
Modular Composition of Language Features through
Extensions of Semantic Language Models

Claus Pahl
School of Computer Applications, Dublin City University

Dublin, Ireland

Abstract

Today, programming or specification languages are often extended in order to customize them for a particular appli-
cation domain or to refine the language definition. The extension of a semantic model is often at the centre of such an
extension. We will present a framework for linking basic and extended models. The example which we are going to
use is the RSL concurrency model. The RAISE specification language RSL is a formal wide-spectrum specification
language which integrates different features, such as state-basedness, concurrency and modules. The concurrency
features of RSL are based on a refinement of a classical denotational model for process algebras. A modification was
necessary to integrate state-based features into the basic model in order to meet requirements in the design of RSL.
We will investigate this integration, formalising the relationship between the basic model and the adapted version in
a rigorous way. The result will be a modular composition of the basic process model and new language features, such
as state-based features or input/output.

We will show general mechanisms for integration of new features into a language by extending language models
in a structured, modular way. In particular, we will concentrate on the preservation of properties of the basic model
in these extensions.

1 Integration through Extension

The specification and development of complex software systems might require the use of different specification fea-
tures, assembled into a customised language. The combination of specification features requires a thorough under-
standing of all particular features involved. In this paper, we will present a framework which supports the systematic,
modular integration of denotationally defined formal models of features by stepwise, property-preserving extension of
the language semantics.

Modularity and compositionality in the design, integration, and customisation of languages are key issues which
are not yet solved. This was pointed out in the group reports and position statements of the ACM Workshop on
Strategic Directions in Computing Research, MIT, June 1996, in particular the groups Programming Languages and
Software Engineering and Programming Languages, which were partially published in ACM Computing Surveys
[ACM96]. Semantics of languages is about descriptions of computational features. These computational features
should be described separately and then assembled to more comprehensive languages. [Hoa96, HJ98] also refer to the
extension of programming languages through inclusion of new language features, such as variables or procedures: ’an
essential goal is to manage such newly introduced complexity by use of as much as possible of the existing theory and
algebra. Ideally, each new feature can be defined and introduced separately, in a way that permits them to be combined
without further complexities of interaction.’

We will present principles and a case study using an extension calculus and notation geared towards modular,
composable descriptions of languages based on extensions of their semantical models. This paper is based on [Pah98],
which introduces the ideas used here in a more general way. A formal model defining a language feature possesses
some properties: functions behave in a certain way, semantic domains might be constrained. We will show how
these qualitatively different properties can be preserved. The practical advantage of preserving properties can be
illustrated by considering the behaviour of programs implemented on the concurrency model. It can be guaranteed
that a program preserves its behaviour if it is executed as a program of the extended language. The behaviour is not

3rd Irish Workshop on Formal Methods, 1999 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/11309975?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Modular Composition of Language Features through Extensions of Semantic Language Models

necessarily identical since underlying semantical notions might have changed, but there exists an observation under
which the behaviour is identical.

The formal specification framework RAISE [Geo91, Gro92] is an example of a combination of different spec-
ification techniques. RSL is the RAISE specification language. RSL is based on principles of VDM [Jon90], but
also includes features for the specification of concurrency and a modularity concept. Bolignano and Debabi’s paper
[BD92] is the basis for this investigation. They describe the extension of a simple denotational model for CSP-like
process algebras based on the acceptances model [Hen85] to meet the requirements in the development of RAISE. We
will follow [BD92] and investigate their development of a refined model in a more rigorous and formal way consid-
ering aspects of modularity in design and extension of language models or languages. This will result in a modular,
comprehensible description of the integration of formal models. To illustrate our approach, we will add state-based,
model-theoretic features – such as input/output via channels or states and values – to the basic model of processes.
Processes might depend on some external events such as the communication via channels. In a simple model, the
events can be left unspecified, input/output might not be dealt with. In a modular, stepwise development, the notion of
events can then be refined. New commands can be added, existing ones have to be redefined in order to work on new
structural requirements. We will provide a framework in which these extensions are formalised by using operators in
an algebraic framework. We will provide a selection of common templates of extension which support conservative,
property-preserving extensions. By providing such templates, we will facilitate the process of adapting domain and
function definitions of a basic model to meet new requirements.

We will start with introducing the basic language in Section 2. The following section 3 introduces principles of
our approach of extension. Behaviour and domain constraints are important properties which are addressed. We use
these results in Section 4 for a first extension by partitioning events. A second extension in Section 5 adds states and
values. We conclude with related work.

2 Basic Model and Language

The basic model of processes, which we are going to introduce, is based on Hennessy’s acceptances model [Hen85],
but in the representation of Bolignano and Debabi [BD92]. The acceptances model was introduced as a denotational
model for CSP-like process algebras1.

LANGUAGE DESCRIPTION
Syntax

Process ::= ’stop’| ’chaos’ | Event ’→’ Process| Process[] Process
Semantic Domain
P0 = ((Σ → P0)× PPΣ)⊥

Semantic Functions
P0 : Process → P0

P0[[chaos]]
4
= ⊥

P0[[stop]]
4
= ([ ], {∅})

P0[[e → p]]
4
= ([e 7→ P0[[p]]], {{e}})

P0[[p1[]p2]]
4
= let (M1, S1) = P0[[p1]], (M2, S2) = P0[[p2]] in (M1[]mM2, S1[]sS2)

with

M1[]mM2
4
= (([e 7→ M1(e)|e ∈ dom(M1)]4 [e 7→ M2(e)|e ∈ dom(M2)]) t

[e 7→ M1(e)[]mM2(e) | e ∈ dom(M1) ∩ dom(M2)])

S1[]sS2
4
= {x|x ∈ PΣ ∧ x ⊆ ⋃{y|y ∈ S1 ∪ S2} ∧ ∃v ∈ S1, w ∈ S2.x ⊆ v ∪w}

Figure 1: The basic language definition

1A similar extension of the acceptances model can be found in [HI93b, HI93a] where a simple process language is extended by values and
assignments.

