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Abstract

Gene regulatory network (GRN) consists of a set of genes and regulatory relationships between the

genes. As outputs of the GRN, gene expression data contain important information that can be used to

reconstruct the GRN to a certain degree. However, the reverse engineer of GRNs from gene expression data

is a challenging problem in systems biology. Conventional methods fail in inferring GRNs from gene expression

data because of the relative less number of observations compared with the large number of the genes. The

inherent noises in the data make the inference accuracy relatively low and the combinatorial explosion nature

of the problem makes the inference task extremely difficult. This study aims at reconstructing the GRNs from

time-course gene expression data based on GRN models using system identification and parameter estimation

methods. The main content consists of three parts: (1) a review of the methods for reverse engineering of

GRNs, (2) reverse engineering of GRNs based on linear models and (3) reverse engineering of GRNs based

on a nonlinear model, specifically S-systems.

In the first part, after the necessary background and challenges of the problem are introduced, various

methods for the inference of GRNs are comprehensively reviewed from two aspects: models and inference

algorithms. The advantages and disadvantages of each method are discussed.

The second part focus on inferring GRNs from time-course gene expression data based on linear models.

First, the statistical properties of two sparse penalties, adaptive LASSO and SCAD, with an autoregressive

model are studied. It shows that the proposed methods using these two penalties can asymptotically recon-

struct the underlying networks. This provides a solid foundation for these methods and their extensions.

Second, the integration of multiple datasets should be able to improve the accuracy of the GRN inference.

A novel method, Huber group LASSO, is developed to infer GRNs from multiple time-course data, which is

also robust to large noises and outliers that the data may contain. An efficient algorithm is also developed

and its convergence analysis is provided.

The third part can be further divided into two phases: estimating the parameters of S-systems with

system structure known and inferring the S-systems without knowing the system structure. Two methods,

alternating weighted least squares (AWLS) and auxiliary function guided coordinate descent (AFGCD), have

been developed to estimate the parameters of S-systems from time-course data. AWLS takes advantage of

the special structure of S-systems and significantly outperforms one existing method, alternating regression

(AR). AFGCD uses the auxiliary function and coordinate descent techniques to get the smart and efficient

iteration formula and its convergence is theoretically guaranteed. Without knowing the system structure,

taking advantage of the special structure of the S-system model, a novel method, pruning separable parameter

estimation algorithm (PSPEA) is developed to locally infer the S-systems. PSPEA is then combined with

continuous genetic algorithm (CGA) to form a hybrid algorithm which can globally reconstruct the S-systems.
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Chapter 1

Introduction

1.1 Background

A biological system is composed of entities that can interact with each other. The system structure can

be depicted by a graph in which nodes are entities and edges exist between interacting entities. Many

mathematical models have been developed to describe various biological systems. Those models characterize

the system structure as well as interactions between entities and are important tools for the study of biological

systems. Most of them are parametric models, i.e., containing parameters whose values are unknown but

have significant biological meanings, e.g., reaction rates, kinetic orders, etc. Generally, the values of the

parameters cannot be obtained directly from experiments. With the development of the biological techniques,

a large amount of various types of biological data are available. These data can be considered as the

outputs of the biological systems and contain important biological information. To extract the information,

structure identification and parameter estimation methods can be used to infer the structures and estimate

the parameters of the models from the data.

In this thesis, the biological systems we focus on are gene regulatory networks (GRNs) and the data

considered are gene expression data. Our purpose is to explore the information of the GRN, specifically,

network topology and regulatory strengths between interacting genes, by fitting the gene expression data

to the GRN models [2] via system identification and parameter estimation methods. In the following, the

background of GRNs and gene expression data are introduced.

Molecules in the cell interact with each other and form a complex system to realize biological functions.

DNA, RNA and protein are three most important molecules in the cell and their relationships can be sum-

marized as the central “dogma” of molecular biology illustrated in Figure 1.1: DNA can copy itself and

produce two identical copies of DNA in the replication process. DNA contains the information that can

be used to produce RNA and proteins. In the transcription process, the coded information in stretches of

DNA is transcribed to messenger RNAs (mRNAs). In the translation process, mRNA is further translated

into a chain of polypeptides which is folded and modified into a biochemically active protein. Proteins are

the “workhorse” of life, playing essential roles in every structure and activity of life. The DNA stretches

that contain the necessary information to code for functional proteins are called genes. The process that

transforms coded information in genes into functional proteins is known as gene expression. The expression
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Figure 1.1: Central “dogma” of molecular biology.

of a specific gene may be regulated by other genes in the way that the proteins, also known as transcription

factors (TFs), or other molecules produced from the regulatory genes bind the promoter region of the target

gene and act positively to activate or negatively to repress its transcription. The way regulatory genes exert

effects on the target gene via TFs or other molecules is called gene regulation. Each gene may be regulated by

other genes and all the genes in the cell and their regulatory relationships make a complex system to realize

the biological functions of the cell. A set of genes and their regulatory relationships is called a GRN [3],

which can be obtained by mapping all the relations among various molecules onto the gene space as shown

in Figure 1.2. GRN is a high level description of the molecular interactions in a cell and it has the ability to

capture the characteristics of the system since all the interactions are abstracted as relations between genes.

Genes produce mRNAs under the regulations of other genes in the transcription. Therefore, the amount

of mRNAs can reflect the activities of the genes and also implicate the regulatory information. Recently

developed DNA microarray technology [4, 5, 6], also known as DNA chip or gene array, enables researchers to

measure the mRNA expression levels of thousands of genes simultaneously. A DNA micorarray is a collection

of microscopic DNA spots attached to a solid surface. Each spot represents a single gene and contains probes

consisting of known sequences of the gene. The scheme of DNA microarray experiments is illustrated in

Figure 1.3. First, after polymerase chain reaction (PCR) and purification, the templates of genes of interest

are printed onto the microarray slide by a computer controlled high-speed robot. Complementary DNAs

(cDNAs) labeled with two different fluorophores (cye3, cye5) are synthesized from mRNAs of the test (with

cye3) and reference sample (with cye5) through the reverse transcription process. These two samples are

hybridized to a single microarray which is then scanned to visualize the fluorescence of the two fluorophores

excitated by lasers of different wavelengths. The scanned images of the microarray under two different lasers

are merged in the computer software and then the gene expression data are obtained.

The data from a single microarray experiment are viewed as a normalized ratio (cye3 / cye5) which

indicates increased (cye3 / cye5 > 1), decreased (cye3 / cye5 < 1) or unchanged (cye3 / cye5 ≈ 1) levels of

gene expression relative to the reference sample. Data from multiple microarray experiments can be stored

in the form of a matrix with rows representing genes and columns representing the experiments as shown in

Figure 1.4. According to the ways of doing experiments, there are two types of gene expression data: static

and time-course. For static data, the gene expressions are measured on different samples and the experiments
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Figure 1.4: An illustration of gene expression data. (a) Static gene expression data. (b) Time-course
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Figure 1.5: General scheme of the reverse engineering of GRNs.

are independent. For time-course data, the gene expressions are measured at consecutive time points, and the

experiments are serially correlated [7]. Time-course gene expression data capture the dynamic information of

systems and are good sources for the study of dynamic properties of GRNs. One defect of the gene expression

data is the relatively small number of observations (i.e., the number of experiments) compared with the huge

number of genes. This is mainly due to the high cost of the microarray experiment. The other defect is that

the data contain a lot of noises which may be either introduced in the process of experiments or directly

generated from the experiment devises.

The topology of the GRN can be depicted as a graph with nodes representing genes and edges representing

regulatory relations. The research of this thesis aims at finding the GRN topology and interactions between

genes from gene expression data, formally known as reverse engineering of the GRN [8, 9, 2]. The general

idea, shown in Figure 1.5, is to use the GRN model as a template and develop algorithms or methods to fit

the gene expression data to the template by system identification and parameter estimation methods. Then,

the inferred GRN is obtained from the fitted model.

1.2 Motivations and Objectives

The GRN is a blueprint showing the way genes interact for making a living system. The network topology

and interaction strengths between genes are quite difficult to obtain directly from experiments due to the
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huge number of possible network connections, i.e., for p genes, the number of possible combination regulatory

genes for each target gene is 2p which is quite large even for a small-sized network.

As outputs of the GRNs, the gene expression data contain important network information from which

the GRNs could be recovered to some extent. Reverse engineering of the GRNs is the basis for studying the

properties of GRNs, e.g. controbility[10] and observability [11], and some practical applications, e.g. disease

treatment and drug design.

The reverse engineering of GRNs from gene expression data is a challenging problem in systems biology.

First, as mentioned above, for a specific target gene, finding its regulatory genes is a combinatorial explosion

problem. The developed algorithm should be efficient and able to overcome the high dimensionality of the

searching space. Second, the limited information contained in the gene expression data make the inference

task difficult. To infer the relations between the variables (i.e., genes), conventional methods require the

number of observations is no less than the number of variables. However, gene expression data tend to have

relatively less observations compared with the huge number of genes. This prevents the direct application

of many conventional methods and this is known as dimensionality problem or “large p small n” problem

[12, 13, 14]. Gene expression data may contain large noises or outliers which affect the accuracy of the inferred

network. Therefore, inference methods that are robust to the large noises and outliers are required. Third, the

difficulty may also comes from the model structure. In this thesis, two types of models are considered: linear

and nonlinear. For linear model, although the design of the inference algorithm is relatively easy, it can only

approximately reconstruct the GRNs to some extent owning to nonlinearity of the real system. Nonlinear

models can effectively capture the nonlinear behaviors of the GRNs and therefore are good candidates for

the reverse engineering of the GRNs. However, their structure identification and parameter estimation are

quite difficult due to their nonlinear and complex mathematical representations.

Based on these motivations, the objectives of this thesis are

1) Reviewing currently developed methods for reverse engineering of GRNs and discussing their advantages

and disadvantages.

2) Studying the properties of GRN inference methods based on linear models and developing a method to

reconstruct the network topology based on linear models with the consideration of improving the accuracy

and robustness to large errors.

3) Developing methods for identifying the structure and estimating the parameters of the nonlinear GRN

model. The nonlinear model studied in this thesis is S-system, which is an effective nonlinear ODE model

for the GRN.

All objectives are achieved in the following chapters.
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1.3 Organization of the Thesis

This thesis is organized in a manuscript-based style. Our works to achieve the objectives constitute the

main content of this thesis. They are presented in the form of published or submitted manuscripts. In each

chapter, a brief introduction is included to describe the connection of the manuscript to the context of the

thesis. In addition, a general overview of the links of each manuscript to the thesis as a whole is provided in

Chapter 8. The paper manuscripts have been formatted to be consistent with the requirements of the thesis.

The remainder of the thesis is organized as follows: Chapter 2 presents a comprehensive review of the

methods for reverse engineering of GRNs. The models those methods are based on and the algorithms they

use are surveyed respectively. The advantages and disadvantages of each methods are also discussed. As

GRNs exhibit low connectivity, sparse penalties, e.g. LASSO [15], are usually used to obtain sparse GRNs.

Chapter 3 studies the statistical properties of two famous penalties, adaptive LASSO [16] and SCAD [17],

when based on a linear auto-regressive model and inferring GRNs from time-course gene expression data.

It shows that under this setting, these two penalties enjoy the “Oracle” properties, i.e., can asymptotically

reveal the network topology and the regulation strengths between genes. Chapter 4 presents a novel method,

Huber group LASSO, to infer the network topology from multiple time-course gene expression data as well

as to take the robustness to large errors or outliers into account. An efficient algorithm is developed and

its convergence is analyzed. Compared with existing methods, the proposed method improves not only the

inference accuracy but also the resistance to large noises. Chapter 5 proposes an alternating weighted least

squares to estimate the parameters of S-systems from time-course gene expression data with the known

system structure. This method takes advantage of the special mathematical structure of S-systems and

reduces the nonlinear optimization problem into a series of weighted least squares problems which have

analytical solutions. Chapter 6 develops an auxiliary function guided coordinate descent method to estimate

the parameters in S-systems from time-course gene expression data. This method estimates the parameters by

cyclically optimizing the parameters in the designed auxiliary function and its convergence is mathematically

proved. Chapter 7 develops a pruning separable parameter estimation method which takes the special

mathematical form of S-system into account and has the ability to locally reconstruct the S-system from time-

course gene expression data with appropriate initial values. Then this method is combined with continuous

genetic algorithm to globally infer the S-systems from time-course gene expression data. Finally, Chapter 8

summarizes the conclusions of the work in this thesis and point out some future work along this research.

The copyright permissions of the manuscripts included are in Appendix A.
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Chapter 2

Reverse Engineering of Gene Regulatory Networks

from Biological Data

Published as: L.Z. Liu, F.X. Wu, and W.J. Zhang, “Reverse engineering of gene regulatory networks from

biological data,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 2, no. 5, pp.

365–385, 2012 [18].

This chapter gives a comprehensive review of the methods for reverse engineering of GRNs from biological

data. It first introduces the necessary biological background and the overall scheme of GRN inference.

Different models those methods are based on and algorithms they use are respectively surveyed. The pros

and cons of each method are also discussed in the review. This chapter fulfills Objective 1 of the thesis.

Abstract

Reverse engineering of gene regulatory networks is one of the most challenging tasks in systems biology and

bioinformatics. It aims at revealing network topologies and regulation relationships between components from

biological data. Owing to the development of biotechnologies, various types of biological data are collected

from experiments. With the availability of these data, many methods have been developed to infer gene

networks. This paper firstly provides an introduction to the basic biological background and the general

idea of gene network inferences. Then different methods are surveyed from two aspects: models that those

methods are based on and inference algorithms that those methods use. The advantages and disadvantages

of these models and algorithms are discussed.

2.1 Introduction

Biological systems are wondrously complex and involve many uncertainties. With the help of molecular

biology, vast array of components in biological systems have been revealed. Now, one of the challenging tasks

in molecular biology is to understand how interactions among these puzzle pieces determine the characteristics

of organisms. To achieve this goal, a blueprint must be obtained to specify the manner that these components

interact for making a whole living system. With the rapid advancements in biological technologies, researchers

currently have access to a large amount of various types of data. For example, DNA microarray technology
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Figure 2.1: Examples of GRNs.

[5, 6] enables experimentalists to simultaneously measure concentrations of thousands of mRNA transcripts.

With the availability of these data, many mathematical and computational approaches [7, 8, 9, 2] have been

developed to make the goal closer.

Biomolecular networks consist of molecules in cells and their interactions. One important type is the gene

regulatory networks (GRNs) [9] that aims at capturing the dependencies between interacting components,

such as genes, RNAs, proteins and other various small molecules. Information flows in the network, e.g.,

from DNA, mRNA to protein. Regulations and controls of gene expressions can occur at different stages

of the information transfer and may be caused by various factors [8]. The understanding of GRNs is very

important for the understanding of fundamental cellular process.

GRNs are always represented as graphs or networks, in which nodes represent genes, proteins or metabo-

lites and edges represent the relations between the components. Mathematically, a graph is expressed as

G(V,E), where V denotes a set of nodes, V = {V1, . . . , Vp} and E ⊆ V × V denotes a set of edges. Edges

can be undirected to capture the symmetric relations or directed to capture the asymmetric relations. The

network edges in different contexts can have vastly different meanings and should be interpreted with care. As

an example, Figure 2.1 shows two examples of GRNs: one with directed edges and the other with undirected

edges and all the nodes in both GRNs denote genes. An undirected edge may represent that the genes are

coexpressed or coregulated or share a common biological function, location or process. On the other hand,

an directed edge between two genes may indicate a step in a metabolic pathway, signal transduction cascade

or a causal control or regulatory relationship [19].

In the study of GRNs, one essential feature is to treat a GRN as a whole system rather than a collection

of independent single cellular entities. Such a systematic view provides an insight into the control and

optimization of parts of the system while considering the effects those may have on the whole system [8, 7].

The system-wide view and modeling may lead to valuable clues and new ideas in practical areas such as

disease treatment and drug design [20].

Reverse engineering is to obtain the structure of a system by reasoning backwards from the observations of

8
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Figure 2.2: The general procedure of inferring GRNs and its role in biological research.

behaviors of the system. Reverse engineering of GRNs based on biological experimental data is a non-trivial

problem, also known as network inference, or network identification. Many reverse engineering techniques

have already been developed in the fields of computer science, statistics and engineering which are called

machine learning, statistical learning and system identification, respectively [8]. Though these methods can

be applied or extended to infer GRNs, reverse engineering of GRNs is still a challenging and active area of

research. Challenges mainly come from the nature of data and the GRN itself [8]: The data are typically

noisy, high-dimensional, and significantly under-sampled. The GRN models are usually very complicated,

e.g., nonlinear and containing too many parameters. In addition, the lacks of methods or standards that can

effectively evaluate the performance of algorithms also make it difficult.

The general procedure of reverse engineering of GRNs and its role in the whole biological research is

shown in Figure 2.2. The scientists perform experiments based on hypotheses and experimental designs to

obtain meaningful experimental data. Based on prior biological knowledge and some hypotheses, the GRN

is described by a proposed general model, which is regarded as a template that assigns biological meanings

and system structure to its unknown parameters. With a learning algorithm, a resulting model is obtained

by fitting the model into the available data and then it is further validated and assessed. If the model is

acceptable, it is applied in further research such as prediction and simulation. Otherwise, the assumptions

are modified and an updated model template is proposed. Generally, the inferred models can provide more

reasonable hypotheses or clues to guide future experiment designs and researches [8, 9, 7].

This paper provides an overview of reverse engineering methods for GRNs from two aspects: modeling of

GRNs and learning algorithms. Further reviews are referred to Bar-Joseph [7] which discusses the analysis of

gene expression time series data, Huang et al. [9] which is about the statistical methods of modeling GRNs,
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Hecker et al. [21] which is a review about data integration in dynamic models, and more recent paper Mitra

et al. [22] focusing on the soft computing methods. The remainder of this paper is organized as follows:

In Section 2.2, some background knowledge of gene expression and regulation is introduced. In Section 2.3,

we introduce the relevant biological experimental data that are used for reverse engineering. Section 2.4

surveys models for reverse-engineering of GRNs based on microarray data alone and on heterogeneous data,

respectively. The advantages and disadvantages of each model are discussed. In Section 2.5, the optimization

objective and optimization method of each inference algorithm are surveyed and discussed. Section 2.6 gives

a summary of this paper.

2.2 Gene Expression and Regulation

Good models of GRNs should be built based on biological knowledge and reasonable hypotheses and be

able to capture the essential mechanisms of GRNs. In this section, some background relating to the gene

expression and regulation is introduced.

2.2.1 Gene Expression

There are mainly four types of molecules in a cell: DNA, RNA, protein and other small molecules. The

relationships among the first three are described in Figure 2.3, which is known as the central “dogma” of

molecular biology. A stretch of DNA that contains the necessary information to code for a type of protein

is called a gene. Gene expression is the process that cells produce functional proteins from the instructions

encoded in genes. In essence, this process is composed of three steps: First, a segment of DNA (a gene) is

transcribed into an mRNA molecule (transcript). Second, the mRNA transcript is translated into a chain
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of polypeptides. Third, the polypeptide chain is folded and modified into a biochemically active protein.

The form and concentration of the product in each step is controlled by regulatory molecules which are

usually proteins. Moreover, intermediate products such as mRNA, polypeptides, also may act as regulators

of gene expression. After the whole process, the static genetic information encoded in genes is transferred to

functional protein molecules.

2.2.2 Gene Regulation

The amount of mRNA produced during the transcription can reflect how active a gene is to some extent.

Since mRNA levels in a cell can be measured by DNA microarray technology, the regulations of GRNs are

usually studied at the transcriptional level [8].

A gene is comprised of a coding region (transcribed region) and a regulatory region (promoter region). The

promoter is a control sequence of DNA upstream of the transcribed region. The coding region is the part that

will be transcribed into mRNA and further translated into a protein. The mRNA transcription is controlled

by the activity of RNA polymerase (RNAP), which is an enzyme that transfers genetic information from

DNA to mRNA. Transcription begins with the binding of RNAP to the promoter region and then, RNAP

unwinds the DNA double helix and slides along the DNA sequence. The mRNA message is elongated until

the RNAP encounters a stop sequence in the DNA. A short, unique DNA sequence, called a motif that can

be bound by a type of protein called the transcription factor (TF), is located in or near the promoter region.

