2,865 research outputs found

    Design for novel enhanced weightless neural network and multi-classifier.

    Get PDF
    Weightless neural systems have often struggles in terms of speed, performances, and memory issues. There is also lack of sufficient interfacing of weightless neural systems to others systems. Addressing these issues motivates and forms the aims and objectives of this thesis. In addressing these issues, algorithms are formulated, classifiers, and multi-classifiers are designed, and hardware design of classifier are also reported. Specifically, the purpose of this thesis is to report on the algorithms and designs of weightless neural systems. A background material for the research is a weightless neural network known as Probabilistic Convergent Network (PCN). By introducing two new and different interfacing method, the word "Enhanced" is added to PCN thereby giving it the name Enhanced Probabilistic Convergent Network (EPCN). To solve the problem of speed and performances when large-class databases are employed in data analysis, multi-classifiers are designed whose composition vary depending on problem complexity. It also leads to the introduction of a novel gating function with application of EPCN as an intelligent combiner. For databases which are not very large, single classifiers suffices. Speed and ease of application in adverse condition were considered as improvement which has led to the design of EPCN in hardware. A novel hashing function is implemented and tested on hardware-based EPCN. Results obtained have indicated the utility of employing weightless neural systems. The results obtained also indicate significant new possible areas of application of weightless neural systems

    Multiple classifiers in biometrics. part 1: Fundamentals and review

    Full text link
    We provide an introduction to Multiple Classifier Systems (MCS) including basic nomenclature and describing key elements: classifier dependencies, type of classifier outputs, aggregation procedures, architecture, and types of methods. This introduction complements other existing overviews of MCS, as here we also review the most prevalent theoretical framework for MCS and discuss theoretical developments related to MCS The introduction to MCS is then followed by a review of the application of MCS to the particular field of multimodal biometric person authentication in the last 25 years, as a prototypical area in which MCS has resulted in important achievements. This review includes general descriptions of successful MCS methods and architectures in order to facilitate the export of them to other information fusion problems. Based on the theory and framework introduced here, in the companion paper we then develop in more technical detail recent trends and developments in MCS from multimodal biometrics that incorporate context information in an adaptive way. These new MCS architectures exploit input quality measures and pattern-specific particularities that move apart from general population statistics, resulting in robust multimodal biometric systems. Similarly as in the present paper, methods in the companion paper are introduced in a general way so they can be applied to other information fusion problems as well. Finally, also in the companion paper, we discuss open challenges in biometrics and the role of MCS to advance themThis work was funded by projects CogniMetrics (TEC2015-70627-R) from MINECO/FEDER and RiskTrakc (JUST-2015-JCOO-AG-1). Part of thisthis work was conducted during a research visit of J.F. to Prof. Ludmila Kuncheva at Bangor University (UK) with STSM funding from COST CA16101 (MULTI-FORESEE

    Deep Learning for Real-time Information Hiding and Forensics

    Get PDF

    Hunting wild stego images, a domain adaptation problem in digital image forensics

    Get PDF
    Digital image forensics is a field encompassing camera identication, forgery detection and steganalysis. Statistical modeling and machine learning have been successfully applied in the academic community of this maturing field. Still, large gaps exist between academic results and applications used by practicing forensic analysts, especially when the target samples are drawn from a different population than the data in a reference database. This thesis contains four published papers aiming at narrowing this gap in three different fields: mobile stego app detection, digital image steganalysis and camera identification. It is the first work to explore a way of extending the academic methods to real world images created by apps. New ideas and methods are developed for target images with very rich flexibility in the embedding rates, embedding algorithms, exposure settings and camera sources. The experimental results proved that the proposed methods work very well, even for the devices which are not included in the reference database
    • …
    corecore