1,300 research outputs found

    Multi-Level Pre-Correlation RFI Flagging for Real-Time Implementation on UniBoard

    Get PDF
    Because of the denser active use of the spectrum, and because of radio telescopes higher sensitivity, radio frequency interference (RFI) mitigation has become a sensitive topic for current and future radio telescope designs. Even if quite sophisticated approaches have been proposed in the recent years, the majority of RFI mitigation operational procedures are based on post-correlation corrupted data flagging. Moreover, given the huge amount of data delivered by current and next generation radio telescopes, all these RFI detection procedures have to be at least automatic and, if possible, real-time. In this paper, the implementation of a real-time pre-correlation RFI detection and flagging procedure into generic high-performance computing platforms based on Field Programmable Gate Arrays (FPGA) is described, simulated and tested. One of these boards, UniBoard, developed under a Joint Research Activity in the RadioNet FP7 European programme is based on eight FPGAs interconnected by a high speed transceiver mesh. It provides up to ~4 TMACs with Altera Stratix IV FPGA and 160 Gbps data rate for the input data stream. Considering the high in-out data rate in the pre-correlation stages, only real-time and go-through detectors (i.e. no iterative processing) can be implemented. In this paper, a real-time and adaptive detection scheme is described. An ongoing case study has been set up with the Electronic Multi-Beam Radio Astronomy Concept (EMBRACE) radio telescope facility at Nan\c{c}ay Observatory. The objective is to evaluate the performances of this concept in term of hardware complexity, detection efficiency and additional RFI metadata rate cost. The UniBoard implementation scheme is described.Comment: 16 pages, 13 figure

    State-of-the-art in Power Line Communications: from the Applications to the Medium

    Get PDF
    In recent decades, power line communication has attracted considerable attention from the research community and industry, as well as from regulatory and standardization bodies. In this article we provide an overview of both narrowband and broadband systems, covering potential applications, regulatory and standardization efforts and recent research advancements in channel characterization, physical layer performance, medium access and higher layer specifications and evaluations. We also identify areas of current and further study that will enable the continued success of power line communication technology.Comment: 19 pages, 12 figures. Accepted for publication, IEEE Journal on Selected Areas in Communications. Special Issue on Power Line Communications and its Integration with the Networking Ecosystem. 201

    Power Line Communication (PLC) Impulsive Noise Mitigation: A Review

    Get PDF
    Power Line Communication (PLC) is a technology which transforms the power line into pathways for the conveyance of broadband data. It has the advantage for it can avoid new installation since the current installation used for electrical power can also be used for data transmission. However, this power line channel presents a harsh environment for data transmission owing to the challenges of impulsive noise, high attenuation, selective fading and etc. Impulsive noise poses a severe challenge as its Power Spectral Density (PSD) is between 10–15dB above background noise. For good performance of the PLC system, this noise must be mitigated.  This paper presents a review of the techniques for the mitigation of impulsive noise in PLC which is classified into four categories, namely time domain, time/frequency domain, error correction code and other techniques. Time domain technique is a memoryless nonlinear technique where the signal's amplitude only changes according to a specified threshold without changing the phase.  Mitigation of impulsive noise is carried out on the received time domain signal before the demodulation FFT operation of the OFDM. Time/Frequency technique is a method of mitigating impulsive noise on the received signal at both before FFT demodulation and after FFT demodulation of the OFDM system. Error correction code technique is the application of forward error correction code by adding redundancy bits to the useful data bits for detection and possibly correction of error occurring during transmission.  Identifying the best performing technique will enhance the deployment of the technique while exploring the PLC channel capacity enhancement in the future. The best performing scheme in each of the category were selected and their BER vs SNR curves were compared with respect to the impulsive noise + awgn curve. Amongst all of these techniques, the error correction code technique had a performance that presents almost an outright elimination of impulsive noise in power line channel. Keywords: Impulsive noise, time domain, time/frequency domain, error correction code, sparse Bayesian learning, recursive detection and modified PLC-DMT

    Applying Spatial Diversity to Mitigate Partial Band Interference in Undersea Networks

    Get PDF
    Many acoustic channels suffer from interference which is neither narrowband nor impulsive. This relatively long duration partial band interference can be particularly detrimental to system performance. We survey recent work in interference mitigation and orthogonal frequency division multiplexing (OFDM) as background motivation to develop a spatial diversity receiver for use in underwater networks. The network consists of multiple distributed cabled hydrophones that receive data transmitted over a time-varying multipath channel in the presence of partial band interference produced by interfering active sonar signals as well as marine mammal vocalizations. In operational networks, many “dropped” messages are lost due to partial band interference which corrupts different portions of the received signal depending on the relative position of the interferers, information source and receivers due to the slow speed of propagation

    JOINT ESTIMATION OF CHANNEL AND IMPULSE NOISE IN AN OFDM BASED SYSTEM FOR A POWERLINE NETWORK USING ADAPTIVE GUARD LENGTH

    Get PDF
    This paper considers OFDM based joint estimation of channel and impulse noise with an adaptive guard length for a powerline channel. The purpose of adaptive guard length is to cater for the channel variations caused due to time varying behavior of powerline network. Results show that the utilization of joint channel and impulse noise estimation gives improved bit error rate performance as well as efficient utilization of available bandwidth. Also the simulation results confirm that performance of proposed adaptive guard band method with joint estimation is better as compared to the fixed guard length for the communication system

    Cooperative Relaying In Power Line Environment: A Survey and Tutorial

    Get PDF
    Exchange of information is essential in any society and the demand for faster, cheaper, and secure communications is increasing every day. With other hi-tech initiatives like IPv6 and Internet-of-Things (IOT) already in the horizon, demand for broadband is set to escalate beyond its current level. Inherently laden in the challenges posed by this technology are fresh opportunities in terms of penetration of data services into rural communities and development of innovative strategies for more efficient use of the grid. Though still in its developmental phase/stage, Power Line Communication (PLC) has grown beyond theoretical fantasy to become a reality. The proofs are the readily available PLC systems that can be purchased off the shelfto achieve in-house networking and the much talked about, smart metering technology; generally regarded as the “new bride” in utilities industry. One of the biggest gains of PLC is its use of existing electrical cables, thereby eliminating cost of installation and maintenance of data cables. However, given that the power infrastructure was traditionally built to deliver electricity, data signals do suffer various forms of distortions and impairments as they transit it. This paper presents a tutorial on the deployed wireless system technique which is to be adapted to PLC scenario for the purpose of managing the available source energy for achieving reliable communication system. One of these techniques is the cooperative diversity. Its application and deployment in power line environment is explored. The improvement achieved through cooperative diversity in some PLC systems were presented along with the associated limitations. Finally, future areas of research which will further improve the reliability of PLC systems and reduce its power consumption during transmission is shown
    • …
    corecore