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ABSTRACT OF THE DISSERTATION 

 

INTEGRATED APPROACH FOR DIVERSION ROUTE PERFORMANCE 

MANAGEMENT DURING INCIDENTS 

by 

Rajib Chandra Saha 

Florida International University, 2021 

Miami, Florida 

Professor Mohammed Hadi, Major Professor 

Non-recurrent congestion is one of the critical sources of congestion on the 

highway.  In particular, traffic incidents create congestion in unexpected times and places 

that travelers do not prepare for. During incidents on freeways, route diversion has been 

proven to be a useful tactic to mitigate non-recurrent congestion. However, the capacity 

constraints created by the signals on the alternative routes put limits on the diversion 

process since the typical time-of-day signal control cannot handle the sudden increase in 

the traffic on the arterials due to diversion. Thus, there is a need for proactive strategies for 

the management of the diversion routes performance and for coordinated freeway and 

arterial (CFA) operation during incidents on the freeway. Proactive strategies provide 

better opportunities for both the agency and the traveler to make and implement decisions 

to improve performance.  

This dissertation develops a methodology for the performance management of 

diversion routes through integrating freeway and arterials operation during incidents on the 

freeway. The methodology includes the identification of potential diversion routes for 
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freeway incidents and the generation and implementation of special signal plans under 

different incident and traffic conditions. The study utilizes machine learning, data 

analytics, multi-resolution modeling, and multi-objective optimization for this purpose. A 

data analytic approach based on the long short-term memory (LSTM) deep neural network 

method is used to predict the utilized alternative routes dynamically using incident 

attributes and traffic status on the freeway and travel time on both the freeway and 

alternative routes during the incident. Then, a combination of clustering analysis, multi-

resolution modeling (MRM), and multi-objective optimization techniques are used to 

develop and activate special signal plans on the identified alternative routes. The developed 

methods use data from different sources, including connected vehicle (CV) data and high-

resolution controller (HRC) data for congestion patterns identification at the critical 

intersections on the alternative routes and signal plans generation. The results indicate that 

implementing signal timing plans to better accommodate the diverted traffic can improve 

the performance of the diverted traffic without significantly deteriorating other movements' 

performance at the intersection. The findings show the importance of using data from 

emerging sources in developing plans to improve the performance of the diversion routes 

and ensure CFA operation with higher effectiveness. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Background 

Non-recurrent congestion is one of the critical sources of congestion on the 

highway. Traffic incidents create congestion in unexpected times and places that travelers 

do not prepare for. A national statistic indicated that around 25% of total congestion occurs 

due to traffic incidents (FHWA, 2012). Incidents reduce the capacity of the highway 

(HCM, 2016) by creating bottlenecks that cause additional delays to traffic. For example, 

a lane blockage for a minute was estimated to result in 4-10 minutes of travel delay 

(FHWA, 2012). Moreover, the traffic incidents cause secondary crashes (FHWA, 2009), 

increase fuel consumption, and contribute to air pollution (Yazici et al., 2018).  

An incident on a route has the potential to create havoc on the whole corridor or 

system, including the incident impacted route. In order to efficiently manage the incident 

and restoring traffic conditions to normal, traffic incident management (TIM) plays a 

crucial role. Reduction in congestion through better management of incidents has 

numerous benefits, including reducing travel times, smoothing the traffic flow, increasing 

average fuel economy, shortening the rush hour period, and reducing vehicle queuing 

(Mazzenga and Demetsky, 2009).  

TIM is the process of managing multi-agency activities in response to highway 

traffic disruptions. Efficient and coordinated management of incidents is critical to 

reducing their adverse impacts on safety, traffic operations, and the local economy 

(FHWA, 2000). TIM includes a variety of incident management strategies to mitigate the 

effects of the incident on the network. These strategies involve real-time decision making 
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under uncertain and rapidly changing conditions. Transportation agencies utilize cutting-

edge intelligent transportation systems (ITS) tools and real-time traffic data in decision 

making. Some of the strategies that agencies currently apply are Advanced Traveler 

Information System (ATIS) and Advanced Traffic Management Systems (ATMS), with 

Active Traffic Management (ATM) and so on. 

The ATIS provides travelers with travel time, routing, and other trip information or 

guidance, which helps the traveler make an informed decision about route choice or 

departure decision. ATMS offers a significant opportunity to reduce the impact of the 

incident by reducing incident and lane blockage duration, coordinating incident response 

activities, and managing route diversion during incidents. ATM dynamically manages the 

congestion following a continuous process from collecting and analyzing traffic data to 

selecting and implementing the best strategies. An ideal system comprising these strategies 

uses prevalent traffic data to predict the near future and suggests a control plan based on 

the prediction to maximize the effectiveness and efficiency of the network (Kurzhanskiy 

and Varaiya, 2010). Although incident management by itself is a successful tool to reduce 

congestion, combining it with traffic signal control strategies is expected to improve the 

performance significantly (Texas Transportation Institute, 2003). 

Traffic incident management coupled with a sound understanding of the incident 

characteristics provides agencies a vantage point to manage the traffic at the corridor level. 

Moreover, understanding the nexus between freeways and arterial streets operation and 

signal control during the incident facilitates the efficient operation of existing facilities with 

improved performance throughout the corridor. 
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1.2 Problem Statement 

Incident attributes such as incident duration, number of blocked lanes, incident 

severity, and incident location on the freeway have a considerable effect on vehicles' shift 

to alternative routes. Alternative routes can include other freeways, major parallel arterials, 

and frontage roads connected with the impacted freeway through arterials, ramps, etc. 

These connectors facilitate the detour operation of the vehicle during the incident. 

During major incidents, route diversion has been proven to be a useful tactic. The 

provision of real-time information has the potential to trigger or increase the diversion 

under incident conditions (Mahmassani, 2001; Ben-Akiva et al., 2002) and consequently 

has the potential to reduce the overall travel time in the entire network. The success of this 

technique depends on the proportion of the drivers’ compliance with the diversion and the 

resulting impacts on the alternative routes.  A previous study noted that the best network 

performance occurs with the driver compliance rates between 50 and 60% (Dia and 

Cottman, 2006).  However, this number seems to be high and is expected to be influenced 

by the conditions on the freeway and the alternative routes.  Developing alternate routing 

plans and strategies for a coordinated operation have become increasingly vital components 

to realize the diversion's benefits.  

One of the crucial factors for effective coordinated strategies is estimating the 

diverted traffic due to the incident. Based on the stated preference surveys, the estimated 

diversion is somewhat between 40% and 70% of freeway traffic exiting the freeway ahead 

of an incident location (Barfield et al., 1989; Benson, 1996; Khattak et al., 1993; Al-Deek 

et al., 2009). However, when predicting utilizing field detector data, the estimated 

percentages were found to be between 5% and 25% based on the incident characteristics 



4 

 

(Hadi et al., 2013; Tariq et al., 2019). The resulting congestion on the alternative routes 

discourages drivers from diverting, resulting in lower percentages of diversion (Khattak et 

al., 1992). A recent study of diversion based on detector data infers that the capacity of the 

signals constrains the diversion at the off-ramps during the periods. The study indicates the 

need for special signal control plans during incidents to increase the capacity of the off-

ramps and adjacent signals leading to the primary parallel routes (Tariq et al., 2019). 

Therefore, a CFA operation is necessary to accommodate the additional traffic on 

the alternative routes and concurrently manage the traffic jointly on the freeway and arterial 

with improved mobility, reliability, and safety. Such coordination should utilize effective 

and timely signal timing plans to accommodate the diversion. The wrong identification of 

the incident status and predictions of impacts may lead to switching green to non-deserving 

movements, which, in turn, causes unnecessary delays to other movements. At 

intersections with high traffic demands, the consequence of the wrong detection of incident 

status could be severe (Ahmed and Hawas, 2015). Implementing the wrong response 

during the incident could also worsen congestion on the directly impacted freeway and its 

surrounding highway network (Wirtz et al., 2005). 

Proactive strategies are more effective in managing the impact of diversion 

compared to reactive strategies. Proactive strategies will give better opportunities for both 

the agency and the traveler to make and implement more effective decisions. The Active 

Transportation and Demand Management (ATDM) approach of FHWA advocates 

proactive strategies for preventing or delaying breakdown conditions, improving safety, 

promoting sustainable modes, reducing emissions, or maximizing system efficiency 

(FHWA, 2021). 
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The formulation and implementation of proactive strategies require supportive real-

time data in high resolution. The existing data collection technologies such as Bluetooth 

readers, Wi-Fi, INRIX, and HERE act as good sources. Besides, Connected Vehicle (CV) 

serves as an additional real-time data source. The high-resolution controller (HRC) data 

has the potential to produce better performance measures of the traffic control system. 

These new data sources undoubtedly provide a new opportunity for proactive strategies. 

Inspired by the availability of a plethora of real-time and archived data and 

modeling tools, this research focuses on the support of coordinated, proactive strategies 

using data analytics, predictive methods, and modeling, consequently estimating the 

benefits of implementing the new management plans. This research provides a feasible 

framework for coordinated operation of the freeway and arterial during the incident using 

existing data sources.  

1.3 Research Objectives 

The primary goal of this research effort is to develop a method for the management 

of diversion route performance during incidents utilizing the abundance of data from 

multiple sources through harnessing the power of machine learning combined with 

modeling.  The models and methods developed in the study can be incorporated as part of 

decision support systems (DSS) to manage the traffic proactively during incidents on the 

freeway.  In this regard, the main objectives of this research are listed below. 

• Develop a method for predicting the critical routes utilized by motorists during 

incidents and the associated traffic and incident conditions under which the 

diversion occurs due to the incident on the freeway. 
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• Develop a method for generating special signal timing plans and estimate the 

benefits of activating those plans to mitigate the deterioration in the 

performance of the movements of critical route intersections due to diversion. 

• Estimate the benefits of utilizing new data sources (i.e., CV and HRC) as part 

of the methodology to support traffic management in the network. 

This research is conducted recognizing that the methodologies currently available 

to plan, design, and implement detour operation during incidents on the freeway are static 

and do not consider many influencing dynamic variables such as incidents attributes, traffic 

attributes, time of day, and existing control. On the other hand, currently considered DSS 

for coordinated operation of freeway and arterials during incidents are based on the online 

simulation that many agencies do not have resources or are not comfortable with. The 

research considers that most of the intersections on arterial streets are operated under time-

of-day (TOD) control. The TOD plans are developed based on what are considered normal 

day conditions and thus cannot handle the sudden demand surges due to diversion. The 

objectives of this study are set to resolve these issues and to provide a dynamic, proactive, 

and easily implementable DSS for CFA operation during the incidents in the freeway. 

Moreover, the study provides a new perspective of the usage of data obtained from various 

imminent technologies such as CV and HRC for traffic management during incidents. 

1.4 Research Organization 

This dissertation includes a total of six chapters as follows. Chapter II provides a 

comprehensive literature review related to this research. Chapter III presents the 

methodology used to achieve the stated objectives. The data preparation process is 
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described in Chapter IV, and model application and results are discussed in Chapter V. The 

last chapter summarizes the findings and provides recommendations.   
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CHAPTER II 

LITERATURE REVIEW 

 

The literature review presented in this chapter covers three main areas; the first 

section covers the impact of incidents and incident management, the second section 

reviews the modeling of incidents and traffic signal control during incidents. The last 

section addresses the use of CV and HRC data for traffic management. Gaps in the existing 

studies and methods for the analyses are identified in this chapter through detailed literature 

reviews. 

2.1 Impacts of Incident 

 An incident is a stochastic event that creates not only personal losses but also 

operational hazards. Incidents obstruct the normal traffic flow by blocking the shoulder or 

lane(s) and thus reducing the capacity. The resulting impacts may not be limited to the 

location of the incident but can have a substantial influence over the entire corridor that 

includes the alternative routes. Traffic incidents are significant sources of delay, system 

unreliability, and efficiency in the corridor.  

 Lane blockage due to the incident produces a temporary bottleneck by reducing the 

capacity of the impacted section of the road. This reduction in capacity is not linearly 

related to the number of blocked lanes. For example, with the blockage of one lane out of 

three travel lanes, the capacity reduction is not 33%.  A study by Smith et al. (2003) on the 

reduction in freeway capacity due to incidents found 63% capacity reduction for one out 

of three lanes blocked and 77% reduction for two out of three lanes blocked. The highway 

capacity manual (HCM, 2016) recommended specific capacity reduction factors due to the 

lane blockages. Table 2-1 shows the capacity adjustment factors (CAFs) for different levels 
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of lane lockage considering the total number of lanes in the facility. According to HCM 

2016, for one lane blockage out of three lanes, the CAF is 0.74, and for two lanes, blockage 

out of three lanes is 0.52.  

Table 2-1: CAFs by Incident Type and Number of Directional Lanes on the Facility 

Directional  

Lanes 

No  

Incident 

Shoulder  

Closed 

One 

Lane  

Closed 

Two 

Lanes  

Closed 

Three 

Lanes  

Closed 

Four 

Lanes  

Closed 

2 1 0.81 0.71 N/A N/A N/A 

3 1 0.83 0.74 0.51 N/A N/A 

4 1 0.85 0.77 0.5 0.52 N/A 

5 1 0.87 0.81 0.67 0.5 0.5 

6 1 0.89 0.85 0.75 0.52 0.52 

7 1 0.91 0.88 0.8 0.63 0.63 

8 1 0.93 0.89 0.84 0.66 0.66 

A study using real-world incident scenarios on four-lane freeways in Maryland and 

Northern Virginia found that the available capacity reduces to 70% of the original capacity 

in the cases of one-lane closure. For two lanes closure and three lanes closure scenarios, 

the capacity was reduced to 36% and 17% of the original capacity, respectively. The study 

analyzed a total of fifty-one incidents from Maryland and Northern Virginia and suggested 

that changes in driver behaviors and distractions are contributing factors besides the 

physical blockage of the lanes to capacity reduction (Masghati-Amoli et al., 2015). 

Another empirical study using real-world data found that the maximum throughput 

of the incident location is roughly 50% lower than the flow that could be obtained on the 

same number of lanes without an incident. In addition to the blockage of the lane, the study 

indicated two behavioral reasons for this reduction: rubbernecking to watch the crash and 

lowering the speed to respect the workers' presence. The study also found a high average 
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discharge headway (3 seconds) at the incident location compare to typical headway (1.6 

seconds) (Knoop et al., 2008). 

 The reduction in capacity can result in delays to the users and produce queues on 

the roadway. The increase in delay continues even after the elapsed time of the incident 

(Pan et al., 2013). The delay varies by the categories of the incidents (Wang et al., 2008). 

For major incidents, with durations longer than 60 minutes, one incident can cause 2,500-

5,000 veh-hours of delay (Martin et al., 2011). An injury collision typically results in a 

very long delay on freeways. In this case, the delay can be 274% of the delay caused by a 

non-injury collision and more than 19 times the delay from a disabled vehicle incident 

(Wang et al., 2008). 

Travel time reliability (TTR) is frequently used to estimate the performance of the 

freeway, in addition to the average travel time and delay. Intuitively, the incident has an 

enormous impact on travel time reliability. To quantify the impact, Wright et al. (2015) did 

an empirical analysis of the travel time reliability on the freeway considering the impacts 

of the incidents. The travel time variability, buffer index, and the probability of freeway 

segment traffic breakdown were estimated after the incident and compared with those 

during normal conditions. Single lane, multilane, and shoulder blockages were considered 

for the impact analysis. The study indicated that all types of incidents impact travel time 

reliability, although multiple lane blockage incidents have the highest impacts on travel 

time reliability. 

 Another study by Hojati et al. (2016) determined that the TTR is impacted by 

incident attributes such as the duration, the ratio of flow during the incident to recurrent 

flow, multiple vehicles involved, and more than one lane blocked. 
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 The incidents on the freeway are also responsible for the occurrence of secondary 

incidents. A study conducted in Minnesota showed that thirteen percent of all peak-hour 

crashes are the result of a previous incident (Martin et al., 2011). Several factors, such as 

primary incident type, primary incident lane-blockage duration, time of day, and weather, 

have significant effects on the likelihood of a secondary incident (Zhan et al., 2009). 

Secondary incidents are more likely to occur if the primary incident lasts long; at the same 

time, the duration of primary incidents is expected to be longer if secondary incidents occur 

(Khattak et al., 2011). Sometimes primary incident causes multiple secondary incidents. 

Other than safety impacts, the secondary incidents cause additional delays to the traffic.  A 

study by Khattak et al. (2011) estimated a further 3% delay due to the secondary incident 

in the Hampton Roads area, Virginia. 

2.2 Traffic Incident Management Operation 

 Since the incident deteriorates the performance of the roadway, multiple agencies 

work jointly to manage the incident and curb the effects of the incident from spreading 

over the entire corridor. Managing the incident involves a series of activities carried out by 

different agencies and organizations. These activities may not be performed sequentially. 

The following are the detailed process of incident management described in the Freeway 

Management and Operations Handbook (Neudorff et al., 2003).  

 Detection: An incident comes to the attention of the agency or agencies responsible 

for maintaining traffic flow and safe operations on the facility.  

 Verification: Incident is verified along with other relevant information such as 

exact location, type, etc. A proper initial response team is dispatched based on the incident.  
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 Motorist Information: Various incident-related information is disseminated via 

available media as soon as possible to the affected motorist to make them aware of the 

situation. 

 Response: Incident response includes dispatching the appropriate personnel and 

equipment and activating the appropriate communication links and motorist information 

media as soon as there is reasonable certainty that an incident is present.  

 Site Management: Site management involves effectively coordinating and 

managing on-scene resources for ensuring the safety of response personnel, incident 

victims, and other motorists.  

 Traffic Management: Traffic management involves applying traffic control 

measures in areas affected by an incident. Traffic management includes ensuring the 

availability of traffic control equipment and materials, knowledge of available fixed traffic 

control resources, and, most importantly, alternate route planning.  

 Clearance: Incident clearance is the process of removing the wreckage, debris, or 

any other element that disrupts the normal flow of traffic or forces lane closures and 

restoring the roadway capacity to its pre-incident condition.  

 Recovery: Recovery consists of restoring traffic flow to its normal condition at the 

site of the traffic incident. It encompasses the activities of site management, traffic 

management, and clearance. Traffic operations centers facilitate the recovery by managing 

the network-wide effects of traffic incidents and thus hastening recovery. 

 Figure 2-1 presents a timeline of the stages of the traffic incident management 

process. The traffic management and motorist information begin just after the detection of 
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the incidents. To restore the normal flow after the incident, traffic management, including 

recovery methods, plays a crucial role.  

 

Figure 2-1: Timeline of Stages in the Traffic Incident Management Process (Source: 

Neudorff, et al., 2003) 

 A study by Martin et al. (2011) on freeway incident management using Vissim 

simulation in Utah identified the following factors for successful traffic management 

during the incident. 

 i. If the location of the incident does not allow a good choice of alternate routes, 

providing only information to the drivers does not help reduce delay; some other 

management measures can help in that case.  

 ii. Alternate routes along freeways during incidents offer lower travel times and 

lower network-wide delays compare to the incident impacted routes. 
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 iii. If the alternate routes are arterial streets, traffic management strategies should 

be applied to these streets, especially for major freeway incidents (duration more than 60 

minutes and level of closure greater than 50%).  

 A detour operation is a process that encourages traffic to take alternative routes to 

avoid incidents. Ng et al. (1995) analyzed a survey result which showed that the most 

common reason for choosing an alternative route is a crash (86% of the respondents to the 

survey), followed by road construction (79%), high traffic demands (71%), and time-

saving by rerouting (49%). Understanding the importance of alternative routes, agencies 

have developed detour operation guidelines to better manage traffic considering diversion. 

2.3 Detour Operation 

 Alternate route plans support the agency’s goal of improved mobility and safety. 

An alternate route provides additional capacity to the primary route traffic and allows 

vehicles to circumvent the congested location. A study by Lin and Kou (2003) validated 

the importance of alternative route operations in response to a major freeway incident in 

terms of travel time benefits. 