3rd Irish Workshop on Formal Methods, 1999 2



Modular Composition of Language Features through Extensions of Semantic Language Models

A process domain will be the kernel structure containing acceptance sets as one of its parts. A simple process
language based on an acceptances model is presented in figure 12.

A sample process description is

(a → stop)[](b → c → stop)

This process can choose externally (choice is determined by the environment) between two eventsa andb. If a is
chosen it stops. Ifb is chosen, the process can engage in another eventc before it stops. Later on, we introduce a
constraint that guarantees that a process can only engage in a certain set of events (the acceptance set) in each process
state.

Thebasic domain, which is the main semantic domain of the language, is a space of processesP0

P0 = ((Σ → P0)× PPΣ)⊥

whereΣ is a set of events. The first component of those pairs is a mapping from events to processes inP0. The second
component is an acceptance set – some constraints on the domainPPΣ will be introduced later. An acceptance set
contains all events that a process can engage in. We could say that such a set stands for the possible internal states
that can be reached. Each of these states is a set of actions that can be taken in that particular state.⊥ is the semantic
correspondence to thechaos process. The domain is defined recursively, but a solution exists, see [BD92] section 5.
[BD92] introduces two nondeterministic choice operators. Only the external choice operator[] shall be considered
here, the internal choice will be neglected in order to simplify the presentation. Other language elements denote a
deadlock process,stop, a divergent process,chaos, and a process which depends on an external event,e → p.

Bolignano and Debabi impose semanticalconstraints on the process domainwhich guarantee consistency of the
definition and also specify properties of acceptance sets:

1. Events in process descriptions have to be acceptable, i.e. for(m, S) ∈ P0:

dom(m) =
⋃

S

2. Acceptance sets have to be saturated. Saturation subsumes closure conditions on sets.A has to be asaturated
finite subset ofPΣ, expressed bySat(A), for A ∈ PPΣ.

Sat(A)
4
= ∀x ∈ A, y ∈ PΣ.(y ⊆

⋃
{z|z ∈ A} ∧ x ⊆ y) ⇒ y ∈ A

This is an adaption of criterionSat in Figure 3 in [BD92]. The reason for using{z|z ∈ A} instead ofA can
be seen in subsequent reformulations of this definition. For subsetsAi of a power set,

⋃
Ai ∈ A is the union

closure, andS1, S2 ∈ A ∧ S1 ⊆ T ⊆ S2 ⇒ T ∈ A is the convex closure.

The consistency of the language definition with the constraints has to be proven, e.g. it has to be shown for the external
choice[]:

1. dom(M1[]mM2) = dom(M1)∪dom(M2) with dom(M1) =
⋃

S1 anddom(M2) =
⋃

S2, i.e.dom(M1[]mM2) =⋃
S1 ∪

⋃
S2 =

⋃
(S1 ∪ S2). S1[]sS2 ⊆

⋃
(S1 ∪ S2) by construction,x ⊆ ⋃{y | y ∈ S1 ∪ S2} and thus

S1[]sS2 =
⋃

(S1 ∪ S2), ∃v ∈ S1, w ∈ S2.x ⊆ v ∪ w. Thus, we have equality.

2. x ∈ S1[]sS2 is saturated obviously by definition ofSat.

The consistency of the basic language is not an issue of the extension approach, but has rather to be resolved by the
language designer for a particular language description.

2We use VDM operators such as symmetric difference4, map extensiont, or override† in the figures.

3rd Irish Workshop on Formal Methods, 1999 3



Modular Composition of Language Features through Extensions of Semantic Language Models

3 Principles of Extension

In the previous section, we have presented a small process description language with a denotational concurrency
model at its core. This model shall be extended: the abstract communication events shall be made more concrete as
input/output events, values (to be passed through input channels) and internal states (to store these values) shall be
introduced. The necessary formal framework for model extensions will be introduced in this section.

The principles of behaviour preserving and domain constraint preserving extensions will be motivated. The basic
construct, a semantics extension, will be introduced. It plays the role of an extension operator which is equipped with
extension laws characterising the properties to be preserved. We will show that domain constraints can technically be
dealt with as a special form of behaviour.

3.1 Motivation

Principles of extension shall be motivated using the syntactical phrasee → p as a primitive process description whose
properties have to be preserved in an extension of the process model. The process domain shall be extended in this
example by adding a value domain. This example is not part of the actual RSL-model extension, it is only used to
illustrate extensions using a simple and common new feature. An injection shall be used to refine the process domain
P0 = (Σ → P0) × PPΣ into a product of values, processes and acceptance sets. Let us start with the semantic
function defining the language phrasee → p:

P0[[e → p]]
4
= ([e 7→ P0[[p]]], {{e}})

e → p is a phrase of the syntactic domainProcess. The semantic functionP0 maps elements fromProcess to P0.
The evente is associated with the meaning of the process descriptionp. The evente has to be an acceptable event.

Let us now consider an extension of the language which contains again the phrasee → p. Processes shall be
extended by allowing them to have a value in each process state. Thus, the semantic function has to be adapted by
introducing a value domainV . This is expressed using a type constructorT which maps the basic process domainP0

into a product of values and processesTP0:

T : P0 = ((Σ → P0)× PPΣ)⊥ 7→ TP0 = (V × (Σ → TP0)× PPΣ)⊥

We will now briefly introduce constructs needed to describe an extension. They will be explained in detail in the
subsequent subsections. A mappingφ : P0 → TP0 maps elements of the process domain into the extension. The
mapping ∗ is a function lifting which extends the semantic functionP0 to the new structural requirements given by
the extended domainTP0, i.e. ∗ : P0 7→ P∗0.

