207 research outputs found

    Inferring robust gene networks from expression data by a sensitivity-based incremental evolution method

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reconstructing gene regulatory networks (GRNs) from expression data is one of the most important challenges in systems biology research. Many computational models and methods have been proposed to automate the process of network reconstruction. Inferring robust networks with desired behaviours remains challenging, however. This problem is related to network dynamics but has yet to be investigated using network modeling.</p> <p>Results</p> <p>We propose an incremental evolution approach for inferring GRNs that takes network robustness into consideration and can deal with a large number of network parameters. Our approach includes a sensitivity analysis procedure to iteratively select the most influential network parameters, and it uses a swarm intelligence procedure to perform parameter optimization. We have conducted a series of experiments to evaluate the external behaviors and internal robustness of the networks inferred by the proposed approach. The results and analyses have verified the effectiveness of our approach.</p> <p>Conclusions</p> <p>Sensitivity analysis is crucial to identifying the most sensitive parameters that govern the network dynamics. It can further be used to derive constraints for network parameters in the network reconstruction process. The experimental results show that the proposed approach can successfully infer robust GRNs with desired system behaviors.</p

    Network motif-based identification of transcription factor-target gene relationships by integrating multi-source biological data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Integrating data from multiple global assays and curated databases is essential to understand the spatio-temporal interactions within cells. Different experiments measure cellular processes at various widths and depths, while databases contain biological information based on established facts or published data. Integrating these complementary datasets helps infer a mutually consistent transcriptional regulatory network (TRN) with strong similarity to the structure of the underlying genetic regulatory modules. Decomposing the TRN into a small set of recurring regulatory patterns, called network motifs (NM), facilitates the inference. Identifying NMs defined by specific transcription factors (TF) establishes the framework structure of a TRN and allows the inference of TF-target gene relationship. This paper introduces a computational framework for utilizing data from multiple sources to infer TF-target gene relationships on the basis of NMs. The data include time course gene expression profiles, genome-wide location analysis data, binding sequence data, and gene ontology (GO) information.</p> <p>Results</p> <p>The proposed computational framework was tested using gene expression data associated with cell cycle progression in yeast. Among 800 cell cycle related genes, 85 were identified as candidate TFs and classified into four previously defined NMs. The NMs for a subset of TFs are obtained from literature. Support vector machine (SVM) classifiers were used to estimate NMs for the remaining TFs. The potential downstream target genes for the TFs were clustered into 34 biologically significant groups. The relationships between TFs and potential target gene clusters were examined by training recurrent neural networks whose topologies mimic the NMs to which the TFs are classified. The identified relationships between TFs and gene clusters were evaluated using the following biological validation and statistical analyses: (1) Gene set enrichment analysis (GSEA) to evaluate the clustering results; (2) Leave-one-out cross-validation (LOOCV) to ensure that the SVM classifiers assign TFs to NM categories with high confidence; (3) Binding site enrichment analysis (BSEA) to determine enrichment of the gene clusters for the cognate binding sites of their predicted TFs; (4) Comparison with previously reported results in the literatures to confirm the inferred regulations.</p> <p>Conclusion</p> <p>The major contribution of this study is the development of a computational framework to assist the inference of TRN by integrating heterogeneous data from multiple sources and by decomposing a TRN into NM-based modules. The inference capability of the proposed framework is verified statistically (<it>e.g</it>., LOOCV) and biologically (<it>e.g</it>., GSEA, BSEA, and literature validation). The proposed framework is useful for inferring small NM-based modules of TF-target gene relationships that can serve as a basis for generating new testable hypotheses.</p

    Gene regulatory networks modelling using a dynamic evolutionary hybrid

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inference of gene regulatory networks is a key goal in the quest for understanding fundamental cellular processes and revealing underlying relations among genes. With the availability of gene expression data, computational methods aiming at regulatory networks reconstruction are facing challenges posed by the data's high dimensionality, temporal dynamics or measurement noise. We propose an approach based on a novel multi-layer evolutionary trained neuro-fuzzy recurrent network (ENFRN) that is able to select potential regulators of target genes and describe their regulation type.</p> <p>Results</p> <p>The recurrent, self-organizing structure and evolutionary training of our network yield an optimized pool of regulatory relations, while its fuzzy nature avoids noise-related problems. Furthermore, we are able to assign scores for each regulation, highlighting the confidence in the retrieved relations. The approach was tested by applying it to several benchmark datasets of yeast, managing to acquire biologically validated relations among genes.</p> <p>Conclusions</p> <p>The results demonstrate the effectiveness of the ENFRN in retrieving biologically valid regulatory relations and providing meaningful insights for better understanding the dynamics of gene regulatory networks.</p> <p>The algorithms and methods described in this paper have been implemented in a Matlab toolbox and are available from: <url>http://bioserver-1.bioacademy.gr/DataRepository/Project_ENFRN_GRN/</url>.</p