TFs can also control the transcription process by acting as an activator to promote, or acting as a repressor

to block the recruitment of RNAP to specific genes. Thus, the transcriptional regulation of a gene is achieved

by TFs that binds to the binding sites and exert their effects positively or negatively on binding of RNAP

to the promoter region of the gene [8].

2.3 Data

Advances in high-throughput technologies have largely facilitated the study of GRNs. The most popular one

used in this field is DNA microarrays, which is a large-scale gene expression monitoring technology [5, 6].

DNA Microarrays can detect the differences in mRNA levels of thousands of genes at a time. A DNA

Microarray is typically a glass slide or silicon chip containing thousands, or millions of probes, each of which is

complementary to a specific RNA species [4]. The concentration of an individual mRNA can be quantitatively

measured by the probe. Because of the variations in sensitivities of probes, this technology is usually used

to measure the relative changes in mRNA concentrations. Thus, the measurements from microarrays are

typically used as the concentration ratios of each transcript relative to its baseline state [8].

There are mainly two types of microarray experiments: perturbation experiments and time-course exper-

iments [7]. The former aims to capture the effects of a change or treatment on the cell and try to find out the

genetic causes for differences between cell types or responses of pathways to disruptions. The latter aims to
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capture the changes of gene expression with time and are used to study the developmental process in the cell.

These produce two types of data: static (or perturbation) expression data and time series expression data.

An important difference between these two types of data is that static data from different assays are assumed

to be independent and identically distributed (iid) while time series data exhibit a strong autocorrelation

between successive time points [7].

The data from microarray experiments can be stored in the form of a matrix, called gene expression matrix.

Figure 2.4 shows an example of gene expression matrix, in which each row represents a gene expression profile

under different arrays and each column corresponds to the results of an array or gene-chip experiments. If

it is a static data matrix, the experiments are treatments (for perturbation experiments), otherwise, the

experiments are time points (for time-course experiments). A variety of microarray data from different

tissues and conditions have been produced by the microarray technology and have been deposited in the

online databases. One good source is the Stanford Microarray Database (SMD1) [23].

Although DNA microarrays can measure mRNA levels at a genome-wide level, due to the limitation of

sources such as money and time, the number of experiments is usually quite small [12, 8, 13, 14]. Thus,

the gene expression matrix is always narrow, i.e., p � n, where p and n are the number of rows and

columns, respectively. In general, when inferring the relationships between the state variables, the number

of observations is required to be larger than the number of variables. The lack of observations makes the

inference task quite difficult for GRNs, which is known as the dimensionality problem or large p small n

problem [12, 13, 14]. Another nature of the microarray data which make the analysis challenging is that

they are typically noisy [8]. The noises come from various aspects such as the experimental devices and the

procedure of doing the experiments.

In addition to the microarray data, there are other diverse data that can be used to study GRNs, including

such as transcription factor binding sites (TFBS) or sequence motifs [24], ChIp-chip data [25], protein-protein

1http://smd.stanford.edu
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interaction data [26], and even the existing large amount of information in scientific literatures. Genes

regulated by the same TF share a binding consensus motif known as TFBS located in the upstream regions

of genes. The TFBS can be obtained by using motif discovery algorithms to search for recurring patterns

in a set of related sequences or in a position weight matrix (PWM). With the identified putative TFBS,

target genes which may be regulated by that TF can be predicted. Chromatin Immunoprecipitation (ChIp)

technology employs antibodies to isolate sequences directly bound by a specific TF and Microarrays are

then used to scan these sequence to determine the potential locations for binding of that particular TF. The

ChIp-chip results are usually transformed into p-values which indicate the significance of interactions between

genes and TFs. The TF-DNA interactions characterized by ChIp-chip provide the evidence of physical TF

binding but this binding is not necessarily functional. Each type of data gives the information from one

aspect and they complement each other. Some researchers have reversely engineered GRNs by integrating

these data with DNA microarray data [27, 26, 28, 21, 29, 30, 31].

2.4 Modeling of Gene Networks

GRNs are learned from biological data through a learning algorithm based on a network model. Depending

on the degree of assumption and the availability of biological data, there are different levels of modeling

of GRNs.To construct the regulatory map, GRNs are always studied at the transcriptional level. In such a

network, two types of nodes, i.e., TFs and the mRNAs of the target genes, and two types of directed edge, i.e.,

transcriptional regulation and translation, are mainly focused on. For simplicity, many studies often combine

TFs with genes encoding them and lead to an “influential GRN” [21], i.e., a GRN whose nodes are genes

and edges are direct as well as indirect interaction between genes. The resulting “influential” network maps

all interactions between components in a GRN onto the gene space, which can implicitly capture possible

influences of TFs or metabolites on gene expressions and provide a global view of gene regulations [8, 21].

Another type of a GRN usually considered is the “transcriptional regulatory network (TRN)”, which is a

collection of TFs and genes with edges between TFs and genes representing TF-gene interactions. It seeks to

identify true physical interactions between regulatory TFs and their target genes. The limitation of TRNs is

that the regulations other than TF-gene interactions cannot be captured. For the modeling of gene networks,

it is common to use “GRN” to stand for the “influential GRN”. We also employ this convention in this paper.

As illustrated in Figure 2.5, different input data from experiments with particular designs are required for

each reverse-engineering method. Not only can the inference methods use gene expression data and result in

a GRN, but also can apply other biological data, such as ChIP-chip data, DNA sequences and protein-protein

data, together with gene expression data to lead to networks at other levels such as a TRN.

Many models have been proposed to describe the GRNs. They can be distinguished and discussed from

following perspectives: the state representations of nodes, the types of edges or relationships between nodes

and the properties of models. The state of a node can be represented either by discrete values, such as
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Figure 2.5: An illustration of different cases of reverse engineering of GRNs.

Boolean (“on” and “off”), or by continuous values. The edges between nodes could be directed (which may

represents “causality” or “conditional dependence”) or undirected. The relationships or regulations among

these connected nodes may be linear or nonlinear. The properties of models refer to whether a model is

dynamic or static, or deterministic or stochastic.

In the following, we review the GRN modeling methods based on two categories: models based solely

on gene expression data and models based on heterogeneous data. The pros and cons of each model are

discussed.

2.4.1 Models Based on Gene Expression Data

Inferring a GRN from microarray gene expression data has been a hot topic and addressed in past years.

Various parameterized mathematical models have been proposed based on different assumptions. These

models are mainly mathematical functions which describe the expressions of the target genes based on the

activities of regulatory genes.

Boolean Networks

Boolean networks are discrete dynamic systems, which was introduced as a model of a GRN by Kauffman in

1970s [32]. When using the Boolean network to model GRNs, each gene is represented as a Boolean variable

having only two states, “on” (or 1) and “off” (or 0). Here, “on” and “off” mean an active or over-expressed

state and an inactive or under-expressed state of genes, respectively. The regulatory relations between genes

are described by Boolean functions, which are functions of Boolean variables connected by logic operators,

AND, OR and NOT. A Boolean network consisting of p genes is a directed graph G with a set of nodes

X = {x1, . . . , xp} and a set of Boolean functions F = {f1, . . . , fp}. For each node or gene xi, its state at

next step t+ 1 is given by

xi(t+ 1) = fi(xi1(t), . . . , xik(t)), (2.1)
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Figure 2.6: An example of a Boolean network.

where xi(t) is the discretized state of a gene at time t and xij ∈ X, 1 ≤ j ≤ k, k ≤ p, are all parent nodes

of xi in G. The state of the network at a time point is represented by the vector of states of all nodes,

S(t) = (x1(t), . . . , xp(t)), and a state transition pair is denoted as S(t)→ S(t+ 1).

Figure 2.6 illustrates an example of a Boolean network which consists of three nodes (genes), x1, x2

and x3. The next state of each node is determined by the truth table in the figure. Boolean network is a

dynamic model and its dynamics can be interpreted synchronously, i.e., all the states of nodes are updated

simultaneously according to the previous state of the system.

To reversely engineer the GRNs with Boolean networks, we need to infer both the underlying topology and

the Boolean functions of nodes from gene expression data. The Boolean networks can be inferred from both

time-course gene expression data and perturbation data. For time-course data, gene expression data at two

consecutive time points are treated as input state and output state, respectively. For a pair of perturbation

data, the one without perturbation is considered as input and the other one after perturbation is output.

Transition pairs are a collection of these input / output states, where the Boolean value of each state is

obtained by discretization of continuous gene expression levels.

The number of possible Boolean networks grows exponentially with the number of nodes in the network.

Thereby, exhaustive search for the optimal model is usually prohibited. It proved that the lower bound of

the number of experiments required for identifying a network with p nodes is on the order of 2p−1 [33], which

is hardly achievable in practice. However, Akutsu et al. [34] proved that if the in-degree of each node is

bounded by a constant, then O(log p) transition pairs are necessary and sufficient for identifying the network

correctly with high probability. Based on the bounded maximum in-degree assumption, Liang et al. [35]

developed an algorithm called REVEAL to infer Boolean networks from state transition tables, which is

based on the mutual information and tries to find the smallest set of input nodes that provides complete

information for the output node.

Because of the ease of implementation and similar dynamics to the behaviors of biological systems, Boolean

network is one of popular used models for reverse engineering of GRNs. However, they have some limitations:

15



In reality, the levels of gene expression are not just two states but continuous values. Hence, reducing the

expression levels to just two states may be not enough and may miss the intermediate states. Information

may be lost during the discretization of the continuous expression values. Besides, the updates of Boolean

networks are synchronous, which may lose certain dynamic behaviors since the real biological system can

update in an asynchronous way. Finally, the learning of a Boolean network is still a problem, which restricts

it to only small scale networks.

Boolean networks are deterministic models. However, biological systems are known to be stochastic

[36] and the data usually contain noises and measurement errors. Probability Boolean Networks (PBNs)

[37, 38, 39, 40] have been proposed to introduce stochasticity to these models. In a PBN, for each node,

there are several Boolean functions and each is assigned a probability to be chosen to predict the state of the

node. One deficiency of the PBN is that there are too many parameters to be estimated in the model.

Bayesian Networks

Another popular GRN model is the Bayesian Network [41, 42], a graphical probabilistic model combing two

areas: probability and graph theory. A Bayesian network model is a directed acyclic graph G(X,E), where

each node, xi ∈ X, is a random variable representing expression level of a gene and the edges indicate the

probabilistic dependent relations between nodes. If there is an edge from xi to xj , xi is the parent of xj

and xj probabilistically depends on xi. The probability distribution of xi conditioned on its parent nodes

is denoted as P (xi|Pa(xi)), where Pa(xi) is the set of parent nodes of xi. A Bayesian network is implicitly

based on the Markov Assumption, i.e., given its parents, each variable is independent of its non-descendants.

With this assumption, by applying the chain rule and properties of conditional independencies, the joint

probability can be decomposed into the following product form:

P (x1, . . . , xp) =

p∏
i=1

P (xi|Pa(xi)), (2.2)

where p is the number of nodes in the networks.

In a Bayesian network, the states of genes are represented by a probabilistic distribution which can be

either discrete or continuous. Figure 2.7 shows an example of a Bayesian network, in which each node has

only two states, “0” (“off”) and “1” (“on”). In this example, by equation (2.2), the probability that all

nodes are “1” is P (x1 = 1, x2 = 1, x3 = 1) = P (x1 = 1)P (x2 = 1|x1 = 1)P (x3 = 1|x1 = 1, x2 = 1) =

0.6× 0.3× 0.6 = 0.108.

Two Bayesian network structures are defined to be equivalent or indistinguishable if they represent the

same set of conditional independencies. For example, the structures x1 → x2 → x3 and x1 ← x2 ← x3 both

represent assertion that x1 and x3 are conditionally independent given x2 [43]. From the given data, what

one can learn is an equivalent class of Bayesian networks, but not an individual network. Bayesian networks

in the same equivalent class are characterized as having the same underlying undirected graph structure.
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Figure 2.7: An example of a discrete Bayesian network.
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Figure 2.8: An example of a DBN.

The agreed directed edges in the equivalent class stand for causal relationships, whereas for the disagreed or

undirected edges, the causality is unknown.

As a stochastic model, the Bayesian network can deal with noisy data and stochastic aspects of GRNs

in a natural way [2, 36]. The Bayesian formalism enables straight-forward incorporation of prior biological

information through application of Bayes rule. Furthermore, it can quantitatively describe the states of genes

either in discrete or continuous and it provides an intuitive and easy way to understand visualization of GRNs.

Nevertheless, the main disadvantage of Bayesian networks is that they require the network structure to be

acyclic and the dynamic aspects are not considered in the models. Since feedback loops [44] and dynamics

are important features of GRNs, these disadvantages limit the application of Bayesian network models.

Generally, Bayesian networks are learned from steady-state gene expression level measurements. With

the time-course gene expression data as inputs, dynamic Bayesian networks (DBNs) are proposed to capture

dynamic behaviors. DBN also represents the causal relationships between nodes and assume these relation-

ships do not change over time. A simple DBN example is illustrated in Figure 2.8, which shows that DBNs
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can model cyclic behaviors. Let X(t) = [x1(t), . . . , xp(t)]
T be a state vector of a DBN, where xi(t) is the

expression level of gene i at time t. A DBN is assumed to have a Markov process, i.e.,

P (X(t)|X(1), . . . , X(t− 1)) = P (X(t)|X(t− 1)). (2.3)

Then, the joint probability can be decomposed as

P (X(1), . . . , X(p)) = P (X(1))

n∏
t=2

P (X(t)|X(t− 1)), (2.4)

where n is the number of time points. Thus, the regulations between genes can be modeled through the

construction of P (X(t)|X(t − 1)). Since the network structure does not change over all time points and

only forward edges are allowed, the conditional probabilities can be further decomposed into the product of

conditional probabilities of each gene given its parents. Therefore, given an initial state, the joint probability

is

P (X(2), . . . , X(n)|X(1)) =

n∏
t=2

p∏
i=1

P (xi(t)|Pa(xi(t− 1))), (2.5)

where Pa(xi(t− 1)) is the set of states of parent nodes of xi at previous time step t− 1.

Similar as Bayesian networks, DBNs can model the state of nodes in either discrete or continuous way. Ong

et al. [45] used the discrete model to study the regulatory pathways in E.coli and some biological knowledge

about the model structure is incorporated into their method. Kim et al. [46] proposed a continuous DBN

method, which used the non-parametric regression method to capture more than linear dependencies. Perrin

et al. [47] proposed a DBN model where hidden variables are genes modeled by a linear equation which is

transformed from a differential equation and the output variables are observed genes. The parameters in

the model are learned based on an Expectation-Maximization (EM) algorithm and missing variables can be

handled in this model. One problem of this model is that it cannot be used for large-scale networks. Kim et

al. [48] provided a comprehensive review of DBNs and proposed a general frame work for the DBN modeling.

Differential Equations

Differential equations are deterministic dynamical models of GRNs, in which the network topology and inter-

actions between components are usually represented by parameters in the model. Generally, each differential

equation model corresponds to a graph representation, where directed edges go from regulators to target

nodes. The underlying meaning of these edges can be further explained by the corresponding parameters in

the models. Differential equations quantify the change rate of each gene’s expression level as a function of

the expressions of regulatory genes. The general form for a GRN with p genes is

dxi
dt

= fi(x1, . . . , xp), i = 1, . . . , p, (2.6)

18



 

 

 

 

 

 

 

Wij x1 x2 x3 x4 

x1 - 0 0 0 

x2 - - 0 0 

x3 0 + - + 

x4 + 0 0 - 

x1 

x2 

x3 

x4 

Figure 2.9: An illustration of the corresponding relationship between topology and the matrix.

where xi is the expression level of gene i. In general, only a subset of {x1, . . . , xp} regulates gene i, i.e., some

arguments of fi(.) have no effects on ẋi and those effective arguments are regulators of xi. The combined

effects of regulators on xi, including the biochemical effects of molecular interactions and degradations, are

quantified by fi(.). Parameters of fi(.) are related to the network topology and regulation strength of each

regulator. Thus, identifying gene networks requires identifying the form and estimating the parameters of

f(.) from data.

The expressions of fi(.)’s are usually determined by considering the biochemical reactions and properties

of gene networks. Because of the complexity of GRNs, these functions are usually nonlinear. However,

considering the limited data and complexities of these nonlinear functions, fi(.) is usually assumed to be in

the linear form.

One of the simple linear forms of fi(.) is the linear additive model [49, 20, 50, 51, 52, 53, 54], for which

equation (2.6) becomes:

dxi
dt

= −λixi(t) +

p∑
j=1

wijxj + ui(t) + εi(t), i = 1, . . . , p, (2.7)

where λi is the self-degradation rate, ui is the possible controlled external stimuli, and εi represents noises.

The degradation rates are usually incorporated into wij to make the following form:

dxi
dt

=

p∑
j=1

Wijxj + ui, i = 1, . . . , p, (2.8)

where Wij = wij for i 6= j and Wii = wii − λi. Wij ’s represent the type and strength of influence of gene j

on gene i, where a positive sign, Wij > 0, indicates activation, a negative sign, Wij < 0, indicates repression,

and a zero means no interaction between them. Then the regulations among genes are mapped into a matrix

consisting of Wij ’s. A simple example is shown in Figure 2.9. Equation (2.8) can be written in the matrix

form. Let x(k) and u(k) be be the column vectors of gene expressions measurements and external influences
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on each gene at experiment k, respectively. Then, the gene expression data matrix of n experiments is

Xp×n = (x(1), . . . ,x(n)). Let Up×n = (u(1), . . . ,u(n)) be the matrix of external influences and Wp×p = (Wij)

be the regulation matrix. Then, equation (2.8) becomes

d

dt
Xp×n = Wp×pXp×n + Up×n. (2.9)

We can assume that the system is observed around the steady state and the linear form is obtained by the

first order Taylor expansion of fi(.) and omitting the higher order terms.

The linear differential equation model can be inferred from both time-course gene expression data and

steady state data. If steady state data are used, the derivative, dxi/dt, equals zero. On the other hand,

if the time-series data are used, the derivatives must be estimated. When computing the derivatives, the

measurement errors in data may be amplified.

Because of the simple form of the linear differential equation, the number of parameters needed to describe

the system is reduced and the amount of data required to infer the GRNs is much less than that required by

a complex nonlinear differential equation model. Nevertheless, this linear model is based on the assumption

that the influences of different regulators are additive and independent, which is a strong constraint. In fact,

effects in a cell are usually non-additive, e.g., different TFs can cooperate and amplify the effects of each other

or compete with each other [30]. This constraint may result in errors when modeling the GRNs. Despite the

deficiencies of linear differential equation models, they can model the real systems to some extent and are

usually employed to infer large-scale networks [55, 51, 56] due to the simplicity of their linear forms.

Biological systems are characterized with complex dynamic behaviors, such as oscillations and multi-

stationary [8]. To capture these important properties of true biological network, nonlinear differential equation

models are proposed. One extension of the linear differential equation model is the additive model [57, 58],

dxi(t)

dt
= si − λixi(t) +

p∑
j=1

βijfj(xj(t)), i = 1, . . . , p, (2.10)

where si and λi are the basal synthesis and degradation rates of gene i, βij represents the regulation strength

of gene j on gene i and fj(xj) is the corresponding regulation function. Similar as the linear additive

model, βij > 0 means xj actives the expression of xi, βij < 0 denotes the inhibition effect of xj on xi and

βij = 0 indicates there is no regulation between xj and xi. The regulation functions fj(xj)’s are usually the

Hill-functions,

fj(xj) =
x
hj
j

x
hj
j + θ

hj
j

, (2.11)

where hj is the Hill coefficient parameter and θj is a threshold parameter. The regulation functions are derived

from chemical reaction kinetics. The additive model has the same deficiency as linear additive differential

equations. It also assumes that the effects of regulators are independent with each other and additive.