The previous paragraphs have illustrated the extension of the description of process behaviour. The given domain
constraint, expressing e.g. that processes can only engage in acceptable events,

dom(m) =
⋃

S for (m, S) ∈ P0

are expressed on the basic domainP0. ExtendingP0 to TP0, we also have to extend the constraints. In particular, we
have to preserve the intended restriction of behaviour. We will show a standard way of rewriting a constraint such that
the constraint is preserved.

3rd Irish Workshop on Formal Methods, 1999 4



Modular Composition of Language Features through Extensions of Semantic Language Models

3.2 Behaviour Preserving Extensions

3.2.1 Behaviour Preservation

The semantic functionP∗0 preserves certainly the behaviour ofP0, if the following diagram commutes:

TProcess
P0

∗
- TP0

Process

6

φSyn

P0 - P0

6

φP0

or textually expressed by

P0
∗[[φSyn(e → p)]] = φP0 ◦P0[[e → p]]

This is mathematically the homomorphism criterion on algebras. We have used a morphismφSyn on the syntactical
domainProcess which shall denote an embedding ofProcess into the extended syntactical domainTProcess. It
is not straightforward here to talk about the behaviour of processes which has to be preserved. The semantics for
processes is here not given in an operational semantics style, e.g. in terms of a transition system. The semantics of a
process is given here as a semantic entity which, by its recursive structure, describes the possible future process states,
depending on events. Our aim is to preserve these semantics in an extension.

The notion of behaviour preservation indicates that behavioural aspects of the basic model should reappear in the
extension. The homomorphism criterion might be too restrictive. We introduce a more flexible observability criterion
applicable to the extension, which explains what has to be preserved. We can use an equivalence∼ as the observation
criterion instead of equality:

P0
∗[[φ∼Syn(e → p)]] ∼ φ∼P0

◦P0[[e → p]]

φ describes data refinement.φ∼ is derived fromφ by mapping elements into equivalence classes of an equivalence∼
on the extended domainTP0. The equivalence explains which elements in the extended domain represent the same
element from the basic domain. The extensionP∗0 has to be defined in accordance withφ∼, if behaviour has to be
preserved.

Processesp = (ep, s) from P0 are refined to(v, ep, s) in TP0 for some valuev. Some extended elements are
observably equivalent, expressed by an equivalence class[(v, ep, s)]∼. The relation between basic and extended
domain is expressed by a mappingr : P0 → TP0/∼ where[(v, ep, s)]∼ := {(a, b, c) | b = ep ∧ c = s}. We
have used an equivalence∼ on TP0 to define relevant observable behaviour. Extended functions are expected to
behave correctly with respect to the equivalence classes. A mappingc : (v, ep, s) 7→ [(v, ep, s)]∼ does always exist,
q : (ep, s) 7→ (v, ep, s) can be constructed. The set-based mappings such asr, p or c can be extended to corresponding
morphismsρ, φ, χ on algebras based on congruences and quotient algebras such thatχ ◦ φ = ρ with φ : P0 → P ∗

0 ,
χ : P ∗

0 → P ∗
0 /∼ andρ : P0 → P ∗

0 /∼.

TP0
χ- TP0/∼

�
�

�
�

ρ

�

P0

6

φ

φ is a morphism which preserves behaviour andχ is a canonical morphism onto the quotient algebra. If∼ is a
congruence, thenχ is a canonical morphism, i.e. always exists; see [Coh65, Gr¨a68] for details.

3rd Irish Workshop on Formal Methods, 1999 5



Modular Composition of Language Features through Extensions of Semantic Language Models

3.2.2 Semantics Extensions

The previous introduction of concepts shall now be summarised in the definition of a semantics extension, the basic
building block of our extension approach. This construct is an extension operator which will be equipped with ex-
tension laws describing the properties to be preserved. Applied to an algebra which models a basic language, we can
obtain another, extended algebra which interprets the extended language. Semantics extensions describe a language
feature in separation.

Definition 3.1 LetA andB be algebras, letA andB be sets inA andB. A semantics extensionfromA to B is a
5-tuple(T, φ∼,∼, ∗, δ) where

• T : A 7→ B is a collection of type constructors on algebras,

• φ∼ : A 7→ B/∼ is a collection of mappings on sets,

• ∼ is a binary relation onTA if A is set ofA,

• ∗ is a function lifting, which liftsf : A → B to f∗ : TA → TB,

• δ∼ : TA/∼→ TA is a collection of typed choice operators, yielding default values for each equivalence class
in TA/∼.

The equality on quotients is the equivalence on the basic sets.φ∼ can be extended to a homomorphisms on algebras.
For the following discussion, we often assume a domain (a set) of interestS. Then, for all domainsD not equal toS,
∼D is assumed to be the equality andφD is assumed to be the identity mapping.

Constraints on semantics extensions are calledextension laws. They describe the property to be preserved.

Definition 3.2 Assume a semantics extension(T, φ∼,∼, ∗, δ) and an arbitrary functionf : A → B in a basic
algebra. Letf∗

∼
:= [f∗]∼. Thebehaviour preservation extension lawis defined asf∗

∼ ◦ φ∼ = φ∼ ◦ f .

We can express the law diagrammatically as:

TA/∼ f∗
∼

- TB/∼

A

φ∼A

6

f
- B

6

φ∼B

Definition 3.3 Assume a semantics extension(T, φ∼,∼, ∗, δ).

• The extension is calledfaithful , if for any two functionsf, g : A → B of the same type holds:

f 6= g ⇒ f∗
∼ 6= g∗

∼

• The extension is calledfull , if ∗∼ is a surjective mapping fromA → B toTA/∼→ TB/∼ for every combination
of A andB.

If functions are behaviourally distinguishable on the basic layer, they should not beobservablydifferent on the ex-
tension layer. This is formalised by the notion of faithfulness. The equivalence∼ defines observationally equivalent
behaviour. For each class of extended functions, there should be the corresponding original function. Full extensions
reflect this issue. For the remainder we expect extensions to be full and faithful.