 The Alternate Route Handbook (2006) provides comprehensive and general 

guidelines on planning and executing the detour operations involving various stakeholder 

agencies. According to this document, the key factors to consider for detour operation 

include the incident duration, the number of lanes blocked, the observed traffic conditions, 

the time of day, the day of the week, the capacity of the proposed alternative routes, and 

traffic status (Dunn Engineering Associates, 2006). Table 2-2 summarizes the criteria used 

in 2006 in several states to decide whether to execute the predeveloped alternate route plan.  
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Table 2-2: Criteria for Deciding Detour Operation (Source: Alternate Round 

Handbook, 2006) 

Agency Criteria 

North Carolina 

DOT 

- Main Office 

Complete closure of the highway in either direction is anticipated 

for fifteen minutes or longer. 

North Carolina 

DOT 

- Charlotte 

Regional Office 

No action or discussion occurs until fifteen minutes after the 

incident. An alternate route plan is deployed only after fifteen 

minutes if the highway is completely closed (all lanes closed, 

including the shoulder), and closure is expected to last at least an 

additional fifteen minutes (thirty minutes total). 

New Jersey DOT Level 1: Lane closures on a State highway that are expected to have 

a prolonged duration and impact on traffic. 

Level 2: Complete closure of a highway that is anticipated to last 

more than ninety minutes. 

Oregon DOT Incident with two or more lanes blocked, or incident with one lane 

blocked and expected to last more than twenty minutes. 

New York State 

DOT Region-1 

Detour operation will be implemented only when the highway is 

completely closed. It will not be implemented if at least one lane 

(or even the shoulder) is open. 

Florida DOT  

District IV 
Two or more lanes are blocked for at least two hours. 

ARTIMIS 

(Ohio/Kentucky) 

This plan has a detailed table with four different table levels, based 

on some different criteria, such as: 

• During the morning and afternoon peak hours, an advisory 

alternate route is deployed in the event of a two-lane 

closure for more than two hours or closure of more than 

two lanes for less than thirty minutes. 

• Mandatory alternate routes are deployed during peak hours 

when more than two lanes are closed for at least thirty 

minutes. 

Ada County, 

Idaho 

This plan sacrifices different levels of severity, including: 

• Levels C and D require the implementation of a diversion 

route. 

• Level C is an incident taking thirty to 120 minutes from 

detection to full recovery of the traffic flow. 

• Level D is an incident taking over two hours from its 

detection to full recovery (including full freeway closure in 

one or both directions). 

Wisconsin DOT 

(Blue Route) An incident that causes delays and exceeds thirty minutes. 
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 Besides the Alternate Route Handbook guidelines, the Manual on Uniform Traffic 

Control Devices (MUTCD) (2009) states that major and intermediate incidents lasting 

more than thirty minutes usually require traffic diversion or detouring road users due to 

partial or full roadway closures. It also states that traffic diversion may not be necessary 

for minor incidents usually cleared within thirty minutes (FHWA, 2009). A study by Luo 

and Liu (2011) on detour decisions during freeway incidents indicated a timely and well-

justified detour decisions could yield substantial benefits to both the driving populations 

and the entire community. The study identified the benefits of detouring operation even for 

minor incidents with relatively light volumes on both the freeway and detour routes.  

 Although the above guidelines provide the agencies basic information for setting 

detour operations, including selecting alternative routes, these guidelines are static. They 

do not consider the many dynamic variables that influence the decision to divert and select 

alternative routes in real-time operations.  In general, it can be concluded that the incident 

attributes that significantly affect the traffic operations as well as induce the diversion of 

the traffics are: 

 i. number of lane blockage, 

 ii. duration of the incident 

 iii. time of day,  

 iv. day of the week, 

 v. location of the incident, 

 vi. traffic status on both affected and diverted routes,  

 vii. available capacity in the diverted route, and so on. 
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2.4 Advanced Traveler Information Systems (ATIS) to Support Diversion 

 The diversion of the traffic during incidents is voluntary based on the traveler’s 

utilities of the subject facility and the alternative routes. ATIS plays a significant role in 

the diversion mechanism by providing route information, and in some cases, diversion 

guidance to the users.  Receiving information in real-time and the quality of the provided 

information will influence the diversion percentage.  

 With the advancement of ITS technologies and the associated deployment, most 

travelers are able to get real-time information about the current states of the system. 

Transportation agencies display incident and, in some cases, travel time information via 

dynamic message sign (DMS). Various studies showed positive impacts of DMS 

deployment during an incident in terms of reductions in link travel times (Ozbay et al., 

2009; Yu et al., 2010). Agencies also broadcast information through Highway Advisory 

Radio (HAR). A study conducted by Sandt et al. (2017) for the Florida Department of 

Transportation (FDOT) assessed the impacts and usefulness of HAR in providing traveler 

information. The benefit-cost analysis estimated a benefit-cost ratio of 1.19, assuming that 

a 10% diversion was caused by HAR messages. The ratio was estimated to be 11.91 if the 

diversion is 100%. 

Although the 511 phone system is deployed in most states, this system still lacks 

publicity and utilization. In a survey conducted in 2012, it was found that most of the 

respondents were unaware of the 511 system (Robinson et al., 2012). 

 Besides the agency’s efforts, the travelers increasingly use private sector 

smartphone-based apps like Apple Maps, Google Maps, Waze Maps, etc., that provide 

them information about the traffic, routing, and also incident information before reaching 
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the incident location. According to recent survey data, 85% of Americans own an internet-

enabled handheld device, and most adults (as high as 93%), ages 18 to 64 years, commonly 

access the internet on mobile devices. These survey data indicate that mobile-internet 

access is becoming more important in people’s daily lives than traditional media (e.g., TV, 

radio stations, and PC-based web applications).  

A survey conducted for the Iowa Department of Transportation (Sharma et al., 

2015) also identified the relative use of different traveler information services, as shown in 

Figure 2-2. The figure indicates a high number of Google Maps users. 

 

Figure 2-2: Traffic Information Services Used by the Survey Respondents (Source: 

Sharma et al., 2015) 

2.5 Estimation of the Diversion of Traffic 

 A large number of studies have been performed to estimate the diversion of traffic. 

However, the question of how information affects traveler decision-making regarding 

routes, modes, and trip times under various operating conditions is still in search. Several 
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researchers have used the stated preference approach to determine the percentage of 

travelers changing trip decisions in response to information disseminated by ATIS 

technologies. Based on this type of survey, studies concluded that the disseminated 

information could result in up to 40% to 70% of freeway traffic exiting the freeway ahead 

of an incident location (Madanat et al., 1995; Chatterjee et al., 2002; Al-Deek et al., 2009). 

It has been reported based on revealed preference survey results that the actual diversions 

are lower than those estimated based on stated preference surveys. However, information 

regarding the actual diversions due to traveler information remains limited. An extensive 

survey in six European countries to examine the impact of DMS on traffic diversion was 

conducted and found with the driver questionnaire results that the diversion rates are 0% 

to 7% for incident messages and 0% to 35% with route guidance information (Chatterjee 

and Mcdonald, 2004). 

 Using traffic detector data, researchers estimated the diversion to be in the range of 

5% to 18% (Deeter, 2012; Haghani et al., 2013; Foo and Abdulhai, 2006). Hadi et al. (2013) 

conducted a study on the diversion of traffic in incident conditions based on detector data 

and found that the diversion rate ranges from about 8% for one out of five-lane blockages 

to about 25% when four out of the five lanes were blocked. Tariq et al. (2019) developed 

a method to predict the diversion due to incidents based on freeway mainline detector data 

combined with incident data. The developed method utilized a combination of cumulative 

volume analysis based on detector data, clustering analysis, and predictive data analysis. 

The results from applying the method suggest diversion from 1%-25% as a function of 

different incident attributes. 
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 The above studies based on sensor data analyses revealed a 5% to 25% traffic 

diversion during incidents. The diversion of the traffic during the incident on the freeway 

triggers the need for the development of plans to accommodate the traffic on the alternative 

routes. The sudden increase in the traffic on the arterials causes congestion at traffic signals. 

The traffic signals typically run using plans based on time of day. The plans are developed 

using typical traffic patterns that do not consider the impact of additional traffic. 

2.6 Coordination among the Routes during Diversion 

 Several efforts have been made to reduce the impact of the incident by coordinating 

the operations of the impacted route with the neighboring routes. Intuitively, disseminating 

traffic on the entire corridor, especially to the underutilized arterials, will reduce the overall 

impact of incidents. Researchers have been working to establish methodologies to realize 

the benefits of this tactic.  

Under most incident scenarios, if proper diversion plans can be implemented in 

time, motorists can circumvent the congested segments and best use the available corridor 

capacity (Kim et al., 2017). After implementing the detour plan, specific coordination 

strategies are necessary to align with the detour option. The coordination operation 

combines both signal timing and diversion operation. 

An earlier study used a hypothetical network to assess the effect of coordination on 

the impacted route and diverted route. Taylor and Narupiti (1996) used the NETSIM 

simulation program to examine the effectiveness of traffic diversion and signal timing 

modification for various incident conditions. A hypothetical surface street network was 

used in the simulation. The route impacted by the incident and the diverted route were 

coded in the simulation tool. Instead of fixed time control on the diverted route, the SCOOT 
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adaptive signal control was simulated to facilitate the diversion.  The traffic was forced to 

reroute at a selected intersection in the simulation. The adaptive signal timing on the 

diverted route reduced traffic delay compared to the fixed time signal timing. The study 

results demonstrated the effectiveness of the strategy increases with the increasing severity 

of the incident. 

 The University of Maryland developed a simulation-based learning environment 

called SimPLE (Simulation Processes in a Learning Environment), a dynamic simulation 

and visualization tool that allows users to see the effect of freeway lane closing and traffic 

diversion to an arterial road. An interactive signal timing system was built to adjust the 

green band and assess the arterial delays and total delays (Plaisant et al., 1998). 

 To accommodate the detour traffic on the arterials from the incident impacted 

freeway, Liu et al. (2011) proposed a model which assumes that diversion occurs using 

immediate upstream off-ramp from the incident and get back to the freeway in the next on-

ramp beyond the incident, irrespective of the incident duration and severity and time of 

day. 

 Zhou (2008) used CORSIM microsimulation to evaluate the effects of incident 

management along with signal timing modifications for the parallel corridors.  The analysis 

result implied that the percentage of the diverted traffic volume has a significant impact on 

the total delay of the entire network. A 10% diversion rate from the impacted freeway to 

the adjacent arterials was found to yield the minimum network-wide delay. 

 Traffic diverted to the alternative routes from the freeway through off-ramps, but 

some diversion may occur before reaching the impacted freeway facility. Managing the 

operations of the off-ramps reduce the chance of spill back to the freeway and encourage 
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diversion to alternative routes. A study by Tian et al. (2002) indicated that traffic-

responsive ramp metering and adaptive diamond interchange signal control produced 

effective system operations during freeway incident occurrences. A dynamic signal priority 

control strategy can mitigate the off-ramp queue spillback along with the reduction in 

delay, the average number of stops, and increased speed (Yang et al., 2014). The 

coordinated control strategies reduce travel time by about 8-25% for different scenarios 

during the incident compared to the existing condition (Jacob and Abdulhai, 2010). 

 The CFA Operation Handbook (2006) provides guidelines for efficiently managing 

traffic operations on the freeway and arterial streets. The empirical studies in four different 

cities (Glasgow, Seattle, Anaheim, and San Antonio) showed that CFA operation played a 

decisive role in reducing traffic congestion. For example, in Anaheim, CA, the 

implementation of alternative corridor operation plans (signal timing plans, ramp metering 

plans, DMS messages, and route diversion plans) during nonrecurring congestion reduces 

travel time by up to 30% (Urbanik et al., 2006).  

The idea of CFA operation was further extended to a broader area under the 

umbrella term of Integrated Corridor Management (ICM), a promising tool in the 

congestion management toolbox by optimizing the use of existing infrastructure assets and 

leveraging unused capacity along the urban corridors. The ICM initiative harnesses the 

intelligent transportation system's potential to efficiently and proactively manage the 

congestion, hence improving the mobility of the goods and people in the corridor level. 

The advancement of the ITS technologies, improvement of the TSMO program, 

associated development among the agencies, and availability of supporting data make ICM 

both practical and feasible. Eight pioneering sites were selected to establish the 
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methodology and to assess the benefits of ICM. The pre-deployment assessment of ICM 

in three pioneer site corridors (i.e., U.S.-75, Dallas, Texas; I-15, San Diego, California, and 

I-394, Minneapolis, Minnesota) established the overall improvement of travel times, with 

improvements increasing nearly tenfold under conditions of high demand and severe traffic 

incident (Alexiadis and Armstrong, 2012). It was also observed that travel time benefits 

were concentrated in the vicinity of the incidents disrupting the flow in the peak direction, 

with travelers directly affected by the incident would experience the most significant 

benefits (Alexiadis and Chu, 2016).  

2.7 Travel Time Prediction  

 As part of the study, a model is developed for predicting travel time in real-time 

using traffic, travel time, and incident data. The existing literature on travel time prediction 

using data analytics and machine learning is discussed in the following section. 

2.7.1 Travel Time Prediction during Normal Condition 

 Chien and Kuchipudi (2003) developed a model using real-time and historical 

travel time for predicting travel time. A five-minute interval was chosen for the short-term 

travel time prediction. The Kalman filtering algorithm was applied for travel time 

prediction because of its significance in continuously updating the state variable as new 

observations become available. The reliability of predicted travel time depends on the 

uniformity of the traffic condition throughout the network. The model failed to predict the 

travel time in the cases of congestion and incidents. 

 Liu et al. (2006) utilized a State-Space Neural Networks (SSNN) model in 

combination with the Extended Kalman Filter (EKF) to predict the travel time. The 

developed model showed the ability to address special traffic patterns not included in the 
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training data. Historical travel time data, along with traffic volume, was used to predict the 

travel time. Travel time was predicted for a five-minute horizon. The prediction model 

produced a root mean square error percentage (RMSEP) in the range from 16.5% to 21.2%. 

However, under extremely congested conditions (higher travel time values), the RMSEP 

values are higher because the experienced travel times are longer than the five-minute 

calculation time step. 

 He et al. (2010) proposed a Genetic Algorithm (GA) improved Back Propagation 

(BP) neural network for predicting the normal day’s travel time in the freeway section. 

Normal travel time and traffic volume were used as the input parameters in the study. The 

model adopted a 3-layer BP network with one hidden layer. The monthly average relative 

error estimated by the model was 3.2%. 

 Shen (2008) predicted short-term freeway travel time using Dynamic Neural 

Networks (DNN) based on traffic detector data. Three different DNN topologies were 

considered in the study, and found that Time-Delayed Neural Network (TDNN) works 

better in the prediction. The prediction result was also compared with a simple multilayer 

perceptron (MLP) neural network and found a slightly better result. Speed and volume data 

were used in the study for predicting travel time at 15-minute intervals. The mean absolute 

percentage error (MAPE) when using the TDNN for the 15-minute prediction ranged from 

22% to 26%. 

 Chen et al. (2013) proposed a method to predict the dynamic travel times using 

historical traffic pattern data. A 5-minute average speed data was used as the historical 

status of the traffic. The proposed method seeks historical candidates with similar traffic 

patterns to the current conditions. Afterward, the future traffic state was predicted by the 
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subsequent traffic state of each candidate. A Euclidean distance measure was used to 

measure the dissimilarity between the historical and current status of the traffic. The 

measured time steps are 10-minute intervals till 60 minutes. The MAPE for the proposed 

algorithm was 5.96% to 6.37%, which was 15% better than the K-nearest neighbor (KNN) 

methods. 

 A Deep Belief Networks (DBN) model was proposed by Siripanpornchana et al. 

(2016) to predict travel time. In the proposed method, a stack of Restricted Boltzmann 

Machines (RBM) was used to learn generic traffic features in an unsupervised fashion 

automatically, and then a sigmoid regression was used to predict travel time in a supervised 

fashion. The MAPE of the prediction was within 7% of the actual values on most of the 

routes. 

 Mousa and Ishak (2018) developed travel times estimation model in the freeway 

network at five-minute intervals using Basic Safety Messages (BSM) data. They developed 

an eXtreme Gradient Boosting (XGB) model for short-term travel time prediction on 

freeways. The developed XGB tree-based ensemble prediction model was able to predict 

travel time accurately and consistently with variations during peak periods, with mean 

absolute percentage error in prediction about 5.9% and 7.8% for 5-minute and 30-minute 

horizons, respectively. 

 Zhao et al. (2018) proposed an optimal KNN for travel time prediction where data 

sparseness problem exists. Virtual sensor nodes were set up between the real Remote 

transportation microwave sensor (RTMS) nodes and the two-dimensional linear 

interpolation, and the piecewise method was applied to estimate the average travel time 

between two nodes. The state vector used in the prediction of travel time was Speed, 



26 

 

volume, time of the day, and the traffic congestion level. Before completion and after 

completion of the missing data, the MAPE is 7.4% and 3.1%, respectively. 

 Duan et al. (2016) used long short-term memory (LSTM) neural network to predict 

the future step travel time using current state travel time. A 15-minute time interval was 

used to predict the multi-steps ahead travel time for 66 links in Highways England. 

Evaluation results showed that the 1-step ahead travel time prediction error is relatively 

small; the median of mean relative error for the 66 links in the experiments is 7.0% on the 

test set. 

 Liu et al. (2017) established a short-term travel time prediction model using 

historical 90 days travel time using LSTM combined with DNN. LSTM-DNN model was 

then tested along with linear regression, Ridge and LASSO regression, Auto-Regressive 

Integrated Moving Average (ARIMA), and DNN models under ten sets of sliding 

windows. The LSTM-DNN model showed the lowest MAPE for a sliding window of 60 

minutes. 

2.7.2 Travel Time Prediction during the Incident 

 Domenichini et al. (2012) estimated the travel time during the incident adding the 

travel time under normal traffic conditions, the time required to clear the incident, and time 

spent in the queue. The time required to clear the incident was estimated by analyzing 

historical incident clearance time using the Classification And Regression Tree (CART) 

model. Time spend in the queue was estimated using the Modello Clessidra (hourglass 

model). The model was able to predict the travel time during the incident to some extent 

with reasonable accuracy. However, the model required expert knowledge to consider the 

high variability of the incident. 
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 Tatomir et al. (2009) estimated the travel time in the incident condition using the 

Ant-Based Control (ABC) Algorithm. The algorithm was used to estimate the travel speed 

in case of the incident, and based on the speed-density relationship, travel time was 

estimated. The typical day travel time was estimated using the historical travel time data. 

A 5-minute time interval was used to estimate the travel time dynamically. In the case of 

multiple segments with different speed limits, an average speed limit was assumed. 

 Yang and Qian (2019) used four different regression methods, i.e., Auto-Regressive 

Moving Average (ARMA), LASSO Linear Regression, Stepwise Regression, and Random 

Forest, to predict travel time 30-minute ahead-considering weather and incident. A 

correlation analysis was applied to select the important features that are highly correlated 

with the travel time of the target segments. K-means clustering analysis was performed to 

separate the data for sessional effect. The lowest average Normalized Root Mean Square 

Error (NRMSE) was 17% for Random forest, while the baseline ARMA model found an 

error of 38.4% for 30-minute ahead prediction. 

 Xia et al. (2010) predicted travel time in the freeway during the incident using a 

combination of detector data as well as incident data. During the incident, queuing analysis 

was performed to estimate the travel time, while the duration of the incident was estimated 

using a lookup table created from the historical incident duration data set. The predicted 

travel time showed reasonable accuracy. During an incident, travel time considering the 

incident’s attributes produced better prediction than without consideration of the incident. 

2.7.3 Summary of Travel Time Prediction Methods 

In past research, statistical modeling, data analytics, and machine learning methods 

were applied to predict travel time on the highway facilities. Among these methods, with 



28 

 

the increasing availability of data, the machine learning model has been widely used and 

showed better capability in capturing features of the time series data with higher accuracy. 

However, most of the existing studies do not consider traffic attributes of the subjected 

roadway or its surrounding roadways and incident attributes in predicting travel time. All 

these attributes have an important influence on the travel time of the roadway. So there is 

a need to include these attributes in the analysis and evaluate the performance of the method 

in the prediction of travel time estimation.   

2.8 Modeling of Incidents and Diversion 

Modeling incidents and resulting diversion in the alternative routes require 

considering various factors such as incident characteristics, traffic status on the affected 

facility and alternative routes, signal plan on the alternative routes, time-of-day, origin-

destination, and so on. These time-varying and complex phenomena can be modeled 

utilizing a multi-resolution modeling (MRM) framework. MRM framework, which 

combines three different modeling levels, i.e., macroscopic, mesoscopic, and microscopic 

modeling, addresses issues beyond the capabilities of macroscopic models, mesoscopic 

models, and microscopic models by themselves (FHWA, 2012). The dynamic traffic 

assignment (DTA) technique in the mesoscopic level of this framework has the capability 

to simulate time-varying traffic diversion during incidents, whereas the microscopic level 

provides the necessary details of the traffic stream to develop signal control strategies. 