S-system model [59, 60] derived from Biological System Theory is one of the most popular nonlinear
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differential equation models. It is a type of power-law formalism described as follows:

ẋi = αi

p∏
j=1

x
gij
j − βi

p∏
j=1

x
hij
j , i = 1, . . . , p, (2.12)

where xi is the concentration of component i and p is the number of genes in the network. The changes

of xi is represented by the difference of two terms, the first of which corresponds to the production while

the second of which corresponds to the degradation. αi’s and βi’s are nonnegative rate constants. gij ’s and

hij ’s are real-valued kinetic orders which reflect the regulation and interaction intensity of xj to xi. More

specifically, if gij > 0, xj activates the production of xi, while if gij < 0, xj represses the production of xi.

hij has the same effects as gij but on degradation. A zero-valued kinetic order indicates that xj has no such

effect on xi. Therefore, the network structure and interactions between components are mapped onto the

kinetic order parameters.

For a network of p genes, the number of parameters in S-systems is 2p(p + 1) which becomes quite

large even for an intermediate-sized network. Generally, the estimation of S-system parameters is defined

as a 2p(p + 1) dimensional nonlinear optimization problem. However, there is too many dimensions for

optimization algorithms in cases that large-scale networks are studied. In addition, due to the high degree

of nonlinearity, there is no guarantee for those algorithms to find the global optimal solutions. Therefore,

many evolutionary algorithms have been proposed (e.g. Kikuchi et al.[61], Kimura et al. [62] and Ho et

al. [63]). To circumvent expensive computational efforts in the inference of S-systems, some methods which

avoid solving the system of nonlinear differential equations or take advantage of the special forms of S-

systems are proposed. Voit et al. [59] replaces the left hand side of the model in equation (2.12) by slopes

estimated from expression data, thereby decoupling the systems and transforming the S-systems to a set of

nonlinear algebraic equations. Kimura et al. [62] proposed another strategy known as decomposition method

which involves solving each differential equation in (2.12) one-by-one, in which during the integration the

other state variables are treated as external inputs whose values are estimated from time-series data, thereby

avoiding the integration of coupled differential equations. Liu et al. [64] proposed a method which utilizes

the special form of S-systems model and decoupling strategy such that the search dimension is reduced.

Vilela et al.[65] considered the form of S-systems in another way and proposed method which is based on

eigenvector optimization of a matrix formed from multiple regression equations of the linearized decoupled

S-system. Recently, Kimura et al. [66] developed a technique that reduces the search dimension by solving

linear programming problems.

Although nonlinear differential equation models can describe the real biological network more accurately

than linear models, it contains much more parameters than linear ones. Learning these parameters in

nonlinear models demanding a large amount of data, which is hardly available in practice. Therefore, the

practical application of nonlinear differential equation is still limited.
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Gaussian Graphical Models

To construct a GRN graphical model, one simple and straightforward way is to calculate the Pearson corre-

lations of each pair of genes from microarray gene expression data. An undirected edge appears between two

genes if their correlation exceeds a threshold, which results in a relevance network [67]. However, the direct

and indirect relationships between two genes cannot be distinguished in this graph.

The Gaussian Graphical Model (GGM) is proposed to model GRNs, in which the partial correlation is used

to measure the conditional dependence of two genes. For a network of p genes, denote the expression levels of

genes as x1, . . . , xp, which are assumed jointly normal. The partial correlation is ρij = Corr(xi, xj |x−(i,j)),

where x−(i,j) = {xk|1 ≤ k 6= i, j ≤ p}. In a GGM, an edge exists between two genes if the corresponding ρij

is non-zero, which means that these two genes are conditionally dependent given all other genes. Therefore,

edges in GGM only indicate the direct relations between genes. It is known that partial correlations have

the following relationships with the inverse of covariance matrix,

ρij = − σij√
σiiσjj

, (2.13)

where σij is the corresponding element in the inverse of covariance matrix, i.e., Σ−1 = (σij). Nevertheless,

due to the large p, small n character of gene expression data, the inverse of covariance matrix always does

not exist. Hence, directly inferring the GGM from the covariance matrix is not applicable. To solve this

problem, some approaches infer the network structure based on low-order partial correlations [68, 69, 70],

where the order of partial correlation is the number of variables conditioned on. To estimate the full-order

partial correlations, the connection between partial correlation and ordinary least squares regression has been

implemented [14, 13].

The edges in GGMs distinguish the directed relationships between genes from indirect relationships which

may result from intermediate variables. Although these edges are undirected and do not infer causal rela-

tionships, they eliminate many possible connections among the nodes and provide good starting points for

further analysis. One disadvantage of the GGMs is that they are static models.

Others

Models mentioned above are the most popular ones for the reverse engineering of GRNs from solely gene

expression data, whose popularity come from the ease of implementation and good interpretation of biological

systems. Except for these models, various other models have been proposed to model and infer the GRNs.

Some authors focus on interpreting the relationships between genes by the Granger causality. Gene Xi

is defined as the Granger causal for gene Xj if the autoregressive model of Xj based on past values of both

genes is significantly more accurate than that based on Xj alone. Specifically, let X1:n
i be the time-course
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gene expressions of Xi up to time n and consider the following two regression models

X1:n
j = AX1:n

j +BX1:n
i + εn. (2.14)

X1:n
j = AX1:n

j + εn. (2.15)

Xi is said to be Granger causal for Xj if and only if model (2.14) has significant improvement than model

(2.15). For a gene network containing p variables, let Xt = (Xt
1, . . . , X

t
p)
T and consider graphical Granger

model,

Xn = A1Xn−1 + . . .+An−1X1 + εn, (2.16)

where Xt
j is said to be Granger-causal for Xn

i if the corresponding coefficient, Ati,j is significant, in which

case, there is an edge Xt
j → Xn

i in the graphical model with n× p nodes.

The Granger causalities between genes can be estimated by applying statistical methods to time-course

gene expression observations. Both Opgen-Rhein and Strimmer [71] and Shimamura et al. [72] reconstructed

the GRNs with Granger causality based on the first-order vector autoregressive (VAR) model. Shojaie and

Michailidis [12] proposed a method called “truncating lasso” which can infer GRNs by using the VAR models

whose order is not restricted to one and can be estimated by their algorithm. The Granger causality model

can not only extract the interation relations between genes but also estimate the time lags of the regulations.

Incorporated with the variable section techniques, such as lasso penalty, this model can deal with the large

p small n problem. However, in reality, the regulation between genes show nonlinear behaviors which may

not be captured by this linear model. The concept of Granger causality is quite intuitive which needs to be

further justified in the study of biological systems.

Recently, state space models, one of the most powerful methods to describe a dynamic systems, have been

developed for reverse engineering of GRNs. Much attention has been attracted due to its high computational

efficiency and ability to handle the noise. The variables in state space models are divided into two groups:

observed variables, Yt, and latent variables, Xt, where Yt ∈ Rp is the vector of observed gene expressions at

time t and Xt ∈ Rk, k < p, is the lower dimensional latent state vector. The assumption is that the dynamical

behavior of observed Yt is regulated by the time evolution of a few latent variables, Xt, which represents the

factors that can not be measured by gene expressions, e.g., unobserved genes, activities of regulatory proteins,

some biological entities present in the post-translational modifications [73]. For example, the input-driven

state space model used by Rangel et al. [74] and Beal et al. [75] is

Yt = HXt +AYt−1 + wt,

Xt = FXt−1 +BYt−1 + vt.
(2.17)

The matrix A ∈ Rp×p captures gene-to-gene expression level influences at consecutive time points and matrix

H ∈ Rp×k captures the influences of the latent variables on gene expression level at each time point. Matrix
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B ∈ Rk×p captures the influences of previous gene expressions to the current state of latent variables and F

is the state dynamics matrix. Since the model (2.17) can be rewritten as

Yt = (HB +A)Yt−1 +HFXt−1 + wt +Hvt, (2.18)

the structure of gene regulations is obtained by estimating HB + A, which not only captures the direct

gene-to-gene interactions but also the gene-to-gene interactions via the latent states over time [74]. Rangel

et al. [74] applied the state space model (2.17) to represent the dynamics of T-cell activation and Hirose et

al. [73] used the state space model to identify the transcriptional modules and module-based gene networks.

Wu [76] and Wu et al. [77, 78] infer the GRNs with state space models with the consideration of time delays.

State space models can be regarded as a subclass of DBNs and have been extensively used in many areas

of control and signal processing. The existence of latent variables, which denotes the factors that can not

be measured, enables the modeling of noisy continuous observations. Linear relations between the variables

makes this type of models computational efficient. However, for the modeling of gene network, the linear form

may not always be suitable because of the existence of nonlinear regulatory behaviors observed in GRNs.

Since the dimension and states of the latent variable are unknown, the identification and interpretation are

another problem that has not been well solved when applying the state space models.

As an important method in soft computing, the recurrent neural networks (RNNs) have been applied

to model and reconstruct the GRNs from gene expression data. In a RNN, neurons having relations are

connected with each other to form a network, in which the output of each neuron goes back to its input after

a unit delay. The recurrent structure of RNNs effectively reflect the feedback feature of GRNs and hence

makes it suitable for the modeling of GRNs. In a RNN formulation of the GRN, each gene is considered as

a neuron and the rate of change of its expression is

τi
dxi
dt

= f

 p∑
j=1

wijxj +

K∑
k=1

vikuk + γi

− λixi, (2.19)

where xi is the gene expression level of gene i (1 ≤ i ≤ p, p is the number of genes), f(.) is a nonlinear

function (typically sigmoid, f(z) = 1/(1 + e−z)), wij represents the effect of gene j on gene i, vik represents

the effect of kth external variable uk (1 ≤ k ≤ K, K is the number of external variables) on the gene i, τi

is a time constant, γ is a bias term, and λ is the decay rate parameter. A positive value of wij indicates

activation of gene j on gene i, while a negative value represents inhibition. No influence of gene j on gene

i if wij is zero. Since gene expression data are measured at discrete time points, the discrete form of model

(2.19) is

xi(t+ ∆t) =
∆t

τi
f

 p∑
j=1

wijxj(t) +

K∑
k=1

vikuk(t) + γi

+

(
1− λi∆t

τi
xi(t)

)
. (2.20)

The term
∑K
k=1 vikuk(t) is usually ignored, due to the unavailability of measurements of external variables.
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In addition, the decay rate parameter is chosen as λ = 1, for simplicity. Vohradsky [79] studied the dynamic

behaviors of a three-gene network in the framework of RNNs. Xu et al. [80] infer the GRN from time-series

expression data by particle swarm optimization (PSO) approach based on the model (2.20) and their results

show that RNNs can reveal potential regulatory interactions between genes.

Similar to DBNs and state space models, RNNs can be unfolded along the time points so that it becomes

a layered forward network. The structure or regulatory relations between layers do not change when time

evolves. Neural networks has been integrated with other soft computing methods, such as fuzzy set and

evolutionary algorithms, to reversely engineering the GRNs, the readers are referred to Mitra et al. [22]

which is a comprehensive review of soft computing methods for GRNs.

2.4.2 Models Based on Heterogeneous Data

Besides the dimensionality problem, the data from microarray experiments always contain many noises and

measurement errors. Therefore, an accurate network can hardly be obtained due to the limited information

in microarray data. With the development of technologies, a large amount of other diverse types of genomic

data are collected. Many researchers are motivated to study gene networks by combining these data with

microarray data. Because different types of the genomic data reflect different aspects of underlying networks,

the inferences of GRNs based on the integration of different types of data are expected to provide more accu-

rate and reliable results than based on microarray data alone. However, effective integration heterogeneous

data is currently a hot research topic and a nontrivial task because they are generally collected along with

much noise and related to each other in a complex way [81].

In general, using heterogeneous genomic data lead to two different levels of networks which we mentioned

at the beginning of this section. One is the same level as using the microarray data alone, i.e., a GRN. The

other level is the TRN, which depicts the interactions between sets of TFs and genes being regulated.

When one aims at reversely engineering a GRN from heterogeneous data, the models or mathematical

templates used are the same as those mentioned above. As the Bayesian model can introduce prior information

in a natural way by applying the Bayesian rule, it is widely used in this study. When Bayesian network is

considered, other data are generally used to provide prior distribution for the network topology. Hartemink et

al. [28] incorporated the TF binding location data into the network modeling by letting the prior probabilities

of network topologies which failed to contain an edge that location data suggest one, be zero. By applying the

simulated annealing search algorithm and posterior model averaging strategy, a discrete Bayesian network

was learned from these data. Their work was extended from two aspects [82]. One is that a dynamic

Bayesian network model which allows cyclic behavior is used in place of the Bayesian network. The other

is a new informative prior over the network structures is proposed. The prior proposed by Bernard and

Hartemink [82] has considered the noisy nature of location data and relaxed the constrains their previous

work [28] by using a method to derive the prior probability from the p-values associated with the binding

data. In the work of Imoto et al. [29], they proposed to model the network topology by a Gibbs distribution
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which can be derived from various genomic data. In their paper, designs of the prior distributions from

protein-protein interaction data, protein-DNA data and sequence data are discussed, respectively. A Bayesian

network based on a nonparametric regression can be reversely engineered by their method. Based on this

framework, Nariai et al. [26] inferred the gene network by integrating gene expression data and protein-

protein interaction data from MIPS database. In the estimation procedure, if the relation between genes is

found listed in protein-protein data, a protein complex and its activities are constructed from the expression

levels of corresponding genes based on the principle component analysis. Werhli and Husmeier [83] extended

the method of Imoto et al. [29] to allow the simultaneous inclusion of different sources of prior knowledge by

designing a particular form of energy function such that the computation of the marginal posterior distribution

over the hyperparameters becomes analytically tractable. Tamada et al. [27] proposed a method to infer

a gene network and detect regulatory motifs simultaneously from the combination of gene expression data

and DNA sequence information based on the framework of Imoto et al. [29]. The basic assumption in their

work is that genes having the same parent share a consensus motif in the promoter regions of their DNA

sequences. Tamada and Kanehisa [84] presented a statistical method which can estimate two GRNs of two

distinct organisms from gene expression data simultaneously with a Bayesian network model utilizing the

evolutionary information. The underlying idea in this paper is that orthologous genes with similar expression

patterns have strongly related functions in each of the organisms’ cells, so that gene expression data of one

organism helps to estimate the gene network of the other.

Some researchers aim to reconstruct a TRN from these heterogeneous genomic data with a set of putative

or identified TFs. In general, reverse engineering of a TRN is more difficult than that of a GRN, because

both the network topology and the activities of TFs are needed to estimate. Bar-Joseph [85] developed the

GRAM algorithm to discover regulatory networks in Saccharomyces cerevisiae by integrating the microarray

expression data and the ChIP binding data. However, their method is not systematic modeling and depends

on a heuristic parameter threshold. One of the commonly used models in literature for the study of this

purpose is

xi(t)

x0(t)
=

m∏
j=1

(
aj(t)

aj(0)

)Jij
, (2.21)

where xi(t) and aj(t) are the concentrations of mRNA i and TF j at experiment t, respectively. Jij is the

control strength of TF j on gene i. Sun et al. [81] derived this model based on a series of reversible biochemical

reactions and assumed that all these reversible reactions reach equilibrium. By taking log-transformation,

we can get the linear form of equation (2.21) as follows

log(xi(t)/xi(0)) =

m∑
j=1

Jij log(aj(t)/aj(0)). (2.22)

Considering the measurement noise and intrinsically stochastic nature of biological systems, the model can
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be further expressed in matrix notations

X = JA+ E, (2.23)

where X is the relative gene expression data matrix with p rows (genes) and n columns (samples), A is a

m × n matrix representing the relative activities of TFs, J is a p × m matrix whose elements denote the

regulatory strengths, and E is the matrix of errors.

Although the regulation in gene networks is nonlinear, the linear model can reflect the properties of

networks to some extent. Based on this linear model, Liao et al. [86], Kao et al. [87] and Boulesteix and

Strimmer [88] have used a “network component analysis” approach to find activities of TFs and regulation

strengths using gene expression data and ChIP binding data. However, in their studies, the connectivity

matrix between genes and TFs, which is obtained from binding data, is assumed to be known without error.

Based on equation (2.23), Sun et al. [81] developed a Bayesian hierarchical model to integrate the protein-

DNA binding data and gene expression data to reconstruct TRNs. The measurement errors of both binding

data and expression data are explicitly considered in the model. They use the measured relative protein-

binding intensities of TFs to approximate the regulation strengths and employ the Markov Chain Monte Carlo

(MCMC) method to get the network topology and TF activities from the posterior distributions. Sabatti

and James [31] proposed a Bayesian hidden component model which is also based on the linear model to infer

a TRN from gene expression with the prior distribution of network topology derived from promoter binding

sites. Then, the network topology and regulation strengths as well as the activities of TFs are obtained from

their posterior distributions. The uncertainty in the sequence information is also taken into account in their

method.

The combinatorial regulation mechanism is common in the GRNs, e.g., TFs may cooperate or compete

with each other when regulating a target gene. The synergistic and antagonistic relationships between genes

have been investigated by Banerjee and Zhang [89]. Jensen et al. [30] developed a Bayesian hierarchical

model that integrates gene expression data, ChIP binding data and promoter sequence data to reconstruct

TRNs. In their method, the relationship between TFs and genes are modeled as follows

xi(t) = αi +

m∑
j=1

JjCijaj(t) +
∑
j 6=k

γjkCijCikaj(t)ak(t) + εit, (2.24)

where αi is the baseline expression of gene i, Ji represents the linear effect of TF j on gene expression, Cij

is regulation indicator which equals 1 when TF j influences gene i otherwise equals 0, and γjk indicates the

synergistic or antagonistic effect of TFs j and k. An informative prior distribution of Cij is constructed

from both the ChIP binding data and the promoter sequence data. The network topology as well as the

relationships between TFs is estimated by using an MCMC algorithm. However, Jensen et al. [30] use the

expressions of genes producing that TFs as the measurement of activities of TFs, which is not suitable as

mentioned in literature [90, 86, 87, 88].
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2.5 Inference Algorithms

After a model is chosen, the next critical step is to apply an inference algorithm to fit the model with

data. This is a nontrivial step because the number of parameters is usually quite large but the information

available is quite limited. The design of an inference algorithm depends not only on the complexity of the

model framework but also on the quantity and quality of available data.

There are mainly two tasks: learning network topology and estimating values of parameters, where the

network topology is of primary interest, which aims at finding the connectivity or regulation relations between

the network components. Given the network topology, the values of parameters concerning the biological

information, such as regulatory strengths, are estimated in the parameter estimation process. The identified

network topology and estimated model parameters should satisfy existing biological constrains and be able

to best explain observed biological data.

When inferring the network topology, identifying the set of regulators of each node is a challenging

problem. For a network consisting of p nodes, the number of possible combination regulators for each node

is 2p, which is quite large even for a small-sized network. Therefore, the network topology inference is a

combinatorial problem as well as a model selection problem since different topologies corresponds to different

model structures. The parameter estimation problem is relatively easier compared with the topology inference

problem. Additionally, these two problems are generally not independent with each other in the network

inference. In some cases (c.f. [27, 26, 29]), the parameter estimation is embedded into the process of topology

inference, while in other cases (c.f. [49, 13, 63]) the topology is simultaneously inferred in the parameter

estimation process.

The network reconstruction problem is generally formulated as an optimization problem. Both the topol-

ogy and parameters of a network is learned by optimizing a specific objective under some biological constrains

through an optimization method. In the following, we will survey the inference algorithms from two perspec-

tives: optimization objectives and methods.

2.5.1 Optimization Objectives

Gene networks are usually learned by solving optimization problems, the objectives in which should not only

consider the fitting of observed data but also take into account or reflect some biological properties. The most

common and important property of gene networks is sparseness [20] meaning that a gene is regulated only

by a limited number of genes. As we mentioned above, the network topology inference is a model selection

problem. In general, one of the important criterions for selecting the optimal model is the parsimony, i.e.,

the model should not be too complex, which coincides with the sparseness.