3rd Irish Workshop on Formal Methods, 1999 6



Modular Composition of Language Features through Extensions of Semantic Language Models

In terms of category theory,φ is a natural transformation with respect to the endofunctors1 andT , if

T (A)
f∗- T (B)

1(A)

φA

6

f
- 1(B)

6

φB

whereT (f) := f∗. A natural transformation preserves structure and behaviour. As explained above, this is a too
restrictive constraint. We have introduced equivalence classes to relax that above condition.

We shall now summarise these results in a single diagram which illustrates how to construct an extension from a
semantics extension:

TA
f∗ - TB

	�
�

�
�

χA
	�

�
�

�

χB

TA/∼ f∗
∼

- TB/∼
I@

@
@

@

φ∼A
I@

@
@

@
φ∼B

A

φA

6

f
- B

φB

6

The behaviour preservation law is encoded in the leftward-slanted rectangle at the bottom. The extension itself is
described by the square. We can always deriveφ such thatχ exists. Only now, we need the defaultsδ to construct the
morphismφ. Defaults allow us to pick a particular elements from equivalence classes to constructφ from φ∼. The
resulting mappingφ is not necessarily a homomorphism. Note, that in the diagram, not all combinations of arrows
are commuting based on equality, sometimes it is only equivalence. A semantics extension is a construct similar to
Kleisli triples(T, η, ∗) from category theory [Mog91], whereT is a type constructor,η an embedding into the domain
constructed byT , and ∗ is a function lifting (slightly different from ours). To point out the similarity, we have used a
similar notation. However, our extension is more general due to the introduction of equivalences. We will come back
to Kleisli triples later on.

3.2.3 Extension Templates

We now investigate how a semantics extension can be constructed easily such that the extension laws are satisfied.

Definition 3.4 Anextension templateis a semantics extension which satisfies the extension laws.

We will look at the idea of templates in the context of behaviour preservation. LetS 7→ TS be the domain extension.
An equivalence∼ or a mappingφ∼ for TS cannot be derived automatically fromS in general, but it is possible
for some cases based on particular domain extensions. There is a standard way of obtaining a behaviour preserving
function lifting.

Proposition 3.1 The function lifting ∗, which lifts a functionf : A → B to f∗ : TA → TB for a ∈ A, defined by

f∗(φA(a)) := φB(f(a))

guarantees behaviour preservation for a semantics extension(T, φ∼,∼, ∗, δ).

3rd Irish Workshop on Formal Methods, 1999 7



Modular Composition of Language Features through Extensions of Semantic Language Models

Proof: The definition off∗ is partial, but total on the relevant subset ofTA. This definition guaranteesf∗(φA(a)) =
φB(f(a)), i.e. equality as a particular equivalence. ut
Definition 3.5 We will defineextension templates, based on a particular domain extension. We will give∼, φ∼, ∗, δ∼
for eachT on a domainS.

1. T : S 7→ S ×R : (s, r) ∼ (s′, r′) iff s = s′; φ∼ : s 7→ [(s, r)]∼; δ([(s, r0)]) = (s, r0)

2. T : S 7→ S + R : x ∼ x′ iff x = x′; φ∼ : s 7→ [s]; δ([s]) = s

3. T : S 7→ (I → S) : t ∼ t′ iff ∀i ∈ I.t(i) = t′(i); φ∼ : s 7→ t with t(i) = s for all i ∈ I; δ([t]) = λi.s

4. T : S 7→ P(S) : p ∼ p′ iff p = p′; φ∼ : s 7→ [{s}]; δ([{s}]) = {s}
All templates are behaviour preserving semantics extensions based on predefined constructions for type extension, e.g.
for injectionS 7→ S × T (see figure 2 for a formulation in our extension notation) or indexingS 7→ (I → S) (figure
4). The templates have to satisfy a number of constraints: the equivalence∼ is a congruence, there is a default value
for each equivalence class, the function lifting satisfies the behaviour preservation law.

Proposition 3.2 The templates are behaviour preserving semantics extensions, i.e. they satisfy the behaviour preser-
vation extension law.

Proof: The well-formedness of the template components for the four templates is easy to see, classical injections or
embeddings are used. Straightforward with proposition 3.1. ut
Proposition 3.3 The extension templates define full and faithful extensions.

Proof: As it can be seen from the construction of∼ andφ∼, we have isomorphy between a setA and the quotient set
TA/∼. From that it follows immediately that the templates define full and faithful semantics extensions. ut

EXTENSION TEMPLATE

INJECTS INTO S ×R = ( T : S 7→ S ×R
∗ : fi

c7→ f∗i
(s, r) ∼ (s′, r′) iff s = s′

φ∼S (s) = [(s, r0)]∼
δ : [(s, r0)]∼ 7→ (s, r0) )

Figure 2: Extension template INJECT

The idea behind templates is to reduce the amount of information that a language designer has to give for the
application of an extension operator. The domain type extensionT is essential and has to be chosen by the language
designer explicitly, but then we can use canonical ways of defining an extension operator. Templates can form a library
of extension operators for the language designer.

3.3 Domain Constraint Preserving Extensions

We have addressed the preservation of behavioural properties in the previous subsection. Let us now consider the
preservation of structural domain constraints. An example of such a domain constraint is the constraint which defines
that a process can only engage in acceptable events. Constraints on domains can be interpreted in two ways: as a
construction of a subdomain or as a property that has to be preserved. We will pursue the second alternative. It is a
more general approach and does not interfere with behaviour preservation. Thus, domain constraints are properties
similar to behaviour, also characterised by an extension law. They have to be preserved by appropriate extension
templates.

3rd Irish Workshop on Formal Methods, 1999 8



Modular Composition of Language Features through Extensions of Semantic Language Models

3.3.1 Domain Constraint Preservation

Definition 3.6 A domain constraint is a predicateP : A → Bool on a domainA.