    Gene regulatory network modelling with evolutionary algorithms -an integrative approach

    Get PDF
    Building models for gene regulation has been an important aim of Systems Biology over the past years, driven by the large amount of gene expression data that has become available. Models represent regulatory interactions between genes and transcription factors and can provide better understanding of biological processes, and means of simulating both natural and perturbed systems (e.g. those associated with disease). Gene regulatory network (GRN) quantitative modelling is still limited, however, due to data issues such as noise and restricted length of time series, typically used for GRN reverse engineering. These issues create an under-determination problem, with many models possibly fitting the data. However, large amounts of other types of biological data and knowledge are available, such as cross-platform measurements, knockout experiments, annotations, binding site affinities for transcription factors and so on. It has been postulated that integration of these can improve model quality obtained, by facilitating further filtering of possible models. However, integration is not straightforward, as the different types of data can provide contradictory information, and are intrinsically noisy, hence large scale integration has not been fully explored, to date. Here, we present an integrative parallel framework for GRN modelling, which employs evolutionary computation and different types of data to enhance model inference. Integration is performed at different levels. (i) An analysis of cross-platform integration of time series microarray data, discussing the effects on the resulting models and exploring crossplatform normalisation techniques, is presented. This shows that time-course data integration is possible, and results in models more robust to noise and parameter perturbation, as well as reduced noise over-fitting. (ii) Other types of measurements and knowledge, such as knock-out experiments, annotated transcription factors, binding site affinities and promoter sequences are integrated within the evolutionary framework to obtain more plausible GRN models. This is performed by customising initialisation, mutation and evaluation of candidate model solutions. The different data types are investigated and both qualitative and quantitative improvements are obtained. Results suggest that caution is needed in order to obtain improved models from combined data, and the case study presented here provides an example of how this can be achieved. Furthermore, (iii), RNA-seq data is studied in comparison to microarray experiments, to identify overlapping features and possibilities of integration within the framework. The extension of the framework to this data type is straightforward and qualitative improvements are obtained when combining predicted interactions from single-channel and RNA-seq datasets

    Reverse Engineering of Biological Systems

    Get PDF
    Gene regulatory network (GRN) consists of a set of genes and regulatory relationships between the genes. As outputs of the GRN, gene expression data contain important information that can be used to reconstruct the GRN to a certain degree. However, the reverse engineer of GRNs from gene expression data is a challenging problem in systems biology. Conventional methods fail in inferring GRNs from gene expression data because of the relative less number of observations compared with the large number of the genes. The inherent noises in the data make the inference accuracy relatively low and the combinatorial explosion nature of the problem makes the inference task extremely difficult. This study aims at reconstructing the GRNs from time-course gene expression data based on GRN models using system identification and parameter estimation methods. The main content consists of three parts: (1) a review of the methods for reverse engineering of GRNs, (2) reverse engineering of GRNs based on linear models and (3) reverse engineering of GRNs based on a nonlinear model, specifically S-systems. In the first part, after the necessary background and challenges of the problem are introduced, various methods for the inference of GRNs are comprehensively reviewed from two aspects: models and inference algorithms. The advantages and disadvantages of each method are discussed. The second part focus on inferring GRNs from time-course gene expression data based on linear models. First, the statistical properties of two sparse penalties, adaptive LASSO and SCAD, with an autoregressive model are studied. It shows that the proposed methods using these two penalties can asymptotically reconstruct the underlying networks. This provides a solid foundation for these methods and their extensions. Second, the integration of multiple datasets should be able to improve the accuracy of the GRN inference. A novel method, Huber group LASSO, is developed to infer GRNs from multiple time-course data, which is also robust to large noises and outliers that the data may contain. An efficient algorithm is also developed and its convergence analysis is provided. The third part can be further divided into two phases: estimating the parameters of S-systems with system structure known and inferring the S-systems without knowing the system structure. Two methods, alternating weighted least squares (AWLS) and auxiliary function guided coordinate descent (AFGCD), have been developed to estimate the parameters of S-systems from time-course data. AWLS takes advantage of the special structure of S-systems and significantly outperforms one existing method, alternating regression (AR). AFGCD uses the auxiliary function and coordinate descent techniques to get the smart and efficient iteration formula and its convergence is theoretically guaranteed. Without knowing the system structure, taking advantage of the special structure of the S-system model, a novel method, pruning separable parameter estimation algorithm (PSPEA) is developed to locally infer the S-systems. PSPEA is then combined with continuous genetic algorithm (CGA) to form a hybrid algorithm which can globally reconstruct the S-systems