Since the incident induced diversion is a dynamic event and influenced by many factors 

such as incident attributes, traffic conditions, advanced traveler information systems, 

alternative route conditions, and signal status (Al-Deek et al., 2009; Khattak et al., 1992; 
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Tariq et al., 2019), an MRM framework can play a role in predicting diversion to support 

the traffic management during incidents. 

In most implementations, MRM links a mesoscopic-based DTA model to both the 

regional travel demand models (macroscopic) and localized high-detailed models 

(microscopic). The MRM framework was successfully applied to support and ATM 

strategies, including during incident on arterials (Massahi et al., 2019), managed lane 

operations, integration of signal timing estimation modeling (Fakharian Qom, 2016), and 

DTA (Zlatkovic and Zhou, 2015), integrated active traffic operation evaluation 

(Mirchandani et al., 2018), and so on. This study utilizes MRM to identify the path-level 

diversion scenario demands and associated impacts on the alternative routes during 

incidents on the freeway.  

2.9 Traffic Control during Incident 

A smartly designed traffic signal control system is crucial to the efficient movement 

of the traffic in the arterials. Advancement of the system has the capability of reduction of 

traffic collisions, vehicle travel time, delay, parking, and energy consumption significantly. 

Coordination between the freeway and arterial during the incident requires signal timing 

in the arterial intersection in harmony with the sudden change of the traffic volume in the 

arterial. Apparently, signal timing should work in a fashion that arterial could 

accommodate additional diverted vehicles without deteriorating existing vehicular 

movement.  

Transportation agencies usually operate the signal control systems based on time-

of-day (TOD) plans. These plans are prepared using historical traffic flow data at different 

times of the day. The TOD schedule determines what time a plan will be active. The 
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simplest schedules typically define an a.m., off-peak, and p.m. peak for weekdays and a 

different set of plans for weekends. The TOD plans cannot respond to the traffic variation 

that occurred due to incidents, which leads to high congestion and longer recovery times 

in the networks. With the increasing emphasis on active traffic management (ATM), some 

agencies have employed expert operators at traffic management centers (TMCs) to manage 

the traffic signal control actively during non-recurrent events (Tariq et al., 2020). The 

decisions made by such operators, however, are still reactive. Moreover, it is challenging 

for the operators to select the best plans given the many changing parameters in real-time 

operations during non-recurrent events (Kim et al., 2014).  

Adaptive traffic control systems (ATCS) have been developed and implemented to 

react to the inherent traffic variations occurring from cycle to cycle, thus operate more 

efficiently than TOD-based systems. It has been reported that ATCS can reduce the delay 

during the incident conditions (Chilukuri et al., 2004). However, the ATCS performance 

under sudden demand surge and when the signal intersection approaches have long queues 

are uncertain. The oversaturation of an intersection or a movement negatively affects the 

performance of the ATCS system and may result in under allocation of green times to 

critical oversaturated movements (Campbell and Skabardonis, 2014; Lidbe et al., 2019). In 

addition, the existing ATCS systems deal with only the current traffic conditions as 

measured by the traffic sensors; thus, they are still reactive systems.  

2.10 Traffic Signal Optimization 

 The essential design elements of traffic signal optimization are phase sequence, 

cycle length, green split, and offset. Optimizing the elements alone or multiple based on 

the proper objective function will lead to the proper timing for the subjected intersection. 
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The signal timing performance is not limited to the one intersection; instead, it influences 

the whole corridor. 

2.10.1 Objectives Function in the Optimization 

 The performance of the optimization program largely depends on the objective 

function that will be maximized or minimized. In-depth domain knowledge and the nature 

of the problem are necessary for choosing the objective function. The demand pattern (i.e., 

symmetric, asymmetric, undersaturated, oversaturated) in the subjected intersection also 

plays a crucial role in choosing the objective function. For example, the dissipation of 

queues and removal of blockages in the oversaturated condition should be prioritized over 

the minimization of travel costs (Roess et al., 2013).  

 The objective functions vastly considered in the previous literature are the 

minimization of delay, minimization of travel time, maximizing the throughput-minus-

queue, maximizing the number of completed trips, maximizing the weighted number of 

completed trips, and the number of stops. In a study of the selection of the objective 

function, Hajbabaie and Benekohal (2013) ranked the weighted number of completed trips 

as the most suitable candidate for oversaturated conditions followed by maximization of 

throughput-minus-queue. However, the authors mentioned that finding the completed trip 

is very complicated and used scarcely.  

 Delay minimization is the most widely used objective function for signal timing 

optimization. Sometimes it is used alone, but sometimes in combination with other 

objective functions. Webster (1958) and Miller (1963) established a traffic signal timing 

model and calculation method to get a minimum average delay of vehicles, building the 
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foundation for modern fixed-time traffic signal control. Some other studies that used delay 

minimization are Zhang et al. (2010), Lo and Chow (2004). 

 Throughput plays a crucial role in the oversaturated conditions; hence, throughput-

minus-queue maximization attracted much attention as an objective function of 

optimization. Studies such as those of Abu-Lebdeh and Benekohal (2000), Girianna and 

Benekohal (2002), and Putha et al. (2010) maximized throughput-minus-queue.  

 Christofa et al. (2016) proposed a new perspective of signal timing optimization. 

They proposed a real-time signal control system that optimizes signal settings based on the 

minimization of person delay on arterials. The system’s underlying mixed-integer linear 

program minimizes person delay by explicitly accounting for the passenger occupancy of 

autos and transit vehicles. 

2.10.2. Multi-Objective Optimization 

Some studies aggregated multiple objectives functions and performed as a single 

objective optimization (Liu et al. 2011), while other studies performed multi-objective 

optimization and developed a Pareto front for selecting the optimal solution. Sun et al. 

(2003) demonstrated the efficiency of optimizing the average delay and the average 

number of stops in a multi-objective optimization for stochastic traffic arrival of traffic. 

Kesur (2010) investigated and suggested the use of multi-objective optimization when 

there are numerous optimization variables as the method improved the optimization 

efficiency over the single-objective optimization. Ezzat et al. (2014) found better results 

for multi-objective optimization over single objective optimization for oversaturated 

conditions. Other studies that used multi-objective optimizations include (Chen et al., 

2011; Ceylan, 2013; Stevanovic et al., 2013),  
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2.10.3 Optimization Techniques 

 Heuristic optimization (i.e., Genetic Algorithm, Simulated Annealing, Ant Colony 

Optimization, etc.) is one of the popular techniques used in the traffic signal control system 

optimization for its fast and near-optimal solution. The model with feedback control, if 

appropriately applied, can provide solutions that are good approximations to the optimal 

solution. Genetic Algorithm (GA), one of the popular methods highly used in many 

previous studies.  There are few other algorithms also used in some works. The literature 

related to optimization techniques is discussed in the following section. 

2.10.3.1 Genetic Algorithm (GA)  

 Foy et al. (1992) implemented a genetic algorithm (GA) to generate optimal or 

near-optimal intersection traffic signal timing strategies that yield the smoothest traffic 

flow with the least average automobile delay. Hadi and Wallace (1993) later introduced 

the GA in the TRANSYT-7F (T7F), a signal timing optimization software, to optimize 

cycle length, phase sequences, and offsets. The association of GA with T7F proved very 

promising in the optimization of signal phasing and timing. 

 Park et al. (1999) proposed and evaluated three different GA-based optimization 

strategies: throughput maximization, average delay minimization, and average delay 

minimization with a penalty function. The evaluation recommends a delay minimization 

strategy because of its applicability to both undersaturated and oversaturated conditions. 

Hypothesis testing results on these three strategies indicated that the GA-based program 

with average delay minimization produced a superior signal-timing plan compared with 

those produced by other GA strategies and the T7F program in terms of queue time for 

oversaturated conditions. 
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 Girianna and Benekohal (2004) applied GA to coordinate signals to maximize 

throughput. The optimization results demonstrated a control strategy that avoided queue 

spillback. They further extended this method to coordinate oversaturated signals and found 

it effective. 

 Sun et al. (2003) choose nondominated Sorting Genetic Algorithm II (NSGA-II) 

(Deb et al., 2002) for its better performance over other multi-objective evolutionary 

algorithms. They investigated the application of the NSGA-II in solving the multi-objective 

signal timing optimization problem considering deterministic and stochastic traffic patterns 

and found it efficient. They also proposed the Pareto-frontiers regression function to 

evaluate the trade-off among various traffic signal design objectives. 

 Memon and Bullen (1996) compared the gradient-based algorithm, quasi-Newton 

algorithm, with GA for signal timing optimization. Compared with gradient-based 

algorithms, GAs are more general and can optimize the phase sequence. Beyond their 

generality, GAs are considered more efficient in terms of implementation. They found that 

genetic algorithms are more efficient and effective than the quasi-Network method for this 

real-time application. 

GA was found successful in solving signal timing-based Network Design Problem 

(NDP). The optimum timings obtained are compared with those obtained from a method 

that does not consider rerouting using GA. A simulation‐assignment model provides the 

junction delays based on which travel costs are calculated. Besides delays at signalized 

junctions, the model also enables the consideration of delays at unsignalized junctions 

(Teklu et al., 2007). Li et al. (2013) used GA to optimize the multi-objective algorithm 

during the incident in the freeway concurrently diversion of the traffic in the arterial. 
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2.10.3.2 Simulated Annealing (SA) & Others 

 Hadi and Wallace (1994) recommended Simulated Annealing (SA), a meta-

heuristic optimization algorithm, to implement in the T7F to optimize cycle length, phase 

sequences, and offsets simultaneously based on the progression. The authors found that SA 

is a computationally efficient algorithm compare to GA at that time. They also found that 

the algorithm has the potential for optimizing signal phasing and timing for arterial streets 

as well as multi-arterial networks. 

 Traffic signal control in a 4-leg intersection was simulated, and optimum signal 

timing by maximizing traffic flow was tried to obtain using both GA and SA. The goal is 

to study how traffic flows in the solutions produced by GA and SA when the problem size 

increases. This work concludes that SA seems to find better solutions than GA in small 

search spaces generally and that SA and GA are comparable in larger search spaces 

(Burvall and Olegard, 2015). 

 Li and Schonfeld (2015) applied the hybrid SA-GA algorithm proposed by Adler 

(Adler, 1993) to improve the performance of a GA for oversaturated signal timings 

optimization. The idea of this hybrid SA-GA algorithm is to use the selection rule of 

Metropolis to improve the efficiency of the GAs selection and crossover. The hybrid model 

was applied to optimize an oversaturated arterial intersections signal timing and compared 

it with SA and GA results applied separately. However, the hybrid models required more 

central processing unit (CPU) time to reach an optimized solution because the solution 

domain is larger, and the evaluation time of each chromosome is longer. 

 Putha et al. (2012) employed Ant Colony Algorithm (ACA) algorithm in an 

oversaturated condition to minimize queues and remove the blockage in an alternative to 
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GA. They found that the GA algorithm is too slow or requires very high computational 

power to be useful in real-time situations. The result from two scenarios was compared for 

both ACA and GA and found that ACA is consistently more effective for a larger number 

of trials and to provide more reliable solutions. 

 In another study, He and Hou (2012) used ACA to effectively separate the conflict 

of the traffic flow and optimize the cycle time and saturation of an intersection. The 

performance indices: time delay, number of stops, and traffic capacity obtained from ACA 

were compared with Webster algorithm, GA. Numerical results showed that ACA is a 

feasible and straightforward method for signal timing optimization problems. 

 Chen and Xu (2006) used the particle swarm optimization (PSO) algorithm to solve 

the traffic signal timing optimization problem. A local fuzzy-logic controller (FLC) 

installed at each junction is used to provide some initial solutions for the particle swarm 

optimization algorithm. Membership functions and the rules of the fuzzy logic controller 

(FLC) were optimized using the particle swarm optimization (PSO) algorithm. The cycle 

length, the phasing splitting, and offset of all signals in the adjacent junction’s system are 

optimized using the new PSO algorithm. PSO has been proved to be a competitor to the 

standard genetic algorithm (GA). Comparisons between PSO and GA were made with 

regards to the performance by Lampinen (2002), which points out that the PSO performs 

well in the early iterations but has problems in reaching a near-optimal solution in several 

benchmark functions. 

 Zhao et al. (2018) considered a non-dominated sorting artificial bee colony (ABC) 

algorithm to solve the multi-objective optimization model considering the reasonable 

balance between vehicle delay and stops of a fixed-time signal control parameter of 
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unsaturated intersections. Experimental results showed that the convergence is better in the 

non-dominated sorting ABC algorithm than in the non-dominated sorting genetic algorithm 

II. Moreover, the algorithm can solve the Pareto front of a multi-objective problem, thereby 

improving the vehicle delay and stops simultaneously. 

2.10.3.3 Optimization in Simulation Environment 

 Among the heuristic algorithms, only the GA was successfully applied in the traffic 

signal control system for commercial productions (Park et al., 1999). Conventional 

optimization methods such as integer programming, hill climbing, or descent gradient 

searching have been gradually overshadowed by genetic algorithms in many areas, 

including traffic signal operation (Lee et al., 2005). Initially, GA was used along with 

macroscopic simulation to optimize the signal. However, a recent study also revealed that 

a signal timing plan based on a direct signal optimization using a stochastic and 

microscopic simulation model produces better performance than that of a macroscopic 

simulation-based method (Rouphail et al., 2000). Park et al. (2001) applied GA along with 

CORSIM microscopic simulation to optimize the signal timing directly. The result 

indicated that a well-calibrated simulation program is crucial in the evaluation of signal 

timing plans. 

 Genetic algorithm optimizations of traffic signal timings have been shown to be 

effective, continually outperforming traditional optimization tools such as Synchro and 

T7F (Stevanovic et al., 2007). 

 Stevanovic et al. (2007) utilized GA optimization in the Vissim microsimulation 

interface to directly optimize the signal timing. The program called VISGAOST optimized 

four basic signal timing parameters with Vissim microsimulation as an evaluation 
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environment. The program added new optimization features such as the optimization of 

phasing sequences, multiple coordinated systems, and uncoordinated intersections, fully 

actuated isolated intersections and multiple periods. The program was tested on a 

hypothetical grid network and a real-world arterial of actuated–coordinated intersections 

in Park City, Utah. Evaluating the result, it was found that timing plans optimized by the 

genetic algorithm outperformed the best Synchro plans in both cases, reducing delay and 

stops by at least 5%. 

Branke et al. (2007) used Non-dominated Sorting Genetic Algorithm II (NSGA-II), 

a multi-objective optimization, for developing signal timing plans using VISSIM 

simulation (Branke et al., 2007). Vissim based NSGA-II algorithm was found successful 

in maximizing throughput and minimizing queue ratio in an oversaturated condition and 

produced a better plan managing the traffic flow efficiently than Synchro (Li et al., 2013). 

 Stevanovic et al. (2013) used Vissim based NSGA-II multi-objective optimization 

for signal plan development, considering mobility and safety together (Stevanovic et al., 

2013). The authors used throughput as the measure of mobility, while the number of 

conflicts was used to measure safety. The result demonstrated a 7% decrease in conflicts 

while maintaining the same throughput compared to the initial level.   

2.11 Connected Vehicle (CV) and High-Resolution Controller (HRC) Data  

 The application of machine learning for predictive modeling is very promising due 

to its ability to capture the non-linear relationship within the dataset. Besides the 

conventional data collection techniques such as loop detector, probe detector, microwave 

detector, and so on, there are two other data sources, i.e., CV and HRC data, gaining 

popularity for their high fidelity. In addition to its many other benefits, CV can act as a 
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mobile sensor for collecting various traffic data in high resolution. Similarly, HRC data 

allows the estimation of various performance measures of the traffic signal. Several uses 

of the CV data and HRC data are discussed in Sections 2.12.1 and 2.12.2 

2.11.1 Connected Vehicles (CVs) 

 Implementation of connected vehicle (CV) will accrue numerous benefits from 

both users' and agencies' end (i.e., capacity increase, delay reduction, crash reduction, and 

mobile data sources). Guler et al. (2014) observed that CV technology could significantly 

improve the operation of traffic at signalized intersections. Increases in the penetration rate 

from 0% up to 60% can significantly reduce the average delay. Different performance 

measures, i.e., travel time estimation, incident detection, signalized left-turn assist, and 

traffic volume estimation, can also be evaluated using the CV, which can replace the 

traditional way performance measurements (Iqbal et al., 2018; Mwakalonge et al., 2019). 

CV can work as a mobile sensor by continuously reporting their status to roadside 

equipment (RSE) through vehicle-to-infrastructure (V2I) communication. Therefore, CVs 

hold great potential to reduce or even eliminate the need for fixed-location detectors in the 

existing signal systems. When penetration rates are low, the CV data could be used to 

generate performance measures for fine-tuning traffic signals periodically based on the 

offline analysis. When penetration rates are high, it becomes feasible to operate adaptive 

signal control that solely depends on the CV input. 

 The conventional vehicle detector for signal operation can be superseded by CVs 

technology (Zheng and Liu, 2017). CV data can be used to estimate the traffic volume 

under low market penetration. Zheng and Liu (2017) developed an approach to estimate 

traffic volume using GPS trajectory data from CV or navigation devices. The arrival of 
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vehicles at the signalized intersection was modeled as a Poisson distribution. The 

estimation problem is formulated as a maximum likelihood problem given multiple 

observed trajectories from CVs approaching the intersection. An expectation maximization 

(EM) procedure is derived to solve the estimation problem. The model was validated using 

the field data and found that the proposed approach can work as low as 10% market 

penetration. 

 Bekiaris-Liberis et al. (2016) developed a traffic state estimation method by 

estimating the percentage of CVs with respect to the total number of vehicles. In the model 

development, the density and flow of the connected vehicle were obtained from their 

regularly reported positions. A Kalman filter method was employed in the estimation 

schemes. 

 The real-time queue estimation is very crucial for a queue-based adaptive traffic 

control system as the traffic control allocates the green time using the queue. Tiaprasert et 

al. (2015) proposed a mathematical model for real-time queue estimation using CV 

technology. The model worked without signal timing, traffic volume, or queue 

characteristics as basic inputs. Simultaneously, the model worked with both fixed-time 

signals and actuated signals. The model was validated for both pre-timed and actuated 

controls with a Vissim microscopic simulator that showed that it could reasonably 

accurately estimate the queue for both control systems. 

 Christofa et al. (2013) developed two queue spillback detection methods based on 

CV or probe data. One method uses only CV data and is based on the assumption that non-

equipped vehicles in the queue that arrive after the last CV-equipped vehicle can be 

modeled by using a geometric distribution. The second spillback detection method 
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combines CV data with information about the upstream signal settings and is based on the 

kinematic wave theory of traffic. Both methods provide a good detection of queue spillback 

with reasonable accuracy. 

 Goodall et al. (2016) proposed an algorithm to determine the locations of individual 

conventional vehicles based on the behaviors of nearby communicating vehicles by 

comparing a communicating vehicle's acceleration with its expected acceleration as 

predicted by a car-following model. The algorithm can predict the locations of 30% of 

vehicles with 9-m accuracy in the same lane, with only 10% of vehicles communicating. 

Similar improvements were found at other initial penetration rates of less than 80%. The 

algorithm was estimated using the Vissim simulation data and validated using the NGSIM 

data. 

Cao et al. (2019) developed a method to estimate left-turn queue spillback 

probability using CV data. The method initially estimated the total queue length using the 

last CV location that was finally used to estimate the left turn spillback. The developed 

method was validated using Vissim microscopic simulation. Based on the probability of 

forming queue spillback, a new signal timing based on the CV data was proposed. The 

results of the methods demonstrated a reduction in average delay by 20%. 

