous section,
shall be investigated. We will discuss an equational metalanguage to express algebraic theories, i.e. to specify and to
reason about language properties such as equaivalence of programs. Programs can be specified in the metalanguage,
they are interpreted in the corresponding semantic algebras. We will discuss theories represented as equivalences on
terms. We will investigate the effect of extensions on these theories. Each algebraA with signature� – such as
our semantic algebras — gives rise to a term algebra�A. An equivalence� on the set of terms can be obtained by
considering all terms as equivalent which are equal under some interpretation. An algebra has properties, possibly
stated in analgebraic theory, here an equational theory. Equations hold between equivalent terms, thus, a theory can
be represented by an equivalence on terms.

A description of an operationC[[echo(se)]] : Stream! Stream

C[[echo(se)]]i
4
= S[[se]]

can be seen as an equational specification ofC[[echo(se)]], i.e. the notation that has been implicitly introduced for
language descriptions and language extensions is based on an equational language. A metalanguage is introduced to
express theories and to reason about language specifications. Algebraic theories are presented as quotients of term
algebras where the equivalence� expresses equal interpretation and�E behaviourally equivalent interpretation of
terms.

Specifications of the basic language (figure 1) can be seen as equational specifications in a metalanguage. We
will now discuss the effect of extending algebras on the specifications. How do the respective term algebras and their

3We have chosen very concrete names directly referring to the core or more basic languages in the examples, since the aim here in this paper is
the structured development and representation of one language. Reusing the feature definition, i.e. abstracting the feature definition from concrete
base languages is possible, but not investigated here.
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quotients relate if the basic algebraA is extended toB? Assuming that we have a semantics extension fromA toB, let
us investigate the relation between�A and�B and also between their quotients�A=�A and�B=�B . Let us assume
a syntactic extension� : �A 7! �B derived from the semantics extension using the type extensionT on domains and
from the function liftingf : A ! B to f� : TA ! TB. It can be easily seen that� is a signature morphism. The
criterion for a correct extension is, for any termst1 andt2:

�(t1) �
E
B �(t2) iff t1 �A t2

The interpretations of equivalent termst1 andt2 have to be behaviourally equivalent with respect toE in the extension.
Instead of�B , we have required a weakened equivalence�E

B based on the equivalenceE on a certain domain (as
described in the previous sections). Based on�-terms (as usual variables and operation applications), equations can
be introduced using the equivalence.

Let A be an algebra with signature�A. vA is an interpretation of�A-termst in A, i.e. vA(t) 2 A is a value.
t1 �A t2 iff vA(t1) = vA(t2) for all variables in the two terms. Analogously for an algebraB. Let B now be
constructed fromA via type constructorT with B = T (A). Let �A be the term algebra, and�A=�A the quotient
with respect to equal interpretation of terms. The signatures ofA andB can be related by a signature morphism from
A to TA such that�(�A) is a subsignature of�B as described above. As a result of the application of the signature
morphism, the set of�-terms changes. The signature morphism resembles a renaming, ifT is applied to all domains
A andTA is considered as a new symbol forA. The problem with this interpretation is, that, in general, new terms
are introduced and old terms are preserved (consider e.g. the introduction of a product), i.e. the signature morphism
embeds�A in �B . Thus, the corresponding term algebras are in general not isomorphic. We can define�B as a
homomorphic image of�A, if the extension is based on a semantics extension (these were introduced in section 2 and
are formally defined in section 3.1).

The relation between�A and�B depends on how the interpretationv onA is adapted to an extended versionv� on
B. v� has to preserve the equivalence of terms, i.e.t1 �A t2 ) t0

1
�B t0

2
or v(t1) =A v(t2) ) v�(t0

1
) =B v�(t0

2
)4, if

t0i is an extended term forti. This property is calledinterpretation preservation. The interpretation can be adapted
by a canonical mapping fromv to v�:

v�(�(f(x))) = (v(f))�(�(v(x)))

where� : A! B is the extension morphism.

Proposition 4.1 The interpretation adapted by the canonical constructionv 7! v� is interpretation preserving.