Domain constraints are expressed as predicates. Two examples were presented in section 2 for the process domain
P0. The extension of domains is expressed by the type constructionT : S 7→ TS. Elements of domains are mapped
by φ : S → TS into the extension. We will start our investigation assuming a semantics extension(T, φ∼,∼, ∗, δ)
with a type constructorT , an extension mappingφ∼, and an overloaded lifting operator∗, calleddomain constraint
lifting when applied to a domain constraint.

Definition 3.7 Thedomain constraint preservation lawis satisfied, if

C∗ ◦ φ = id ◦ C

for a domain constraint predicateC on a domainA and a domain constraint lifting∗.

This means thatC∗ has to hold iffC holds. The introduction ofid will become clear when we analyse domain and
behaviour preservation together. The law can be expressed diagrammatically:

TA
C∗

- Bool

A

6

φ

C
- Bool

6

id

An example isdom(m) =
⋃

S, which is a predicateC onP0 = ((Σ → P0)×PPΣ)⊥, i.e.C(P0) := dom(m) =
⋃

S
for all (m, S) ∈ P0. The predicate could as well be a binary relation or might involve other domains. Predicates are
implicitly universally quantified.

Domain constraints are essentially specific forms of behavioural specification. Thus, the domain constraint preser-
vation law is a specific behaviour preservation law. For domain constraints,φBool is the identity and∼ is just equality.

3.3.2 Extension Templates

A template for extending a domain constraint, such that the domain constraint preservation law is satisfied, shall now
be introduced.

Definition 3.8 Let (T, φ∼,∼, ∗, δ) be a semantics extension. A domain constraintC on a domainS is extended to
C∗ on TS, called aconstraint extension template, as follows. Substitute syntactically each application of variable
si (i = 1, .., n) in the constraintC by fresh variabless′i and each occurrence of domainS by TS in quantifications.
Then, the inverseφ−1 for φ : S → TS is applied to the elementss′i, i.e. substitute syntacticallys′i byφ−1(s′i). Thus,
we get:

C∗ := C[s1/φ−1(s′1), . . . , sn/φ−1(s′n), S/TS]

Constraints which are extended by the aboveconstraint extension templateare automatically satisfied in the extension.

Proposition 3.4 The constraint extension template satisfies the constraint extension law.

Proof: Obvious due to construction via inverses. ut

Proposition 3.5 The constraint extension template defines a full and faithful extension.

3rd Irish Workshop on Formal Methods, 1999 9



Modular Composition of Language Features through Extensions of Semantic Language Models

Proof: The inverses allow us to construct an isomorphism. Thus, we have a full and faithful semantics extension.ut
Let us illustrate the template using an example. We consider a domainS which is extended by injection toS × T .

Let there be the constraint∀m ∈ S . dom(m) =
⋃

S. The constraint is extended adding fresh variables and extending
the domain. Sincedom is a function onS, we will adapt using the inverse. The inverse operation to injection is
projection3. We get

⋃
S =

⋃{π1(m′) |m′ ∈ S × T }, and finally∀m′ ∈ S × T . dom(π1(m′)) =
⋃

S.
The domain extensionS 7→ TS gives rise to the canonical construction ofbehaviour templatesas well asdomain

templates. The constraint extension is a general-purpose template applicable to all kinds of domain extension. It lifts
the original constraint such that its validity is preserved.

4 Partitioning Events

Principles of our extension approach have now been presented in an example and we can start extending the basic
model from section 2. In the first step, we partition the set of events into input, output and termination events.
Input and output denote the directions of communication via channels. Before we address the concrete problem, we
introduce the general technique of partitioning in form of an extension template. The extension of the process domain
with behaviour preservation as well as the extension of domain constraints preserving the original constraints will be
considered.

4.1 Partitioning Template

A domainS might be partitioned into subdomainsSk1 , . . . , Skn , if a functionkind : S → K with K = {k1, . . . , kn}
exists, which assigns a unique kind to eachs ∈ S. The partitioning shall be expressed explicitly through an extension
template based on a product domain

T : S 7→ Sk1 × . . .× Skn

such thats ∈ Ski wheneverkind(s) = ki
4. The partitioning shall constitute the extension, i.e. we have to define the

equivalence∼ and the mappingφ∼. A template shall guarantee the extension laws. Additionally, it should preserve
a partitioning on the basic domainS expressed by a functionkind. The equivalence∼ on Sk1 × . . . × Skn shall be
defined by

[s1, . . . , sn] ∼ [t1, . . . , tn] iff kind(si) = kind(ti) for all i = 1, .., n

The definition ofkind induces an equivalence∼P on the source domainS: all elements of the same kind are equiva-
lent, i.e. fors, t ∈ S: s ∼P t iff kind(s) = kind(t). φ∼ shall be defined by

φ∼ : s 7→ casekind(s) in ki ⇒ [sk1 , . . . , skn ]

with ski = s andskj = ωs for i 6= j. ωs is an undefined value. The behaviour preservation law is satisfied if the
canonical function lifting is used. The template is presented in figure 3. This template of partitioning has the existence
of kind as a precondition. It also requires the satisfaction of the substitution property, i.e. the equivalence∼ has to be a
congruence. The assumed functionkind is used to derive an equivalence onS which is used instead of the predefined
equality as the behaviour preservation criterion.

4.2 Behavioural Extension

The set of eventsΣ shall be partitioned. We assume that we can distinguish input events, output events and a ter-
mination event

√
in Σ. The template PARTITION, or rather a variant of it, shall now be applied. LetΣ1 =

PΣin × PΣout × PΣ√ be the partitioning of eventsΣ1. The extended processP1 space shall be defined as:

P1 = ((Σin → P1)× (Σout → P1)× PPΣ1)⊥
3Examples for these inverses with respect to the extension operators are injectiond 7→ (d, e) and projectionπ1(d, e) = d as the retrieval or

indexingd 7→ f with ∀i.f(i) = d and applicationf(i) as the retrieval.
4Choosing a product construction is only one possibility to realise partitioning. Certainly, using a disjoint sumS 7→ Sk1 + . . .+Skn is another

possibility.