2.11.2 High-Resolution Controller Data 

 High-resolution controller (HRC) data obtained from the controllers is event-based 

data with a temporal fidelity of 0.1 s. (Sturdevant et al., 2012). The data is recorded through 

a data logger software interface in the controller and captures all detection and phase events 

at a given intersection. The cycle-by-cycle data with such resolution provides numerous 

advantages, especially for the automatic performance measure of the signal.  
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 In a collaborative effort among Econolite Control Products, Inc., the Indiana 

Department of Transportation (INDOT), and Purdue University, the Econolite ASC/3 

controller software was enhanced to include a data logger to collect time-stamped phase 

and detector state changes (Smaglik et al., 2007). The obtained data has a specific format 

consisting of three columns: “Timestamp,” “Event Type,” and “Parameter.”  These data 

can be used for various performance measures. The detailed formatting of the HRC data is 

discussed in Chapter IV. Several existing applications of the HRC data are discussed in the 

following section. 

 Smaglik et al. (2007) developed an integrated general-purpose data collection 

module within a National Electrical Manufacturers Association (NEMA) actuated traffic 

signal controller for the collection of cycle-by-cycle data. They used those data for 

producing quantitative graphs to assess arterial progression, phase capacity utilization, 

movement delay, and served volumes. 

 Liu and Ma (2008) successfully built a system called SMART-SIGNAL 

(Systematic Monitoring of Arterial Road Traffic and Signals). The system can 

simultaneously collect and archive event-based traffic signal data at multiple intersections 

and automatically generates real-time performance measures, including queue length, 

travel time, and the number of stops. The system collects two types of data, the signal event 

and detector event, and is stored in a log file every day. The system was installed on eleven 

intersections along France Avenue in Hennepin County, Minnesota. Based on the collected 

data, the authors proposed a mathematical time-dependent queue length estimation model 

under both under-saturated and over-saturated conditions. The model provided a 
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reasonable estimation of intersection queue lengths and arterial travel times. The model 

was further used to evaluate a signal retiming effort on France Avenue.  

 Day and Bullock (2011) used HRC data to investigate the performance of various 

algorithms in the offset optimization problem. The HRC raw data were aggregated to 

obtain cyclic flow profiles, leading to estimates of delay and the number of vehicles 

arriving on the green. Two alternative objective functions, i.e., minimizing delay and 

maximizing the number of vehicles arriving on green (Ng) were used in the optimization. 

For both objectives, the outcomes of all algorithms were similar regarding their 

performance relative to the original offsets. The combination method, hill climbing, and 

genetic algorithms operated with similar computational efficiency. 

 HRC data provided a superior method to coordinate the traffic signals at the 

adjacent intersections based on the arrival on green. The developed method would be able 

to replace the existing decision to coordinate adjacent signals based on rules of thumb (e.g., 

one mile is considered a threshold upper bound link distance), or analysis of link volumes 

compared to distances or using traffic flow models (Day et al., 2011).  

 Day et al. (2011) developed a methodology for analyzing incoming traffic flow 

using high-resolution signal event data. Primarily, the upstream beginning of green time is 

projected forward in time to a downstream detector, which would be the upstream detector 

of the next intersection. By subtracting the upstream beginning of green time (plus a 

baseline travel time) from the detector arrival times, they developed a platoon profile by 

aggregating the data across successive cycles. 

 The quality of progression, an important performance measure of signal, can be 

done using HRC data by building Purdue Coordination Diagram (PCD) (Day et al., 2010; 
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Day et al., 2012). Visualizing the data in PCD helps identify the quality of progression; it 

also helps the agency infer the reasons behind poor progression (Day et al., 2011). 

 Liu and Hu (2013) developed a method using high-resolution controller data to 

assist ICM operation. They used the high-resolution controller data to optimize the signal 

control by maximizing the flow during the diversion of the traffic from the freeway. A 

microscopic simulation model was used to evaluate the performance of the method. The 

results demonstrated the method's effectiveness for reducing network congestion and 

improves network performance in terms of average delay per vehicle, the average number 

of stops, and average speed. 

 Dakic et al. (2017) developed a new high-resolution performance measure-Average 

Arrivals on Green Ratio (AAOGR) that consider the variability of cycle length and green 

time on a cycle-by-cycle basis and provides information on the ratio of vehicles that passed 

through the intersection per second of green time. Moreover, a discharge rate-based model 

was also proposed for computing approach delay, which considers the possible queue 

build-up during red and provides a better estimation of actual approach delay per vehicle 

if measured in front of the advanced detectors. 

Recently, Tariq et al. (2021) developed a multi-objective optimization-based 

calibration methodology for the microscopic simulation model calibration using HRC data. 

The calibrated model produced significantly lower errors in the split utilization ratio, green 

utilization ratio, arrival on green, and travel time compared to a simulation model that uses 

the simulation model's default parameters. 

 In summary, the above studies revealed the potential of CV data and HRC data for 

various performance measures and the development of new methods and models to manage 
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traffic better. This study explores new ways of use of CV and HRC data and developed 

methods based on the findings. The study develops a method for traffic congestion pattern 

identification.  

2.12 Congestion Patterns Identification 

Many studies in the literature identified the roadway congestion patterns based on 

macroscopic traffic attributes such as flow, travel time, speed, and so on. Zhang et al. 

(2016) developed a method to identify the traffic flow pattern as well as anomaly detection 

in the flow. A dictionary-based compression theory was employed to find the congestion 

pattern at the detector, intersection, and sub-region levels. Zhu et al. (2016) analyzed traffic 

flow data using Fuzzy C-Means clustering to identify the patterns. Based on the findings, 

it divided the intersection flow as high peak, evening peak, and flat peak.  

 Recently, vehicle trajectory data have become more accessible for identifying the 

traffic congestions in the network at a more detailed level, including both arterials and 

freeways. Jianming et al. (2012) developed a method that uses vehicle trajectory data as an 

image that used self-correlation to extract the propagation speed of the congestion wave. 

This extraction was used to construct a congestion template to identify the current 

congestion as well as intensity using a matching algorithm. Several other studies used taxi 

trajectory data to evaluate the congestion pattern utilizing machine learning techniques (Liu 

et al., 2015; Thianniwet et al., 2009). 

 Krishnakumari et al. (2017) proposed an image processing method using speed data 

contour to identify the congestion patterns. Using the expert knowledge, all the patterns 

found in the data set were manually classified into five classes prior to the training of 
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classification models for use in real-time operations. The model produced an accuracy of 

70% in the identification of the congestion patterns. 

 The above studies measured the congestion at the link level and cannot differentiate 

between congestions caused by different turning movements (e.g., left turn vs. through 

movement). For designing the proper phase splits at the signalized intersection, it is 

essential to ascertain the movement level congestion. Besides, the data used in those studies 

were aggregated data. This kind of coarse data may not be able to find the inherent reason 

for the congestions. 

2.13 Summary 

 ICM has the potential to provide significant benefits in managing the congestion at 

the corridor level. It evaluates the entire corridor as a system rather than individual 

components in a coordinated fashion. Coordinated freeway and arterial (CFA) operation 

during the incident in the freeway is an integral part of the ICM. Existing studies related to 

the coordination strategies for both CFA and ICM were reviewed.  The reviews of the 

existing TIM systems indicate that the management of alternative routes during the incident 

is based on fixed alternative routes for the diversion irrespective of the incidents and traffic 

conditions.  

Signal control plans on the alternative routes as part of diversion route management 

were also reviewed. The reviewed studies included traffic signal control during incidents, 

objective functions selection, and optimization methods. In the plan development, 

microscopic simulation-based optimization was found effective in the literature. Studies 

also revealed the superiority of multi-objective optimization over single-objective 
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optimization. Researchers demonstrated that the heuristics technique to solve the 

simulation-based optimization problem because of its quick and near-optimal solution.  

This chapter also reviewed the use of data from two imminent technology, CV and 

HRC, in traffic management. In this regard, existing studies related to the use of CV and 

HRC data were reviewed. The most common use of CV data was found to estimate the 

traffic state and HRC data to measure signal control performance.  
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CHAPTER III 

METHODOLOGY DEVELOPMENT 

This chapter describes the methodologies utilized in the study to support the goal 

and objectives of this research. The first section provides an overall framework of the 

methods, and the subsequent sections illustrate each step of the methods. 

3.1 Methodological Framework 

 

The overall goal of the research is to develop models and associated methods for 

the management of diversion routes during freeway incidents using existing data sources 

and exploring the use of emerging data sources for this purpose. The methodology used in 

this research to achieve the goals primarily consists of three parts: 

• Develop a method for predicting the critical routes utilized by motorists during 

incidents and the associated traffic and incident conditions under which the 

diversion occurs due to the incident on the freeway. 

• Develop a method for generating special signal timing plans and estimate the 

benefits of activating those plans to mitigate the deterioration in the 

performance of the movements of critical route intersections due to diversion. 

• Estimate the benefits of utilizing new data sources (i.e., CV, HRC) as part of 

the methodology to support traffic management in the network. 

Figure 3.1 shows the basic architecture of the methodology followed in the study 

to achieve the overall goal. Subsequent sections discuss detailed steps of each part of the 

architecture. 
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Figure 3-1: Methodological Framework  

3.2 Prediction of Critical Diversion Routes 

One of the crucial objectives of the study is the prediction of the critical alternative 

route(s) which motorists will use for diversion in the prediction horizon. Diversion is a 

dynamic phenomenon and requires real-time traffic and incident data in the network. For 

this purpose, a measurement termed Δ-Travel Time (ΔTT) is used in the study. It is defined 

as the percentage change in travel time on the potential alternative route in the prediction 

horizon after the occurrence of each incident with respect to the travel time of the base 

(normal) condition. Equation 3-1 shows the way of estimation of ΔTT. 

∆𝑇𝑇 =
𝑇𝑇𝑖−𝑇𝑇𝑛

𝑇𝑇𝑛
× 100     (3-1) 
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where  

∆𝑇𝑇 =  percentage change in travel time on the potential alternative route in the 

prediction horizon after the occurrence of each incident with respect to the 

travel time of the base (normal) condition,  

𝑇𝑇𝑛= predicted travel time during the normal period, and 

𝑇𝑇𝑖= predicted travel time during the incident. 

The ΔTT acts as a threshold measure to identify the critical routes and the mobility 

impacts on these routes. Route(s) with higher ΔTT is considered as the critical route(s) as 

more vehicles will use those routes to divert from the freeway. In real-world applications, 

the threshold value of ΔTT can be set by the local agencies based on the local conditions. 

The methodology followed to predict the alternative routes in this study is shown in Figure 

3-2. 
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               LSTM=Long Short-Term Memory 

Figure 3-2: Methodology for Predicting Alternative Routes  

The estimation of ΔTT requires the estimation of travel time on the alternative 

routes in the analysis horizon for both incident and normal conditions. A model that can 

capture the dynamic features of the time series data is necessary to predict the travel time. 

The following subsections describe the method and associated models used in the study to 

predict travel time.  

3.2.1 Methods for Travel Time Prediction 

The literature review on travel time prediction methods revealed that machine 

learning methods could capture attributes of the time series data. Long Short-Term 

Memory (LSTM), a variety of RNN, has been successfully applied in many real-world 

problems involving sequence data such as music generation and speech recognition 
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(Hochreiter and Schmidhuber, 1997; Graves, 2012). The LSTM method was found very 

effective in capturing the time-dependent pattern of the traffic data. Prediction of the travel 

time of traffic using LSTM was shown to produce promising results (Duan et al., 2016). 

The method has been successfully applied to traffic performance prediction. It has achieved 

better performance in recent years (Ma et al. 2015) because of its better mechanics to model 

the traffic dynamics in road networks as it can model long-term dependence in time series 

and extract features from traffic data with recurrent feedback. LSTM is much faster to train 

than standard RNNs and MLPs and found slightly more accurate in frame-wise phoneme 

classification (mapping a sequence of speech frames to a sequence of phoneme labels 

associated with those frames) (Graves and Schmidhuber, 2005). Since LSTM is built on 

top of the basic principle of RNN, both methods are described here. 

3.2.2 Recurrent Neural Network  

The architecture of the RNN considers the time sequence relationship among the 

data. The basic structure of the RNN is shown in Figure 3-3 (Giles et al., 1994). The hidden 

layer between the input layer and output layer of each neural network is connected with the 

adjacent hidden layer of the following neural network in time sequence. Information 

retained in the former network hidden layer passes through the established connection to 

the later network. In Figure 3-3, the weight matrices, U and W between the layers, and the 

weight matrix V between neural networks are updated at each hidden state, ht. However, 

the RNN itself fails to analyze the time series, as the back-propagating error vanishes or 

explodes exponentially with time (Hochreiter and Schmidhuber, 1997; Hochreiter et al., 

2001).  
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Figure 3-3: Basic Recurrent Neural Network (Source: Deloche, 2019) 

3.2.3 Long Short-Term Memory  

Long Short-term Memory (LSTM) is a recurrent network architecture along with 

an appropriate gradient-based learning algorithm (Hochreiter and Schmidhuber, 1997). 

The introduction of the gradient-based algorithm in the LSTM eliminates the exploding or 

vanishing gradient by enforcing constant error flow through the internal hidden layer called 

LSTM. The architecture of LSTM is shown in Figure 3-4, where an LSTM cell has three 

gates: forget gate layer, Ft input gate layer, It output gate layer, Ot. The forget gate layer 

decides which information from the cell state Ct-1 at ht-1 will forget and which information 

will keep for feeding. The input gate layer will decide which new information will preserve 

that produce a candidate cell state Ĉt. A new cell state Ct is produced at ht in the output gate 

layer, combining both forget gate layer and input gate layer information.  
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Figure 3-4: Long Short-Term Memory Unit (Source: Deloche, 2019) 

 

The forget gate scales the internal state of the cell before adding it as input to the 

cell through the self-recurrent connection of the cell, therefore adaptively forgetting or 

resetting the cell’s memory. Besides, the modern LSTM architecture contains peephole 

connections from its internal cells to the gates in the same cell to learn the precise timing 

of the outputs (Gers et al., 2003). An LSTM network computes a mapping from an input 

sequence x = (𝑥1, ..., 𝑥𝑡 ) to an output sequence y = (𝑦1, ..., 𝑦𝑡 ) by calculating the network 

unit activations using the following equations iteratively from t = 1 to T: 

      𝐼𝑡 = 𝜎(𝑊𝑖𝑥𝑥𝑡 + 𝑊𝑖𝑚𝑚𝑡−1 + 𝑊𝑖𝑐𝑐𝑡−1 + 𝑏𝑖)             (3-2) 

            𝐹𝑡 = 𝜎(𝑊𝑓𝑥𝑥𝑡 + 𝑊𝑓𝑚𝑚𝑡−1 + 𝑊𝑓𝑐𝑐𝑡−1 + 𝑏𝑓)              (3-3)   

𝑐𝑡 = 𝐹𝑡 ⊙ 𝑐𝑡−1 + 𝐼𝑡 ⊙ 𝑔(𝑊𝑐𝑥𝑥𝑡 + 𝑊𝑐𝑚𝑚𝑡−1 + 𝑏𝑐)              (3-4) 

                𝑂𝑡 = 𝜎(𝑊𝑜𝑥𝑥𝑡 + 𝑊𝑜𝑚𝑚𝑡−1 + 𝑊𝑜𝑐𝑐𝑡 + 𝑏𝑜)             (3-5) 

                                                              𝑚𝑡 = 𝑂𝑡 ⊙ ℎ(𝑐𝑡)              (3-6) 

                                              𝑦𝑡 = 𝜙(𝑊𝑦𝑚𝑚𝑡 + 𝑏𝑦)             (3-7) 
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where  

Wic, Wfc, Woc = diagonal weight matrices for peephole connections, 

b = terms denote bias vectors (bi is the input gate bias vector), 

σ = is the logistic sigmoid function, 

I, F, O = input gate, forget gate, and output gate, respectively, 

c = cell activation vectors, 

m = cell output activation vector, 

⊙ = element-wise product of the vectors, 

g, h = cell input and cell output activation functions, and  

tanh = network output activation function. 

3.2.4 Selection of Prediction Horizon 

The prediction horizon is the time window after the incident occurrence, at which 

the prediction of the incident impact is made starts. It is the time used to account for the 

fact that the vehicles do not start diverting until a significant queue and delay are built on 

the freeway and that the vehicles take some time to reach the alternative route location to 

cause delay at the critical intersections. After the incident occurs on the freeway, the 

traveler needs some time to receive information about the increasing delay, react to the 

information, and reach the critical intersections.  

From the signal timing plan point of view, it is not practical to change the plan very 

frequently because the transition between plans takes some time, and frequent switching 

between the plans, if not implemented correctly, can cause deterioration in traffic 

performance (Alexiadis and Chu, 2016). Besides, the proposed system can be classified as 

a “proactive” traffic responsive system, in which the utilization of a 15-minute interval is 
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common. Adaptive signal control works with higher time granularity, but such systems 

have not been proven to work with surges in demands or abrupt reductions in capacities. 

Considering all these issues, a 15-minute prediction horizon from 15-90 minutes of the 

incident is selected for use in this study,  

3.2.5 Model Training and Validation 

 Training and validation of the model, including the configuration of the 

hyperparameters of the model, is a crucial step in model development. The Python 

programming language with Keras library and Tensorflow library in the backend are used 

to train and validate the LSTM model. The model is derived to predict the travel time in 

the prediction time horizon. The input variables used in the model are the timesteps, time-

of-day, incident severity, number of lane blockage, the location of the incident (distance 

from a reference point), average speed and average volume per lane on the freeway, and 

the travel times of both the freeway and arterials. The model provides predicted travel times 

for all alternative arterial segments for the prediction time horizon, divided into six steps 

(Steps 1 to 6 represent the 15-minute interval from 15-90 minutes after the incident). It is 

trained for predicting the travel times for the intervals between 15-90 minutes after the 

occurrence of the incident, where every 15-minute data points are used to predict the next 

15-minute travel times.  

The models’ hyperparameters are fine-tuned, considering the resulting loss function 

targeting the achievement of better results in the prediction. Three hidden layers are used 

from the usually utilized range of two to five hidden layers besides the input and output 

layers. Inputs are fed in five batches for 100 epochs. The adaptive moment estimation 

(Adam) optimizer is used with a learning rate of 0.0001. Since the input variables consist 
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of both categorical and continuous variables, one-hot encoding is used to convert the 

categorical variables (i.e., time-period after the incident, time-of-day, incident severity, 

number of lane blockage) into dummy variables for use in the model. The dataset is 

randomly divided into two parts: a training set and a test set, with the training set consisting 

of eighty percent of the data points and the test set consisting of twenty percent of data 

points. The model is trained using the training data set; its accuracy is estimated using the 

test data set. 

3.2.6 Accuracy of the Travel Time Prediction 

The accuracy of the model for travel time prediction during incidents utilizing the 

nonlinear relationship among traffic parameter inputs, incident attribute inputs, and travel 

time is determined using error functions of the test data sets. Two different performance 

measures: the Mean Absolute Error (MAE) and the Mean Absolute Percentage Error 

(MAPE) are estimated using Equations 3-8 and 3-9, respectively. 

                                   MAE=  
1

𝑛
∑ |𝑦𝑖 − 𝑦|𝑛

𝑖=1       (3-8) 

 MAPE= 
1

𝑛
∑ |

𝑦𝑖−𝑦

𝑦𝑖
|𝑛

𝑖=1                              (3-9) 

where 𝑦𝑖 is the predicted travel time for ith observation, 𝑦 is the ground truth travel time, n 

is the total number of observations. 

  The MAE performance measure examines the cumulative deviations of the 

predicted outputs from the targets, while the MAPE translates the deviations into 

percentage forms by comparing them with the absolute target values. The MAPE is a 

measure of accuracy.  
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3.3 Special Signal Plan Generation 

After identifying the critical alternative routes utilized by motorists for diversion, 

the next step is to develop and implement the proper signal timing in those critical 

alternative routes to facilitate the diversion. The process includes two major steps: i) 

estimation of path-level traffic demand and ii) optimization of the signal plan.  

3.3.1 Estimation of Path-level Traffic Demand 

The estimation of path-level traffic is necessary for each diversion scenario as it is 

one of the crucial inputs for designing the signal timing along the diversion path. Wrong 

estimation of the traffic demand on the intersection deteriorates the performance of the 

intersection and the corridor as well. In this study, the path-level traffic demand is 

estimated using the following two steps in combination: a) identification of the impacted 

scenarios and b) multi-resolution modeling.  