Proof: �(f(x)) is the syntactically extended term forf(x). The new interpretation of the extended term is constructed
from the extended semantics: the original semanticsv(f) is semantically lifted to(v(f))�, the valuev(x) of the
argumentx is mapped into the extended domain�(v(x)). Since semantical equality is the criterion for the equivalence,
and the extension ofv is defined via the semantics, the equivalence is preserved. ut

The interpretation determines the equivalence of terms. If we adapt the interpretation, then the equivalence is also
adapted. It is obvious that the canonical extension ofv is interpretation preserving. The equivalence� is preserved
for a special case, but remember, that only equivalenceE, i.e.�E(f(x)) =E f�E(�

E(x)) is required for arbitrary
behaviour preservation based onE. For the general case, we define

t0
1
�E
B t0

2

4
= v�(t0

1
) E v�(t0

2
)

The notion of interpretation preservation has to be adapted appropriately. Still,v is preserved byv�, or reformulated
�A is preserved by�E

B.

Proposition 4.2 Assuming a behaviour preserving extension, the equivalence on terms�A is preserved by an exten-
sion�E

B .

4Later on we will consider an equivalence instead of an equality.
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Proof: The criterion of interpretation preservation was relaxed such that equivalences can be dealt with. ut

Based ont1 �A t2 iff v(t1) = v(t2), each termti can be uniquely extended tot0i such thatt1 �A t2 ) t0
1
�B t0

2

(but not the other way round) with canonical definitions of�A and�B. We can achievebijectivity, i.e. t1 �A

t2 , t0
1
�B t0

2
if we consider equivalence classes of terms also with respect to the second equivalenceE besides�,

i.e. t0
1
�E
B t0

2
iff v�(t0

1
) E v�(t0

2
). This says that the equivalence classes are mapped 1-1 from�A to�E

B . The result is
that we have a homomorphism on term algebras, but not a bijective one (similar to the results on algebras themselves).
And we have preservation of equivalence� on the term algebra quotients (based on a suitable redefinition of the
interpretation function).

We have neglected a satisfaction relation for our equational language so far, since the preservation of a satisfaction
relation is a straightforward implication from previous results. The equationt1 = t2 is satisfied in an algebraA, if
t1 � t2 holds for a given interpretation onA. Using the equivalenceE, we have to weaken our statement.t1 E t2 is
satisfied, ift1 �E t2. As we have seen above, interpretations (and thus the corresponding equivalences) are preserved.

5 A Sample Extension

A simple example of an extension shall be looked at. The extension by abstraction mechanisms presented in figure 3
resembles more what we might expect as a self-contained feature, but due to the lack of space we will only explain a
simpler example in detail (figure 4). Exit values shall be added to the core (figure 1) indicating whether a command
was executed successfully or not. The abstract situation can be described as follows. An algebraA shall be extended
to B by using the technique ofinjection for the semantic domainsS 7! S � T . The injection template INJECT
summarising the definitions from section 3.2 is presented in figure 2. The proof obligation of behaviour preservation
is fulfilled by using a template.

Applying the template INJECT in a language extension is presented in figure 4. A new domainExit is injected
by INJECT into the result domain of commands; we have numbered the syntactical occurrences ofStream – without
any semantical relevance. By using the template, we map streams to pairs of streams and exit values. The template
specifies that with respect to behaviour preservation of operations, only the behaviour on the stream component is
relevant, but not the exit component.

As explained above, identifiers in the operator description are only formal parameters which have to be substituted
by actual ones when the language extension is applied to a language description. For the sake of simplicity, we
will omit the explicit application of the extension operator and assume an application with a one-one correspondence
between the names of formal and actual parameters.

The conditional commandcond is newly introduced, thus, there is no proof obligation with respect to behaviour
preservation. The other proof obligations concerning existing commands are discharged by using the template which
guarantees behaviour preservation. For instance, the resulting definition forecho after applying the template would
be:

C[[echo(s)]](i) = (S[[s]]; true)

which preserves the original behaviour (observe the first component).
The feature specified here by a language extension is an exit value concept with one operatorcond. This operator is

an operation combinator whose final result depends on the exit value of its first argument. Using the INJECT template
(which allows us to derive a semantics extension), the semantics of a basic language, to which the language extension
might be applied, is lifted according to the patternStream2 7! Stream2 � Exit such that behaviour is preserved.
The identifierStream2 is a formal parameter when applied to a basic language. It might be matched for example
with a domainState of a basic language when applied to that language. The semantics extension derived from a
template adapts any argument semantics to the extended domain construction as specified by the language designer.
The base language is now available in the extended language. Any proof obligations are automatically discharged. Its
extended definition is consistent and behaviour preserving. On top of this lifted base language, the language designer
can specify a commandcond with syntax and semantics as it is done in figure 4. If such a command already exists in
the base language, it is overridden, otherwise it is a new definition.
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LANGUAGE EXTENSION

