35 research outputs found

    NASA Tech Briefs, April 1990

    Get PDF
    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences

    Laser Systems for Applications

    Get PDF
    This book addresses topics related to various laser systems intended for the applications in science and various industries. Some of them are very recent achievements in laser physics (e.g. laser pulse cleaning), while others face their renaissance in industrial applications (e.g. CO2 lasers). This book has been divided into four different sections: (1) Laser and terahertz sources, (2) Laser beam manipulation, (3) Intense pulse propagation phenomena, and (4) Metrology. The book addresses such topics like: Q-switching, mode-locking, various laser systems, terahertz source driven by lasers, micro-lasers, fiber lasers, pulse and beam shaping techniques, pulse contrast metrology, and improvement techniques. This book is a great starting point for newcomers to laser physics

    The 2nd International Conference on Mathematical Modelling in Applied Sciences, ICMMAS’19, Belgorod, Russia, August 20-24, 2019 : book of abstracts

    Get PDF
    The proposed Scientific Program of the conference is including plenary lectures, contributed oral talks, poster sessions and listeners. Five suggested special sessions / mini-symposium are also considered by the scientific committe

    Fractal analyses of some natural systems

    Get PDF
    Fractal dimensions are estimated by the box-counting method for real world data sets and for mathematical models of three natural systems. 1 he natural systems are nearshore sea wave profiles, the topography of Shei-pa National Park in Taiwan, and the normalised difference vegetation index (NDV1) image of a fresh fern. I he mathematical models which represent the natural systems utilise multi-frequency sinusoids for the sea waves, a synthetic digital elevation model constructed by the mid-point displacement method for the topography and the Iterated Function System (IFS) codes for the fern leaf. The results show that similar fractal dimensions are obtained for discrete sub-sections of the real and synthetic one-dimensional wave data, whilst different fractal dimensions are obtained for discrete sections of the real and synthetic topographical and fern data. The similarities and differences are interpreted in the context of system evolution which was introduced by Mandelbrot (1977). Finally, the results for the fern images show that use of fractal dimensions can successfully separate void and filled elements of the two-dimensional series

    Planning and control of robotic manipulation actions for extreme environments

    Get PDF
    A large societal and economic need arises for advanced robotic capabilities, where we need to perform complex human-like tasks such as tool-use, in environments that are hazardous for human workers. This thesis addresses a collection of problems, which arise when robotic manipulators must perform complex tasks in cluttered and constrained environments. The work is illustrated by example scenarios of robotic tool use, grasping and manipulating, motivated by the challenges of dismantling operations in the extreme environments of nuclear decommissioning Contrary to popular assumptions, legacy nuclear facilities (which can date back three-quarters of a century in the UK) can be highly unstructured and uncertain environments, with insufficient a-priori information available for e.g. conventional pre-programming of robot tasks. Meanwhile, situational awareness and direct teleoperation can be extremely difficult for human operators working in a safe zone that is physically remote from the robot. This engenders a need for significant autonomous capabilities. Robots must use vision and sensory systems to perceive their environment, plan and execute complex actions on complex objects in cluttered and constrained environments. Significant radiation, of different types and intensities, provides further challenges in terms of sensor noise. Perception uncertainty can also result from e.g. vision systems observing shiny featureless metal structures. Robotic actions therefore need to be: i) planned in ways that are robust to uncertainties; and ii) controlled in ways which enable the robust reaction to disturbances. In particular, we investigate motion planning and control in tasks where the robot must: maintain contact while moving over arbitrarily shaped surfaces with end-effector tools; exert forces and withstand perturbations during forceful contact actions; while also avoiding collisions with obstacles; avoiding singularity configurations; and increasing robustness by maximising manipulability during task execution. Furthermore, we consider the issues of robust planning and control with respect to uncertain information, derived from noisy sensors in challenging environments. We explore the Riemannian geometry and robot's manipulability to yield path planners that produce paths for both fixed-based and floating-based robots, whose tools always stay in contact with the object's surface. Our planners overcome disturbances in the perception and account for robot/environment interactions that may demand unexpected forces. The task execution is entrusted to a hybrid force/motion controller whose motion space behaves with compliance to accommodate unexpected stiffness changes throughout the contact. We examine the problem of grasping a tool for performing a task. Firstly, we introduce a method for selecting the grasp candidate onto an object yielding collision-free motion for the robot in the post-grasp movements. Furthermore, we study the case of a dual-arm robot performing full-force tasks on an object and slippage on the grasping is allowed. We account for the slippage throughout the task execution using a novel controller based on the sliding mode controllers

    Acoustic Waves

    Get PDF
    The concept of acoustic wave is a pervasive one, which emerges in any type of medium, from solids to plasmas, at length and time scales ranging from sub-micrometric layers in microdevices to seismic waves in the Sun's interior. This book presents several aspects of the active research ongoing in this field. Theoretical efforts are leading to a deeper understanding of phenomena, also in complicated environments like the solar surface boundary. Acoustic waves are a flexible probe to investigate the properties of very different systems, from thin inorganic layers to ripening cheese to biological systems. Acoustic waves are also a tool to manipulate matter, from the delicate evaporation of biomolecules to be analysed, to the phase transitions induced by intense shock waves. And a whole class of widespread microdevices, including filters and sensors, is based on the behaviour of acoustic waves propagating in thin layers. The search for better performances is driving to new materials for these devices, and to more refined tools for their analysis

    Proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress

    Get PDF
    Published proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress, hosted by York University, 27-30 May 2018

    Pre-processing, classification and semantic querying of large-scale Earth observation spaceborne/airborne/terrestrial image databases: Process and product innovations.

