2,326 research outputs found

    The State-of-the-art of Coordinated Ramp Control with Mixed Traffic Conditions

    Get PDF
    Ramp metering, a traditional traffic control strategy for conventional vehicles, has been widely deployed around the world since the 1960s. On the other hand, the last decade has witnessed significant advances in connected and automated vehicle (CAV) technology and its great potential for improving safety, mobility and environmental sustainability. Therefore, a large amount of research has been conducted on cooperative ramp merging for CAVs only. However, it is expected that the phase of mixed traffic, namely the coexistence of both human-driven vehicles and CAVs, would last for a long time. Since there is little research on the system-wide ramp control with mixed traffic conditions, the paper aims to close this gap by proposing an innovative system architecture and reviewing the state-of-the-art studies on the key components of the proposed system. These components include traffic state estimation, ramp metering, driving behavior modeling, and coordination of CAVs. All reviewed literature plot an extensive landscape for the proposed system-wide coordinated ramp control with mixed traffic conditions.Comment: 8 pages, 1 figure, IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE - ITSC 201

    Vision-Based Lane-Changing Behavior Detection Using Deep Residual Neural Network

    Get PDF
    Accurate lane localization and lane change detection are crucial in advanced driver assistance systems and autonomous driving systems for safer and more efficient trajectory planning. Conventional localization devices such as Global Positioning System only provide road-level resolution for car navigation, which is incompetent to assist in lane-level decision making. The state of art technique for lane localization is to use Light Detection and Ranging sensors to correct the global localization error and achieve centimeter-level accuracy, but the real-time implementation and popularization for LiDAR is still limited by its computational burden and current cost. As a cost-effective alternative, vision-based lane change detection has been highly regarded for affordable autonomous vehicles to support lane-level localization. A deep learning-based computer vision system is developed to detect the lane change behavior using the images captured by a front-view camera mounted on the vehicle and data from the inertial measurement unit for highway driving. Testing results on real-world driving data have shown that the proposed method is robust with real-time working ability and could achieve around 87% lane change detection accuracy. Compared to the average human reaction to visual stimuli, the proposed computer vision system works 9 times faster, which makes it capable of helping make life-saving decisions in time

    An integrated method for short-term prediction of road traffic conditions for intelligent transportation systems applications

    Get PDF
    The paper deals with the short-term prediction of road traffic conditions within Intelligent Transportation Systems applications. First, the problem of traffic modeling and the potential of different traffic monitoring technologies are discussed. Then, an integrated method for short-term traffic prediction is presented, which integrates an Artificial Neural Network predictor that forecasts future states in standard conditions, an anomaly detection module that exploits floating car data to individuate possible occurrences of anomalous traffic conditions, and a macroscopic traffic model that predicts speeds and queue progressions in case of anomalies. Results of offline applications on a primary Italian motorway are presented

    Autonomous detection and anticipation of jam fronts from messages propagated by inter-vehicle communication

    Get PDF
    In this paper, a minimalist, completely distributed freeway traffic information system is introduced. It involves an autonomous, vehicle-based jam front detection, the information transmission via inter-vehicle communication, and the forecast of the spatial position of jam fronts by reconstructing the spatiotemporal traffic situation based on the transmitted information. The whole system is simulated with an integrated traffic simulator, that is based on a realistic microscopic traffic model for longitudinal movements and lane changes. The function of its communication module has been explicitly validated by comparing the simulation results with analytical calculations. By means of simulations, we show that the algorithms for a congestion-front recognition, message transmission, and processing predict reliably the existence and position of jam fronts for vehicle equipment rates as low as 3%. A reliable mode of operation already for small market penetrations is crucial for the successful introduction of inter-vehicle communication. The short-term prediction of jam fronts is not only useful for the driver, but is essential for enhancing road safety and road capacity by intelligent adaptive cruise control systems.Comment: Published in the Proceedings of the Annual Meeting of the Transportation Research Board 200

    Dynamic OD transit matrix estimation: formulation and model-building environment

    Get PDF
    The aim of this paper is to provide a detailed description of a framework for the estimation of time-sliced origin-destination (OD) trip matrices in a transit network using counts and travel time data of Bluetooth Smartphone devices carried by passengers at equipped transit-stops. A Kalman filtering formulation defined by the authors has been included in the application. The definition of the input for building the space-state model is linked to network scenarios modeled with the transportation planning platform EMME. The transit assignment framework is optimal strategy-based, which determines the subset of paths related to the optimal strategies between all OD pairsPeer ReviewedPostprint (author’s final draft

    Integrated Approach for Diversion Route Performance Management during Incidents

    Get PDF
    Non-recurrent congestion is one of the critical sources of congestion on the highway. In particular, traffic incidents create congestion in unexpected times and places that travelers do not prepare for. During incidents on freeways, route diversion has been proven to be a useful tactic to mitigate non-recurrent congestion. However, the capacity constraints created by the signals on the alternative routes put limits on the diversion process since the typical time-of-day signal control cannot handle the sudden increase in the traffic on the arterials due to diversion. Thus, there is a need for proactive strategies for the management of the diversion routes performance and for coordinated freeway and arterial (CFA) operation during incidents on the freeway. Proactive strategies provide better opportunities for both the agency and the traveler to make and implement decisions to improve performance. This dissertation develops a methodology for the performance management of diversion routes through integrating freeway and arterials operation during incidents on the freeway. The methodology includes the identification of potential diversion routes for freeway incidents and the generation and implementation of special signal plans under different incident and traffic conditions. The study utilizes machine learning, data analytics, multi-resolution modeling, and multi-objective optimization for this purpose. A data analytic approach based on the long short term memory (LSTM) deep neural network method is used to predict the utilized alternative routes dynamically using incident attributes and traffic status on the freeway and travel time on both the freeway and alternative routes during the incident. Then, a combination of clustering analysis, multi- resolution modeling (MRM), and multi-objective optimization techniques are used to develop and activate special signal plans on the identified alternative routes. The developed methods use data from different sources, including connected vehicle (CV) data and high- resolution controller (HRC) data for congestion patterns identification at the critical intersections on the alternative routes and signal plans generation. The results indicate that implementing signal timing plans to better accommodate the diverted traffic can improve the performance of the diverted traffic without significantly deteriorating other movements\u27 performance at the intersection. The findings show the importance of using data from emerging sources in developing plans to improve the performance of the diversion routes and ensure CFA operation with higher effectiveness

    Parameter estimation for stochastic hybrid model applied to urban traffic flow estimation

    Get PDF
    This study proposes a novel data-based approach for estimating the parameters of a stochastic hybrid model describing the traffic flow in an urban traffic network with signalized intersections. The model represents the evolution of the traffic flow rate, measuring the number of vehicles passing a given location per time unit. This traffic flow rate is described using a mode-dependent first-order autoregressive (AR) stochastic process. The parameters of the AR process take different values depending on the mode of traffic operation – free flowing, congested or faulty – making this a hybrid stochastic process. Mode switching occurs according to a first-order Markov chain. This study proposes an expectation-maximization (EM) technique for estimating the transition matrix of this Markovian mode process and the parameters of the AR models for each mode. The technique is applied to actual traffic flow data from the city of Jakarta, Indonesia. The model thus obtained is validated by using the smoothed inference algorithms and an online particle filter. The authors also develop an EM parameter estimation that, in combination with a time-window shift technique, can be useful and practical for periodically updating the parameters of hybrid model leading to an adaptive traffic flow state estimator
    • …
    corecore