EXIT VALUES =
Extension

syntax
semantic algebras

forC : Cmd! Stream1 ! Stream2 do
INJECTStream2 INTO Stream2 �Exit with t0 = true

composition
New Feature

syntax
Cmd ::= ’cond’ Cmd Cmd

semantic algebras
domainExit

semantic functions

C[[cond(c1; c2)]](i)
4
= let (o1; s1) = C[[c1]](i) in

let (o2; s2) = C[[c2]](<>) in
if s1 = true then(o1 ^ o2; s2) else(o1; s1)

END

Figure 4: Extension by exit values

We have provided two distinct extension constructs, the first,language extension, is dedicated to the full specifi-
cation of the properties of the new feature, the second,semantics extension, is dedicated to the behaviour preserving
lifting of the basic language to some extended domain construction necessary for the new feature. The language
designer shall be freed from adapting the definitions of the basic language explicitly and prove the preservation of
properties and should instead be allowed to focus on the specification of the new feature.

6 Typing and Higher-Order Operators

Some more conceptual issues shall be looked at in this section. The first one concerns the adaption of functions whose
types have been modified. Then, we address a particular, but very important kind of functions: higher-order functions
which appear in our approach in the form of operation combinators.

6.1 Typing

The key concept of denotational semantics is the compositionality of its definitions of semantic functions, i.e. semantic
functions are applied within definitions of other semantic functions. An example of an operation definition containing
applications of semantic functions is the semantic functionE for binary addition expressions in a stateless setting:

E[[e1 + e2]] = E[[e1]] +E[[e2]]

In an extension by state we would expect the definition to be parameterised by a state variables : State.

E
�[[e1 + e2]] = �s:E�[[e1]]s+E

�[[e2]]s

The typeof the semantic function changes, due to the application of the signature morphism based on the type
operatorT and the function lifting �. Each occurrence of a modified function in the body – the callE[[e]] – has
to be substituted by a call of the extended versionE�[[e]]s. This applies to every function, not only the semantic
functions. The form of the substitution depends on the domain extension, hereExpr ! V al is extended toExpr !
Store ! V al by indexingV al with Store. Let 
 in the following be the function which syntactically substitutes
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in expressions defining functions. All applications of functions which have changed their types are syntactically
modified. A canonical construction of
 based on the domain extension which is applied is possible. The canonical
function extensionf

c
7! f� has to be adapted by this substitution, e.g.f�(�(s)) = 
 � f(s). 
 is an extension of the

signature morphism� which works on metalanguage specifications.
A question that can also be asked here is whether an argument (such ass on the outer level in the example) has

to be given to all of the subordinated calls unmodified. The example could have been extended in another way, e.g.
adding side-effects in expressions would require different states to be used byE[[e1]] andE[[e2]]. This imposes a new
evaluation order on a binary expression. This issue is investigated below.

6.2 Operation Combinators

Templates describe transformations on domains and on operators on these domains. Higher order operators define
the composition of operators. Operators of the language are combined to non-primitive ones. If basic operators are
extended e.g. in their argument or result type, the composition of these operators has also to be adapted. It will turn out
that there are certain variants in which operation combinators are defined. These variants will lead to sometemplates
for operator combination and extension. Let us assume an operation combinator� on two basic operatorsc1 andc2
and a semantic functionC. An abstract form of a definition forC is:

C[[�(c1; c2)]]x = g(C[[c1]]f1(x);C[[c2]]f2(x))

Arguments and results to the functions shall be looked at.Argumentsx to the argument functionsc1 andc2 of a
composition�, which are given firstly to�, have to be assigned to the argument functions. There are two common
possibilities:

� DISTRIBUTE:f1(x) = f2(x) = x, i.e. f1 = f2 = id.

� SEQUENCE:f1(x) = x andf2(x) = g0(C[[c1]]f1(x)) for some functiong0.

Theresultof applying a function composition has to be a value of the result type of each of the functions.

� COMPOSE: the resultr is a compositionr = g(r1; r2) of the resultsr1 andr2 of both argument functions
(whereg is an arbitrary expression on the arguments). The composition operatorg has to be explicitly specified.

� LAST RESULT: often, only the result of the second argument function is taken (if the composition should
implement a form of sequencing), i.e.r = r2.

These variants should be preserved if an operation combinator is extended. This shall be referred to by the template
name STANDARD. STANDARD is a higher-order template like operation combinators are higher-order functions. For
these templates for operation combinators, behaviour preservation is guaranteed, if the basic operations are extended
with preservation of behaviour.