3.3.1.1 Identification of Impacted Scenarios 

The sudden demand surge of traffic on the alternative routes due to diversion 

deteriorates the performance of the routes.  The higher is the traffic diversion, the higher is 

the expected impacts on the travel time of the corresponding routes. These travel time 

changes, previously termed as ΔTT, are further used to identify the extent of the effect of 

diversion under different representative scenarios. The representative scenarios are 

identified using clustering analysis on the ΔTT of the potential alternative routes for all six 

15-minute intervals. K-means, a widely used clustering method, is utilized to identify the 

scenarios. Incidents responsible for those scenarios are identified from the data set to 

measure the path-level demand. The algorithm and features of the K-means method are 

described in Section 3.5, along with other clustering methods used in the study.  
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3.3.1.2 Multi-Resolution Modeling 

The next step is to identify the path-level demands on alternative routes associated 

with each representative scenario. MRM, combined with DTA, provides a way to model 

the scenarios and estimate the path-level demand. The MRM of the study corridor (I-95 

corridor) uses a combination of macroscopic modeling (regional planning model), 

mesoscopic simulation-based DTA, and microscopic simulation. Figure 3-5 shows the flow 

chart of the MRM modeling steps used in this study.  

 

Figure 3-5: MRM Modeling Frameworks and Associated Tasks 

Macroscopic

Simulation

• Extraction of subarea for SERPM model.

• Generate subarea origin-destination (OD) matrix through 
performing highway assingment module in the CUBE for the 
subarea.

• Export the subarea network and subarea matrix for the use in 
mesosocopic model.

Mesoscopic 
Simulation

• Import the subarea network file in Visum

• Clean the network, congifure geometry of the intersection.

• Configure the attributes of the links such as capacity, free flow 
speed, etc.

• Install signal controller in the intersection

• Calibrate the model for normal and incident condition

• Generate the path-level traffic for SBA

Microscopic 
Simulation

• Coded the network, fix the geometry in Vissim.

• Install the signal controllers and detectors in the intersection

• Configure the attributes such as speed distribution, lane 
changing parameters, driver behaviors.

• Calibrate the model

• Import the traffic inputs and static routing from mesoscopic 
model 
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Calibration of the Simulation Models 

Proper replication of the real world through simulation in different modeling 

resolutions requires meticulous effort in the calibration of the model parameters so that it 

can produce traffic volume and travel time in acceptable deviation from the real-world 

measurement. This study utilizes the 2004 Federal Highway Administration (FHWA) 

calibration criteria of traffic simulation models, shown in Table 3-1 (FHWA, 2004).  

Table 3-1: Calibration Criteria and Acceptance Target for Freeway and Arterials 

Criteria and Measures Calibration Acceptance Targets 

Hourly Flows, Model Versus Observed 

Individual Link Flows: Within 15%, for 700 

veh/h < Flow < 2700 veh/h 

> 85% of cases 

Hourly Flows, Model Versus Observed 

Individual Link Flows: Within 100 veh/h, for 

Flow < 700 veh/h 

> 85% of cases 

Hourly Flows, Model Versus Observed 

Individual Link Flows: Within 400 veh/h, for 

Flow > 2700 veh/h 

> 85% of cases 

Travel Times: Journey Times, Network 

Within 15% (or 1 min, if higher) 
>85% of cases 

One of the critical aspects of this study is the calibration of the mesoscopic model 

for the incident condition. This calibration is performed in two steps. First, the model is 

calibrated for normal conditions. The calibration for the incident condition then follows 

this. Figure 3-6 shows the calibration procedure carried out in this study for normal and 

incident conditions. The link traffic volumes are estimated using the dynamic assignment 

in the utilized mesoscopic simulation model (Visum) (PTV AG, 2019). The Least Square 

OD matrix estimation (ODME) module in Visum is used to produce OD demands that 

provide a good match to the turning movement counts for the normal conditions. The 

parameters used as inputs to the ODME modules are traffic detector counts retrieved from 

the FDOT data warehouse and turning movement counts obtained from FDOT District IV.  
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For the incident condition, the real-world data used in the calibration of the 

mesoscopic simulation-based DTA model for incident conditions are traffic counts 

collected by traffic sensors on the freeway mainline, travel time data from a third-party 

vendor (HERE), and path-specific OD traffic data from another third-party vendor 

(StreetLight). The path-specific OD traffic data contains an origin zone, a destination zone, 

and a path that the traffic uses between the origin and the destination. Incident attributes 

such as the start time, incident duration, number of blocked lanes, and incident location are 

coded in the model. The capacity reductions due to incident lane blockages are replicated 

in the model by adjusting the model parameters to meet the recommended reduced capacity 

due to incidents in the HCM 2016 (HCM, 2016). The process is performed through an 

iterative process and continued until the calibration criteria are met. After calibration, the 

resulting path-based OD traffic volumes and travel times are verified against the criteria 

shown in Table 3-1. 
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Figure 3-6: Mesoscopic Model Calibration Procedure 

 A microscopic model in the PTV Vissim simulation tool (PTV AG, 2019) is 

calibrated following the same criteria set in the FHWA TAT Volume III. The calibrated 

microscopic model is used to develop and assess signal plans for the identified scenarios.  

3.3.2 Optimization of the Signal Plan 

One of the variations of the GA, NSGA-II, as identified in the literature review, is 

used in the study to develop the signal timing plan in this study. NSGA-II is a multi-

objective optimization that uses the same basic principle of GA except in selecting 

individuals for the next generation. In the following two sections, both GA and NSGA-II 

are discussed in detail. 
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3.3.2.1 Genetic Algorithm (GA) 

The theoretical foundation of GA is originally developed by Holland (1975). It is a 

heuristic optimization technique that imitates the biological processes of reproduction and 

natural selection to solve for the ‘fittest’ solutions (Goldberg and Holland, 1988). It is a 

stochastic process and far more powerful and efficient than random search and exhaustive 

search algorithms (Kinnear, 1994). 

Features of GA 

GA optimization works similar to the biological evaluation process; hence features 

of the algorithm named after the biological process. Following are the salient features of 

the GA. 

Initialization 

GA initiates with a population of individuals; each individual represents a possible 

solution. The parameters of each individual are encoded into a chromosome. In general, 

each parameter value is converted into a binary string (1’s and 0’s) then concatenate the 

parameters end-to-end like genes in a DNA strand to create the chromosomes (Mitchell, 

1995). 

Fitness assignment 

Each candidate solution's fitness is then evaluated with respect to a given objective 

function and assigned a fitness value. The higher the fitness value, the better the solution 

and possess the greater probability of being selected for recombination. 
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Selection 

After assigning the fitness value, the fittest individuals are selected for the crossover 

to produce the next generation. Elitism selection makes the fittest individuals survive 

directly for the next generation.  

Crossover 

The highly fit individuals selected in the selection process are given opportunities 

to reproduce by exchanging their genetic information in this step. Each offspring of the 

new population represents a new solution, which shares some of the characteristics 

obtained from both parents. 

Mutation 

Some genes in the string of each individual are altered through the mutation 

process. By this process, offspring can replace the whole population or less fit individuals. 

The mutation is a very crucial step in the optimization process. Although selection and 

crossover keep the fittest individual, these are only fitter relative to the current population. 

This can cause the algorithm to converge too quickly and lose “potentially useful genetic 

material (1’s or 0’s at particular locations)” (Goldberg and Holland, 1988). In other words, 

the algorithm can get stuck at a local optimum before finding the global optimum (Haupt 

and Haupt, 2004). The mutation operator helps protect against this problem by maintaining 

diversity in the population, but it can also make the algorithm converge more slowly.  

3.3.2.2 Non-dominated Sorting Genetic Algorithm-II (NSGA-II) 

NSGA-II belongs to a set of multi-objective algorithms that strive to find the Pareto 

front of compromised solutions of all objectives rather than integrating all objectives 

together (Deb et al., 2002). The algorithm works similarly to the basic GA with the 
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crossover and mutation steps. A selection operator is used to create a mating pool by 

combining the parent and offspring populations and selecting the best individuals following 

the process of the non-dominated sorting and crowding distance sorting.  

Non-dominated sorting is based on the concept of non-dominated sets. A solution 

‘x’ is said to dominate a solution ‘y’ if ‘x’ is no worse than ‘y’ in all objectives and if ‘x’ is 

strictly better than ‘y’ in at least one objective. For a set of solutions P, the non-dominated 

set is formed by those solutions that are not dominated by any member of P. The goal in 

multi-objective optimization is to find the set of Pareto-optimal solutions, i.e., the non-

dominated set of the entire feasible search space.  

To calculate the crowding distance, the distances between the left and right 

neighbors of a solution are summed up for all objectives. Solutions that are located in a 

region of the search space that is not densely covered by the current population are 

preferred. The steps of the NSGA-II are described below. 

Steps 

i. A random parent population  Pt  is initially generated. The population is sorted based 

on the non-domination. Each solution is assigned a fitness (or rank) equal to its 

non-domination level. The usual binary tournament selection, crossover, and 

mutation operators are used to create an offspring population Qt of size N.  

ii. A combined population Rt = Pt U Qt is formed. The population Rt is of size 2N. 

Then, the population Rt is sorted according to non-domination and assigned a rank 

to each population. 

iii. The population Rt is again ranked based on their crowding distance.  

iv. The next generation parents’ Pt+1 are selected in a way that is, between two 
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individuals (solution) with differing non-domination ranks; the lower rank 

individual is selected. But if both individuals belong to the same front, then the 

individual with higher crowding distance is selected.  

v. The processes loop through Step-ii until a termination condition meets. 

3.3.3 Pareto Front 

Francis Ysidro originally introduces the Pareto optimality concept and then 

generalized it by Vilfredo Pareto (Coello et al., 2007). A solution belongs to the Pareto set 

if there is no other solution that can improve at least one of the objectives without 

degradation of any other objective. The Pareto set selection is explained using a 

hypothetical example shown in Figure 3-7, where two objectives’ functions (f1 and f2) are 

minimized. Among the set of feasible solutions, A and B are included in the Pareto front. 

At the same time, C and D are left out from the Pareto front because solution C does not 

improve any of the objective functions, and D, although it improves f1 but degrades the f2. 

 

Figure 3-7: Pareto Front for Two Objectives Minimization Problem (Source: 

Nojhan, 2021) 

D 
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3.3.4 Optimization Problem Formulation 

A microscopic simulation-based multi-objective optimization is utilized in this 

study to develop the signal plans corresponding to different diversion scenarios during 

incidents on the freeway. The Vissim microscopic model developed as a part of MRM 

modeling is used to simulate the scenarios, allowing the estimation of the objective 

functions' values for the feasible solutions. The NSGA-II algorithm is used to solve the 

optimization problem. Since diversion can create congestion on intersection movement(s) 

with long queues, the objective functions used in the optimization include throughput 

maximization of the impacted movements and overall delay minimization of all the 

intersections movements along the diverted path. The objective functions and subjected 

constraints used in the optimization are the following. 

Minimize 𝑓1(𝑔) = (∑ ∑ 𝑉𝑖,𝑚𝑚∈𝑀𝑖∈𝐼 × 𝑑𝑖,𝑚)/ ∑ ∑ 𝑉𝑖,𝑚𝑚∈𝑀𝑖∈𝐼            (3-10)               

Maximize 𝑓2(𝑔) = ∑ ∑ 𝑁𝑖,𝑚𝑚∈𝑀𝑖∈𝐼                               (3-11) 

The objective functions are subjected to the following constraints. 

𝐶𝑚𝑖𝑛𝑖 < 𝐶𝑖 < 𝐶𝑚𝑎𝑥𝑖   ∀𝑖 ∈ 𝐼   (3-12) 

       𝑔𝑚𝑖𝑛𝑘,𝑖 < 𝑔𝑘,𝑖 < 𝑔𝑚𝑎𝑥𝑘,𝑖 ∀𝑖 ∈ 𝐼, ∀𝑘 ∈ 𝐾 (3-13) 

𝑔1,𝑖 + 𝑔2,𝑖 = 𝑔5,𝑖 + 𝑔6,𝑖  ∀𝑖 ∈ 𝐼   (3-14) 

𝑔3,𝑖 + 𝑔4,𝑖 = 𝑔7,𝑖 + 𝑔8,𝑖    ∀𝑖 ∈ 𝐼   (3-15) 

where 

𝑓1(𝑔) = average delay,  

𝑓2(𝑔)= total throughput, 

𝑑𝑖,𝑚= average delay for movement m, at intersection i, 
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𝑉𝑖,𝑚= number of vehicles for movement m, at intersection i, 

𝑁𝑖,𝑚= total throughput for movement m, at intersection i, 

 𝐶𝑖= cycle length of intersection i,    

𝐶𝑚𝑖𝑛𝑖= minimum cycle length of intersection i,    

𝐶𝑚𝑎𝑥i= maximum cycle length of intersection i,    

𝑔𝑘,𝑖= green duration for phase k, at the intersection i (decision variables), 

𝑔𝑚𝑖𝑛𝑘,𝑖= minimum green time associated with phase k, at the intersection i, 

𝑔𝑚𝑎𝑥𝑘,𝑖= maximum green time associated with phase k, at the intersection i, 

𝑔1,𝑖= northbound left phase split at the intersection i,  

𝑔2,𝑖= southbound through phase split at the intersection i,  

𝑔3,𝑖= eastbound left phase split at the intersection i,  

𝑔4,𝑖= westbound through phase split at the intersection i,  

𝑔5,𝑖= southbound Left phase split at the intersection i,  

𝑔6,𝑖= northbound Through phase split at the intersection i,  

𝑔7,𝑖= westbound Left phase split at the intersection i,  

𝑔8,𝑖= eastbound Through phase split at the intersection i,  

 𝐼= set of all intersections of the alternative route, 

𝑀= set of all movements at the intersection i, and 

 𝐾= set of all phases available at the intersection i. 

The constraints used in the optimization are the cycle length, minimum and 

maximum green times, and the ring and barrier settings. The constraints are shown in 

Equations 3-12 to 3-15. The cycle length constraint in Equation 3-12 shows a bounded 
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value between a minimum value and a maximum value set in the optimization. However, 

in the case study used in this dissertation, the cycle length constraint is further modified to 

Equation 3-16.  

𝐶𝑖 = 𝐶𝑒𝑥𝑖𝑠𝑡𝑖    ∀𝑖 ∈ 𝐼                                                      (3-16) 

where, 

𝐶𝑒𝑥𝑖𝑠𝑡𝑖= existing cycle length at intersection i. 

 Equation 3-16 indicates that, in the case study, the cycle lengths for all intersections 

in the alternative routes are kept equal to the existing cycle lengths used in the field to 

ensure no violation of progression of the whole alternative route, since only a part of the 

alternative route is modeled in this study.  

 The minimum green time and maximum green time constraints are shown in 

Equation 3-13. In calculating the minimum and maximum green times for each phase for 

all intersections, this study utilizes the existing minimum and maximum green times used 

in the field. These values are utilized to maintain the pedestrian crossing time requirements. 

The barrier constraints are used to avoid the operation of conflicting movements at the 

same time. The barrier separates the north-south movements from the east-west 

movements. Equations 3-14 and 3-15 show the constraints that reflect the ring and barrier 

settings of the controller. 

 In the optimization, the decision variables are the green splits of all phases of the 

intersections in the diversion routes. The green splits are optimized based on the values of 

objective functions estimated from the simulation. For different green split values, the 

simulation provides different values of objective functions. The following two sections 

describe the population design and optimization process. 
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3.3.5 Population Design and Parameters Configuration 

All the intersections of the study area are four-leg intersections, operating following 

the NEMA 8-phase signal control. A typical signal control phase for a four-leg intersection 

is shown in Figure 3-8. It consists of lead, lag, and overlap phases. 

  

Figure 3-8: Typical Signal Control Plan (Source: FHWA, 2021) 

 

To encode the phases in the candidate solution (i.e., chromosome), all the phases 

are coded in the binary 0’s and 1’s and concatenated with each other. The MRM study 

network consists of three intersections at the microscopic simulation level, for which the 

signals are optimized. All eight-phase splits for all three intersections were encoded 

together in a chromosome. Each candidate solution (aka chromosome) length is 192 bits 

(i.e., genes), and the population size used in the study is 20. A total of 25 generations is 

used in the study to find the optimal Pareto front. In a Vissim based GA optimization, 

Stevanovic et al. (2007) found that the best crossover probability between 0.4 and 0.7 and 

mutation probability between and 0.01 and 0.04. Therefore, in this analysis, the utilized 

crossover rate is 0.6, and the utilized mutation rate is 0.03.  The yellow and all-red intervals 

are added to the corresponding phase splits. 
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3.3.6 Optimization Process 

 The microscopic simulation-based optimization is performed using the Vissim 

component object model (COM) service, an interface that provides communication 

between software (Box, 1998).  The Python programming language is used to call both the 

COM and NSGA-II algorithm. The COM interface is used to run the simulation and to 

access, modify, and retrieve different attributes of the simulation model. The attributes 

retrieved from the model are used as inputs to the NSGA-II optimization, and the output is 

fed into the simulation model. After developing the communication between the simulation 

model and the COM, a COM interface calls the NSGA-II to generate the initial population, 

which is a set of individuals consisting of genes, representing the green split of the phases. 

In generating the initial population, the green splits and the cycle lengths of all signal plans 

of all intersections are checked using an algorithm to make sure they fulfill the constraints 

of the optimization.  In the next step, the simulation is run by the COM, and the current 

step green splits of the traffic controller are changed according to the individual generated 

in the previous step. At the end of each run, the objective functions’ values are estimated 

using simulation for each individual. The offspring solutions are then generated following 

crossover and mutation operation. In this step, the constraints are also checked for all of 

the offspring solutions. Then, the simulation is run for all of the offspring solutions, and 

the outputs are saved. After assigning the outputs to each individual, the non-dominated 

sorting and crowding distance sorting are estimated, and the population for the next 

generation is selected. 

For each individual (a signal control plan), the simulation is run for 30 minutes 

(1,800 seconds) where the first 15 minutes are considered the warm-up period and are not 
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used in the performance measurement. The last 15 minutes’ (900 seconds) outputs are 

saved and averaged across the cycles to use as the objective functions' values. The pseudo-

code of the algorithm in the Vissim platform is shown in Figure 3-9. 

NSGA-II Algorithm with N Generations and 2 Objective Functions 

Input: P0, N, M 

P0= Initial Population  

M= Population size 

N= Number of Generations 

Output: Pareto Solutions  

 

Initialize 

N=0;  

Generate Initial Population, P0 

Run Vissim simulation  

Break Vissim simulation at 900 seconds.  

Run Vissim simulation using COM interface for individuals in P0  

Compute fitness f1, f2 using Vissim COM interface  

while termination conditions are not satisfied (N<Nmax) do:  

Convert individual of PN into a binary variable 

QN= Crossover & Mutation (PN)  

Reconvert individual of QN into decimal variable 

Run Vissim simulation  

Break Vissim simulation at 900 seconds.  

Run Vissim simulation using COM interface for individuals in QN  

Compute fitness f1, f2 using Vissim COM interface  

RN= PN ∪ QN (size 2M)  

PN+1= [ ] 

(L1, L2, …, Li) = Ranked RN based on Non-dominated sorting and Crowding                                             

distance  

i=1  

repeat  

PN+1= PN+1 ∪ Li  

i=i+1;  

until |PN+1| = M  

if N=Nmax then  

break  

else, N=N+1  

end  

return Pareto-optimal front and associated signal timing plan.  

Figure 3-9: NSGA-II Algorithm Pseudo Code 
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3.4 Implementation of the Signal Plans in Real-Time 

 The methodology described in this dissertation derives the signal timing plans off-

line utilizing optimization methods. These plans can then be stored in a library of special 

signal timing plans for activation in real-time. In addition, the off-line data analytics 

utilized in this study identify the conditions under which each of the plans should be 

activated.  The agency can use these methods that are done off-line based on archived data 

to select the signal plans on the critical alternative routes in real-time from the library of 

plans based on the measured travel times and incident status. The critical diversion routes 

can be predicted based on the ΔTT value estimated based on real-time measurements 

utilizing the developed LSTM models. At the same time, this ΔTT value can also be used 

to predict the operation scenario in the next 90 minutes and select the signal plan developed 

for that scenario. After every 15 minutes, the travel time and incident status can be updated 

in the LSTM models, and the same procedure to implement the signal plans is repeated. 

The process continues till the predicted ΔTT values fall below the set threshold values. The 

selection and implementation of the signal timing plans in real-time operation from a 

library of plans developed off-line, is recommended to be implemented as part of the 

central software of traffic management centers. 