3rd Irish Workshop on Formal Methods, 1999 10



Modular Composition of Language Features through Extensions of Semantic Language Models

EXTENSION TEMPLATE

PARTITION S INTO Sk1 × . . .× Skn

4
=

( T : S 7→ Sk1 × . . .× Skn

∗ : f
c7→ f∗

[s1, . . . , sn] ∼′P [t1, . . . , tn] iff kind(si) = kind(ti) for all i

φ∼(s)
4
= s 7→ casekind(s) in ki ⇒ [sk1 , . . . , skn ]

with ski = s, skj = δ(φ∼(s)) for i 6= j
δ : [(s1, . . . , sn)]∼ 7→ (s1, . . . , sn) )

Precondition: existence ofkind, substitution property holds

Figure 3: Extension template PARTITION

The following assumptions shall be made.Σ can be expressed by a disjoint sumΣ = Σin + Σout + Σ√, i.e. the
functionkind exists. Functions in the specification, which are supposed to be lifted, preserve the partitioning, i.e. the
equivalence∼ on Σ1 as a congruence. This can be guaranteed by the canonical construction. Thus, the precondition
of the template is satisfied.Σ√ consist of only one element

√
which denotes immediate termination. We will use a

variant of the template which partitionsΣ into an indexed set in the function spaceΣ → P1. The variant PARTIND
is obtained by applying PARTITION to each first component of maplets of typeΣ → P1:

PART IND (Σ → P1) INTO (Σin → P1)× (Σout → P1)

This variant is also behaviour preserving. We get the following definitions forφ and∼ for the template PARTIND,
where the empty map[ ] is used as the default element:

φ([e 7→ p]) = casee in
in(e) : ([e 7→ p], [ ])
out(e) : ([ ], [e 7→ p])√

(e) : ([ ], [ ])
φ([ ]) = ([ ], [ ])
φ(⊥) = ⊥

and

(a, b) ∼ (a′, b′) iff a = a′ ∧ b = b′

[ ] ∼ [ ] iff [ ] = [ ]

The following definitions for the lifted semantic functionP1 are derived by application of the template:

P1 : Process → P1

P1[[chaos]]
4
= ⊥

P1[[stop]]
4
= ([ ], [ ], {(∅, ∅, ∅)})

P1[[e → p]]
4
= φ(P0[[e → p]])

P1[[p1[]p2]]
4
= let (IN1, OUT1, S1) = P1[[p1]], (IN2, OUT2, S2) = P1[[p2]] in

(IN1[]mIN2, OUT1[]mOUT2, S1[]sS2)

The formulation ofP1[[p1[]p2]] as given above does not correspond syntactically directly to the application of the
template, but is semantically equivalent and easier to read.

4.3 Extending the Domain Constraint

Now, we address the extension and preservation of domain constraints. The constraints, as presented above in section
2 for the basic model, are:

3rd Irish Workshop on Formal Methods, 1999 11



Modular Composition of Language Features through Extensions of Semantic Language Models

1. dom(m) =
⋃

S for (m, S) ∈ P ,

2. Sat(A) for A ∈ PPΣ with

Sat(A)
4
= ∀x ∈ A, y ∈ PΣ.(y ⊆ ⋃{z|z ∈ A} ∧ x ⊆ y) ⇒ y ∈ A.

These constraints cannot be applied to the new domain structure. A reformulation is necessary. This reformulation
can be done using the domain constraint extension template.

1. For all acceptance setsS1 andi ∈ Σin, o ∈ Σout,
√ ∈ Σ√:

dom(i) =
⋃{π1(z)|z ∈ S1} ∧ dom(o) =

⋃{π2(z)|z ∈ S1} ∧
dom(

√
) =

⋃{π3(z)|z ∈ S1}

with S1 = φ(S) andΣ = Σin + Σout + Σ√. The projectionπ is the inverse of injection – remember that a
product was used to represent the partitioning.

2. Sat1(A) for A ∈ PPΣ1 where

Sat(A)
4
= ∀x ∈ A, y ∈ (PΣ× PΣ× PΣ) . (

π1(y) ⊆ ⋃{π1(z)|z ∈ A} ∧ π1(x) ⊆ π1(y) ∧
π2(y) ⊆ ⋃{π2(z)|z ∈ A} ∧ π2(x) ⊆ π2(y) ∧
π3(y) ⊆ ⋃{π3(z)|z ∈ A} ∧ π3(x) ⊆ π3(y) )

⇒ y ∈ A

with Σ1 = PΣin × PΣout × PΣ√.

Since the constraint extension template is used, the constraint is preserved. The first part of the constraint is partitioned
into three parts and then projections are used to reduce to the original constraint. Using the product for extension and
then projecting is also used to obtain the second criterion.

5 Values and States

Values and states shall be added to the previous extension in a single step. Values are read via input channels and are
bound to variables of the process state. An extension in two steps is therefore not adequate. We will start, as in the
previous section, introducing the mechanisms in their general form, before we apply them to the concrete extension
construction considering behaviour and domain constraint preservation.

5.1 Injection and Indexing Templates

We will need two templates for this extension. The template INJECT was already presented in figure 2. The INDEX
template is presented in figure 4. Elements of a basic setS shall be indexed by elements from an index setI, i.e. we
construct a function space with the basic set as the range. Two extended elements are equivalent, if they map to the
same element in the range.