We have already seen the INJECT template which would allow us to add a new argument or a new result domain to
operators. If new arguments and/or results are added to basic operators, we do not need to stick to the given variants,
since the new component is irrelevant for behaviour preservation.

Peter Mosses [1] introduces several operation combinators, calledaction combinatorsin Action Semantics. These
combinators serve to reduce overloading of generally applied operators such as� for function composition or the
sequence; for composition of program constructs as commands or declarations.

7 Case Studies

7.1 Revisiting David Schmidt’s Book(s) on Denotational Semantics

We have mainly focused our interest on [2], but aspects of [3] are also considered. This attempt is described in [9].
One of Schmidt’s examples is the extension of a simple imperative language by I/O commands working on input and
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output buffers. Schmidt proposes to structure the semantical side into separate algebras, each implementing a language
feature. Let us consider a basic algebra implementing a store for a simple imperative language:

domains Store = Id! Nat
opns C[[x := e]] : Store! Store

C[[x := e]]s
4
= update(s; x;E[[e]]s)

Stores shall be injected into a product of stores, input buffers and output buffers such that I/O-specific commands
like putcan be realised.

domains State = Store� Input�Output
opns C[[x := e]]� : State! State

C[[x := e]]�(s; i; o)
4
= (update(s; x;E[[e]]�s); i; o)

C[[put(x)]]� : : : :

This extension can be expressed by using the injection template:

INJECT Store INTO State = Store� Input�Output

such that behaviour is preserved. We have proven for some parts of Schmidt’s examples that his informally described
extensions are behaviour preserving.

7.2 Thecsh Case Study

In our second case study, we have investigated the csh-language in much more detail than described so far, see [10, 11]
for details. This investigation was carried out accompanying a students project on specification and language semantics
held at the Danish Technical University in Lyngby during the author’s stay in Denmark.

In several steps, concepts such as file systems, exit values, aliases, I/O-redirections, or variable and command
substitution were added. We have also investigated parallel extensions instead of a sequence of extension steps. In
sequential extension, feature are added step by step to a basic language. In parallel extension, all features are added
onto the basic language resulting in a number of language extensions. Under certain circumstances (no interactions
between the features), these extensions can be merged to one final extension.

7.3 The RAISE Concurrency Model

Another application of our approach can be found in [12]. The concurrency model of the specification language
RAISE [13, 14] is based on Hennessy’s acceptance trees, adapted to the particular needs of RAISE, see [15] for details
of this adaptation. We have used our approach of extension semantics to reformulate this adaption in a rigorous way,
thereby proving that essential properties — the behaviour and structural constraints — are preserved (the formal proof
of property preservation is missing in the original description).

The basic model is a recursive space of processesP0 defined by

P0 = ((� ! P0)�PP�)?

where� is a set of events. The first component of those pairs is a mapping from events to processes inP0. The
second component is an acceptance set. An acceptance set is a set of possible internal states which can be reached
non-deterministically by executing a process. Each of these states is a set of actions that can be taken in that particular
state. The domain is defined recursively, but a solution for this equation exists (see [15] Chapter 5).? is the semantic
correspondence to thechaos process.

We have partitioned the event space into two forms of events (in and out events denote the direction of cmmunica-
tion via channels), in the first extension step using a specific template to obtain process spaceP1:

PARTITION (� ! P0) INTO (�in ! P1)� (�out ! P1)
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PARTITION is a behaviour preserving template. In a second extension, valuesV and statesS are introduced using
injection. The final process spaceP2 has the structure

P2 = (P(S � V )� (�in ! V ! P2)� (�out ! V ! P2)�PP�)?

obtained by using templates for indexing and injection.
This case study is a classical situation in which our approach can be used. It is a rigorous, modular development

of one aspect — here the crucial concurrency model of the RAISE specification language — of the semantics of a real
specification language. In this case, the approach of extension semantics was used as a tool for analysis and design of
the language semantics. We have gained a clearly structured description of the development of the RAISE concurrency
model based on a widely accepted model for concurrency. Additionally, we proved the extension to be correct, i.e.
property-preserving.

8 Related Work

The process of subsequent extensions is arefinementprocess. There is, for instance, a similarity between the notion
of behaviour preservation and the retrieve function in VDM (see e.g. [7]). The question has been addressed already.
A similar approach to ours – also pointing out the similarity to refinement – is presented in [16]. There, a refinement
relation between denotationally specified languages is provided. This paper follows in its presentation Schmidt’s
book [2]. Riddle and Wallis see definitions of semantic functions as semantic equations and define a correctness
preserving refinement relation based on these equations. Constructive support, e.g. in form of a refinement calculus
is not provided. Other approaches with similar mathematical frameworks are [17] or [18]. Another possible area of
application is e.g. [19] where 27 languages derived from another are presented (in a slightly different denotational
framework using metric spaces).