Under the Bayesian model framework, the optimal model is chosen by maximizing the network posterior
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probability. Denoting the network by G, given data X, network G∗ is inferred by

G∗ = argmaxGP (G|X). (2.25)

Using the Bayesian rule, the posterior probability is

P (G|X) =
P (G)P (X|G)

P (X)
(2.26)

where

P (X|G) =

∫
P (X|θG)P (θG|λ)dθG and P (X) =

∑
G∈Ω

P (X,G). (2.27)

P(G) is the prior distribution of network topology, θG is the parameters related to network G, λ is the

hyperparameter and Ω is the set of all possible networks. By taking logarithm and omitting the constant

term (P(X)), we can define a Bayesian score for each network

BS(G) = log(p(G)) + log(p(X|G)). (2.28)

Thus, the network can also be inferred by maximizing BS(G) which takes into account both the prior

probability and the likelihood. It is known that the marginal likelihood P (X|G) has the effect of penalizing

complex topologies, which is known as Occam’s razor. Thus, the sparseness is reflected in BS(G). If prior

distributions of parameters are properly designed, the integral in equation (2.27) can be solved analytically.

Kim et al. [46] used Laplace approximation to approximately compute the integral in equation (2.27) and

proposed a criterion called Bayesian Nonparametric Regression Criterion (BNRC) which is widely used in

their works [27, 26, 48, 46, 29].

For models based on differential equations, the topology is usually determined by values of parameters.

To estimate the parameters, the objective in general is

argminθ‖X −Xc‖2 + r(θ), (2.29)

where X and Xc are the observed gene expression data and calculated expression data, respectively and r(θ)

is a penalty function where θ is the parameter vector. The first term in formula (2.29) represents the fitting

to the observed data and the second term is usually to make sure the network is sparse and avoid over-fitting.

r(θ) usually takes the lasso or its adaptive form to penalize the parameters of topology, e.g., r(θ) =
∑
i,j |θij |

where θij is parameters related to the connectivity [91, 62, 61, 63]. Since the calculation of Xc requires to

solve solve a set of differential equation which takes quite a lot of computation time, the following objective

is sometimes considered [59],

argminθ‖Ẋ − Ẋc‖2 + r(θ) (2.30)
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where Ẋ and Ẋc are observed and calculated derivatives, respectively. Ẋ is usually obtained from the

available data by using numerical methods, which can avoid the numerical integration of differential equations.

However, the estimation of slopes may introduce more errors that may affect the final results. When using

the linear differential equations, the model can be discretized and transformed into a linear algebra equation.

Then the objective function can be similar as formula (2.30) using a penalty term or the network structure

can be optimized directly by other techniques, such as singular value decomposition (SVD)[54, 49]. Other

model such as the GGMs [13] and Granger Causality [12] that can be represented as a linear algebra equation

can also apply the lasso type penalty term to infer the topologies.

The objectives mentioned above can be considered to get a point solution, i.e., each method will result

in only one inferred network. Other literature, such as Husmeier [92], aim to find the posterior probability

distributions of the topology and parameters under the Bayesian framework. With the estimated poste-

rior distribution, the confidence of the network inferred can be obtained, which, however, requires more

computation cost.

2.5.2 Optimization Methods

Given the objective, solutions to some of them are obtained by using standard optimization methods, such

as linear programming [54] and convex programming [91]. When the model is linear, the main problem in

applying those methods relies in the limited information in data. The dimensionality problem prohibits the

direct use of many existing methods. However, the sparseness property makes network inferences from limited

data possible, e.g., Peng et al. [13] proposed an active-shooting algorithm to infer a GGM under the high-

dimension and low-sample setting. Shojaie and Michailidis [12] developed a truncating lasso penalty based

on the sparseness assumption and proposed an efficient algorithm to infer the Granger causality relationships

in the network under the same setting.

For methods based on complex models, such as Bayesian models and nonlinear differential equation

models, the objectives cannot be optimized analytically, e.g., the optimization problem (2.25) for Bayesian

networks is known to be NP hard. Therefore, the researchers usually resort to heuristic search methods.

For instance, Imoto et al. [29] and Naria et al. [26] employed the greedy hill-climbing algorithm to infer

the network which optimizes the Bayesian score. The simulated annealing has been used to infer a Bayesian

network [82, 28]. The genetic algorithm (GA) and its variants have been applied in the inference of an

S-system [61, 62, 64]. A recurrent neural network model was learned by using the PSO algorithm [80]. The

problem of using these heuristic optimization methods is that they are usually time consuming and no good

way to avoid falling into the local optimum.

In the Bayesian framework, sometimes one intends to find the posterior distribution of the topology

and parameters instead of a point solution. In general, calculating the posterior distribution analytically

is prohibitive. Hence, researchers apply Markov chain Monte Carlo (MCMC) method to generate random

samples from their posterior distribution [92, 30]. With these random samples, the posterior probability can

30



be approximately estimated.

Another approach to the directed acyclic graph (DAG) structure learning of a Bayesian network is the

constrained-based method: each edge in network is learned if fulfilling a constraint by comparing the value of

a statistical or information-theory-based test of conditional independence of each pair of nodes to a threshold.

In the family of constrained-based learning algorithms, Path consistency (PC) algorithm [93] is a well-known

structure learning algorithm which constructs a DAG in two consecutive stages. The first stage is learning

associations between variables and resulting in an undirected graph (i.e., the skeleton of the graph). In this

process, the number of conditional independence tests grows exponentially with the number of variables. A

simple method reducing this complexity to polynomial complexity is to fix the maximal number of parents

of each node. The second stage orients the undirected edges in the skeleton according an orientation rule

such that the graph is a DAG. Saito and Horimoto [94] developed a simple method to assess co-expressed

genes from expression profiles based on the PC algorithm. Tan et al. [95] proposed a new extended PC

algorithm which can incorporate the prior knowledge from multiple sources such as ChIp-chip data and can

work well for partially dense graphs. When using the PC algorithm with partial correlation as the conditional

independence test, there are two problems the same as in GGM: the high-order (i.e., a large condition set)

independence test and small sample size which are both avoided by identifying dense nodes and using multiple

sources of data [95]. The expression data of genes are assumed to be normally distributed when utilizing the

partial correlation independence test in PC algorithm. However, if this assumption does not hold, partial

correlation can only detect the linear relation between pairs of genes, whereas nonlinear dependences are more

common in biological processes. To cope with this problem, Zhang et al. [96] proposed to infer the GRNs

from gene expression data by employing PC algorithm based on conditional mutual information. Algorithms

of constraint-based approach are generally asymptotically correct and relatively efficient [93]. However, they

depend on the threshold selected for the conditional independent test. Other efficient Bayesian network

learning algorithms and their comparisons refer to Brown et al. [97].

The computation costs for both heuristic methods and MCMC methods are usually very high. The

accuracies of results from these methods are not high enough, due to the limited data. Therefore, to increase

the accuracy and efficiency, biological knowledge needs to be considered when designing and utilizing these

methods. For instances, the prior probabilities of topology and parameters used by Jensen et al. [30] and

Mazur et al. [57] take into account the sparseness property. Sheridan et al. [98] proposed a prior reflecting

the scale-free property. In some literature [61, 62, 64], the parameter values are searched in the intervals

having biological meanings.

2.6 Conclusions and Discussion

Various molecules in the cell and their interactions form a complex system called a GRN, the network

identification of which has received considerable attention due to the significance of its potential applications.
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Depending on whether identification aims at grouping the genes with similar expression profiles or finding the

regulatory relations between genes, approaches can be classified as clustering methods or reverse engineering

methods. The former methods group genes with similar expressions, due to the high probability that they are

functionally directly or indirectly with each other. Clustering methods in data mining and soft computing,

e.g., biclustering by fuzzy sets [22], and their extensions are always applied to group the genes. The methods

reviewed in this paper falls under the latter class that aims at unveiling the regulation relations between genes.

Due to the limited observations and high dimensionality of the biological data, most reverse engineering

methods are unable to reconstruct large-scale networks. In this case, the data mining methods can be used

as preliminary step to reduce the dimension by selecting the group of components that we are interested in.

Different mathematical and computational methods have been developed to reveal the regulation relations

between the components in gene networks from biological data. Depending on the level of abstraction and

types of available data, these methods may result in a GRN, a network consisting of genes, or a TRN, a

network consisting of TFs and genes. Both the direct or indirect relations between genes can be captured in a

GRN, while in a TRN, only the relations between TFs and genes are identified. In general, the identification

of a TRN is more difficult than that of a GRN, because both the network structure and the activities of TFs

are unknown. Thus, the identifications of TRNs often require the participation of other source of biological

data in addition to gene expression data.

Due to the large p small n problem, most models currently can only reversely engineer a relatively small-

scale network. The ability to infer a large network is very important since the real-life gene network is

usually very large. GGM can reconstruct a large-scale network from the under-sampled data and lead to an

undirected network whose edge means direct relations. Though the causal relations can not be described in

this network, it is still a good start point which eliminates many possible edges. However, it is a static model

that can not reflect the dynamic behaviors of the gene network.

Based on the static gene expression data, many models, such as Bayesian network, can build a static net-

work. However, Bayesian network typically do not accommodate cycles and hence, can not handle feedbacks

that are common in gene networks. With the availability of time course gene expression data, DBNs, RNNs,

ODEs, and state space models are developed to model the network dynamics. DBNs, state space models and

RNNs can be unfolded as multiple layered network along the time points, in which, the regulatory structure

is assumed to be unchanged. Though Boolean networks can model dynamics, some dynamic behaviors may

not be able to captured due to the discretization of gene expression data and its synchronous update. As

an effective model for dynamical systems, ODE captures the causality and feedbacks of gene network in a

natural way. The system structures are usually reflected by the values of parameters in these models.

Bayesain networks or DBNs model the expression of genes as random variables, which enables their

abilities to deal with noises or missing data that are prevalent in biological data. The existence of latent

variables in state space models also makes it be able to model the noisy measurements or missing data. ODEs

and RNNs mentioned in this paper are deterministic models which can not handle the noisy data. Especially,
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when the derivatives in the ODEs need to be estimated from the observed data, the numerical errors caused

by noises may lead to significant errors in the final results.

To efficiently infer the gene network, many models are simplified to be the linear forms, such as ODEs and

state space models. Although linear additive regulation can reveal certain linear relations in the regulatory

systems, it lacks the capability to capture the nonlinear relations between the components in the network.

To finely capture the nonlinear dynamics in the gene network, the model should be able to describe the

mechanisms of the systems. Bayesian netowrks, DBNs and state space models are models based on some

statistical assumptions which may not be able to reflect the mechanisms. The S-system of ODEs, which is

derived from the Biochemical System Theory, is a good framework to depict the GRNs.

Based on a model, a network is inferred through a learning algorithm, in which there are two tasks:

identifying network topology and estimating the parameters. Topology identification is a model selection

problem, while parameter estimation is an estimation problem. These two problems are always blended with

each other in the inference process. The network inference is usually formulated as an optimization problem

whose objective is to find the parsimonious model that can best explain the observed data. The parsimony

reflects the sparseness property of biological networks. Because of the complexity of biological systems and

limited information in the data, the optimum solution is always difficult to find. Therefore, heuristic search

and evolutionary algorithms are widely used. Moreover, some existing literature aims to find the posterior

distributions of the topology and parameters, so that the confidence or variation of inferred network can be

obtained. MCMC method is usually applied to get random samples from those posterior distributions. To

increase the accuracy and reduce the computation cost, the biological properties and constraints should be

taken into account when designing and applying these optimization methods.

The information contained in the gene expression data is quite limited, which makes the network inference

difficult. One way to alleviate this problem is to aggregate multiple data sets. For one gene network, there

may exist multiple gene expression data sets, each of which contain part of information of this system. To find

an effective way to aggregate these multiple gene expression data is nontrivial, because there is no temporal

connections between different data sets. Another way is to use heterogenous data including DNA sequence

data, ChIP-chip data, and protein-protein interaction data to combine with gene expression data to reversely

engineer gene networks. Bayesian networks and DBNs can naturally and conveniently make use of these

data by transferring them into prior distributions of the network. The prior biological knowledge is also

important to increase the accuracies and efficiency, e.g., the incorporation of the scale-free properties into

reverse engineering methods is still in development.
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Chapter 3

Properties of Sparse Penalties on Inferring Gene Reg-

ulatory Networks from Time-course Gene Expression

data

Published as: L.Z. Liu, F.X. Wu, and W.J. Zhang, “Properties of sparse penalties on inferring gene

regulatory networks from time-course gene expression data,” IET Systems Biology, April 2014, published [99].

In the previous chapter, we have reviewed different methods for reverse engineering the GRNs. It shows

that linear ODEs are effective models to describe the GRNs and can capture the dynamic behaviors of the

system to some extent. Based on the steady-states of the linear ODEs, sparse penalties, e.g. the adaptive

LASSO, have been successfully applied to infer the network topology from static gene expression data [100],

as it has been theoretically proved that some sparse penalties have the “oracle properties” under the linear

regression setting with independent variables [16, 17]. However, when using the time-course gene expression

data, the steady-states assumption for ODEs is invalid and properties of sparse penalties under this setting

should be studied.

In this chapter, two sparse penalties, adaptive LASSO and SCAD, are proposed to infer GRNs from

time-course gene expression data based on an autoregressive model which is derived from a linear ODE with

mild assumptions. We analyze the statistical properties of these two penalties under this setting and show

that they still enjoy the “Oracle properties”. This chapter partially fulfills Objective 2 of this thesis.

abstract

Genes regulate each other and form a gene regulatory network (GRN) to realize biological functions. Eluci-

dating GRN from experimental data remains a challenging problem in systems biology. Numerous techniques

have been developed and sparse linear regression methods become a promising approach to infer accurate

GRNs. However, most linear methods are either based on steady-state gene expression data or their statistical

properties are not analyzed. Here, two sparse penalties, adaptive LASSO and SCAD, are proposed to infer

GRNs from time-course gene expression data based on an auto-regressive model and their Oracle properties

are proved under mild conditions. The effectiveness of those methods is demonstrated by applications to in

silico and real biological data.
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3.1 Introduction

Most genes make their functions through regulating among other genes and such regulatory interactions

form a large-scale gene regulatory network (GRN). Analyses of GRNs are very important for identifying the

disease mechanisms and finding therapeutic targets. Therefore, reconstruction or “reverse engineering” of

GRNs from experimental data has significant biological meanings and is one of the fundamental challenges

in Systems biology.

The reconstruction of GRNs is a non-trivial problem and many conventional methods cannot be applied

directly. On the one hand, a typical gene expression data set consists of relatively few observations compared

to a large number of genes. The lack of observations makes the inference task quite difficult and is known

as dimensionality problem [13, 14]. On the other hand, the inherent noises in the gene expression data also

makes the task challenging.

Two types of gene expression data are usually used for the inference: steady-state data and time-course

data. The former measures the expression levels of genes in different samples while the latter measures the

expression levels of genes at several successive time points. Steady-state data are assumed to be independent

while time-course data exhibit autocorrelations between time points [7]. Compared with steady-state data,

dynamic information and more complex regulatory relations could be captured by time-course data. This

study considers the way of extracting regulatory relations from the time-course data.

Various approaches have been developed to infer GRNs from gene expression data, such as Boolean net-

works [38, 101], Bayesian networks [41, 92], neural networks [102], state-space models [74, 77] and differential

equations [20, 64]. A wide variety of methods have been introduced and discussed in a review by Liu et al.

[18]. A comparison of these methods requires their evaluation on benchmark data sets which have been pro-

vided by DREAM (Dialogue for Reverse Engineering Assessments and Methods) project [103]. The DREAM

aims at understanding the strengths and the limitations of various methods to reconstruct the GRNs from

high-throughput data.

It has been observed that biological networks exhibit low connectivity [104] and the sparseness of GRNs

has been employed as an important prior knowledge to tackle with the dimensionality problem. In some

methods, it has been used as explicit constraints on the connectivity of network components [20]. Some

literature employ `1 norm approach to explore sparse networks. For example, Peng et al. [13] use the sparse

regression which includes an `1 penalty to select the non-zero partial correlations from under-sampled data

and obtain an undirected network whose edge means direct relations between genes. Zavlanos et al. [105, 91]

employ a weighted `1 relaxation as the objective function, which together with additional linear constraints

leads to a linear program to fit the data as well as satisfy the sparse structure. The data used in these two

methods are steady-state data. Fujita et al. [106] use the `1 norm method based on the autoregressive model

to infer GRNs.

A system is stable if its responses to any bounded input or stimuli are bounded. Generally, stability
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is used as a criterion to illustrate the qualities of the inferred networks [107]. Since it is not imposed as

explicit constraints, the resulting inferred network in many methods might not be stable. For example, the

network inferred by Hoon et al. [108] is unstable while the one in Hu et al. [107] is almost stable. Recently,

Zavlanos et al. [105, 91] have shown that the inference performance is significantly improved by explicitly

imposing the stability condition on the network. The stability constraints could be linear or semidefinite

constraints which are derived from Gers̆gorin’s Theorem or Lyapunov inequality. In our previous work [109],

the stability constraint for a linear model is derived from Gers̆gorin’s Theorem and has been incorporated

into an optimization framework to infer the GRNs from time-course gene expression data.

For a target gene, identifying its regulatory genes is essentially a variable selection problem. The least

absolute shrinkage and selection operator (LASSO), developed by Tibshirani [15], is an effective variable se-

lector. However, it has been shown that the LASSO produces biases [17] and may fail in variable selection if

the “Irrepresentable Condition” [110] is violated. To remedy the issue of LASSO, two new penalties are pro-

posed recently: nonconcave Smoothly Clipped Absolute Deviation (SCAD) penalty [17] and adaptive LASSO

[16]. Both methods have been shown to enjoy the Oracle properties [17], i.e., asymptotically recovering the

true model at the optimal rate, under the linear regression setting with independent observations.

Among numerous techniques, sparse linear regression methods become a promising approach e.g. [106,

100, 111] because of their simplicity and potential to be applied to large networks. Many methods can be

considered as extensions to the sparse linear regression, e.g. [112, 113]. However, most studies are based on

steady-state data and for those based on time-course data, they just employ the sparse penalties directly and

do not analyze their statistical properties. This study employs the adaptive LASSO and SCAD penalties

to explore sparse network topologies from time-course gene expression data. We show that, under some

mild regularity conditions, the adaptive LASSO and SCAD penalties still enjoy the Oracle properties in

the time series autoregressive setting, which means that the inference methods are theoretically guaranteed.

The optimization problems involved are efficiently solved by coordinate descent method [114], the fastest for

computing a variety of LASSO related loss functions. Instead of giving a determinant network topology, we

adapt the recently proposed strategy “stability selection” [115] to our methods to produce a network topology

with a probability assigned to each edge. In the strategy, Moving block bootstrap is used to generated the

bootstrap samples and the stability condition is used to help computing the edge probability. Using the

system stability condition to help calculating edge probability rather than as constraints like in other papers

[105, 109] makes the network inference simpler and more accurate as discussed. The methods can also be

applied to the high dimensional data sets where dimensionality problem always happen. The effectiveness of

the methods is demonstrated by applying them to in silico data and real experimental data.

Briefly, the remainder of the paper is organized as follows. In Section 3.2, a model for GRN and the sparse

penalties used in this paper are introduced. In Section 3.3, the Oracle properties of the sparse penalties in

terms of inferring GRNs from time-course data are proved. Section 3.4 describes the inference algorithm

and the stability selection procedure. In Section 3.5, the effectiveness of our methods is demonstrated by

36



applying them to several in silico networks as well as real gene networks, respectively. Section 3.6 concludes

this study.