5.2 Behavioural Extension

States and values will form a new component of the process space. Values can also be read (in) from or written (out)
onto channels. The resulting domainP2 of the last extension presented here is:

P2 = (P(S × V )× (Σin → V → P2)× (Σout → V → P2)× PPΣ1)⊥

3rd Irish Workshop on Formal Methods, 1999 12



Modular Composition of Language Features through Extensions of Semantic Language Models

EXTENSION TEMPLATE

INDEX S BY I → S
4
= ( T : S 7→ I → S

∗ : f
c7→ f∗

f ∼ f ′ ⇔ f(i) = f ′(i) for all i

φ∼S (s)
4
= [fs]∼ with f(i) = s for all i ∈ I

δ : [f0]∼ 7→ f0 )

Figure 4: Extension template INDEX

The partitioned set of eventsΣ1 remains unchanged. The extension is done by using the templates INJECT and
INDEX applied in two consecutive steps. The first step injects statesS and valuesV as products:

INJECT P(S × V ) INTO ((Σin → P1)× (Σout → P1)× PPΣ1)⊥

with r0 = {[ ]} as the default value. In the second step, we index the occurrences of the process space on the right-hand
side by values:

INDEX P1 BY V

with t0 = v0 7→ p as default for a valuev0 and a givenp. We can extend subparts of a type expression, such asP1

here, without problems, if the subpart can be treated as a variable which is expanded.
The process descriptionschaos, stop, e 7→ p, p1[]p2 are extended using the canonical function lifting. The phrases

skip, assignment, inputc? and outputc!a are newly introduced. Using the templates, behaviour preservation is
guaranteed without discharging explicitly any proof obligation. The result of applying the templates to the function
definitions is the following:

P2 : Process → P2

P2[[chaos]]s
4
= ⊥

P2[[stop]]s
4
= (∅, [ ], [ ], {(∅, ∅, ∅)})

P2[[e → p]]s
4
= φ(P1[[e → p]])

P2[[p1[]p2]]s
4
= let (R1, IN1, OUT1, S1) = P2[[p1]]s,

(R2, IN2, OUT2, S2) = P2[[p2]]s in
(R1 ∪R2, IN1[]mIN2, OUT1[]mOUT2, S1[]sS2)

P2[[skip]]s
4
= ({(s, ())}, [ ], [ ], {(∅, ∅, {√})})

P2[[x := e]]s
4
= ({(s†[x 7→ [[e]]s], ())}, [ ], [ ], {(∅, ∅, {√})})

P2[[c?]]s
4
= (∅, [c 7→ λv.({(s, v)}, [ ], [ ], {(∅, ∅, {√})})], [ ], {({c}, ∅, ∅)}

P2[[c!a]]s
4
= (∅, [ ], [c 7→ [[[a]]s 7→ ({(s, ())}, [ ], [ ], {(∅, ∅, {√})})], {(∅, {c}, ∅)}

The formulation ofP2[[p1[]p2]] does not correspond directly to the application of the template, but is semantically
equivalent and easier to read.

5.3 Extending the Domain Constraint

Again, we need to adapt the domain constraint to the new domainP2. The domain constraint presented in section 4.3
is simply extended by adding:

√ ∈
⋃
{π3(z)|z ∈ S1} ⇔ P(S × V ) 6= ∅

The constraint extension template is not used, since the two conditions from the first extension remain unchanged and
another condition has been added explicitly. Since the resulting set for process state transformations,P(S × V ), to
which the new constraint applies to, did not exist in the source language, the original constraint is preserved.

3rd Irish Workshop on Formal Methods, 1999 13



Modular Composition of Language Features through Extensions of Semantic Language Models

6 Related Work

Category theory and in particular monads (or Kleisli triples or just triples) are a recent, popular approach to modular
description and integration of language features [Mog91, Wad92, LH96]. A (Kleisli) triple is a collection of extension
operators on objects and morphisms of a category. A triple can describe a language feature, called notion of compu-
tation by Moggi, abstractly. Triples can be represented in categories. This corresponds to our semantics extensions
and their representation in algebras. A recent attempt to use monads in the description and extension of specification
languages is [CS97], where a customisable algebraic specification language is presented.

We have assumed a framework of sets and functions. This framework can be defined in terms of category theory
by the categorySet of sets and total functions. Category theory is a common mathematical framework to describe
language semantics. We have formulated this paper in terms of universal algebra since RSL is defined using a classical
denotational approach. A reformulation in terms of category theory is, though, possible.

The advantage of both approaches is that an abstract construct (our semantics extensions or monads) is provided
which is a concise description of a feature and which can be represented in a number of concrete structures. The
foundation of our semantics extensions is universal algebra, but a semantics extensions is a more specialised construct
than a (Kleisli) triple. The equivalence is included which is used to model an observability criterion to express property
preservation.

Refinement of software specifications and refinement of language descriptions share some properties. Both ap-
proaches to refinement are based on a notion of data refinement. In the area of language semantics, Riddle and Wallis
[RW97] have presented ideas similar to ours. There, a refinement relation between denotationally specified languages
is provided. The paper follows Schmidt’s textbook on denotational semantics [Sch86]. Riddle and Wallis see defi-
nitions of semantic functions as semantic equations and define a correctness preserving refinement relation based on
these equations.

Another algebraic approach can be found in [HJ98]. Algebraic theories are used to define a programming language
by describing properties of language operators through predicates in the theory. Theories are linked e.g. in the process
of refinement, expressed by functions. The subset relation is a straightforward relation. More general links include
links between disjoint domains, e.g. based on Galois connections.

7 Conclusions

We have presented an extension framework for the modular extension of languages and their models. This framework
allows a language designer to integrate denotationally specified language features. Our approach can be seen as part
of a framework for formal language engineering, which aims at flexible combination and integration of specification
languages. Languages can be customized for particular applications. The algebraic specification framework CoFI
(Common Framework Initiative) [Gro99] is an example. Our framework shows that a number of common integration
problems can be solved using an extension approach, i.e. starting with a basic language and adding or integrating new
features step by step.