Abstract interpretationis a notion which we could use to describe the way we express behaviour preservation.
Behaviour preservation is formalised by mapping an extended algebra to a more abstract one which neglects details, but
focuses on those properties that have to be preserved from the basic language. The approach of abstract interpretation
is well-know in language semantics [20, 21], but it is mostly used for optimisation purposes.

A paper on language semantics cannot leave Category Theory unmentioned. One of the most popular approaches
to modularity in language semantics is based onmonads, see e.g. [22, 23, 24]. A number of common language
features have been successfully modelled as separate units based on monads. Moggi calls these descriptionsnotions
of computation. There is less experience with the extension of monads. [25] provides some basic definitions, such
as monad morphism, but a suitable, well-founded notation for language extensions does not exist at the moment (see
more recent work on the extension of monads [26, 27]). Classical denotational semantics provides a well-understood
framework on which an extension approach like ours can be based. A lot of existing semantical descriptions are only
available in a classical denotational style as we have tried to indicate with the RAISE-example. Ideas realised in our
framework of language extension such as the provision of a notation or a library of templates, can also be applied to a
monadic framework. This is currently under investigation based on monads and their morphisms.

9 Conclusions

We have presented a language description in form of a stepwise development by extension. Based on a language core
exhibiting the basic ideas of language, language features are added onto that core step by step. The language features
can be specified without referring directly to the core on which they should be added. This guarantees a high degree of
modularity in language design and language presentation. Language features can also be investigated as self-contained
constructs of their own.

We have presented in our framework ofextension semanticsa two-level approach using two different kinds of
extension operators. The first adapts the semantics of the basic language to an extended domain construction specified
by the language designer. The use of this operator was simplified and supported by a notion of extension templates.
This support was given in order to allow the language designer to focus on the specification of the new features to be
added. The technical support by semantics extensions is crucial for the creative part of specifying the new feature. This
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technical support adapts basic language constructs automatically preserving their behaviour. This support is essential
for the feasibility of the extension approach. The idea of abstraction and preservation of properties can also be found
in abstract interpretations[20, 21, 28], but this approach is mostly used to abstract in order to solve problems in a
simpler (more abstract) domain. Properties of semantics can be described in form of an equational theory. We have
presented mechanisms to extend equational theories according to new structural requirements such that behaviour is
preserved.

Since in each step only a few concepts are explicitly added or redefined, normally a large amount of rewriting
would be necessary. We have facilitated extensions by providing templates which can be applied for a number of
standard cases. Applying these templates also allows properties to be preserved. Respective proof obligations are
automatically discharged.

We would like to refer to the work of David Schmidt. Some of the ideas presented here have been developed based
on his text books on denotational semantics [2] and [3]. Schmidt uses the notion oforthogonal language featuresto
point out that features should be designed as self-contained units understandable without reference to other language
features (and the core). Language features should preferably not conflict. This idea was realised in our approach by
the construct of language extensions, i.e. operators with parameters. In particular the semantics extensions guarantee
that the behaviour of the basic language is preserved, which means that the new feature does not conflict with the basic
language. More modular, or orthogonal, descriptions of languages are also aimed at byAction Semantics[1]. Facets
are provided which contain constructs to describe the computation of different kinds of information, e.g. the feature
description ABSTRACTION (figure 3) could be considered as a reduced facet for describing declarations.

The area of application of our approach is geared to those language manipulations that are expressible through
language extensions. The combinations of different paradigms, such as the combinations of the state-based imperative
language and a process-domain based concurrent language, is not intended. Merging two different languages based
on two different paradigms would require different questions to be answered. Three case studies have been presented
to indicate the variety of our approach even though not all problems can be solved. Certainly, programming languages
have to be addressed as well. Java, and in particular security aspects of Java, are currently under investigation. Java is
in particular interesting since it is a young, still evolving language. In the same sense, Perl can be a target language.

The approach can be further improved if we consider parallel extensions. Instead of extending step by step se-
quentially (investigated in depth in [10]), we could extend a common core in parallel by adding different new features
as long as there are no dependencies between extensions. Issues like the commutativity of extensions arise; questions
such as under which conditions can extensions be merged have to be answered. An extension notation based on an
operator calculus to combine extenions is certainly an improvement to the expressivity of the approach (investigated
in [11]).
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