3.2 GRN Inference

3.2.1 Model

Similar to [109], the dynamic model we use for a GRN consisting of p genes is

ẋ = Cx + Sr + n + ξ,

r = f(x),
(3.1)

where x = [x1, . . . , xp]
T ∈ Rp is the vector of concentrations of mRNAs of p genes; C = diag[−c1, . . . ,−cp] ∈

Rp×p is a diagonal matrix, where ci > 0 is the degradation rate of gene i; n = [n1, . . . , np]
T ∈ Rp is the basal

expression rate in the absence of regulators; ξ = [ξ1, . . . , ξp]
T ∈ Rp is noise; The vector r = [r1, . . . , rm]T ∈ Rm

represents the reaction rates, which is a function of mRNA concentrations and S ∈ Rp×m is the stoichiometric

matrix of the network.

We assume that at the sampling points, tk = k∆t, k = 0, 1, . . . , n, rk = r(tk) is a linear function of

xk = x(tk),

rk = Fxk, (3.2)

where F ∈ Rm×p. Thus, (3.1) becomes

ẋk = Cxk + Mxk + n + ξk, (3.3)

where M = SF ∈ Rp×p. The elements of M = (mij)1≤i,j≤p indicate the network topology or regulatory

relationships between genes in the network. mij > 0 if gene j activates the expression of gene i; mij < 0 if

gene j inhibits the expression of gene i; mij = 0 if gene j does not regulate the expression of gene i.

In order to infer the network topology, the signs of elements of matrix M must be determined. Since the

gene expression levels are sampled at several time points, by using zeroth-order-hold discretization method

and assuming r is piece-wise constant between the sampling time points, system (3.3) is discretized as

xk = Axk−1 + b + εk (3.4)

where A = eC∆t + C−1(eC∆t − I)M, b = C−1(eC∆t − I)n and εk =
∫∆t

0
eCτξ(k∆t − τ) dτ the noise at

time tk. Note that eC∆t and C−1(eC∆t − I) are both diagonal matrices and their diagonal elements are all

positive. Thus, the off-diagonal elements of A = (aij)1≤i,j≤p have the same signs as those of M. For the

main diagonal elements, only negative signs can possibly be identified, i.e. mii < 0 if aii ≤ 0, but sgn(mii)
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is unknown if aii > 0. In this study, we are mainly interested in inferring the relationships between genes,

i.e., the signs of off-diagonal elements of M, and do not consider self-regulations. Therefore, the inference of

network topology can be achieved by identifying the signs of non-zero off-diagonal elements in matrix A.

Given time course gene expression data, {xit}, i = 1, . . . , p, t = 0, . . . , n, we are seeking to infer the matrix

A in the model (3.4). Let xk represent expression levels of p genes observed at the kth time point. Denote

by A∗ the true value of A. If Â is an estimate of A∗, b is estimated by b̂ = x̄t − Âx̄t−1, where x̄t and x̄t−1

are the means of last and first n observations, respectively, i.e. x̄t =
∑n
k=1 xk/n and x̄t−1 =

∑n
k=1 xk−1/n.

Without loss of generality, we assume that the data {xk} are centered data, so the intercept b is not included

in the model that we mainly use in this paper,

xk = Axk−1 + εk. (3.5)

We define Y = [x1, . . . ,xn], L = [x0, . . . ,xn−1] and E = [ε1, . . . , εn]. With these notations, (3.5) can be

written in the matrix form:

Y = AL + E. (3.6)

Let y = vec(Y), β = vec(A) and e = vec(E), where vec(·) is the column stacking operator. The vector form

of (3.6) is:

y = Zβ + e, (3.7)

with Z = LT ⊗ I, where ⊗ represents the Kronecker product. The matrix form (3.6) is mainly used for

computation as it can be separated by rows of Y, A and E into a set of uncoupled linear regression problems.

In this way, A can be estimated row by row, and the storage of very large matrix like Z is avoided. The

vector form (3.7) is mainly used for technical proofs because existing results can be applied directly for the

classical linear regression form of (3.7).

3.2.2 Sparse Penalties

GRNs are known to be sparse, i.e., the density of connections in the network is relatively low. Correspondingly,

only a few entries of A are non-zero. Based on (3.6), least squares loss and sparseness penalty are used to

identify the network topology,

Â = argmin
A∈Rp×p

‖Y −AL‖2F +

p∑
i=1

p∑
j=1

pλij (|aij |), (3.8)

where ‖ · ‖F is the Frobenius norm. pλij (·) is the generic penalty function on each element and λij is the

corresponding tuning parameter. The first term of (3.8) fits the data to the model. The second term shrinks

the elements of A, removes the redundant connections and makes sure the sparseness of the resultant network.

The tuning parameters control the extent of penalty so as to balance the fitting of the data and the sparseness
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of the network.

For the LASSO penalty proposed by Tibshirani [15], pλ(|x|) = λ|x|. LASSO penalty increases linearly

with the magnitude of its argument, which leads to substantial biases in the estimate of large parameters

[17]. To address this problem, Fan and Li [17] propose the SCAD penalty, which is a concave function defined

by pSCAD,λ(0) = 0 and for |x| > 0

p′SCAD,λ(|x|) = λ

{
I(|x| ≤ λ) +

(aλ− |x|)+

(a− 1)λ
I(|x| > λ)

}
, (3.9)

where λ > 0 and a > 2 are two tuning parameters. The notation θ+ means the positive part of θ: θ+ =

max(θ, 0). (3.9) corresponds to the LASSO penalty when a = ∞. Often a = 3.7 is used [17]. Using the

SCAD penalty, the network is identified by solving the following problem:

argmin
A∈Rp×p

‖Y −AL‖2F + n

p∑
i=1

p∑
j=1

pSCAD,λ(|aij |), (3.10)

where we choose λij = λ for convenience. The corresponding vector form based on (3.7) is

argmin
β∈Rp2

‖y − Zβ‖2 + n

p2∑
i=1

pSCAD,λ(|βi|). (3.11)

Zou [16] proposes another penalty called the adaptive LASSO to tackle the bias problem of LASSO.

The adaptive LASSO penalty is in essence a weighted version of the LASSO penalty, where the weights

are properly chosen. For our problem, the weights are defined to be w̃ij = |ãij |−γ for some γ > 0 and any

root-n-consistent estimate Ã = (ãij)1≤i,j≤p. Using the adaptive LASSO, we are seeking to solve the following

problem:

argmin
A∈Rp×p

‖Y −AL‖2F + λ

p∑
i=1

p∑
j=1

w̃ij |aij |. (3.12)

or

argmin
β∈Rp2

‖y − Zβ‖2 + λ

p2∑
i=1

ω̃i|βi|, (3.13)

where ω̃i = |β̃i|−γ for some root-n-consistent initial estimate β̃.

3.3 Properties

3.3.1 Oracle Properties of the Adaptive LASSO

Let β∗ = vec(A∗) be the true value of β in model (3.7) and denote by B = {j : β∗j 6= 0} the true structure.

Further assume that |B| = p0 < p2, which means that the true model only depends on a subset of elements of

A. Using the terminology of Fan and Li [17], an estimation procedure has the oracle property if the estimate
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from the procedure, denoted by β̂, (i) can correctly identify the right subset, i.e. {j : β̂j 6= 0} = B, and (ii)

has the optimal estimation rate,
√
n(β̂B − β

∗
B)→d N(0,Σ∗), where Σ∗ is the covariance matrix as knowing

the true model structure.

The Oracle properties of adaptive LASSO and SCAD under the linear regression setting have been proved

[17, 16, 116]. In the following, we show that based on our model (3.5), the Oracle properties of these two

kinds of penalties are still reserved.

We first show that using the adaptive LASSO penalty, the inference of a gene regulatory network has the

oracle properties. Given time course gene expression data, {xit}, i = 1, . . . , p, t = 0, . . . , n, based on (3.13),

the adaptive LASSO estimate is

β̂
(n)

= argmin
β∈Rp2

‖y − Zβ‖2 + λn

p2∑
j=1

ω̃j |βj |. (3.14)

Similarly, define Bn = {j : β̂
(n)
j 6= 0}.

We show that under some mild conditions and with a proper choice of λn, the adaptive LASSO estimate

based on the time series model (3.5) also enjoys the oracle properties.

Theorem 3.1. Suppose that in (3.5) (A1) xk are stationary for all k; (A2) εk are independent white noises

with the nonsigular covariance matrix E(εkε
T
k ) = Σε and for some finite constant c, E(|εikεjkεlkεmk|) ≤ c

for all 1 ≤ i, j, l,m ≤ p. Further assume that (A3) λn/
√
n → 0 and λnn

(γ−1)/2 → ∞. Then, the adaptive

LASSO estimate satisfies:

1. Consistency in variable selection: limn→∞ P(Bn = B) = 1.

2. Asymptotic normality:
√
n(β̂

(n)

B − β
∗
B)→d N(0, (Γ⊗ I)−1

B,B(Γ⊗Σε)B,B(Γ⊗ I)−1
B,B),

where Γ is the limit of LLT /n, i.e. 1
nLLT →p Γ

Proof. The assumptions (A1) and (A2) imply that there exists nonsigular matrix Γ such that

1

n
LLT →p Γ, (3.15)

and
1√
n

ZTe→d W = N(0,Γ⊗Σε), (3.16)

as n→∞ [117, 118].

Similar to the proof of Zou [16], we first prove the asymptotic normality part. Let u =
√
n(β − β∗) and

Ψn(u) =

∥∥∥∥y − Z

(
β∗ +

u√
n

)∥∥∥∥2

+ λn

p2∑
j=1

ω̃j

∣∣∣∣β∗j +
uj√
n

∣∣∣∣ .
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Let û(n) = argmin Ψn(u). Then β̂
(n)

= β∗ + û(n)
√
n

. Note that Ψn(u)−Ψn(0) = V (n)(u), where

V (n)(u) = uT
(

1

n
ZTZ

)
u− 2uT

ZTe√
n

+
λn√
n

p2∑
j=1

ω̃j
√
n

(∣∣∣∣β∗j +
uj√
n

∣∣∣∣− |β∗j |) .
From (3.15), we have

1

n
ZTZ =

1

n
LLT ⊗ I→p Γ⊗ I.

The limit of the second term can be obtained by (3.16). For the limiting behavior of the third term, if

β∗j 6= 0, ω̃j = |β̃j |−γ →p |β∗j |−γ and
√
n
(∣∣∣β∗j +

uj√
n

∣∣∣− |β∗j |) → ujsgn(β∗j ). Since λn/
√
n → 0, by Slutsky’s

theorem, we have λn√
n
ω̃j
√
n
(∣∣∣β∗j +

uj√
n

∣∣∣− |β∗j |) →p 0. If β∗j = 0,
√
n
(∣∣∣β∗j +

uj√
n

∣∣∣− |β∗j |) = |uj | and λn√
n
ω̃j =

λn√
n
nγ/2(|

√
nβ̃j |)−γ with

√
nβ̃j = Op(1). Therefore, by using Slutsky’s theorem, we know that for every u

V (n)(u)→d V (u)

=

uTB(Γ⊗ I)B,BuB − 2uTBWB if uj = 0 ∀j 6∈ B

∞ otherwise.

V (n)(u) and V (u) are both convex and V (u) has an unique minimum. Following the epi-convergence results

of Geyer [119] and Knight and Fu [120], we have

û
(n)
B →d (Γ⊗ I)−1

B,BWB and û
(n)
Bc →d 0. (3.17)

Note that WB = N(0, (Γ⊗Σε)B,B), the asymptotic normality part is proved.

For the consistency part, for any j ∈ B, the asymptotic normality results indicates that β̂
(n)
j →p β

∗
j .

Therefore, P(j ∈ Bn)→ 1. Then we only need to show that ∀j′ 6∈ B, P(j′ ∈ Bn)→ 0. For the event j′ ∈ Bn,

by KKT conditions, we see that

2zTj′(y − Zβ̂
(n)

) = −λnω̃j′sgn(β̂
(n)
j′ ),

where zj′ is the j′’th column of Z. Note that λnω̃j′/
√
n = λn√

n
nγ/2 1

|
√
nβ̃j′ |γ

→p ∞. However,

2
zTj′(y − Zβ̂

(n)
)

√
n

= 2
zTj′Z
√
n(β∗ − β̂

(n)
)

n
+ 2

zTj′e√
n

By (3.17), we know that 2
zT
j′Z
√
n(β∗−β̂(n)

)

n →d some normal distribution random variable and 2
zT
j′e√
n
→d
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N(0, 4(Γ⊗Σ)j′,j′). Thus,

P (j′ ∈ Bn) ≤ P
(

2zTj′(y − Zβ̂
(n)

) = λnw̃j′sgn(β̂
(n)
j )

)
→ 0.

Remarks: (1) In Theorem 3.1, εk are required to satisfy the assumption (A2). We can alternatively

assume that ξ satisfy the conditions in (A2), which can imply εk fulfill those conditions. (2) Assumption

(A1) requires that xk is stationary. This can be guaranteed by the stability condition: roots of

det(I−Az) = 0

lie outside the unit circle. Or equivalently, the modulus of eigenvalues of A are less than 1.

3.3.2 Oracle Properties of SCAD

Using the SCAD penalty to select the variables in the linear regression setting, Zou and Li [116] proposes

a local linear approximation (LLA) method which is an improvement of the local quadratic approximation

(LQA) method in Fan and Li [17]. The LLA locally approximates the SCAD penalty by a symmetric linear

function. Considering (3.11), for any β
(0)
j , by the Taylor expansion, pSCAD,λ(|βj |) can be approximated in a

neighborhood of |β(0)
j | as follows:

pSCAD,λ(|βj |) ≈ pSCAD,λ(|β(0)
j |) + p′SCAD,λ(|β(0)

j |)(|βj | − |β
(0)
j |),

where p′SCAD,λ(·) is defined as (3.9).

Under the linear regression setting, Zou and Li [116] studies the one-step LLA method, i.e. solving the

SCAD penalized problem by replacing SCAD penalty with its LLA, and shows that the one-step estimate

enjoys the oracle properties. In our problem of time series setting, similarly, using the LLA of SCAD penalty,

we define the one-step estimate as

β̂
(n)

ose = argmin
β∈Rp2

‖y − Zβ‖2 + n

p2∑
j=1

p′SCAD,λn(|β(0)
j |)|βj |, (3.18)

where β(0) is any root-n-consistent initial estimate. In the following theorem, the initial value β(0) can be

taken as the ordinary least squares estimate. In the following, we show that the one-step estimate, β̂
(n)

ose, also

satisfies the oracle properties under some mild conditions similar to those in Theorem 3.1. In the following,

define Bosen = {j : β̂
(n)
ose,j 6= 0}.

Theorem 3.2. Suppose conditions (A1) and (A2) in Theorem 3.1 also hold here. If (A3)
√
nλn → ∞ and

λn → 0, then the one-step SCAD estimate β̂
(n)

ose satisfy:
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1. Consistency in variable selection: limn→∞ P(Bosen = B) = 1.

2. Asymptotic normality:
√
n(β̂

(n)

ose,B − β
∗
B)→d N(0, (Γ⊗ I)−1

B,B(Γ⊗Σε)B,B(Γ⊗ I)−1
B,B),

where Γ is defined the same as in Theorem 3.1.

Proof. The proof is similar to that in Theorem 3.1 and Zou’s paper [116]. First, we prove asymptotic

normality part.

Let u =
√
n(β̂

(n)

ose − β
∗) and

Ψn(u) =

∥∥∥∥y − Z

(
β∗ +

u√
n

)∥∥∥∥2

+ n

p2∑
j=1

p′SCAD,λn(|β(0)
j |)

∣∣∣∣β∗j +
uj√
n

∣∣∣∣ .
Let û(n) = argmin Ψn(u). Then β̂

(n)

ose = β∗ + û(n)
√
n

. Let V (n)(u) = Ψn(u)−Ψn(0), then

V (n)(u) = uT
(

1

n
ZTZ

)
u− 2uT

ZTe√
n

+

p2∑
j=1

√
np′SCAD,λn(|β(0)

j |)
√
n

(∣∣∣∣β∗j +
uj√
n

∣∣∣∣− |β∗j |) .
Because of (A1) and (A2), we know that ZTZ/n→p Γ⊗ I and ZTe/

√
n→d W = N(0,Γ⊗Σε). Thus, the

limit of the first two terms can be obtained. Now, we study the limit behavior of the third term. If β∗j 6= 0,

we see that
√
n
(∣∣∣β∗j +

uj√
n

∣∣∣− |β∗j |)→ ujsgn(β∗j ) and if β∗j = 0,
√
n
(∣∣∣β∗j +

uj√
n

∣∣∣− |β∗j |) = |uj |. By conditions

(A1) and (A2), the ordinary lest squares estimate β(0) has the property [117, 118]

√
n(β(0) − β∗)→d N(0,Γ−1 ⊗Σε). (3.19)

Thus, if β∗j 6= 0, we have |β(0)
j | →p |β∗j | > 0. Note that p′SCAD,λn(|β(0)

j |) = 0 if |β(0)
j | > aλn, (a = 3.7) and

λn → 0. We have
√
np′SCAD,λn(|β(0)

j |)
√
n
(∣∣∣β∗j +

uj√
n

∣∣∣− |β∗j |) →p 0. When β∗j = 0,
√
np′SCAD,λn(|β(0)

j |)
√
n(∣∣∣β∗j +

uj√
n

∣∣∣− |β∗j |) = 0 if uj = 0. For uj 6= 0, note that p′SCAD,λn(|β(0)
j |) = λn for all |β(0)

j | < λn. By (3.19),

β
(0)
j = Op(1/

√
n),
√
nλn → ∞ ensures that

√
np′SCAD,λn(|β(0)

j |)
√
n
(∣∣∣β∗j +

uj√
n

∣∣∣− |β∗j |) = |uj |
√
nλn with

probability tending to one. Therefore, when β∗j = 0 and uj 6= 0,
√
np′SCAD,λn(|β(0)

j |)
√
n
(∣∣∣β∗j +

uj√
n

∣∣∣− |β∗j |)→p

∞. Based on the discussions above, for every u = (uTB ,u
T
Bc)

T , we know that

V (n)(u)→d V (u)

=

uTB(Γ⊗ I)B,BuB − 2uTBWB if uBc = 0

∞ otherwise.
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V (n)(u) and V (u) are both convex and V (u) has an unique minimum. Following the epi-convergence results

of Geyer [119] and Knight and Fu [120], we have

û
(n)
B →d (Γ⊗ I)−1

B,BWB and û
(n)
Bc →d 0. (3.20)

Note that WB = N(0, (Γ⊗Σε)B,B), the asymptotic normality part is proved.

Next, we prove the consistency part. For any j ∈ B, the asymptotic normality results indicates that

β̂
(n)
ose,j →p β

∗
j , which implies P(j ∈ Bosen )→ 1. Then it suffices to prove that for any j′ 6∈ B, P(j′ ∈ Bosen )→ 0.

Assuming j′ ∈ Bosen , by KKT condition of (3.18), we must have

2
zTj′(y − Zβ̂

(n)

ose)√
n

= −
√
np′SCAD,λn(|β(0)

j′ |)sgn(β̂
(n)
ose,j′), (3.21)

where zj′ is the j′’th column of Z. In the aforementioned discussions, we have shown that when β∗j′ = 0, the

right-hand side goes to ∞ in probability. However, the left-hand side can be written as

2
zTj′Z
√
n(β∗ − β̂

(n)

ose)

n
+ 2

zTj′e√
n
.

By (3.20), the first term converges in distribution to some normal, and so does the second term by (3.16).

Therefore,

p(j′ ∈ Bosen ) ≤ P(KKT condition (3.21) holds)→ 0.

We have the same remarks for Theorem 3.2 as for Theorem 3.1.

3.4 Inference Algorithms

The inferred GRNs are obtained by solving the weighted LASSO optimization problems (3.14) and (3.18).

The fastest approach to this kind of problem is coordinated descent method by Friedman et al. [114], which

one-at-a time optimizes one variable by making use of soft-thresholding operator [114]. To avoid the storage

of very large matrix in the case of high dimensional data, we use the corresponding matrix forms of (3.14)

and (3.18) instead and solve the regulatory matrix A row by row.

For adaptive LASSO penalized problems, we fix γ = 0.5 and the solution path, i.e., solutions for several λ

values, is computed. λ values are picked in the interval from λmax = maxi,j{2|LjYT
i |/ω̃ij}, the minimum λ

resulting in zero solution where Li and Yi are the ith rows of matrix L and Y in (3.6), to λmin = 0.01λmax.