One of the important characteristics of our approach is the formulation of the extension in an abstract, modular way
by using an operator called semantics extensions. Extension templates were introduced which allow us to discharge
proof obligations regarding the preservation of properties automatically. A notation based on extension templates was
provided to facilitate the use of the mathematical extension framework. The language designer is prevented from
rewriting definitions in extensions.

RSL was used as a realistic, non-trivial case study to show the applicability of our approach. RSL is a typical
example of a wide-spectrum specification language which made the integration of concurrency, state-based and modu-
larisation features necessary. A full formal definition of a language is normally not feasible, but certain central aspects,
such as the concurrency model for RSL and its connection to state-based features, can be investigated formally. Our
framework can be applied in the design phase of an integrated specification language to get insight and understanding
about the principles and mechanisms of the integration under investigation.

Extensions of the basic process model have already been presented in [Hen85], [HI93b], or [HI93a]. Using our
framework, we could prove that properties such as behaviour and domain constraints are preserved if Hennessy’s

3rd Irish Workshop on Formal Methods, 1999 14



Modular Composition of Language Features through Extensions of Semantic Language Models

acceptances model is extended by model-theoretic, state-based features to meet the requirement of the RAISE spec-
ification language5. We have dealt with this extension in a stepwise, modular way based on a selection of common
extension templates. An approach of integrating concurrency and state-based features alternative to the one pursued
by Bolignano and Debabi could have been taken. We could have started with an imperative model including states and
values, on which processes are added and then events are distinguished.

We could extend our framework by introducing a metalanguage to express properties of programs and also prop-
erties of the extension. This creates a notation between the languages to be specified and the extension framework as
presented so far. In [Pah98], we have presented a simple equational metalanguage. Extensions of this metalanguage
could include a predefined equivalence symbol to interpret the behaviour preservation criterion.

Considering the results, and in particular [Pah97], it appears that the extensions here can be carried out in parallel,
since they do not depend on each other. Extending in parallel means that a number of extensions are carried out on
the same basic model resulting in a set of extended models. Under certain conditions, these extensions can be merged
into one resulting model.

References

[ACM96] ACM. Workshop on Strategic Directions in Computing Research. MIT, Cambridge, Massachusetts, USA,
June 14-15, 1996. (http://www.acm.org/surveys/sdcr).

[BD92] D. Bolignano and M. Debabi. On the Foundations of the RAISE Specification Language Semantics. Tech-
nical report, ESPRIT project LACOS, 1992.

[Coh65] P.M. Cohn.Universal Algebra. Harper and Row Publishers, 1965.

[CS97] P. Cenciarelli and E. Saaman. Using Monads in Algebraic Specification. In2th Workshop on Algebraic
Development Technology (WADT97), Tarquinia, 1997.

[Geo91] C. George. The RAISE Specification Language – A Tutorial. In S. Prehn and W.J. Toetenel, editors,
VDM’91 – Formal Software Development Methods. Springer-Verlag, October 1991. LNCS 552.

[Grä68] G. Grätzer.Universal Algebra. D. van Nostrand Company, 1968.

[Gro92] The RAISE Language Group.The RAISE Specification Language. CRI A/S, Denmark, 1992.

[Gro99] The CoFI Working Group. CoFI: The Common Framework Initiative, http://www.brics.dk/Projects/CoFI/,
1999.

[Hen85] M. Hennessy. Acceptance Trees.Journal of the ACM, 32(4):896–928, October 1985.

[HI93a] M. Hennessy and A. Ing´olfsdóttir. A Theory of Communicating Processes with Value-Passing.Information
and Computation, 107(2), 1993.

[HI93b] M. Hennessy and A. Ing´olfsdóttir. Communicating Processes with Value-passing Assignments.Formal
Aspects of Computing, 3, 1993.

[HJ98] C.A.R. Hoare and H. Jifeng.Unified Theories of Programming. Prentice Hall, 1998.

[Hoa96] C.A.R. Hoare. Unified Theories of Programming. Working Material 3, International Summer School,
Marktoberdorf, 1996.

[Jon90] C.B. Jones.Systematic Software Development with VDM. Prentice Hall, 1990.

5Passing processes via channels is also introduced by Bolignano and Debabi (p. 19-24 in [BD92]). The approach proposed involves a dependence
of static and dynamic semantics. We have focussed here on dynamic semantics only.

3rd Irish Workshop on Formal Methods, 1999 15



Modular Composition of Language Features through Extensions of Semantic Language Models

[LH96] S. Liang and P. Hudak. Modular Denotational Semantics for Compiler Construction. In H.R. Nielson,
editor,Proceedings European Symposium on Programming ESOP’96. Springer-Verlag, LNCS 1058, 1996.

[Mog91] E. Moggi. Notions of Computation and Monads.Information and Computation, 93:55–92, 1991.

[Pah97] C. Pahl. An Investigation into Parallel Extensions of the Unix C-shell Interpreter Language. Technical
Report IT-TR:1997-015, Department of Information Technology, Technical University of Denmark, 1997.

[Pah98] C. Pahl. Facilitating Modular Property-PreservingExtensions of Programming Languages. In A. Butterfield
and S. Flynn, editors,Proc. 2nd Irish Workshop on Formal Methods, July 1998, Cork, Ireland, Electronic
Workshops in Computing. Springer-Verlag, 1998.

[RW97] S. Riddle and P. Wallis. Denotational Semantics and Refinement. In S. Flynn and G. O’Regan, editors,
Proc. 1st Irish Workshop on Formal Methods, July 1997, Dublin, Ireland. Springer-Verlag, 1997.

[Sch86] D.A. Schmidt.Denotational Semantics: A Methodology for Language Development. Wm.C. Brown Pub-
lishers, 1986.

[Wad92] P. Wadler. The essence of functional programming. InProc. 19th ACM Symp. on Principles of Program-
ming Languages, Austin, Texas, 1992. invited talk.

3rd Irish Workshop on Formal Methods, 1999 16