    Modeling metabolic networks in C. glutamicum: a comparison of rate laws in combination with various parameter optimization strategies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To understand the dynamic behavior of cellular systems, mathematical modeling is often necessary and comprises three steps: (1) experimental measurement of participating molecules, (2) assignment of rate laws to each reaction, and (3) parameter calibration with respect to the measurements. In each of these steps the modeler is confronted with a plethora of alternative approaches, e. g., the selection of approximative rate laws in step two as specific equations are often unknown, or the choice of an estimation procedure with its specific settings in step three. This overall process with its numerous choices and the mutual influence between them makes it hard to single out the best modeling approach for a given problem.</p> <p>Results</p> <p>We investigate the modeling process using multiple kinetic equations together with various parameter optimization methods for a well-characterized example network, the biosynthesis of valine and leucine in <it>C. glutamicum</it>. For this purpose, we derive seven dynamic models based on generalized mass action, Michaelis-Menten and convenience kinetics as well as the stochastic Langevin equation. In addition, we introduce two modeling approaches for feedback inhibition to the mass action kinetics. The parameters of each model are estimated using eight optimization strategies. To determine the most promising modeling approaches together with the best optimization algorithms, we carry out a two-step benchmark: (1) coarse-grained comparison of the algorithms on all models and (2) fine-grained tuning of the best optimization algorithms and models. To analyze the space of the best parameters found for each model, we apply clustering, variance, and correlation analysis.</p> <p>Conclusion</p> <p>A mixed model based on the convenience rate law and the Michaelis-Menten equation, in which all reactions are assumed to be reversible, is the most suitable deterministic modeling approach followed by a reversible generalized mass action kinetics model. A Langevin model is advisable to take stochastic effects into account. To estimate the model parameters, three algorithms are particularly useful: For first attempts the settings-free Tribes algorithm yields valuable results. Particle swarm optimization and differential evolution provide significantly better results with appropriate settings.</p

    Evolutionary Computation and QSAR Research

    Get PDF
    [Abstract] The successful high throughput screening of molecule libraries for a specific biological property is one of the main improvements in drug discovery. The virtual molecular filtering and screening relies greatly on quantitative structure-activity relationship (QSAR) analysis, a mathematical model that correlates the activity of a molecule with molecular descriptors. QSAR models have the potential to reduce the costly failure of drug candidates in advanced (clinical) stages by filtering combinatorial libraries, eliminating candidates with a predicted toxic effect and poor pharmacokinetic profiles, and reducing the number of experiments. To obtain a predictive and reliable QSAR model, scientists use methods from various fields such as molecular modeling, pattern recognition, machine learning or artificial intelligence. QSAR modeling relies on three main steps: molecular structure codification into molecular descriptors, selection of relevant variables in the context of the analyzed activity, and search of the optimal mathematical model that correlates the molecular descriptors with a specific activity. Since a variety of techniques from statistics and artificial intelligence can aid variable selection and model building steps, this review focuses on the evolutionary computation methods supporting these tasks. Thus, this review explains the basic of the genetic algorithms and genetic programming as evolutionary computation approaches, the selection methods for high-dimensional data in QSAR, the methods to build QSAR models, the current evolutionary feature selection methods and applications in QSAR and the future trend on the joint or multi-task feature selection methods.Instituto de Salud Carlos III, PIO52048Instituto de Salud Carlos III, RD07/0067/0005Ministerio de Industria, Comercio y Turismo; TSI-020110-2009-53)Galicia. Consellería de Economía e Industria; 10SIN105004P

    Natural Computing and Beyond

    Get PDF
    This book contains the joint proceedings of the Winter School of Hakodate (WSH) 2011 held in Hakodate, Japan, March 15–16, 2011, and the 6th International Workshop on Natural Computing (6th IWNC) held in Tokyo, Japan, March 28–30, 2012, organized by the Special Interest Group of Natural Computing (SIG-NAC), the Japanese Society for Artificial Intelligence (JSAI). This volume compiles refereed contributions to various aspects of natural computing, ranging from computing with slime mold, artificial chemistry, eco-physics, and synthetic biology, to computational aesthetics
    corecore