We use the strategy of warm starts [114], i.e, the initial value for computing the solution of current λ is the

solution of the previous λ. For SCAD penalized problems, we fix a = 3.7, and compute the solutions of several

λ’s values picked in the interval from λmin = minj |β(0)
j |/a to λmax = max{maxj |β(0)

j |,maxi,j 2|LjYi|/n}.
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λ in both methods is a tuning parameter, different values of which may lead to different solutions. Methods

used to determine the value of λ include cross-validation and information criterion, e.g. AIC and BIC. In

contrast to selecting a specific value for λ which corresponds to a determinant network topology, a method

called “stability selection” recently proposed by Meinshausen and Buhlmann [115] finds a network with a

probability for each edge. Stability selection performs the variable selection methods, .e.g. LASSO or sparse

penalized regression, many times, resampling the data in each run and computing the frequencies with which

each variable is selected across these runs. It has been used with linear regression method to infer GRNs

from steady-state gene expression data in Haury et al. [100] and has shown perspective effectiveness. In this

study, we adapt the stability selection method to finding probable GRNs from time-course gene expression

data with sparse penalized methods. Given a time course gene expression data set X ∈ Rp×n with rows

representing genes and columns representing time points, for each method and a specific λ ∈ Λ, the stability

selection is as follows,

1. Use moving block bootstrap to draw N bootstrap samples X∗(k), k = 1, . . . , N , from time-course gene

expression data.

2. Use the sparse penalized method to infer a network Â
∗(k)
λ from each bootstrap sample.

3. Compute the frequencies for each edge (i, j), i.e., from gene j to gene i, in the network

Πλ(i, j) =
]{k : Â

∗(k)
λ is stable and Â

∗(k)
λ (i, j) 6= 0}

]{k : Â
∗(k)
λ is stable}

.

For a set of λ ∈ Λ, the probability of each edge in the inferred network is

Π(i, j) = max
λ∈Λ

Πλ(i, j).

The network topology can be obtained by setting a threshold, edges with probabilities less than which are

considered nonexistent. This study only focuses on giving a list of edges with probabilities. The selection of

threshold is not discussed here. When multiple time-course gene expression data sets are available, we use

the above mentioned method to infer a list of edges with probabilities from each single data set and then

obtain the probability for each edge by simply taking average of those results across data sets.

Since we use the time series data, the moving block bootstrap method is employed in the first step. In

the moving block bootstrap, with block length b, the data is split into n − b + 1 blocks: block j consists

of observations j to j + b − 1, j = 1, . . . , n − b + 1. dn/be blocks are randomly draw from n − b + 1 with

replacement and are aligned in the order they are picked to form a bootstrap sample.

Note that in the third step, we only use the stable estimated networks to calculate the frequencies of

edges. From the remarks of our theorems, we know that the system stability requirement can help improve

the inference accuracy. To see the existence of stable estimated network, note that in our previous work
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Table 3.1: AUROC and AUPR of each method for DREAM3 size-10 networks.

Size 10 Ecoli 1 Ecoli 2 Yeast 1 Yeast 2 Yeast 3

AUROC AUPR AUROC RUPR AUROC AUPR AUROC AUPR AUROC AUPR

LASSO 0.5178 0.1276 0.5151 0.1637 0.5288 0.1058 0.6314 0.4084 0.5130 0.3129

Adaptive LASSO 0.6283 0.1546 0.5431 0.1741 0.6013 0.1416 0.6815 0.4992 0.5625 0.3829

SCAD 0.7100 0.2266 0.5422 0.2345 0.5750 0.2262 0.7108 0.5085 0.5348 0.3161

[109], a sufficient condition has been proposed for the stability: the `1 norm of each row of A is less than 1.

It is observed that for both adaptive LASSO and SCAD penalized methods, the `1 norm of each row of A

tends to 0 as λ becomes large enough. Therefore, there exists λ values giving stable networks. Unlike other

papers [105, 109] using a sufficient condition as explicit constraints to ensure the stability, this paper uses the

stability condition to help finding the edge probability. The Oracle properties of these penalties indicate that

the unconstrained optimization can correctly infer the network with a proper regularization parameter. The

unconstrained optimization is simpler than constrained ones and for our unconstrained problem, there exists

a very efficient algorithm. The existing stability constraints [105, 109] are very strong and only sufficient

conditions, which the true stable network may not be satisfied with.

3.5 Applications

Since the adaptive LASSO and SCAD penalized methods enjoy the Oracle properties, they are expected to

have better performances than LASSO. To demonstrate their effectiveness, they are applied to inferring GRNs

from in silico time-course data and real experimental time-course data, respectively. The in silico data are

time-course data in DREAM3 challenges for networks of size 10 and 100. The real data are the time-course

data sets of E. coli SOS DNA repair network and a cell cycle regulatory subnetwork in S. cerevisiae.

3.5.1 DREAM3 Networks

The performances of the methods are evaluated on a number of GRNs inferred from DREAM3 in silico data

sets. We consider the challenges for networks of size 10 and 100. For the size-10 network, there are five

networks (E. coli 1, E. coli 2, Yeast 1, Yeast 2 and Yeast 3), each of which has 4 time series consisting of 21

time points. For the size-100 network, we consider 2 networks (E. coli 1 and Yeast 1), each of which has 46

time series consisting of 21 time points. These data were generated by simulating a thermodynamic model

for gene expression to which the noises were added. The multiple time series were obtained by assigning

different initial values to the thermodynamic model. The network typologies are extracted from currently

accepted GRNs and have varying patterns of sparsity and topology structures.

For each network challenge, the adaptive LASSO and SCAD penalized methods are applied to those

multiple data sets and the above mentioned stability selection procedure is used to infer a network in which

each edge has a probability. Varying the threshold for the edge and comparing the resulted network with
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Table 3.2: AUROC and AUPR of each method for Ecoli 1 and Yeast 1 of DREAM3 size-100 networks.

Size 100 Ecoli 1 Yeast 1

AUROC AUPR AUROC AUPR

LASSO 0.6463 0.0278 0.5174 0.0184

Adaptive LASSO 0.6997 0.0308 0.5310 0.0194

SCAD 0.7081 0.0366 0.5775 0.0206

the gold standard network topology, the areas under the ROC curve (AUROC) and precision-recall curve

(AUPR) are computed. As the number of time points is larger than the number of genes in the size-10

network, the initial estimates for the adaptive LASSO and SCAD methods are least squares estimates. For

the size-100 network, there are less time points compared with the number of genes and the pseudoinverse

method is used to solve the least squares problem and provide the initial estimates for the adaptive LASSO

and SCAD methods. In the implementation, we set the number of bootstrap samples N = 30 with block

length b = 15 for the size-10 networks and set the number of bootstrap samples N = 10 with block length

b = 15 for the size-100 networks. We choose smaller bootstrap sample size for the size-100 networks to save

computation time as the network size is relatively large and there are 46 time-series data sets.

The AUROCs and AUPRs of adaptive LASSO and SCAD methods and those from LASSO for DREAM3

size-10 and size-100 networks are reported in the Table 3.1 and 3.2, respectively. Table 3.1 shows that

all three methods have better performances than random guess, as all AUROCs are larger than 0.5. A

comparison among these three methods in Table 3.1 indicates that adaptive LASSO and SCAD penalized

methods outperform the LASSO methods in both AUROC and AUPR. More specifically, for size-10 Ecoli

1 and Yeast 2, SCAD penalized method outperforms LASSO significantly. For size-10 Yeast 1 and Yeast 3,

adaptive LASSO has the largest AUROC among the three and it has higher AUPRs than LASSO. The results

for the size-100 Ecoli 1 and Yeast 1 networks are shown in Table 3.2 and give the similar conclusions, i.e.,

all methods are better than random guess and adaptive LASSO and SCAD penalized methods outperform

LASSO in both AUROC and AUPR. It is noticeable that AUROCs of these methods for size-100 networks

are comparable to those for size-10 networks and SCAD outperforms LASSO significantly in AUROC for

size-100 Ecoli 1. The relatively low values of AUPR is because of the low density of connectivity in the

size-100 networks. All the results demonstrate the effectiveness of adaptive LASSO and SCAD penalties

which have the Oracle properties as we have proven in the theorems.

3.5.2 E. coli SOS Network

In this example, we apply the proposed methods to identify the real gene regulatory network, E. coli SOS

DNA repair system as shown in Figure 3.1. This network is in charge of repairing the DNA after some

damage happens. In the normal state, LexA acts as the master repressor of many genes. When a damage

occurs, RecA acts as a sensor and binds to single-stranded DNA to sense the damage and mediates LexA
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Figure 3.1: SOS DNA repair pathway in E. coli .

autocleavage. The repressions of the SOS genes are halted by the drop in LexA levels. The SOS genes

are activated and start to repair the damages. When the repair is done, the dropping of RecA level stops

mediating LexA autocleavage. Then, LexA accumalates and represses the SOS genes and the cell goes back

to the normal state.

Four gene expression data sets of SOS DNA network are downloaded from the Uri Alon lab,1 which are

taken from four experiments for various UV light intensities (Experiment 1 and 2: 5Jm−2, Experiment 3 and

4: 20 Jm−2). Each data set contain 8 genes and their measurements at 50 time points. As other literature

did, e.g. [1, 121, 122, 123], only 6 genes, i.e., uvrD, lexA, umuD, recA, uvrA and polB are considered because

they are well studied and the gold standard network of these genes are illustrated in Table 3.3. Details of

the gold standard can be found in [1]. In this study, we do not consider the signs and the self-regulations.

We apply the adaptive LASSO and SCAD penalized methods to infer GRNs from experiment 1 and 2 data

sets and experiment 3 and 4 data sets, respectively and compare with the results from LASSO. The initial

estimates for adaptive LASSO and SCAD are least squares estimates. The number of bootstrap samples is

N = 50 with block length b = 25. The AUROC and AUPR of each method for the SOS network are shown

in Table 3.4, from which we can see that all methods are better than random guess and adaptive LASSO

1http://www.weizmann.ac.li/mcb/UriAlon.
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Table 3.3: Gold standard of SOS network, collected from literature [1].

uvrD lexA umuD recA uvrA polB

uvrD 0 -1 -1 1 1 0

lexA 0 -1 -1 1 0 0

umuD 0 -1 -1 1 0 0

recA 0 -1 -1 1 0 0

uvrA 1 -1 -1 1 0 0

polB 0 -1 -1 1 0 0

Table 3.4: AUROC and AUPR of each method for E. coli SOS network.

Exp. 1 and 2 Exp. 3 and 4

AUROC AUPR AUROC AUPR

LASSO 0.6199 0.7634 0.5249 0.6777

Adaptive LASSO 0.6493 0.7762 0.6176 0.7970

SCAD 0.7489 0.8200 0.7172 0.8008

and SCAD penalized methods outperform the LASSO. SCAD penalized method has the best performance

among these three. These results are consistent with those of in silico data and demonstrate the effectiveness

of the methods.

3.5.3 S. cerevisae Cell Cycle Subnetwork

A cell cycle regulatory subnetwork in S. cerevisae is inferred by proposed methods from experimental mi-

croarray data. As in [124], the subnetwork considered consists of 27 genes including 10 genes for producing

transcription factors (ace2, fkh1, swi4, swi5, mbp1, swi6, mcm1, fkh2, ndd1, yox1) and 17 genes for producing

cyclin and cyclin/CDK regulatory proteins (cln1, cln2, cln3, cdc20, clb1, clb2, clb4, clb5, clb6, sic1, far1,

spo12, apc1, tem1, gin4, swe1 and whi5). The corresponding microarray we use are from [125], collected by

alpha factor arrest method. There are 27 genes and 18 time points in the data.

In order to demonstrate the effectiveness of proposed methods, the inferred results are compared with

the interaction network of the chosen 27 genes, drawn from BioGRID database [126]. The network in the

database has 112 interactions, not including the self-regulations, and we take it as the gold standard regulatory

network. Each method is applied to the data with the number of bootstrap samples N = 30 and block size

b = 10. Since the number of genes is greater than the number of time points, the initial estimates for

adaptive LASSO and SCAD methods are obtained by solving the least squares problem with pseudoinverse

method. The performances of these methods are shown in Table 3.5. It can be seen that all methods are

better than random guess and adaptive LASSO and SCAD penalized methods outperform the LASSO. For

this data, adaptive LASSO penalized method has the largest values in both AUROC and AUPR. Although

the gold standard from the database may be incomplete or contain some errors, it still can demonstrate the
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Table 3.5: AUROC and AUPR of each method for S. cerevisae cell cycle subnetwork.

AUROC AUPR

LASSO 0.5083 0.1710

Adaptive LASSO 0.5418 0.2040

SCAD 0.5384 0.1841

effectiveness of the adaptive LASSO and SCAD penalized methods to some degree.

3.6 Conclusions

In this study, after discretizing an ODE model of the GRN, an auto-regressive model is obtained, base on

which the network topology inference task is achieved by identifying the non-zero elements in the regulatory

coefficient matrix.

This paper aims at uncovering the network topology from time course gene expression data. To solve the

task and improve the accuracy, two important properties of GRNs, sparseness and stability, are proposed

to be used. The adaptive LASSO and SCAD penalties are employed to result in sparseness: making many

irrelevant elements in the regulatory matrix become zero. These penalties have been proved in literature to be

effective and have the Oracle properties in the ordinary linear regression setting. With some mild regularity

conditions, we have proved that the Oracle properties are preserved when they are used in our time series

model. Therefore, the proposed methods are theoretically guaranteed. An adapted stability selection strategy

has been used in this study to infer a GRN in which each edge is assigned a probability. In this strategy, the

moving block bootstrap method is used to generate the bootstrap samples and the system stability conditions

are used to help improving the accuracy of calculating probabilities of the edges. Unlike other literature that

use a stability sufficient condition as an optimization constraint, we only make use of the stability property

as a criterion to help finding the network. As a result, we only need to solve an unconstrained optimization

problem with the advantage of the existing efficient coordinate descent algorithm.

The effectiveness of the proposed methods are demonstrated by applications to the DREAM3 in silico

data of size 10 and 100 network challenges and the real experimental data of E. coli SOS network and S.

cerevisae cell cycle subnetwork. In in silico examples, the results show that all the methods are better than

random guess and adaptive LASSO and SCAD penalized methods outperform the LASSO. The results of

real data applications have the similar conclusions which confirm the effectiveness of these penalties that

enjoy the Oracle properties.

Although some results of the proposed methods are not good enough, it may be because of the nonlin-

earities and inherent noises of GRNs and limited information of the time-course data. Ways to improve their

performances include using kernel methods to tackle with the nonlinearity, incorporating with other source

of biological data and developing robust methods to deal with the large noises. The methods studied here
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provide a good foundation, as all these ways either take them as components of powerful integrated systems

or based on them, make further extensions.

Acknowledgement

This study is supported by Natural Science and Engineering Research Council of Canada (NSERC).

51



Chapter 4

A Group LASSO-Based Method for Robustly Infer-

ring Gene Regulatory Networks from Multiple Time-

Course Datasets

Published as: L.Z. Liu, F.X. Wu, and W.J. Zhang, “A group lasso-based method for robustly inferring gene

regulatory networks from multiple time-course datasets,” BMC Systems Biology, March 2014, in press [127].

This work is an extension to our conference paper: L.Z. Liu, F.X. Wu, and W.J. Zhang, “Robust inference of

gene regulatory networks from multiple microarray datasets,” in Bioinformatics and Biomedicine (BIBM),

2013 IEEE International Conference on, pp. 544–547, Dec 2013 [128].

In the previous chapter, based on an autoregressive model, the statistical properties of sparse penalties,

adaptive LASSO and SCAD, for the inference of GRNs from time-course gene expression data are analyzed.

Although, the network topology can be asymptotically reconstructed, the limited number of observations and

the inherent noises make the inference accuracy relatively low. As more and more gene expression data are

collected, integrating multiple data sets should be able to improve the accuracy. However, the time-course

gene expression data cannot be simply combined as there is no temporal relationships between different

datasets.

In this chapter, a novel method, Huber group LASSO, is proposed to infer the GRNs from multiple time-

course gene expression datasets as well as to take the robustness to large errors and outliers into account.

To solve the optimization problem involved in the proposed method, an efficient algorithm is developed and

its convergence is also analyzed. Simulation and real data examples show the effectiveness of the proposed

method. This chapter and previous chapter accomplish Objective 2 of this thesis.

Abstract

As an abstract mapping of the gene regulations in the cell, gene regulatory network is important to both

biological research study and practical applications. The reverse engineering of gene regulatory networks from

microarray gene expression data is a challenging research problem in systems biology. With the development

of biological technologies, multiple time-course gene expression datasets might be collected for a specific

gene network under different circumstances. The inference of a gene regulatory network can be improved by
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integrating these multiple datasets. It is also known that gene expression data may be contaminated with

large errors or outliers, which may affect the inference results.

A novel method, Huber group LASSO, is proposed to infer the same underlying network topology from

multiple time-course gene expression datasets as well as to take the robustness to large error or outliers into

account. To solve the optimization problem involved in the proposed method, an efficient algorithm which

combines the ideas of auxiliary function minimization and block descent is developed. A stability selection

method is adapted to our method to find a network topology consisting of edges with scores. The proposed

method is applied to both simulation datasets and real experimental datasets. It shows that Huber group

LASSO outperforms the group LASSO in terms of both areas under receiver operating characteristic curves

and areas under the precision-recall curves.

The convergence analysis of the algorithm theoretically shows that the sequence generated from the algo-

rithm converges to the optimal solution of the problem. The simulation and real data examples demonstrate

the effectiveness of the Huber group LASSO in integrating multiple time-course gene expression datasets and

improving the resistance to large errors or outliers.

4.1 Background

A Gene regulatory network (GRN) consists of a set of genes and regulatory relationships among them.

Tremendous amount of microarray data that measure expression levels of genes under specific conditions are

obtained from experiments. It is a challenging problem in systems biology to reconstruct or “reverse engineer”

GRNs by aiming at retrieving the underlying interaction relationships between genes from microarray data.

Various approaches have been developed to infer GRNs from microarray data. Most of them can be classified

into two categories: parametric or model-based methods and nonparametric or dependency-measure-based

methods. Commonly used models include ordinary differential equations [64], Gaussian graphical models

[13] and Bayesian networks [92]. Dependency measures include partial correlation coefficient [129], mutual

information [130], and z-score [131].

The reconstruction of GRN is a non-trivial problem. On the one hand, the number of possible network

topologies grows exponentially as the number of genes increases. On the other hand, the information in the

microarray data is quite limited. The data contain a lot of inherent noises generated from the devices or the

experiment processes. For large-scale networks, the number of observations is usually much less than that of

genes, also known as “dimensionality problem” [13, 14]. The lack of observations and the high dimensionality

of the data prohibit the direct application of traditional methods and make the inference task extremely

challenging.

As more and more microarray datasets on the same species are produced from different laboratories, their

integration leads to more robust and more reliable results. The methods that integrate multiple datasets

could synergize the strength of each dataset and either infer a more accurate network if all the integrated
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datasets are in high qualities or infer a robust network which is better than the worse one that is from

a single dataset. However, multiple time-course datasets can not be simply combined as one dataset as

there is no temporal dependencies between the datasets. Wang et al. [54] proposes a linear programming

framework to integrate multiple time-course gene expression data to infer a network topology that is most

consistent to all datasets. In their method, the regulatory strengths between genes is assumed to be the

same across all datasets. However, different datasets may be produced under different circumstances, which

may result in different regulatory strength between genes. Another problem is that the value of the tuning

parameter in their method, which controls the degree of sparsity of the inferred network, is only determined

intuitively. Chen et al. [132] infer one GRN from each time-course data separately, and combine edges of

inferred GRNs using a strategy similar to majority vote. For this method, using each dataset separately in

the inference process may miss the opportunity of taking advantage of information in other datasets and the

tuning parameter is also determined intuitively.