    Get PDF
    By definition of Wikipedia, “big data is the term adopted for a collection of data sets so large and complex that it becomes difficult to process using on-hand database management tools or traditional data processing applications. The big data challenges typically include capture, curation, storage, search, sharing, transfer, analysis and visualization”. Proposed by the intergovernmental Group on Earth Observations (GEO), the visionary goal of the Global Earth Observation System of Systems (GEOSS) implementation plan for years 2005-2015 is systematic transformation of multisource Earth Observation (EO) “big data” into timely, comprehensive and operational EO value-adding products and services, submitted to the GEO Quality Assurance Framework for Earth Observation (QA4EO) calibration/validation (Cal/Val) requirements. To date the GEOSS mission cannot be considered fulfilled by the remote sensing (RS) community. This is tantamount to saying that past and existing EO image understanding systems (EO-IUSs) have been outpaced by the rate of collection of EO sensory big data, whose quality and quantity are ever-increasing. This true-fact is supported by several observations. For example, no European Space Agency (ESA) EO Level 2 product has ever been systematically generated at the ground segment. By definition, an ESA EO Level 2 product comprises a single-date multi-spectral (MS) image radiometrically calibrated into surface reflectance (SURF) values corrected for geometric, atmospheric, adjacency and topographic effects, stacked with its data-derived scene classification map (SCM), whose thematic legend is general-purpose, user- and application-independent and includes quality layers, such as cloud and cloud-shadow. Since no GEOSS exists to date, present EO content-based image retrieval (CBIR) systems lack EO image understanding capabilities. Hence, no semantic CBIR (SCBIR) system exists to date either, where semantic querying is synonym of semantics-enabled knowledge/information discovery in multi-source big image databases. In set theory, if set A is a strict superset of (or strictly includes) set B, then A B. This doctoral project moved from the working hypothesis that SCBIR computer vision (CV), where vision is synonym of scene-from-image reconstruction and understanding EO image understanding (EO-IU) in operating mode, synonym of GEOSS ESA EO Level 2 product human vision. Meaning that necessary not sufficient pre-condition for SCBIR is CV in operating mode, this working hypothesis has two corollaries. First, human visual perception, encompassing well-known visual illusions such as Mach bands illusion, acts as lower bound of CV within the multi-disciplinary domain of cognitive science, i.e., CV is conditioned to include a computational model of human vision. Second, a necessary not sufficient pre-condition for a yet-unfulfilled GEOSS development is systematic generation at the ground segment of ESA EO Level 2 product. Starting from this working hypothesis the overarching goal of this doctoral project was to contribute in research and technical development (R&D) toward filling an analytic and pragmatic information gap from EO big sensory data to EO value-adding information products and services. This R&D objective was conceived to be twofold. First, to develop an original EO-IUS in operating mode, synonym of GEOSS, capable of systematic ESA EO Level 2 product generation from multi-source EO imagery. EO imaging sources vary in terms of: (i) platform, either spaceborne, airborne or terrestrial, (ii) imaging sensor, either: (a) optical, encompassing radiometrically calibrated or uncalibrated images, panchromatic or color images, either true- or false color red-green-blue (RGB), multi-spectral (MS), super-spectral (SS) or hyper-spectral (HS) images, featuring spatial resolution from low (> 1km) to very high (< 1m), or (b) synthetic aperture radar (SAR), specifically, bi-temporal RGB SAR imagery. The second R&D objective was to design and develop a prototypical implementation of an integrated closed-loop EO-IU for semantic querying (EO-IU4SQ) system as a GEOSS proof-of-concept in support of SCBIR. The proposed closed-loop EO-IU4SQ system prototype consists of two subsystems for incremental learning. A primary (dominant, necessary not sufficient) hybrid (combined deductive/top-down/physical model-based and inductive/bottom-up/statistical model-based) feedback EO-IU subsystem in operating mode requires no human-machine interaction to automatically transform in linear time a single-date MS image into an ESA EO Level 2 product as initial condition. A secondary (dependent) hybrid feedback EO Semantic Querying (EO-SQ) subsystem is provided with a graphic user interface (GUI) to streamline human-machine interaction in support of spatiotemporal EO big data analytics and SCBIR operations. EO information products generated as output by the closed-loop EO-IU4SQ system monotonically increase their value-added with closed-loop iterations
    corecore