3.5 Congestion Identification using CV and HRC  

One of the crucial aspects of the study is the development of the signal timing plans 

for the critical intersections of the alternative routes based on the predicted traffic scenarios 

that originated from the diversion. These scenarios can vary extensively based on the 

incident and traffic attributes both on the freeway and the alternative routes. Moreover, an 

important consideration is the distributions of the diverted traffics at the critical 
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intersections. For example, sometimes a major portion of the diverted traffic takes a left 

turn to a parallel arterial street at an intersection in the close vicinity of the freeway, while 

sometimes the diverted traffic goes through at the intersection to use another parallel route 

further away from the freeway. This asymmetric distribution of the traffic at the 

intersection affects congestion by creating long queues, queue spillback, and queue 

spillover. The MRM method described in the previous section provides an off-line 

simulation-based solution in identifying these scenarios effectively and developing signal 

timing plans for those scenarios. Because the traditional data collection techniques such as 

stop line detector or the Bluetooth detector sometimes cannot discern between the 

contributions of different movement groups of an approach to congestion. These existing 

technologies may not be able to capture, for example, if the high delay and queue on an 

approach are due to the left turn or through movements, which is important to the selection 

of the best signal plans. Therefore, utilizing data from existing technology without 

additional data in designing the signal plan may lead to the wrong assignment of green time 

to movements. Contrary to these traditional detectors, CV and HRC are the two new 

imminent technologies that have shown a lot of promise in traffic management. This study 

explores the use of these data in the identification of congestion patterns on alternative 

routes. These patterns can be used to select the signal plans in real-time. A clustering-based 

approach is developed to identify the congestion patterns based on the data obtained from 

CV and HRC. The process followed in identifying the congestion patterns is shown in 

Figure 3-10. Initially, the CV, HRC, and loop detector data are merged, and critical 

attributes such as average travel time, CV position in the queue, served volume and 

capacity ratio, green occupancy ratio, red occupancy ratio, mid-block volume are 
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measured. These attributes are taken for 100 percent market penetration (MP) of CV and 

for other percentages as well. The 100% MP CV data is used for determining the 

appropriate clustering method and true patterns as no real-world traffic patterns are 

available in the study location. Finally, congestion patterns for various MP of CV are 

measured and compared against the true patterns to assess the accuracy. 

 
CV=Connected Vehicle, HRC=High-Resolution Controller, MP=Market 

Penetration 

Figure 3-10: Steps of Congestion Patterns Identification using HRC and CV Data  
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As mentioned previously, the study area does not have real-world data of CV or 

HRC. As a result, the study utilized Vissim microscopic simulation to simulate all the data. 

The detailed data generation process is described in Chapter IV.  

3.5.1. Clustering 

Clustering is the best available unsupervised machine learning technique for 

identifying the patterns in the data (Saha et al., 2020; Nafis et al., 2021). Four clustering 

techniques, two linear and two non-linear clustering methods are explored, and their 

performances in the congestion identification are evaluated in the study. Below is the 

description of the clustering techniques that are tested for use in this study. 

3.5.1.1 K-means  

The K-means algorithm is a widely used method applicable for clustering data 

based on quantitative variables (Jain and Dubes, 1988). The method is based on an iterative 

algorithm in which the process is initiated by providing a fixed set of centroids (Hartigan 

and Wong, 1979). Each data point to be clustered is then assigned to its closest centroid 

using a squared Euclidian distance measure. To assign a point to a cluster, the goal is to 

minimize the sum of average pair-wise distance within-cluster dissimilarity. The centroids 

are then updated by computing the average of all the points assigned to each cluster. The 

steps are iterated until the assignment of the data points to each centroid does not change 

significantly.  

3.5.1.2 Principal Component Analysis (PCA) Combined with Clustering  

Principal Component Analysis (PCA) is a statistical approach for dimension 

reduction and compression while retaining most of the variation in the data set (Dunteman, 

1989). PCA converts the observations to an orthogonal system of Euclidean space and thus 
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reduces dimensionality by retaining only those characteristics of the data set that contribute 

most of its variance. The first principal component (PC) can equivalently be defined as a 

direction that maximizes the variance of the projected data. The ith PC can be taken as a 

direction orthogonal to the first ith-1 PCs that maximizes the variance of the projected data. 

A small number of PCs from all PCs that preserve optimum variability are used for further 

analysis. PCA was found effective in capturing the cluster structure in the data set when 

used along with clustering methods instead of clustering methods by themselves (Meng et 

al., 2015). Ding and He (2004) found that K-means clustering on high dimension data was 

affected by the noise in the data set, and applying K-means clustering in the PCA subspace 

improved the results significantly. Clustering with the reduced dimensions from PCA was 

found very effective in recognizing the patterns in the data set (Saha et al., 2019).  

3.5.1.3 t-Distributed Stochastic Neighbor Embedding (t-SNE) 

Unlike the traditional dimensionality reduction techniques such as PCA, t-

distributed stochastic neighbor embedding (t-SNE) is a non-linear dimension reduction 

technique that keeps dissimilar data points far away in low dimensional representations. t-

SNE is a variation of stochastic neighbor embedding (SNE), which uses Student-t 

distribution rather than a Gaussian to compute the similarity between two points in the low-

dimensional space (Maaten and Hinton, 2008). The method uses equality of conditional 

probabilities representing similarities between the data points with high-dimension and low 

dimension based on the Euclidean distances in the dimension reduction. The sum of 

Kullback-Leibler (KL) divergence is minimized over all data points based on a gradient 

descent method. Although SNE constructs reasonably good visualizations, it is hampered 

by a crowding problem that makes cost function very difficult to optimize. t-SNE employs 
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a heavy-tailed Student t-distribution in the low-dimensional space to alleviate both the 

crowding problem and the optimization problems of SNE (Maaten and Hinton, 2008). t‐

SNE has been shown to successfully identify small cellular subpopulations, as low as those 

comprising 0.25% (Amir et al., 2013).  

3.5.1.4 Deep Embedded Clustering (DEC) 

Deep Embedded Clustering (DEC), which learns feature representations 

for clustering tasks using deep neural networks, has attracted increasing attention for 

various clustering applications. The method simultaneously learns feature representations 

and cluster assignments using deep neural networks. It is a parameterized non-linear 

mapping from the data space X to a lower-dimensional feature space Z through the 

optimization of stochastic gradient descent (SGD) via backpropagation. It is a method that 

simultaneously solves for cluster assignment and the underlying feature representation (Xie 

et al., 2016). Deep neural networks training in this method is different from other 

supervised learning, as there is no labeled data associated with the analysis. The method 

refines clusters iteratively with an auxiliary target distribution derived from the current soft 

cluster assignment. This process gradually improves the clustering as well as the feature 

representation. DEC was applied successfully in various filed such as prediction of severity 

of age-related macular degeneration (AMD) from input optical coherence tomography 

(OCT) images (Mahapatra et al., 2020), and pattern detection from seating pressure 

distribution during wheelchair motion (Noguchi et al., 2019). 

3.5.2 Optimum Number of Clusters 

One of the important aspects of clustering is to determine an adequate number of 

clusters to discern all the frequent patterns. Several empirical methods are available to 
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identify the required number of clusters, such as the Elbow Method, Average Silhouette 

Method, and Gap Statistics Method. In this study, the optimal number is selected using the 

Elbow Method. With this method, a graph is drawn between the sum of square error (SSE) 

measure and the number of clusters, and the location of the bend in the plot is used as an 

indicator of the appropriate number of clusters (Ketchen and Shook, 1996).  

Besides the Elbow method, the study also utilizes the t-distributed stochastic 

neighbor embedding (t-SNE) method (Maaten and Hinton, 2008), a data visualization 

technique to verify the optimum number of clusters determined in the Elbow method. t-

SNE reduced high-dimension data to two dimensions data that makes it easily visualizable 

in the 2-D graph. The visualization graph depicts the inherent pattern of the data and 

provides a prediction of the optimum number of clusters. 

3.5.3 Evaluation of Clustering Methods 

The performance of the investigated clustering methods is assessed utilizing the 

Silhouette Coefficient (Rousseeuw, 1987) and Davies-Bouldin Index (DBI) (Davies and 

Bouldin, 1979). These two performance measures are chosen in the study for their 

capability to assess the performance of the clustering algorithms. These measures do not 

need ground truth data and allow a straightforward interpretation of the results (Rousseeuw, 

1987). A higher Silhouette coefficient indicates a dense and well-separated cluster, while 

a lower DBI describes a higher degree of appropriateness of data partitions into clusters 

(Davies and Bouldin, 1979). Based on the coefficients’ values, the best clustering method 

is selected to identify the congestion patterns. 
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3.5.4 Analysis of Congestion Patterns 

The congestion patterns in this study are initially identified considering the 

presence of 100% CV vehicle in the traffic stream for all the possible diversion scenarios. 

This is done as the study network doesn’t have any ground truth data for congestion 

patterns. After identifying the congestions for the base scenario, this study measures the 

congestions for other market penetrations (MP) of CV and evaluated the accuracy against 

the base scenario.  

3.6 Summary 

This research focuses on developing methods and associated models to support the 

management of diversion routes utilizing a combination of data analytics, machine 

learning, and simulation modeling. In the first step, a methodology is developed utilizing 

machine learning to identify the critical routes used by the motorist during incidents on the 

freeway. In the next step, a methodology consisting of clustering analysis, MRM modeling, 

and multi-objective optimization is developed to generate special signal plans for the 

critical routes. Finally, a methodology is developed to explore the use of CV and HRC data 

for identifying traffic congestion patterns, which can be used to select the signal timing 

plans. 
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CHAPTER IV 

CASE STUDY 

This chapter describes the case study and the associated data (i.e., sources, retrieval, 

and preparation) utilized in this research to demonstrate the methodology discussed in 

Chapter III. The first section explains the network selection and the rationale of choice for 

the study. The second section describes the network preparation process and its salient 

features. Each model developed in the study requires a specific format of the data; the third 

section describes the retrieval and formation process of the data.  

4.1 Network Selection 

The networks are selected based on criteria such as the level of congestion created 

by the incident, availability of data, and the potential for improvement by introducing 

special signal timing plans on alternative routes used by diverted traffic. The utilized 

network is the network surrounding Interstate-95 (I-95) in Broward and West Palm Beach 

County, FL. The I-95 is one of Florida's busiest corridors, with annual average daily traffic 

(AADT) of over 328,000 in Broward County (FHWA, 2017). The FDOT has deployed ITS 

based technologies to improve the corridor performance that generates a lot of data. 

Besides, this I-95 segment is also considered a potential site for ICM implementation by 

the FDOT and other agencies in the region.  

The I-95 corridor is utilized to demonstrate the methodology described in Chapter 

III for critical route prediction, MRM modeling to estimate route demands, and special 

signal timing plan generation for the diversion routes. A portion of the same network is 

also used to identify congestion patterns in the presence of CV and HRC data. Figure 4-1 

shows the network in the Open Street Map (OSM) platform. 
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Figure 4-1: I-95 Corridor Traffic Network 

4.2 Network Preparation 

After selecting the networks, the networks are coded in the simulation platform to 

develop and evaluate the models. Three different resolutions: microscopic, mesoscopic, 

and microscopic of the I-95 corridor, are prepared using Cube Voyager from Citilabs and 

two PTV traffic simulation software suits – Visum and Vissim, respectively. All three 

resolutions of the MRM network are shown in Figure 4-2, as described below. 
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I. Cube Voyager is a macroscopic simulation tool and currently in use of the 

Southeast Florida Regional Planning Model (SERPM) that encompass the I-95 

corridor. The I-95 corridor subarea network is extracted from SERPM along 

with the OD matrix for the subarea network. The highway assignment module 

of the Cube Voyager is applied to extract the OD matrix for a total of 435 zones, 

including internal and external zones.  

II. The mesoscopic simulation is performed using Visum software. Both the 

subarea network and OD matrix generated in the previous step are imported in 

Visum through the “VisumAddIn” service. After importation, the capacity of the 

links, intersection geometry, and movements are rectified in Visum to match the 

real world. The mesoscopic simulation is performed using simulation-based 

assignment (SBA) that considers traffic signal control. The traffic signal controls 

in the majority of the critical links surrounding the I-95 are set for proper SBA 

assignment. The OD demands used in the assignment are obtained using an 

ODME process. 

III. The microscopic simulation model, coded using Vissim, consists of both arterial 

and freeway segments. The freeway segment, I-95, extends from beyond the off-

ramp of Glades Road to the off-ramp of West Atlantic Blvd. Parallel to I-95, the 

South Military Trail arterial is considered as one of the potential diversion routes 

and therefore was coded in the network. Three important connectors between I-

95 and South Military Trail that facilitate the diversion operation for the South 

Bound (SB) traffic are also coded in the network. The connectors are W Palmetto 

Park Rd, W Hillsboro Blvd, and SW 10th St., whose lengths vary in a range of 
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0.5-0.6 mile. Signal control plans of these connectors’ intersections are then 

coded as actuated controlled signals based on the obtained data from Broward 

County. This Vissim network is also used to develop and evaluate the signal 

control plan for different diversion scenarios. The S Military Trail – W Palmetto 

Park Rd intersection of this network is used for the congestion pattern 

identification using CV and HRC data. 

 

  (a) SERPM Modeled Area        (b) Subarea                         (c) I-95 and major arterial 

Figure 4-2: Networks for the Three Levels of Modeling 
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4.3 Data Retrieval 

Two types of data are mainly utilized in the study; i) real-world data and ii) 

simulated data.  Real-world data includes travel time and traffic data for I-95, incident data 

for I-95, travel time for arterials, origin-destination (OD) matrix data from StreetLight. The 

simulated data includes CV data and HRC data for the I-95 corridor. Simulation data are 

used in the study as the study area does not currently have these data. Besides, simulation 

provides the flexibility to change the demands to examine the impact of demands on the 

analysis results.  

4.3.1 Traffic Data 

The analysis period is set from January 1st, 2017, to December 31st, 2018, excluding 

holidays and weekends. Traffic data, including volume and speed measurements, are 

collected from point sensors along I-95 mainline. The traffic data is retrieved from the 

FDOT data warehouse, which is a part of the Regional Integrated Transportation 

Information System (RITIS) in 15-minute intervals for four periods (i.e., AM Peak (7:00 

AM – 9:00 AM); Midday (9:00 AM-4:00 PM); PM Peak (4:00 PM-7:00 PM); Evening 

(7:00 PM-10:00 PM)) in the southbound direction of I-95. 

4.3.2. Incident Data 

Incident data for the analysis horizon is retrieved from the incident management 

database maintained by the Florida Department of Transportation (FDOT) District IV. The 

data includes detailed attributes of the incidents used in the analysis, including incident 

start time, incident duration, total incident clearance time, number of blocked lanes, 

severity, and location. 
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4.3.3 Travel Time Data 

The travel time data for both the freeway and alternative routes are retrieved from 

HERE (a private-sector travel time data provider) for the analysis horizon. One-minute 

resolution data are obtained for the southbound direction of I-95, the westbound direction 

of the arterial connectors to the alternative routes, and the parallel southbound arterials. 

Figure 4-3 shows the I-95, connectors, and parallel arterial for which all these data are 

collected. 

 

Figure 4-3: I-95 Corridor Diversion Route 

I-95 

S Military Trail 

Glades Rd 
Palmetto Park 

Hillsboro Blvd 
SW 10th St 
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4.3.4 StreetLight Data 

StreetLight is a third-party vendor that provides path-based travel data of the traffic 

network. It measures the diverse travel patterns of the traffic from origin to destination 

using a machine learning algorithm. StreetLight provides both the origin-destination matrix 

and path-based traffic data. The path-based OD traffic data contains an origin zone, a 

destination zone, and a path that the traffic uses to reach the destination. The data are 

available in hourly and AADT format. The study utilized global OD and path-based hourly 

OD data for both normal and incident conditions. The global OD represents the OD matrix 

without the path information. The global OD matrix data is used to verify the SERPM OD 

matrix data. For the calibration of the network during the incident condition, the study 

mainly utilized path-based traffic data. 

4.3.5 Emulated CV Data 

The CV data used in the study is emulated using simulation as the network does not 

have any real-world CV data. Vissim simulation is used to generate the vehicle trajectory 

files for possible diversion scenarios in the routes. The scenarios are generated for the 

diversion estimated using the method developed by Tariq et al. (2019). Based on the study, 

the maximum amount of diversion is 25% of the mainline volume. Therefore, the 

simulation is run for each percentage of diversion up to 25% by varying the proportion of 

diverted traffic in the left and through movement. Moreover, the simulation model is also 

run for different seed numbers.  

The vehicle trajectory file, retrieved from the Vissim runs for the scenarios, is a 

comma-delimited file (CSV) that provides all the vehicle’s trajectory information. The file 

contains vehicle ID, time in seconds from the beginning of the trajectory, the speed of the 
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vehicle in mph, and the x and y coordinates of the vehicle location in feet. For emulating 

the CV data from the trajectory, a certain percentage of randomly selected vehicles are 

considered CV vehicles. Their information is used to estimate the parameters used in the 

analysis. 

4.3.6 Emulated HRC Data 

HRC data utilized in this study are emulated using Vissim microscopic simulation.   

The real-world HRC data consist of the signal output states, and the presence of traffic as 

measured by detectors at 0.1-second intervals is automatically stored in the controller. The 

data is later retrieved from the controller using a transmission control protocol/internet 

protocol network connection, with the controller serving as a file transfer protocol (FTP) 

server. Once downloaded from the controller, a Windows-based wizard is used to convert 

the binary data files into comma-separated-value (CSV) files for use in producing the 

appropriate reports (Smaglik et al., 2007). 

A sample of real-world controller data is shown in Table 4-1. The data consist of 

three columns: “Timestamp,” “Event Type,” and “Parameter.”  

Table 4-1: High-Resolution Controller Data 
Controller No. Time Stamp Event Type Parameter 

CAF5C7E2-E505-45B8-8744-ABC5A750F233 11/6/19 7:00:00 44 1 

CAF5C7E2-E505-45B8-8744-ABC5A750F233 11/6/19 7:00:02 81 46 

CAF5C7E2-E505-45B8-8744-ABC5A750F233 11/6/19 7:00:03 81 47 

CAF5C7E2-E505-45B8-8744-ABC5A750F233 11/6/19 7:00:05 22 6 

CAF5C7E2-E505-45B8-8744-ABC5A750F233 11/6/19 7:00:07 7 1 

CAF5C7E2-E505-45B8-8744-ABC5A750F233 11/6/19 7:00:08 8 1 

Sturdevant et al. (2012) defines the enumerations used to encode events on traffic 

signal controllers with high-resolution data loggers. Table 4-2 shows an example of some 

of the enumerations. 
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Table 4-2: Example of Enumeration of High-Resolution Data (Source: Sturdevant et 

al., 2012) 

Event 

Code 

Event 

Description 
Parameter Description 

Active Phase Events: 

0 Phase On Phase # (1-16) 

Set when NEMA phase on becomes 

active, either upon the start of green or 

walk interval, whichever occurs first. 

1 
Phase Begin 

Green 
Phase # (1-16) 

Set when either solid or flashing green 

indication has begun. Do not set 

repeatedly during flashing operation. 

2 Phase Check Phase # (1-16) 

Set when a conflicting call is registered 

against the active phase. (marks 

beginning of max timing) 

3 
Phase Min 

Complete 
Phase # (1-16) Set when phase min time expires. 

4 Phase Gap Out Phase # (1-16) 

Set when phase gaps out but may not 

necessarily occur upon phase 

termination. Event may be set multiple 

times within a single green under 

simultaneous gap out. 

5 Phase Max Out Phase # (1-16) 

Set when phase max time expires but 

may not necessarily occur upon phase 

termination due to last car passage or 

other features. 

6 
Phase Force 

Off 
Phase # (1-16) 

Set when phase force off is applied to 

the active green phase. 

7 
Phase Green 

Termination 
Phase # (1-16) 

Set when phase green indications are 

terminated into either yellow clearance 

or other permissive (FYA) movement. 

For the emulation of HRC data using simulation, the traffic status, signal status, 

and detector status in 0.1-second resolution for the analysis period are exported from the 

Vissim simulation. Later all these three types of data are aggregated based on the time 

stamp using Python programming language. The aggregated data set is used to estimate the 

attributes such as green occupancy ratio (GOR), red occupancy ratio (ROR), and served 

volume over capacity ratio (v/c).  
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4.4 Data Preparation 

Some of the data is directly used in the analysis, while some of the data is needed 

further processing to make it useable for the analysis because each method requires a 

specific format of the data. In the following section, the data preparation process for each 

method is described.  