This study focuses on inferring the topologies of GRNs from multiple time-course gene expression datasets

based on an autoregressive model. We assume that one GRN corresponds to one dataset and these GRNs share

the same topology across all datasets. By assigning the parameters representing the regulatory strengths of

the same edge into the one group, the group LASSO [133] can be applied to find the sparse network topology.

Microarray data typically contain noises and outliers, which could severely affect the quality of inferred

results. Rosset and Zhu [134] proposes a robust version of LASSO by replacing the squared error loss of

LASSO with Huber loss. We propose to use the Huber loss to extend the group LASSO such that the new

method, Huber group LASSO, is more resistant to the large noises and outliers.

To solve the Huber group LASSO, a new algorithm is developed in our previous work [128], which

combines the idea of auxiliary function minimization [135] and the block coordinates descent method [136].

The proposed algorithm is efficient and can also be adapted for solving the group LASSO problem without the

orthogonality restriction. In this study, we analyze the convergence of our proposed algorithm and show that

the sequence the algorithm generated indeed converges to the optimal solution of the Huber group LASSO

problem. Instead of picking a specific value for the tuning parameter which corresponds to a determinant

network topology as in our previous work [128], in this study, we adapt the “stability selection” [115] strategy

to our method to find a network consisting of edges with probabilities or scores. The Huber group LASSO

is applied to both simulation data and real experimental data and its performances are compared with those

of the group LASSO in terms of areas under the receiver operating characteristic (AUROC) and areas under

the precision-recall (AUPR). Results show that the Huber group LASSO outperforms the group LASSO and

therefore demonstrate the effectiveness of our proposed method.

Briefly, the remainder of the paper is organized as follows. In Model Section, we introduced the model

for the GRN, based on which the network topology is inferred. In Result Section, our proposed method is

applied to the both simulation data and real experimental data. The results demonstrate the effectiveness of

our method. Then, we conclude this study and point out the future work along this research in Conclusion
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Section. Details of the method and its theoretical analysis can be found in Method Section.

4.2 Model

A model for GRN consisting of p genes is used in this study [109]:

ẋ = Cx + Sr,

r = f(x),
(4.1)

where x = [x1, . . . , xp]
T ∈ Rp is the vector of mRNA concentrations; C = diag[−c1, . . . ,−cp] ∈ Rp×p is a

diagonal matrix with ci > 0 the degradation rate of gene i; the vector r = [r1, . . . , rm]T ∈ Rm represents the

reaction rates, which is a function of mRNA concentrations and S ∈ Rp×m is the stoichiometric matrix of

the network. We assume that reaction rate r is a linear combination of mRNA concentrations,

r = Fx, (4.2)

where F ∈ Rm×p. Then, (4.1) becomes

ẋ = Cx + Mx, (4.3)

where M = SF ∈ Rp×p. The elements of M = (mij)1≤i,j≤p indicate the network topology or regulatory

relationships between genes. mij 6= 0 if gene j regulates the expression of gene i. Otherwise, mij = 0, gene

j does not regulate gene i.

Since the gene expression levels are sampled at several time points, by using zero order hold discretization

method, system (4.3) is discretized as

xk = Axk−1 (4.4)

where A = eC∆t + C−1(eC∆t − I)M. Note that eC∆t and C−1(eC∆t − I) are both diagonal matrices and

their diagonal elements are all positive. Thus, the off-diagonal elements of A = (aij)1≤i,j≤p have the same

zero and nonzero pattern as those of M. In this study, we focus on inferring relationships between genes

and do not consider self-regulations. As mentioned above, this can be achieved by identifying the nonzero

off-diagonal elements in matrix A, which can be interpreted as regulatory strengths.

Multiple time-course gene expression datasets for a GRN may be collected under different circumstances.

One dataset is assumed to correspond to one inferred GRN topology, and all inferred GRNs should share the

same network topology as their corresponding datasets are generated from the same underlying gene network.

Our purpose is to reverse engineer the underlying network topology from these multiple datasets. More

specifically, suppose we have m time-course gene expression datasets for a gene network: X̃(1), . . . , X̃(m),

each of which is measured at nk + 1 time points, i.e., X̃(k) ∈ Rp×(nk+1). According to the model (4.4), these
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datasets should satisfy

Y(k) = A(k)X(k) + E(k), k = 1, . . . ,m, (4.5)

where Y(k) = [x̃2(k), . . . , x̃nk+1(k)], the last nk observations; X(k) = [x̃1(k), . . . , x̃nk(k)], the first nk obser-

vations, A(k) ∈ Rp×p, the regulatory matrix for the kth dataset and E(k), the errors or noises. All A(k)’s

are required to have the same structure. i.e., zero and nonzero pattern, but do not need to have the same

value for every nonzero position because gene network is dynamic and regulatory strength may be different

under different circumstances. In this study, we propose to use group LASSO penalty to implement this

requirement and to use Huber loss function to take into account the robustness. Details of the proposed

method are shown in the Method Section.

4.3 Results

To study the effectiveness of the proposed method, the Huber group LASSO is applied to inferring GRNs

from both simulation datasets and real experimental datasets and the results of Huber group LASSO are

compared with those from group LASSO in both area under receiver operating characteristic (AUROC) curve

and area under the precision and recall (AUPR) curve.

4.3.1 Simulation example

A small-GRN consisting of 5 genes is considered in this example. The corresponding true network topology

matrix is

A0 =



+ − + 0 0

− + 0 0 +

0 + + 0 0

+ − 0 + 0

0 0 0 + +


,

where + and − indicate the existence and regulation types of the edge. We randomly generate m stable

regulatory matrices A(k), k = 1, . . . ,m, according to the template A0, such that sign(A(k)) = sign(A0).

Then, m simulated time-course gene expression datasets, each with the number of time points, nk, are

generated from (4.5) with randomly chosen expression values at the first time point. The simulated error

follows a mixed Gaussian distribution: with probability of 0.8, it has the distribution N(0, 1) and with

probability of 0.2, it has the distribution N(0, 102). In this way, the simulated data contain large errors and

outliers. To investigate the performances of our methods in different situations, we vary the values of m

and nk and apply the group LASSO and Huber group LASSO respectively to these generated datasets and

compare the results from these two methods.

Data are generated under three situations (m = 8, nk = 15), (m = 4, nk = 15) and (m = 4, nk = 8). Using

the stability selection procedure that is introduced in the Method Section, network typologies consisting of
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Figure 4.1: ROC plots and precision-recall plots of the Huber group LASSO and group LASSO for
the simulation data under different situations. Left: the ROC plots of the Huber group LASSO and
the group LASSO. Right: precision-recall plots of the Huber group LASSO and the group LASSO.
TPR: true positive ratel. FPR: false positive rate. Huber group LASSO has better performance than
group LASSO. The larger the number of observations or datasets, the better the performances of the
methods.

Table 4.1: The areas under ROC (AUROC) and precision-recall (AUPR) of the Huber group LASSO
and the group LASSO for the simulation datasets under different situations. SE: group LASSO. Huber:
Huber group LASSO.

Situation Method AUROC AUPR
15 observations 8 datasets SE 0.9896 0.9852

Huber 1.0000 1.0000
15 observations 4 datasets SE 0.9219 0.9169

Huber 0.9896 0.9736
8 observations 4 datasets SE 0.6719 0.5749

Huber 0.8385 0.8049

edges with scores or probabilities are inferred by Huber group LASSO and group LASSO. For the first two

situations, we set the number of bootstrap samples as 30 and the moving block length as 10. For the third

situation, we set the number of bootstrap samples as 30 and the moving block length as 5. Varying the

threshold, the ROC plots and precision-recall plots of each method for different situations are obtained and

are illustrated in Figure 4.1. The areas under the ROCs (AUROCs) and precision-recall curves (AUPRs) are

calculated and reported in Table 4.1. From Figure 4.1 and Table 4.1, we can see that for each situation, the

Huber group LASSO outperforms the group LASSO, i.e. the AUROC and AUPR of Huber group LASSO

are larger than those of group LASSO. ROC plots in Figure 4.1 also show that both methods have better

performances than the random guess. For the case of m = 8 and nk = 15, the Huber group LASSO even

achieves the maximum value of AUROC and AUPR. It can also be seen that for each method, the more the

observations or the more the datasets, the larger AUROC and AUPR can be obtained. This is in accord

with the intuition because, in this example, more observations or datasets indicate more information as these

simulated data are generated under quite similar circumstances. All the simulation results have demonstrated
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the effectiveness of our proposed method.

4.3.2 In vivo reverse engineering and modeling assessment (IRMA) data

The data used in this example come from the In vivo Reverse Engineering and Modeling Assessment (IRMA)

experiment [137], where a network composed of five genes (GAL80, GAL4, CBF1, ASH1 and SWI5) was syn-

thesized in yeast Saccharomyces cerevisiae, in which genes regulate each other through a variety of regulatory

interactions. The network is negligibly affected by endogenous genes and it is responsive to small molecules.

Galactose and glucose are respectively used to switch on and off the network. In this study, we use the IRMA

time-course data consisting of four switch off datasets (with the number of time points varying from 19 to

21) and five switch on datasets (with the number of time points varying from 11 to 16).
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Figure 4.2: ROC plots and precision-recall plots of the Huber group LASSO and group LASSO for
the IRMA datasets . Left: the ROC plots of the Huber group LASSO and the group LASSO. Right:
precision-recall plots of the Huber group LASSO and the group LASSO. TPR: true positive ratel.
FPR: false positive rate. Huber group LASSO has better performance than group LASSO.

Table 4.2: The areas under ROC (AUROC) and precision-recall (AUPR) of the Huber group LASSO
and the group LASSO for the IRMA datasets. SE: group LASSO. Huber: Huber group LASSO.

Case Method AUROC AUPR
Switch on datasets SE 0.5208 0.3711

Huber 0.7812 0.6971
Switch off datasets SE 0.7344 0.6341

Huber 0.8125 0.7928
All datasets SE 0.6302 0.5122

Huber 0.8438 0.8049

The Huber group LASSO and the group LASSO are applied to these data in three cases: (1) switch on

datasets, (2) switch off datasets and (3) all datasets, i.e., combining switch on and switch off datasets. In the

stability selection procedure, the number of bootstrap samples is 30 for all cases and the moving block length is

14 for the second case and 8 for the other cases. The ROC plots and precision-recall plots for the Huber group
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Figure 4.3: One network topology from Huber group LASSO using all IRMA datasets. TPR: true
positive ratel. FPR: false positive rate.

LASSO and the group LASSO for each case are illustrated in Figure 4.2 and the corresponding AUROCs and

AUPRs are summarized in Table 4.2. It can be seen that except the group LASSO for the switch on datasets,

the performances of the methods are better than random guesses. The Huber group LASSO outperforms the

group LASSO in both AUROCs and AUPRs. All methods for the switch off datasets perform better than

for the switch on datasets. The group LASSO for all datasets has better performance than for the switch on

datasets but is not as good as for the switch off datasets. The Huber group LASSO for all datasets has the

best performance among all cases. This indicates that combining multiple datasets may lead to either the

best result or a robust result which is better than the worst case. The network topology with false positive

rate (FPR) 0.08 of the Huber group LASSO for all datasets is shown in Figure 4.3 and the corresponding

true positive rate (TPR) is 0.75 with precision 0.86, in which the red edges represent true positives while

black edges are false positives. The results show the effectiveness of our method for the IRMA data.

4.3.3 E. coli SOS network

In this example, we apply the proposed method to identify the real GRN, E. coli SOS DNA repair system as

shown in Figure 4.4. This network is responsible for repairing the DNA after some damage happens. LexA

acts as the master repressor of many genes in the normal states. When a damage occurs, RecA acts as a

sensor and binds to single-stranded DNA to sense the damage and mediates the autocleavage of LexA. The

repressions of the SOS genes are halted by the drop in LexA levels. The SOS genes are activated and start

to repair the damages. When the repair is done, RecA level drops and stops mediating the autocleavage of

LexA. Then, LexA accumulates and represses the SOS genes to make the cell go back to the normal state.

59



DNA damage 

Single Stranded DNA 

RecA RecA*

recA

lexA

umuD
uvrD

uvrA

LexA Cleavage

polB

Figure 4.4: SOS DNA repair pathway in E. coli. The arrow represent activation while the flat arrow
represents inhibition. Genes are in lower cases, proteins in capital letters.

Four time-course gene expression datasets of SOS DNA network are downloaded from the Uri Alon lab 1,

which are produced from four experiments for various UV light intensities (Experiment 1 and 2: 5 Jm−2,

Experiment 3 and 4: 20 Jm−2). Each dataset contain 8 genes and their measurements at 50 time points.

As other literature did, e.g. [1, 121, 122, 123], only 6 genes, i.e., uvrD, lexA, umuD, recA, uvrA and polB

are considered because they are well studied and the gold standard network of these genes are illustrated in

Table 4.3. Details of the gold standard can be found in [1]. In this study, we do not consider the signs and

the self-regulations.

As the conditions for the first two experiments are different for the last two experiments, we consider

applying the method to three cases: (1) datasets of experiment 1 and 2, (2) datasets of experiment 3 and 4

and (3) all experiment datasets. In the stability selection procedure, the number of bootstrap samples is 30

and the moving block length is 25 for all cases. The ROC plots and precision-recall plots for the Huber group

LASSO and the group LASSO for each case are illustrated in Figure 4.5 and the corresponding AUROCs

and AUPRs are illustrated in Table 4.4. From the ROC plots and AUROCs, it can be seen that the Huber

group LASSO performs significantly better than random guess while the group LASSO method is only a

1http://www.weizmann.ac.li/mcb/UriAlon.
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Table 4.3: Gold standard of SOS network, collected from literature [1].

uvrD lexA umuD recA uvrA polB
uvrD 0 -1 -1 1 1 0
lexA 0 -1 -1 1 0 0

umuD 0 -1 -1 1 0 0
recA 0 -1 -1 1 0 0
uvrA 1 -1 -1 1 0 0
polB 0 -1 -1 1 0 0
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Figure 4.5: ROC plots and precision-recall plots of the Huber group LASSO and group LASSO for
E. coli SOS datasets. Left: the ROC plots of the Huber group LASSO and the group LASSO. Right:
precision-recall plots of the Huber group LASSO and the group LASSO. TPR: true positive ratel.
FPR: false positive rate. Huber group LASSO has better performance than group LASSO.

little bit better than random guess. Obviously, the Huber group LASSO outperforms the group LASSO both

in AUROCs and AUPR for all cases. The Huber group LASSO using experiment 3 and 4 datasets has the

best performance. Performance of the Huber group LASSO using all datasets is between that in the first

case and that in the second case. It can be considered as a robust result because of the using of multiple

datasets. The network topology with FPR 0 and TPR 0.59 of the Huber group LASSO for all datasets is

shown in Figure 4.6, in which all inferred edges are correct. These results demonstrate the effectiveness of

our method for the E. coli SOS data.

4.3.4 S. cerevisae cell cycle subnetwork

A cell cycle regulatory subnetwork in S. cerevisae is inferred by the proposed method from 5 experimental

microarray datasets. As in [124], the subnetwork consists of 27 genes including 10 genes for producing

transcription factors (ace2, fkh1, swi4, swi5, mbp1, swi6, mcm1, fkh2, ndd1, yox1) and 17 genes for producing

cyclin and cyclin/CDK regulatory proteins (cln1, cln2, cln3, cdc20, clb1, clb2, clb4, clb5, clb6, sic1, far1,

spo12, apc1, tem1, gin4, swe1 and whi5). The time-course datasets we use include cell-cycle alpha factor

release, cdc15, alpha factor fkh1 fkh2, fkh1,2 alpha factor and Elutriation, which are all downloaded from
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Figure 4.6: One network topology from Huber group LASSO using all E. coli SOS datasets. TPR:
true positive ratel. FPR: false positive rate.

Table 4.4: The areas under ROC (AUROC) and precision-recall (AUPR) of the Huber group LASSO
and the group LASSO for the E. coli SOS datasets. SE: group LASSO. Huber: Huber group LASSO.

Case Method AUROC AUPR
Experiment 1 and 2 SE 0.5588 0.7225

Huber 0.7670 0.8649
Experiment 3 and 4 SE 0.5204 0.6801

Huber 0.7941 0.8981
All experiment data SE 0.5588 0.7225

Huber 0.7760 0.8756

Stanford Microarray Database (SMD). We apply the Huber group LASSO and the group LASSO respectively

to infer the network from the datasets.

Table 4.5: The areas under ROC (AUROC) and precision-recall (AUPR) of the Huber group LASSO
and the group LASSO for the cell cycle datasets. SE: group LASSO. Huber: Huber group LASSO.

Method AUROC AUPR
SE 0.5466 0.1844
Huber 0.5753 0.1941

In order to demonstrate the effectiveness of the proposed method, the inferred results are compared

with the interaction network of the chosen 27 genes, drawn from BioGRID database [126]. The network in

the database has 112 interactions, not including the self-regulations, and we take it as the gold standard

regulatory network. In the stability selection procedure, the number of bootstrap samples is 30 and the

moving block length is 9. The ROC plots and precision-recall plots are illustrated in Figure 4.7 and the

AUROCs and AUPRs are shown in Table 4.5. We can see that both methods have better performances than
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Figure 4.7: ROC plots and precision-recall plots of the Huber group LASSO and group LASSO for
the cell cycle datasets. Left: the ROC plots of the Huber group LASSO and the group LASSO. Right:
precision-recall plots of the Huber group LASSO and the group LASSO. TPR: true positive ratel.
FPR: false positive rate. Huber group LASSO has better performance than group LASSO.

random guess and the Huber group LASSO outperforms the group LASSO. One network from Huber group

LASSO with FPR 0.43 and TPR 0.59 is shown in Figure 4.8, in which red edges are those inferred edges

having been identified in the database and grey edges might be either false positives or novel discovered

regulatory relations. Although the gold standard network extracted from the database may contain false

edges or not be complete, this shows the effectiveness of our method to some extent.

4.4 Conclusions

A novel method, Huber group LASSO, has been proposed to integrate multiple time-course gene expression

datasets to infer the underlying GRN topology. As an extension to the group LASSO, it is robust to large

noises and outliers. An efficient algorithm which combines the ideas of auxiliary function minimization and

block descent is developed to slove the involved optimization problem. The convergence analysis of the

algorithm shows that the sequence generated from the algorithm indeed converges to the optimal solution

of the problem. Instead of selecting a specific tuning parameter corresponding to a determinant network

topology, an adapted stability selection procedure is used to lead to a network consisting of edges with

scores. The applications of the proposed method to the simulation datasets and real experimental datasets

show that Huber group LASSO outperforms the group LASSO in both AUROC and AUPR. It also shows

that the integration of multiple time-course gene expression datasets by the proposed method lead to reliable

inferred network typologies.

The information in the gene expression data is quite limited. One direction of the future work along this

study is to extend the method to be able to integrate other types of data with the gene expression data.
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Figure 4.8: One network topology from Huber group LASSO for cell cycle datasets. TPR: true
positive ratel. FPR: false positive rate.

4.5 Method

4.5.1 Huber group LASSO

Given m datasets, X̃(1), . . . , X̃(m), satisfying model (4.5), to ensure that all A(k)’s have the same structure,

elements of A(k)’s on the same position are grouped together and can be inferred by the group LASSO,

min
A(k)

p∑
i=1

m∑
k=1

wk

nk∑
j=1

(yij(k)−Ai(k)Txj(k))2 + λ

p∑
i=1

p∑
`=1

√
ai`(1)2 + . . .+ ai`(m)2, (4.6)

where Ai(k)T is the ith row of the matrix A(k) and xj(k) is the jth column of the matrix X(k). wk is the

weight for the kth dataset, which can be assigned by experience. In this study, we choose wk = nk/
∑
nk i.e.,

the more observations the dataset has, the higher weight it is assigned with. The penalty term in (4.6) takes

advantage of the sparse nature of GRNs and has the effect making the grouped parameters to be estimated

either all zeros or all non-zeros [133], i.e., ai`(k)’s, k = 1, . . . ,m, become either all zeros or all non-zeros.
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Figure 4.9: Squared error and Huber loss functions. For small error, θ, squared error loss and Huber
loss are the same. For large error, squared error penalizes quadratically while Huber loss penalizes
linearly.