4.4.1 Data Preparation for Critical Route Prediction 

All data are filtered and cleaned by removing weekends, holidays, and missing data 

from the dataset to prepare the data for the analysis. The travel time for each minute is 

aggregated to 15-minute intervals starting from the beginning of the incident. For example, 

if the incident begins at 08:10 am, the next 15-minute data is from 08:10 am to 08:25 am 

and aggregated accordingly. This data is then associated with traffic attributes and incident 

attributes for these intervals. The processing is done using the Python programming 

language, which is eventually produced a dataset with all essential attributes. The 

combined dataset is further formatted to the specific format necessary to feed the LSTM 

method. The incident attributes, I-95 traffic detector, and travel time data for the I-95 

segment and alternative routes for each 15-minute interval from the beginning of the 

incident are used as the input to the model. The model provides predicted travel time for 

each 15-minute interval on the alternative routes up to 90 minutes after the incident as the 

output in the output layer of the LSTM model.  

Following the same procedure, another separate dataset for all the routes during the 

normal time period (excluding the incident period, weekends, and holidays) in the analysis 

horizon is processed to develop an LSTM model for the normal time period. 
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4.4.2 Data Preparation for Congestion Pattern Identification 

CV, HRC, and midblock loop detector, these three types of data are collected from 

the case study intersection modeled in the Vissim simulation. Initially, the data for each 

lane is collected and aggregated for each movement group for each cycle. After 

aggregating, the following attributes are estimated for use in the analysis.  

• Average Travel Time: Travel time data are collected by averaging the travel times 

of CVs in each cycle.  

• CV Position in Queue: The furthest stopping position of the CVs in the queue in 

each cycle is collected. If no CV is determined to be stopped in the queue, this value 

is considered as zero. 

• v/c (Served Volume/Capacity): Total volume of vehicle served during the green 

time in each cycle divided by the capacity. The capacity is estimated for normal 

conditions using the saturation headway after calibrating the simulation model. 

• Green Occupancy Ratio (GOR): The ratio of the detector occupancy during the 

green phase to the total green time. 

• Red Occupancy Ratio (ROR): Ratio of the detector occupancy during the first five 

seconds after the end of yellow in the split. 

• Mid-Block Volume: Number of vehicles passing the midblock in each cycle. 

4.5 Summary 

This study utilizes both real-world and simulated data to perform the analysis. The 

real-world data is retrieved from RITIS and FDOT District IV, and third-party vendors. 

The data are then cleaned, processed, and formatted using Python programming language. 



92 

 

On the other hand, the simulated data is emulated using the Vissim simulation model. A 

real-world traffic network is used to develop and demonstrate the methodology. 
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CHAPTER V 

MODEL APPLICATION AND RESULTS 

 

This chapter demonstrates the application of the methodologies developed in 

Chapter III utilizing the data described in Chapter IV. The chapter is arranged into three 

major sections - the first section covers the results of the prediction of critical routes, the 

second section discusses the MRM modeling results and the evaluation of traffic signal 

plan for critical routes, and the final section includes the results of the use of CV and HRC 

for traffic management.   

5.1 Prediction of Critical Routes 

This section provides the descriptive statistics of the data, analyzes the model 

accuracy, and discusses the models’ results for the I-95 Corridor case study.   

5.1.1 Incident Statistics 

The summary statistics of the incident attributes used in the analysis are shown in 

Table 5-1. The utilized data includes a total of 700 incidents with lane blockages that 

occurred during the analysis horizon in the southbound (SB) direction of I-95 from Glades 

Rd to Oakland Blvd. The majority of the incidents (65%) blocked one lane, and around 

24% blocked two lanes of I-95. 47% of the lane blockage durations were 15 minutes or 

less, but there was still a significant percentage of incidents (13%), which blocked at least 

a lane for more than sixty minutes. Around 76% of the incidents were with low severity, 

around 16% were with a medium severity, and the remaining 8% were highly severe. The 

“Time Period” was categorized to one to four, indicating the AM Peak, Midday, PM Peak, 

and Evening, respectively, to use as model input. The incidents' location was measured in 
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miles from a reference point with the mean distance equal 9.2 miles ranging from a 

minimum of 2.4 miles to a maximum of 16.3 miles. 

Table 5-1: Incident Summary Statistics 

Time 

Period 
Total 

Number of 

Lane Blockage 

Lane Blockage Duration 

(minutes) 
Incident Severity 

One Two 

Three 

or 

More 

≤15 

>15 

- 

≤30 

>30 

- 

≤45 

>45 

- 

≤60 

>60 
Severity 

I (Low) 

Severity 

II 

(Medium) 

Severity 

III 

(High) 

AM Peak 108 73 23 12 62 19 11 5 11 81 22 5 

Midday 320 207 82 31 146 87 39 19 30 247 62 12 

PM Peak 167 118 36 13 90 49 20 3 5 146 16 5 

Evening 105 56 31 18 31 20 9 4 40 56 13 35 

Total 

Incidents 
700 454 172 74 329 175 79 31 86 530 113 57 

5.1.2 Descriptive Statistics of Traffic Data 

The descriptive statistics of the traffic input variables during the incident and 

normal conditions are shown in Table 5-2. The average speed, traffic count per lane, and 

travel time for each segment of I-95 downstream of the off-ramps to the alternative routes 

were used separately as model inputs to consider the effect of incident location on the 

alternative routes. As shown in Table 5-2, mean speeds at the freeway and alternative route 

locations were lower during incident conditions for all segments of I-95 and alternative 

routes. Moreover, travel time variations during the incidents are higher than those during 

normal conditions due to the variability of the incident severity. The inputs and outputs of 

the LSTM model are shown in Table 5-3. As mentioned previously, incident attributes, 

traffic attributes, and travel time in the alternative routes are used as input to the LSTM 

model, while the prediction of the travel times the output of the model. Among the incident 

attributes, three crucial parameters: Number (No) of Lane Blockage, Severity of the 

Incident, and Location of the Incident, are utilized in the model to capture the scenarios of 
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the incidents in the travel time prediction on the alternative routes. The accuracy of the 

data, including the location and timestamps of the incidents and lane blockages, is 

important. Erroneous data can affect the results. However, it was determined that the 

quality of the FDOT incident data in the case study is sufficient for the study purpose.    

Table 5-2: Statistics of Traffic Inputs during Incident and Normal Conditions 

Input Variables Description 
Incident Conditions Normal Conditions 

Mean Std Min Max Mean Std Min Max 

Average speed on I-

95 (mph) 

Between Glades Rd 

and Palmetto Park Rd 
51.7 0.7 10.4 77.3 60.5 0.2 10.3 79.3 

Average speed on I-

95 (mph) 

Between Palmetto 

Park Rd and Hillsboro 

Blvd 

46.7 0.5 11.0 70.7 55.3 0.2 9.9 74.3 

Average speed on I-

95 (mph) 

Between Hillsboro 

Blvd and SW10th St 
58.7 0.7 10.3 82.5 69.7 0.2 21.4 83.8 

Average speed on I-

95 (mph) 

Between SW 10th St 

and Sample Rd 
60.9 0.5 10.7 77.5 64.7 0.2 12.9 79.1 

Average traffic 

count per lane on I-

95 (per 15 mins) 

Between Glades Rd 

and Palmetto Park Rd 
235 2 107 350 267 0.3 180 358 

Average traffic 

count per lane on I-

95(per 15 mins) 

Between Palmetto 

Park Rd and Hillsboro 

Blvd 

366 3 116 492 380 0.3 260 482 

Average traffic 

count per lane on I-

95(per 15 mins) 

Between Hillsboro 

Blvd and SW10th St 
336 3 131 486 355 0.3 270 500 

Average traffic 

count per lane on I-

95(per 15 mins) 

Between SW 10th St 

and Sample Rd 
365 3 129 496 398 0.3 242 518 

Average travel time 

on I-95 (sec) 

Between Glades Rd 

and Palmetto Park Rd 
45.6 1.1 24.6 261.8 34.9 0.3 24.8 262.1 

Average travel time 

on I-95 (sec) 

Between Palmetto 

Park Rd and Hillsboro 

Blvd 

122.1 2.3 70.4 545.8 93.3 0.5 67.1 792.3 

Average travel time 

on I-95 (sec) 

Between Hillsboro 

Blvd and SW10th St 
27.6 0.6 16.2 193.8 22.8 0.2 15.3 152.5 

Average travel time 

on I-95 (sec) 

Between SW 10th St 

and Sample Rd 
109.0 2.4 76.0 1,317.4 99.0 0.7 72.4 1,089.7 

Average travel time 

on Glades Rd (sec) 

From I-95 Off-Ramp 

to S Military Trail 
152.5 1.6 84.5 523.5 139.2 0.5 81.4 293.2 

Average travel time 

on Palmetto Park Rd 

(sec) 

From I-95 Off-Ramp 

to S Military Trail 
71.4 1.0 39.2 211.7 60.7 0.2 36.1 202.1 

Average travel time 

on Hillsboro Blvd 

(sec) 

From I-95 Off-Ramp 

to S Military Trail 
119.2 1.2 57.9 294.5 109.5 0.4 46.2 243.0 

Average travel time 

on SW 10th St (sec) 

From I-95 Off-Ramp 

to S Military Trail 
93.5 1.3 40.3 248.4 77.5 0.4 40.1 252.7 
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Table 5-3: Inputs and Outputs of the LSTM model  

Inputs Outputs 

o No. of Lane Blockage 

o Severity of the Incident 

o Location of the Incident 

o Time of Day 

o Average Speed on Freeway 

o Average Volume on Freeway 

o Travel Time on Freeway 

o TimeStep* 

o Travel Time on Alternative Route I 

o Travel Time on Alternative Route II 

o Travel Time on Alternative Route III 

o Travel Time on Alternative Route IV 

o Travel Time on Alternative Route I 

o Travel Time on Alternative Route II 

o Travel Time on Alternative Route III 

o Travel Time on Alternative Route IV 

 

*TimeStep= Time after an incident; For example, 15 minutes after the occurrence of the 

incident was termed TimeStep 1, and 30 minutes after the occurrence of the incident was 

termed as TimeStep 2, and so on. 

 

5.1.3 Evaluation of the Travel Time Prediction Model 

 Two performance metrics were used to evaluate the performance of the trained 

LSTM models: Mean Absolute Deviation (MAD) and Mean Absolute Percentage Error 

(MAPE).  These measures were estimated using the test dataset for the case study described 

earlier. The performance matrices for each timestep for the two LSTM models (the incident 

period model and the normal period model) for each investigated diversion segment are 

shown in Tables 5-4 and 5-5, respectively. It is observed from the tables that the accuracy 

of the prediction is good across the timesteps. However, the model for the normal period 

has lower errors compared to the model for the incident period because of the availability 

of a higher number of normal period data points to train the model and lower variability in 

the travel time since the congestion conditions due to incidents vary depending on incident 

attributes. The MAD of travel time for the four routes ranges from 12 seconds to 20 seconds 

during the incident and from 6 seconds to 14 seconds during the normal period. Overall, 
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the full model during the incident period is able to predict the travel time with accuracy 

between 82% and 90%, while during the normal period, the accuracy range is between 88% 

and 92%. Considering the high stochasticity of the travel time and other traffic data, the 

prediction accuracy of the models is acceptable.  

Table 5-4: Model Performance Statistics for the Incident Period Prediction 

Error 

Measure 
Alternative Segments 

Timesteps Full  

Model 1st Step 2nd Step 3rd Step 4th Step 5th Step 6th Step 

M
A

D
 

(s
ec

) 

Glades Rd 12.8 14.1 13.5 13.5 14.3 15.0 20.8 

W Palmetto Park Rd 18.3 16.9 17.1 17.8 16.8 20.2 13.5 

W Hillsboro Blvd 15.9 15.1 15.9 15.7 15.9 13.7 19.8 

SW 10th St 13.9 16.2 14.6 13.9 16.0 17.0 15.0 

M
A

P
E

 

(%
) 

Glades Rd 21.1 26.3 22.0 20.3 26.2 26.6 13.2 

W Palmetto Park Rd 14.6 12.9 13.9 12.6 13.7 16.6 17.8 

W Hillsboro Rd 19.3 20.9 19.7 19.4 20.6 19.3 15.7 

SW 10th St 13.4 15.5 13.7 12.4 17.1 16.4 15.4 

 

Table 5-5: Model Performance Statistics for the Normal Period Prediction 

Error 

measure 
Alternative Segments 

Time Steps Full  

Model 1st Step 2nd Step 3rd Step 4th Step 5th Step 6th Step 

M
A

D
 

(s
ec

) 

Glades Rd 14.2 10.6 10.5 12.1 10.9 11.1 12.4 

W Palmetto Park Rd 9.1 6.5 6.1 6.3 6.1 6.0 6.9 

W Hillsboro Blvd 14.9 11.8 12.1 11.7 11.5 11.5 13.4 

SW 10th St 9.6 7.6 7.6 9.4 8.1 8.3 9.5 

M
A

P
E

 

(%
) 

Glades Rd 9.7 7.8 7.3 7.6 7.5 7.5 8.6 

W Palmetto Park Rd 14.3 10.3 9.9 9.8 9.7 9.5 10.8 

W Hillsboro Rd 13.5 11.1 11.1 10.5 10.3 10.4 12.5 

SW 10th St 12.2 10.7 10.7 11.3 10.9 10.9 12.1 

5.1.4 Travel Time Change on Alternative Routes 

 The percentage change in travel time on the potential alternative routes (ΔTT) for 

all timesteps for all the incidents was estimated based on the results from running the two 

models for each incident. The cumulative distributions of ΔTT for all routes for the first 

three timesteps are shown in Figures 5-1 to 5-3. Due to the incidents, the travel times on 

the alternative routes increased by up to 150% after 15 minutes (Figure 5-1), 250% after 
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30 minutes (Figure 5-2), and 200% after 45 minutes (Figure 5-3) of the incident occurrence. 

One can see that 50% to 80% of the predicted travel times using the LSTM model with 

incident conditions have travel times within 25% of the values predicted by the LSTM 

model for no-incident conditions. The variations in travel times during these incidents 

within 25% of the “normal” travel time reflect the normal day-to-day variations in travel 

time, and thus no diversion is assumed for these incidents. For the demonstration, the 

increase in travel time by more than 25% on the alternative routes is assumed to require 

the agency’s attention for the case study.  However, as stated earlier, the threshold value 

for ΔTT can be set based on the needs and resources of the local agencies to identify the 

critical routes that require attention.  

 

 

Figure 5-1: Percentage Change in Travel Time after 15 Minutes of the Incident 

using the Developed LSTM Models 
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Figure 5-2: Percentage Change in Travel Time  after 30 Minutes of the Incident 

using the Developed LSTM Models 

 

Figure 5-3: Percentage Change in Travel Time after 45 Minutes of the Incident 

using the Developed LSTM Models 
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5.2 MRM and Traffic Signal Plan Development and Evaluation 

This section presents the clustering results and analysis for the selection of 

representative scenarios for MRM modeling, analysis of MRM modeling, and development 

and evaluation of traffic signal plans. 

5.2.1 Clustering Analysis 

 Clustering analysis results are divided into two sections: i) determination of the 

optimum number of clusters and ii) selection of representative scenarios from the clusters. 

Determination of the optimum number of clusters is particularly crucial for the analysis as 

it identifies the unique patterns present in the dataset. 

5.2.1.1 Determination of Optimum Number of Clusters 

The optimal number of clusters was determined using the Elbow method. Initially, 

the t-SNE method was used to visualize the data to see the intrinsic patterns in the dataset. 

As stated earlier, t-SNE reduces the dimension of the data into two dimensions.  Figure 5-

4 shows the reduction of the ΔTT on the W Palmetto Park Rd for all 15-minute timesteps 

after the occurrence of all incidents to two dimensions using the t-SNE method. The figure 

depicts the presence of intrinsic clustering patterns in the dataset. In the Elbow method, the 

sum of square error (SSE) was plotted against the number of clusters obtained using the K-

means clustering, as shown in Figure 5-5. The location of the kink in the elbow in Figure 

5-5 indicates that twelve clusters are the optimal number of clusters to represent the impacts 

of diversion on the alternative routes during incidents. Twelve clusters were further 

analyzed next to identify the distinct scenarios for the signal control plan development. 
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Figure 5-4 Visualization of Data in Low Dimensions using t-SNE 

 

 

Figure 5-5: Elbow Plot Selection of Scenarios for Plan Development 
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5.2.1.2 Clustering Results and Selection of Representative Scenarios 

Table 5-6 shows the average ΔTT for the 12 selected clusters for the six 15-minute 

timesteps after the incidents. The analysis of the clusters indicates that the average ΔTT in 

Cluster 1 and Cluster 8 for all timesteps is within 25% of the normal day’s travel time and 

is within the natural variation of the day-to-day traffic. Thus, no new signal plans were 

developed for these two clusters, and they were excluded from further analysis. The 

remaining ten clusters show distinct patterns of ΔTT. Patterns on these clusters do not only 

vary across the clusters but also across the timesteps. This is expected to happen because 

some incidents cause the immediate diversion of traffic to the examined alternative route, 

while other incidents induced diversion at a later stage of the incidents based on the incident 

and traffic characteristics such as incident location relative to the freeway off-ramp exit to 

the alternative route, severity, number of lane blockage, traffic demands, and so on. The 

incident characteristics associated with each cluster are also shown in Table 5-6. For 

Clusters 1, 8, and 10, the incidents mostly occurred during the Midday or Evening periods, 

the severity of the incidents was low, and the locations were far from the exit to the 

alternative routes. The effect of the incidents on the alternative route travel times was very 

high when it happened during the AM or PM peaks and close to the off-ramp exit to 

alternative routes, as in Clusters 2 and 3. Medium to high severity incidents grouped in 

Clusters 5, 11, and 12 affected the alternative routes during AM, PM peak, and Midday 

when the location of the incidents was far from the alternative routes. Cluster 6 reflects low 

to medium severity incidents during the PM peak, and Cluster 7 includes diversion during 

the Midday when the incidents occurred close to the exit to the diversion routes.  
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The variation of the average ΔTT across timesteps and clusters, as shown in Table 

5-6, requires different signal timing plans to accommodate the varying diverted traffic 

demands and impacts. Typical incidents associated with each of the clusters were coded in 

the Visum mesoscopic model to simulate the associated scenarios and utilize the dynamic 

traffic assignment of the model to estimate the demands on each link of the alternative 

routes. The demands were then imported from Visum to Vissim to allow the optimization 

of the signal timing plan for each scenario within the microscopic model environment, as 

described earlier. Please, note that although the clustering results are presented for all time 

periods in Table 5-6, the modeling and the optimization analyses presented in the 

remaining of the study are only for the AM peak period.   
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Table 5-6: Average Percentage Change in Travel Time and Signal Plan for Scenarios 

  Avg. ΔTT (%) in Different Timesteps 

Incident Characteristics 
Analysis 

Scenarios 1st 

Step  

2nd    

Step  

3rd 

Step  

4th 

Step 

5th 

Step  

6th 

Step  

Cluster 

1 
X X X X X X 

Period: Midday & Evening  

Location: Far from the alternative 

routes 

Severity: Low 

 

Cluster 

2 
33.7 39.7 79.9 193.1 210.2 211.2 

Period: AM and PM peak 

Location: Close to the alternative routes 

Severity: Low 

Scenario  

I 

Cluster 

3 
103.4 60.4 49.4 32.6 32.5 X 

Period: AM and PM peak 

Location: Close to the alternative routes 

Severity: Medium to high 

Scenario  

II 

Cluster 

4 
 29.2  62.3 82.1  27.8 X X 

Period: AM and PM peak 

Location: Far from the alternative 

routes 

Severity: Low 

Scenario 

III 

Cluster 

5 
X X 28.2 43.6 31.3 147.5 

Period: Midday 

Location: Close to the alternative routes 

Severity: Medium to high 

 

Cluster 

6 
 103.2  126.3  136.2 

 

126.7 
 67.4  65.8 

Period: PM peak 

Location: Far from the alternative 

routes 

Severity: Low to medium 

 

Cluster 

7 
X 29.5 36.8 59.5 125.5 111.1 

Period: Midday 

Location: Close to the alternative routes 

Severity: Low 

 

Cluster 

8 
X X X X X X 

Period: Midday & Evening  

Location: Far from the alternative 

routes 

Severity: Low 

 

Cluster 

9 
 60.8 X X X X X 

Period: AM and PM peak 

Location: Far from the alternative 

routes 

Severity: Low 

Scenario 

IV 

Cluster 

10 
X X  25.1  28.2  27.5  30.1 

Period: Midday & Evening  

Location: Far from the alternative 

routes 

Severity: Low 

 

Cluster 

11 
49.0 70.1 100.0 133.0 125.2 71.3 

Period: AM and PM peak 

Location: Far from the alternative 

routes 

Severity: Medium to high 

Scenario  

V 

Cluster 

12 
 51.4  46.1  47.7  46.4  54.9  61.5 

Period: Midday 

Location: Far from the alternative 

routes 

Severity: Medium to high 

 

Note: ‘X’ ≤ 25% 
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5.2.2 MRM Model Calibration Results 

A significant aspect of this study is to calibrate the simulation models not only to 

reflect normal conditions but also the diversion during incident conditions. The calibration 

results of the mesoscopic model for the normal condition meet the FHWA Traffic Analysis 

Toolbox (TAT) Volume III and are not presented here. More interesting are the results of 

calibration of the model for the incident conditions considering the travel times and path-

based demands on the diversion routes, as obtained based on data from third-party vendors. 

These variables' values for the three-diversion links between I-95 and S Military Trail were 

close to the FHWA TAT Volume III criteria. Figure 5-6(a) shows that the difference 

between the model and real-world travel times for one-lane blockage and 2-3 lane blockage 

incidents were below 15%, as specified by the FHWA TAT Volume III. In the case of path-

based traffic (Figure 5-6(b)), the modeled volume of the SW 10th St link for one-lane 

blockage incidents and the Palmetto Park Rd link for 2-3 lane blockage incidents were 

slightly over 15%.  

 

 



106 

 

     

a) Difference in Travel Time       b) Difference in Path-Based Traffic 

Figure 5-6: Modeled and Real-World Travel Time and Path-Based Traffic 

Difference during Incidents 

5.2.3 Traffic Signal Plan Development and Evaluation 

 This section describes the results of traffic signal plan generation and evaluation of 

the plans. 

5.2.3.1 Pareto Front  

The Pareto front, which is used in the optimization of the signal timing in this study, 

considers a set of non-dominated solutions to achieve an optimal trade-off between the 

competing objectives. The Pareto fronts in the signal timing optimization of all scenarios 

are shown in Figure 5-7. The fronts in this study consist of two competing objectives: 

average delay and overall throughput. The Pareto fronts for different plans moved upward 

compared to the Pareto front for the normal conditions, as the developed solutions for the 

incident diversion scenarios were able to increase the throughput without adversely 

affecting the average delay. The solutions at the two ends of each front signify the two 
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extreme solutions corresponding to their objectives. Although the solutions in the middle 

of the front are optimal solutions based on both objectives, in special scenarios, agencies 

may decide to prioritize one objective over another, such as prioritizing the throughput on 

the alternative route compared to the total delay of the intersections. 

The movement of the Pareto front from the initial generation to the final generation 

of the Genetic Optimization of the signal timing plan associated with Scenario IV is shown 

in Figure 5-8. The approximated Pareto front for five selected generations shows the 

improvement of the solutions from one generation to the next. Likewise, the solutions in 

the final generation are significantly better than the solutions of the first generation in terms 

of the objectives functions’ values and component variables, which confirms the success 

of the multi-objective optimization. 

 

Figure 5-7: Approximated Pareto Front for All Scenarios 
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Figure 5-8: Pareto Front for Different Generations 
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 Figure 5-9 shows the percentage changes in both delays and throughputs for the 

newly developed plans for all scenarios. The developed plans for all scenarios increased 

the throughput while reducing the overall delay compare to the values obtained for the base 

scenario plan. However, the performance improvement for the diversion route movements 

was far more significant than those for the overall network. For Scenario I, the throughput 

increased by 13% and 72% with the optimized plans compared to the base scenario plan 

for the whole network and the diversion route movements, respectively. For the same 

scenario, the overall delay for the entire network and the diversion route movements was 

reduced by 17% and 54%, respectively. The delay and throughput changes for Scenario IV 

were the lowest as the diversion impacted one timestep only. The increase in throughput 

and reduction in delay were higher for Scenario II than those for Scenario III due to the 

longer duration of impact on the diversion route in Scenario II. Although all six timesteps 

were impacted due to diversion in Scenarios I and V, the reduction in delay and increase 

in throughput were higher for Scenario I than those for Scenario V because of the high 

severity of the impact in the case of Scenario I.  
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Figure 5-9: Evaluation of Derived Traffic Signal Control Plans for Scenarios 
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 Congestion at the intersection level was identified using clustering analysis. 

Clustering methods were applied to the data attributes obtained using CV and HRC data.  
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the method was found successful in demonstrating the number of clusters present in the 

dataset. Then, utilizing the Elbow method, the sum of square error (SSE) was plotted 

against the number of clusters using the K-means clustering, as shown in Figure 5-10(b). 

Based on the location of the kink in the elbow, the figure also recommends eight clusters 

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

Scenario I Scenario II Scenario III Scenario IV Scenario V

P
er

ce
n
ta

g
e 

(%
)

Reduction in Overall Delay Increase in Total Throughput

Reduction in Delay in the Diversion Route Increase in Throughput in the Diversion Route



111 

 

as the optimum number of clusters. Therefore, eight clusters were considered as the 

optimum number and used across the methods to evaluate the performance of the methods 

in identifying congestions. 

 

 
(a) 

  

 
(b) 

Figure 5-10: (a) Visualization of the Data in Low Dimensions using t-SNE, (b) Sum 

of Square Error for Different Number of Clusters 
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5.3.1 Performance Evaluation of Clustering Methods 

As stated earlier, four different clustering techniques (two linear and two non-

linear) were applied, and their performances were evaluated. The values of the Silhouette 

Coefficient and the Davies–Bouldin index (DBI) from applying the methods are shown in 

Figure 5-11(a) and Figure 5-11(b), respectively. Based on the measures (the Silhouette 

Coefficient and the DBI), the DEC method came out as the best method among the four. 

DEC produced dense, appropriate, and well-separated clusters compared to the other 

methods. The performance of the K-means with PCA was the worst among the methods 

because of the non-linear relationship among the attributes of the data. However, the K-

means method clustered the data better than the K-means with t-SNE. This possibly 

happened because the t-SNE approach does not preserve the distances or density like its 

linear counterpart (the PCA) during the dimension reduction.  

 
(a) 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

K-means with t-

SNE

K-means K-means with PCA DEC

S
il

h
o

u
tt

e 
C

o
ef

fi
ci

en
t



113 

 

  
(b) 

Figure 5-11: (a) Silhouette Coefficient, (b) Davis-Bouldin Index (DBI) for Different 

Clustering Methods 

5.3.2 Congestion Patterns Identification  

The eight clusters identified using the DEC method for 100% CV market 

penetration were evaluated to identify the congestion patterns and associated 

characteristics of the congestions. The features of the clusters are shown in Table 5-6. 

Average queue length, average travel time, and green occupancy ratio (GOR) for both thru 

and left-turn movements in each cluster are shown in Table 5-7. Clusters 2 and 3 represent 

normal conditions of the intersection among the clusters.  However, the average queue 

lengths and travel times are higher in Cluster 3 than Cluster 2. Cluster 0 represents an 

extreme congested condition for both movements as indicated by the high travel time and 

queue length; however, the low GOR of the left-turn movement represents starvation of 

vehicles of that movement. This has happened because the oversaturated thru movement 

vehicles blocked the entrance to the left turn bay and thus prevented the left-turning 

vehicles from entering the left-turn bay. Therefore, Cluster 0 represents extreme congestion 
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of the thru movement. Clusters 5 and 6 represent the opposite of Cluster 0, where the left-

turn movement is highly congested. The oversaturated left-turn vehicles filled the left-turn 

bay and spilled over to the adjacent thru movement lanes, thus restricting the thru vehicle's 

movements. Clusters 1 and 7 represent slightly and moderately affected left-turn 

movement, respectively. In these cases, the left turn vehicles did not affect the thru 

movement. Cluster 4 represents a moderately impacted left turn that affects the thru 

movement. From Table 5-7, it is also observed that the queue length of the left turn up to 

500 ft does not affect the thru movement. However, the increase in the left turn queues 

beyond that number affects both movements severely. In this situation, providing more 

green to the left turn movement will be able to reduce the overall delay at the intersection.  
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Table 5-7: Characteristic of the Clusters and Associated Patterns of Congestion 

Clusters 

Thru Movement Left Turn Movement 

Remarks 
Avg. 

Queue 

Length 

(ft) 

Avg. 

Travel 

Time (sec) 

GOR 
Avg. Queue 

Length (ft) 

Avg. Travel 

Time (sec) 
GOR 

Cluster 0 2,432.1 207.6 0.88 2,425.6 300.3 0.5 

Extremely 

affected thru 

movement 

Cluster 1 216.6 66.3 0.65 424.1 197.6 0.89 

Slightly 

affected left 

movement 

Cluster 2 201.1 68.7 0.57 168.2 77.7 0.62 
Normal 

condition 

Cluster 3 235.3 70.8 0.67 202.7 79.3 0.61 

Moderately 

normal 

condition 

Cluster 4 402.4 94.6 0.68 1,954.9 716.1 0.96 

Moderately 

highly 

affected left 

turn 

movement 

Cluster 5 2,147.7 185.2 0.73 2,310.9 753.4 0.98 

Highly 

affected left 

turn 

movement 

Cluster 6 905.2 127.2 0.51 2,417.5 1,090.2 0.98 

Extremely 

affected left 

turn 

movement 

Cluster 7 210.4 64.9 0.57 507.8 217.1 0.89 

Moderately 

affected Left 

turn 

 

5.3.3 Evaluation of the Impact of CV Market Penetration (MP) 

The impact of CV MP in determining the accurate clusters vis-à-vis congestion 

patterns with respect to base condition (100% CV MP) was evaluated, and the results are 

presented in Figure 5-12. The figure demonstrates high accuracy in identifying congestions 

with as low as 10% CV market penetration. The accuracy with 10% CV is around 90% and 

increased to around 98% when the CV MP is 90%.  The accuracy is about 95% when the 

CV percentage increased to 20% and remained almost the same, up to 40% MP. To check 
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whether the methodology is applicable in the case of no CV vehicle present in the traffic 

stream, the clustering analysis was done considering all the vehicles as conventional 

vehicles, and the agency does not have travel time and queue length information from the 

connected vehicles. Based on the accuracy measure, it is observed that without CV, the 

method can identify congestion with 70% accuracy. This accuracy may improve if the 

movement travel time data based on other means such as probe vehicles, Bluetooth 

technology, or detector base technology are used in the analysis.  

 

Figure 5-12: Accuracy in Predicting Congestion Patterns in Different MP of CV 

5.4 Summary 

In summary, applying the LSTM model to predict travel time on alternative routes 

using incidents, traffic, and travel time attributes shows a great promise and generates 

results with acceptable accuracy. Thereby, the method is suitable to predict critical 

alternative routes dynamically after the incident in the freeway. The ΔTT value used as 

threshold measures for identifying the alternative routes shows that percentage changes in 
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the travel time remain within 25% for 50 to 80% of the incidents. This is caused by the 

normal day-to-day variation of the traffic and can be assumed very low diversion and does 

not require further attention. For other cases, the traffic management agency can implement 

special signal control plans. 

An MRM modeling framework for estimation of path-level traffic and traffic signal 

plans for the diverted routes are developed. Calibration of the mesoscopic model for 

incident conditions produces path-level traffic in the diversion routes. Special traffic signal 

plans developed using microscopic simulation for the corresponding path-level traffic are 

assessed against the existing TOD plans for various scenarios and found effective in 

reducing delay and increase in throughput both network-wide and in the diversion routes. 

Congestion identification using HRC and CV data show that very low market 

penetration of CV with HRC could estimate the congestion at the intersection level with 

greater accuracy.  
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CHAPTER VI 

CONCLUSION AND RECOMMENDATIONS 

Traffic diversion during incidents is a proven technique for mitigating the 

congestion on the affected routes, improving the mobility of the routes and the entire 

corridor. A CFA operation requires proper management of diversion routes through 

proactive strategies since reactive strategies may not be able to improve the already 

deteriorated traffic condition. Proactive strategies of CFA include dynamic prediction of 

alternative routes and implementation of the special signal timing plan corresponding to 

the diverted traffic. Prediction of alternative routes and the implementation of special signal 

plans are particularly important for diversion management because it is a dynamic 

phenomenon greatly influenced by the prevailing traffic and incident attributes. The 

existing data sources provide the agency an upper hand to design proactive methods for 

CFA; however, the availability of new data sources such as CV and HRC data could 

improve the model results and provide better control in the operation of CFA.  

6.1 Summary and Conclusion 

This research aims to develop a proactive method for CFA during incidents in the 

freeway using existing data sources and also explores the use of CV and HRC data for this 

purpose. In this regard, the research is concerned with the following: 

• Develop a method for predicting the critical routes utilized by motorists during 

incidents and the associated traffic and incident conditions under which the 

diversion occurs due to the incident on the freeway. 



119 

 

• Develop a method for generating special signal timing plans and estimate the 

benefits of activating those plans to mitigate the deterioration in the 

performance of the movements of critical route intersections due to diversion. 

• Estimate the benefits of utilizing new data sources (i.e., CV, HRC) as part of 

the methodology to support traffic management in the network. 

A major effort to achieving these objectives is involved in data collection and 

preparation, including network coding and simulation modeling. Traffic, travel time, and 

incident data retrieved from three different sources are aggregated and formatted to make 

them appropriate as inputs to the analyses. Models at the macroscopic, mesoscopic, and 

microscopic resolutions are coded using three different software (e.g., Cube, Visum, and 

Vissim) in an MRM modeling structure.  Before utilization, all these simulation models 

are calibrated using the real-world data and validated using the criteria set in FHWA TAT 

Volume III.  

With regard to predicting the utilized critical routes, the study demonstrated the 

effectiveness of a method to proactively identify the alternative routes utilized by traffic 

diverted due to incidents in real-time based on the prediction and prediction of the travel 

times on alternative routes.  A machine learning method, LSTM, is used to predict the 

travel times of alternative routes based on traffic, incident, and travel time data. The travel 

times are predicted for both incidents and normal conditions from the detection of the 

incident to 90 minutes later at 15-minute intervals. The percentage of increase in travel 

time due to incidents was used to identify the critical alternative routes.  

Results of the LSTM models show their capability in predicting travel time on 

alternative routes with acceptable accuracy. The developed models are dynamic and able 
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to capture traffic and incident variation to determine the impacts on the alternative routes 

in real-time. The increases in travel time of the alternative routes indicated that 50-80% of 

the incidents do not affect the routes.  The remaining incidents caused an increase in travel 

times, requiring a special signal plan to accommodate the diversion. The developed method 

provides the agency with an easily implementable operation strategy to operate both 

freeway and arterials coordinately during incidents and facilitate the diversion. The 

methodology mainly requires travel time data that are becoming available to the agency 

through third-party vendors or automatic vehicle identification readers like Bluetooth 

readers. The selection of the potential alternative arterials and impacted movements on the 

arterials require expert knowledge or real-time observation of navigation apps after the 

incidents. 

For developing the special signal plans considering diversion, which is the second 

objective, the study develops and uses an MRM model for this purpose. The methodology 

identifies the impacts of diversion utilizing clustering analysis based on the increase in 

travel times on the alternative routes following the occurrence of incidents.  The scenarios 

identified based on clustering are modeled utilizing an MRM modeling approach to 

estimate the demands on the diversion routes. The MRM is calibrated based on path-level 

demand data and travel time data obtained from third-party vendors. These demands are 

then used as inputs to microscopic-based optimization of signal timings, deriving special 

signal timing plans to activate in the event of diversion. The proposed multi-objective 

optimization method allows the agency to prioritize different objectives in the optimization 

based on the prevailing condition, available resources, and purpose. 
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 The evaluation of the signal timing plans resulting from the multi-objective signal 

timing optimization indicates that the derived special signal timing plans are able to reduce 

the delays and increase the throughputs in the network, particularly for the traffic 

movements utilized by the diverted traffic. The degrees of improvement depend on the 

impact of the diverted traffic on alternative routes' operations.   

The MRM approach provides the agency the opportunity of modeling different 

incidents, associated diversion of traffic, and the resulting impacts. The utilized approach 

emphasizes the importance of calibrating the percentage diversion of traffic to alternative 

routes and the impacts on the alternative route travel times in the mesoscopic simulation-

based DTA. This study successfully demonstrated this calibration, which has not been done 

in the past. The emerging data sources, including those from third-party vendors, high-

resolution controller data, and connected vehicles, provide the needed information for such 

calibration. The methodology developed in the first and second objectives can be used to 

support the selection of management plans as part of real-time decision support systems 

(DSS) at traffic management centers.  

The final objective of this research is to explore the use of CV and HRC data for 

intersection-level congestion identification. The study demonstrates a methodology to 

identify the congestions at the intersection microscopically using a very low market 

penetration of CV combined with HRC data. Two linear clustering methods, the K-means, 

and K-means with PCA, and two non-linear clustering methods, the K-means with t-SNE 

and DEC, are investigated to identify the congestions patterns at the intersections. The 

DEC clustering method is found to be the best among the four clustering approaches in 

separating the different congestion types into different clusters. Clustering based on the 
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HRC data combined with as low as 10% market penetration of CV data produces a very 

good performance compared to ground-truth clustering (clustering with 100% market 

penetration of CV).  

6.2 Research Contributions 

During the incident, diversion of traffic is an integral part of the TIM and ICM that 

advocates the coordinated operation of traffic between adjacent facilities. This research 

developed a machine learning model to predict the critical alternative routes during the 

incident in the freeway that motorists will use for diversion in the next one and a half hours. 

The model is unique in three ways: i) this is the first model that addresses the dynamic 

relationship between diversion of traffic and incidents based on detailed data on the 

alternative routes, ii) it provides a proactive approach of traffic management through the 

prediction of the critical alternative routes in the analysis horizon, iii) the model is 

developed utilizing existing data sources available to the agency which makes it readily 

implementable within the existing framework of the traffic management center with 

minimal cost.  

 The study also developed a new approach to traffic signal plan development in the 

alternative routes that facilitate the diversion without deteriorating the intersection's overall 

performance. The MRM modeling, especially the mesoscopic simulation model for 

identifying the traffic in the alternative routes during incidents, is relatively new. The MRM 

approach used in this study provides the agency the opportunity of modeling different 

incidents, associated diversion of traffic, and the resulting impacts. The multi-objective 

optimization for signal control plan development provides the agency the flexibility to 

prioritize different objectives in the optimization based on the prevailing condition, 
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available resources, and purpose. Overall, the entire methodology for coordinated 

operation of freeway and arterial during incidents eliminates the need for online simulation 

advocated by existing studies that many agencies are not capable of or do not have the 

resources to do that. 

 The use of HRC and CV data for congestion identification due to diversion provides 

a new perspective to the agency of using these imminent technologies. Identification of 

congestion on the intersection level is crucial for designing signal splits for each 

movement. The methodology developed in the study paved the way for congestion 

identification in low market penetration of CV with HRC. Considering the benefits of these 

new technologies, the agency can plan its investment policy in the HRC and CV 

technology. 

6.3 Recommendations for Future Research 

This dissertation work can be extended in the future in the following ways.  The 

study utilized the machine learning technique for the identification of the alternative routes 

and used the MRM technique to estimate the path level traffic for signal control 

development. Future research could use the machine learning technique to estimate the 

path-level traffic data and compare the results with the MRM technique. 

The study did not consider the effect of incidents that may occur on the alternative 

routes in predicting the diversion scenarios and developing the signal plans corresponding 

to these scenarios. Future research could explore the scenarios of simultaneous incidents 

on both the freeway and arterials to assess their overall impact on the corridor. 
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The study utilized CV data for determining intersection-level congestion due to 

diversion. On top of that, future studies could explore the use of CV data for the signal plan 

development corresponding to the congestion patterns. 
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