Therefore, a consistent network topology can be obtained from the group LASSO method. λ is a tuning

parameter which controls the degree of sparseness of the inferred network. The larger the value of λ, the

more grouped parameters become zeros.

To introduce robustness, we consider using the Huber loss function instead of the squared error loss

function and propose the following Huber group LASSO method

min
A(k)

p∑
i=1

m∑
k=1

wk

nk∑
j=1

Hδ(yij(k)−Ai(k)Txj(k)) + λ

p∑
i=1

p∑
`=1

√
ai`(1)2 + . . .+ ai`(m)2, (4.7)

where the Huber loss function is defined as

Hδ(θ) =

 θ2 if |θ| ≤ δ

2δ|θ| − δ2 otherwise.
(4.8)

The squared error and Huber loss function are illustrated in Figure 4.9. It can be seen that for small errors,

these two loss functions are exactly the same while for large errors, Huber loss which increases linearly is less

than the squared error loss which increases quadratically. Because Huber loss penalizes much less than the

squared error loss for large errors, the Huber group LASSO is more robust than group LASSO when there

exists large noise or outliers in the data. It is also known that the Huber loss is nearly as efficient as squared

error loss for Gaussian errors [138].

For convenience, we define some notations and rewrite the problems (4.6) and (4.7) in more compact

forms. Let Yi = [Yi(1)T , . . . ,Yi(m)T ]T , the vector stacking observations of the ith target gene across all

datasets, where Yi(k)T is the ith row of Y(k). Let bi` = [ai`(1), . . . , ai`(m)]T , the vector containing the

grouped parameters. Denote by bi = [bTi1, . . . ,b
T
ip]
T the vector containing all parameters related to the
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regulation of the ith target gene. According to the orders of the parameters in bi, re-arrange the rows of

X(k) and piece them together to have X = [XT
1 , . . . ,X

T
p ]T , where Xi = diag(Xi(1)T , . . . ,Xi(m)T ) with

Xi(k)T being the ith row of X(k). Then (4.7) can be rewritten as

p∑
i=1

n∑
j=1

ωjHδ(yij − xTj bi) + λ

p∑
i=1

p∑
`=1

‖bi`‖2, (4.9)

where xj is the jth column of X, yij is the jth element of Yi, n =
∑m
k=1 nk and ωi = w1I(i ≤ n1) +∑m

k=2 wkI(
∑k−1
l=1 nl < i ≤

∑k
l=1 nl). (4.6) can be rewritten similarly.

4.5.2 Optimization algorithm

The minimization of problem (4.9) is not easy as the penalty term is not differentiable at zero and the Huber

loss does not have the second order derivatives at the transition points, ±δ. Observed that fixing i, the

problem (4.9) can be decomposed into p sub-optimization problems. For each, we get bi by minimizing

J(b) =

n∑
j=1

ωjHδ(yj − xTj b) + λ

p∑
`=1

‖b`‖2, (4.10)

where for notational convenience, we omit the subscript i here and b` is a block of parameters of b, i.e.

b = [bT1 , . . . ,b
T
p ]T .

To optimize (4.10), an iterative method is developed by constructing an auxiliary function, the optimiza-

tion of which keeps J(b) decreasing. As in [135], given any current estimate b(k), a function Q(b|b(k)) is an

auxiliary function for J(b) if conditions

J(b(k)) = Q(b(k)|b(k)) and J(b) ≤ Q(b|b(k)) for all b, (4.11)

are satisfied. In this study, we construct the auxiliary function as

Q(b|b(k)) =

n∑
j=1

ωjHδ(yj−xTj b(k))−
n∑
j=1

ωjH
′
δ(yj−xTj b(k))xTj (b−b(k))+2γ‖b−b(k)‖22+λ

p∑
`=1

‖b`‖2, (4.12)

where γ is the largest eigenvalue of
∑n
j=1 ωjxjx

T
j . It can be easily shown that this auxiliary function satisfies

(4.11).

Considering the block structure of b, we apply a block-wise descent strategy [136], i.e., cyclically optimize

one block of parameters, bj , at a time. Denote by b(k)(`) = [b
(k+1)
1

T
, . . . ,b

(k+1)
`

T
,b

(k)
`+1

T
, . . . ,b

(k)
p

T
]T the

vector after updating the `th block. Given b(k)(`− 1), update it to b(k)(`) by computing
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b
(k+1)
` = arg min

b`

Q

(
[b

(k+1)
1

T
, . . . ,b

(k+1)
`−1

T
,bT` ,b

(k)
`+1

T
, . . . ,b(k)

p

T
]T |b(k)(`− 1)

)
=

(
1

4γ
− λ

4γ‖
∑n
j=1 ωjH

′
δ(yj − xTj b(k)(`− 1))xj,` + 4γb

(k)
` ‖2

)
+

×

 n∑
j=1

ωjH
′
δ(yj − xTj b(k)(`− 1))xj,` + 4γb

(k)
`

 .

(4.13)

where xj,` is the block of elements in xj corresponding to b` and (·)+ = max(·, 0). We repeat to update every

block using (4.13) until it converges. For a specific value of λ, the whole procedure is described as follows:

1. Initialize b(0). Set iteration number k = 0.

2. Cycle through (4.13) one at a time to update the `th block, ` = 1, . . . , p

3. If {b(k)} converges to b∗, go to the next step. Otherwise, set k := k + 1 and go to Step 2.

4. Return the solution b∗.

Note that the algorithm can be adapted to solve (4.6) with quite similar derivations. In the following

section, we show that the sequence {b(k)} generated from the algorithm guarantees the objective function

J(b) keep decreasing. We also show that the limit point of the sequence generated is indeed the minimum

point of J(b).

4.5.3 Convergence analysis

The convergence of the optimization algorithm for the minimization of (4.10) is analyzed in the way similar

to [139]. We first show the descent property of the algorithm.

Lemma 1. The sequence {b(k)} generated from the optimization algorithm keeps the objective function J(b)

decreasing, i.e., J(b(k)) ≥ J(b(k+1)).

Proof. By (4.11) and (4.13), we have

J(b(k)) = Q(b(k)|b(k)) ≥ Q(b(k)(1)|b(k))

≥ Q(b(k)(2)|b(k)(1)) ≥ · · · ≥ Q(b(k)(p)|b(k)(p− 1)) ≥ J(b(k)(p))

= J(b(k+1)).

Next, we show that if the generated sequence satisfies some conditions, it converges to the optimal solution.

Lemma 2. Assume the data (y,X) lies on a compact set and the following conditions are satisfied:
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1. The sequence {b(k)} is bounded.

2. For every convergent subsequence {b(nk)} ⊂ {b(k)}, the successive differences converge to zeros, b(nk)−

b(nk−1) → 0.

Then, every limit point b∞ of the sequence {b(k)} is a minimum for the function J(b), i.e., for any δ =

(δT1 , . . . , δ
T
p )T ∈ Rmp,

Proof. For any b = (bT1 , . . . ,b
T
p )T ∈ Rmp and δ(j) = (0T , . . . , δTj , . . . ,0

T )T ∈ Rmp

lim inf
α↓0+

{
J(b + αδ(j))− J(b)

α

}
= ∇jf(b)T δj + lim inf

α↓0+

{
λ(‖bj + αδj‖2 − ‖bj‖2)

α

}
,

where f(b) =
∑n
i=1 ωiHδ(yi − xTi b) and ∇j represents the partial derivatives with respect to the jth block

of parameters. Denote the second term by ∂P (bj ; δj) and it has

∂P (bj ; δj) =

 λ
bTj δj
‖bj‖2 if bj 6= 0,

λ‖δj‖2 otherwise.
(4.14)

We assume the subsequence {b(nk)} converges to b∞ = (b∞1
T , . . . ,b∞p

T )T ∈ Rmp. From condition 2. and

(4.14), we have

b(nk−1)(j) = (b
(nk)
1

T
, . . . ,b

(nk)
j

T
,b

(nk−1)
j+1

T
, . . . ,b(nk−1)

p

T
)T → b∞, as k →∞,

and

if b∞j 6= 0, ∂P (b
(nk)
j ; δj)→ ∂P (b∞j ; δj); if b∞j = 0, ∂P (b∞j ; δj) ≥ lim inf

k→∞
∂P (b

(nk)
j ; δj), (4.15)

since bTj δj ≤ ‖bj‖2‖δj‖2.

As b
(nk)
j minimizes Q((b

(nk)
1

T
, . . . ,b

(nk)
j−1

T
,bTj ,b

(nk−1)
j+1

T
, . . . ,b

(nk−1)
p

T
)T |b(nk)(j− 1)) with respect to the

jth block of parameters, using (4.14), we have

∇jq(b(nk)(j)|b(nk)(j − 1))T δj + ∂P (b
(nk)
j ; δj) ≥ 0, for all k, (4.16)

with

q(b(nk)(j)|b(nk)(j − 1)) =

n∑
i=1

ωiHδ(yi − xTi b(nk)(j − 1))

−
n∑
i=1

ωiH
′
δ(yi − xTi b(nk)(j − 1))xTi (b(nk)(j)− b(nk)(j − 1))

+ 2γ‖b(nk)(j)− b(nk)(j − 1)‖22
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Due to condition 2.,

∇jq(b(nk)(j)|b(nk)(j − 1))→ ∇jf(b∞) as k →∞. (4.17)

Therefore, (4.15), (4.16) and (4.17) yield

∇jf(b∞)T δj + ∂P (b∞; δj) ≥ lim inf
k→∞

{
∇jq(b(nk)(j)|b(nk)(j − 1))T δj + ∂P (b

(nk)
j ; δj)

}
≥ 0, (4.18)

for any 1 ≤ j ≤ p.

For δ = (δT1 , . . . , δ
T
p )T ∈ Rmp, due to the differentiability of f(b),

lim inf
α↓0+

{
J(b∞ + αδ)− J(b∞)

α

}
=

p∑
j=1

∇jf(b∞)T δj +

p∑
j=1

lim inf
α↓0+

{
λ(‖b∞j + αδj‖2 − ‖b∞j ‖2)

α

}

=

p∑
j=1

{
∇jf(b∞)T δj + ∂P (b∞; δj)

}
≥ 0.

Finally, we show that the sequence generated from the proposed algorithm satisfies these two conditions.

Theorem 4.1. Assuming the data (y,X) lies on a compact set and no column of X is identically 0, the

sequence {b(k)} generated from the algorithm converges to the minimum point of the objective function J(b).

Proof. We only need to show that the generated sequence meets the conditions in Lemma 2.

For the sake of notational convenience, for fixed j and (bT1 , . . . ,b
T
j−1,b

T
j+1, . . . ,b

T
p )T , define

χ(·) : u 7→ J((bT1 , . . . ,b
T
j−1,u

T ,bTj+1, . . . ,b
T
p )T ).

Let b(u) be the vector containing u as its jth block of parameters with other blocks being the fixed values.

Assume u+δ and u represent the values of the jth block of parameters before and after the block update,

respectively. Hence, as defined in (4.12), u is obtained by minimizing the following function with respect to

the jth block in the algorithm:

Q(b(u)|b(u + δ))

=f(b(u + δ)) +∇jf(b(u + δ))T (u− (u + δ))

+ 2γ‖u− (u + δ)‖22 + λ‖u‖2 + λ
∑
` 6=j

‖b`‖2,

(4.19)

where f(b) =
∑n
i=1 ωiHδ(yi − xTi b) and ∇jf(b) = −

∑n
i=1 ωiH

′
δ(yi − xTi b)xi,j . Thus, u should satisfy

∇jf(b(u + δ))− 4γδ + λs = 0, (4.20)
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where s = u/‖u‖2 if u 6= 0; ‖s‖2 ≤ 1 if u = 0. Then, we have

χ(u + δ)− χ(u)

=f(b(u + δ))− f(b(u)) + λ(‖u + δ‖2 − ‖u‖2)

=∇jf(b(u + τδ))T δ −∇jf(b(u + δ))T δ + [∇jf(b(u + δ))T δ − 4γδT δ + λsT δ]

+ 4γδT δ + λ(‖u + δ‖2 − ‖u‖2 − sT δ)

=−

[
n∑
i=1

ωiH
′
δ(yi − xTi b(u + τδ))xTi,jδ −

n∑
i=1

ωiH
′
δ(yi − xTi b(u + δ))xTi,jδ

]
+ 4γδT δ + λ(‖u + δ‖2 − ‖u‖2 − sT δ)

≥− 2γ(1− τ)‖δ‖22 + 4γ‖δ‖22 ≥ 2γ‖δ‖22.

(4.21)

The second and third equalities are obtained using mean value theorem with τ ∈ (0, 1) and (4.20). For the

first inequality, the following property of the Huber loss function and the property of subgradient are used.

(H ′δ(θ1)−H ′δ(θ2))(θ1 − θ2) ≤ 2(θ1 − θ2)2.

The result from (4.21) gives that

J(b(k)(j − 1))− J(b(k)(j)) ≥ 2γ‖b(k)
j − b

(k+1)
j ‖22 = 2γ‖b(k)(j − 1)− b(k)(j)‖22, (4.22)

where b(k)(j) = [b
(k+1)
1

T
, . . . ,b

(k+1)
j

T
,b

(k)
j+1

T
, . . . ,b

(k)
p

T
]T .

Using (4.22) repeatedly across every block, for any k, we have

J(b(k))− J(b(k+1)) ≥ 2γ‖b(k) − b(k+1)‖22. (4.23)

Note that by Lemma 1, {J(b(k))} converges as it keeps decreasing and is bounded from below. The conver-

gence of {J(b(k))} yield the convergence of {b(k)}. Hence, conditions of Lemma 2 hold which imply that the

limit of {b(k)} is the minimum point of J(b).

4.5.4 Implementation

The tuning parameter λ controls the sparseness of the resulted network. A network solution path can be

obtained by computing networks on a grid of λ values from λmax = maxi,`

∥∥∥∑n
j=1 ωjH

′
δ(yij)xj,`

∥∥∥
2
, which is

the smallest value that gives the empty network, to a small value, e.g. λmin = 0.01λmax. In our previous work

[128], BIC criterion is used to pick a specific λ value which corresponds to a determinant network topology.

A method called “stability selection” recently proposed by Meinshausen and Buhlmann [115] finds a network

with probabilities for edges. Stability selection performs the network inference method, e.g. group LASSO,

many times, resampling the data in each run and computing the frequencies with which each edge is selected
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across these runs. It has been used with the linear regression method to infer GRNs from steady-state

gene expression data in Haury et al. [100] and has shown prospective effectiveness. In this study, we adapt

the stability selection method to finding GRN topology from multiple time-course gene expression datasets.

Given a family of m time-course gene expression datasets X̃(k) ∈ Rp×nk , k = 1, . . . ,m, for a specific λ ∈ Λ,

the stability selection procedure is as follows

1. Use moving block bootstrap to draw N bootstrap samples for every dataset to form N bootstrap

families of multiple time-course datasets, i.e. {X̃(k)∗(b)}mk=1, b = 1, . . . , N .

2. Use the proposed Huber group LASSO to infer {A(k)
∗(b)
λ }mk=1 from the bth bootstrap family of datasets.

Denote by A
∗(b)
λ the network topology shared by {A(k)

∗(b)
λ }mk=1.

3. Compute the frequencies for each edge (i, j), i.e., from the gene j to gene i, in the network

Πλ(i, j) =
]{b : A

∗(b)
λ (i, j) 6= 0}
N

, (4.24)

where A
∗(b)
λ (i, j) is the (i, j)’s entry of A

∗(b)
λ and ]{·} is the number of elements in that set.

For a set of λ ∈ Λ, the probability of each edge in the inferred network is

Π(i, j) = max
λ∈Λ

Πλ(i, j) (4.25)

The final network topology can be obtained by setting a threshold, edges with probabilities or scores less

than which are considered nonexistent. This study only focus on giving a list of edges with scores. The

selection of threshold is not discussed here. The stability selection procedure can also be applied with the

group LASSO method (4.6).

Since the data used are time series data, the moving block bootstrap method is employed in the first

step to draw bootstrap samples from each dataset. For a dataset with n observations, in the moving block

bootstrap with block length l, the data is split into n − l + 1 blocks: block j consists of observations j to

j + l− 1, j = 1, . . . , n− l+ 1. dn/be blocks are randomly drawn from n− l+ 1 blocks with replacement and

are aligned in the order they are picked to form a bootstrap sample.

Another tuning parameter δ controls the degree of robustness. Generally, it picks δ = 1.345σ̂ where σ̂ is

the estimated standard deviation of the error and σ̂ = MAD/0.6745, where MAD is the median absolute

deviation of the residuals. In this study, we use the least absolute deviations (LAD) regression to obtain the

residuals. To avoid the overfitting of LAD which leads to a very small δ, we choose by δ = max(1.345σ̂, 1).
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Chapter 5

Alternating Weighted Least Squares Parameter Es-

timation for Biological S-Systems

Published as: L.Z. Liu, F.X. Wu, and W.J. Zhang, “Alternating weighted least squares parameter esti-

mation for biological s-systems,” in Systems Biology (ISB), 2012 IEEE 6th International Conference on, pp.

6–11, 2012 [140].

In Chapters 2 and 3, we infer the GRNs based on linear models. Although owning to the simplicity

of linear models, efficient algorithms often exist and they can also be applied to large networks, the real

regulatory relationships between genes are in essence nonlinear. Linear models are only approximations to

nonlinear ones and therefore can only reveal the biological system to some extent.

From this chapter on, we focus on the nonlinear GRN models, specifically, S-systems which is a set of

nonlinear ODEs. As the nonlinarity and complexity of the S-system, the GRN inference from time-course

gene expression data becomes extremely difficult. We first consider the parameter estimation of the S-system

with the known system structure, as the parameter estimation is usually very important for the structure

identification.

In this chapter, a novel method, alternating weighted least squares (AWLS), is developed to estimate

the parameters in S-systems. Compared with the existing method, alternating regression (AR) [141], whose

objective function is not clear, AWLS is derived from an clear objective function and it aims to decrease the

objective function in each iteration. Simulation results show that AWLS outperforms the AR significantly.

This chapter partially fulfills Objective 3 of this thesis.

Abstract

The S-system, which is a set of nonlinear ordinary differential equations and derived from the generalized

mass action law, is a consistent model to describe various biological systems. Parameters in S-systems contain

important biological information and yet can not be obtained directly from experiments. Therefore, the

parameter estimation methods are a choice to estimate parameters in S-systems. However, the parameter

estimation for this model turns out to be a complex nonlinear optimization problem. A novel method,

alternating weighted least squares (AWLS), is proposed in this paper to estimate the parameters in S-systems.

The fast deterministic AWLS method takes advantage of the special structure of the S-system model and
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reduces solving the nonlinear optimization problem into alternately solving weighed least squares problems

which have analytical solutions. The effectiveness of AWLS is demonstrated by the simulation studies and

the results show that the AWLS outperforms the existing alternating regression method.

5.1 Introduction

Biological systems, such as metabolic pathways and genetic regulatory networks, consist of many components

and the interactions between them. One task of systems biology is to reveal the interactions and the biological

functions those interactions may result in [142]. Instead of focusing on individual components, systems biology

applies system engineering methods and principles to study all components and their interactions as parts of

a biological system. Such a systematic view provides an insight into the control and optimization of parts of

the system while considering the effects those may have on the whole system. It may lead to the discovery

of new properties of a biological system, which helps understand the mechanisms of biological systems, and

valuable clues and new ideas in practical areas such as disease treatment and drug design [20].

Many mathematical models have been proposed to describe the molecular biological systems based on

biochemical principles. Most models are nonlinear in both parameters and system state variables [142, 60].

Estimation of parameters in those models are thus formulated as nonlinear optimization problems which

generally have no analytical solutions. One popular model is the S-system, which is nonlinear and derived

from the generalized mass action law [60].

An S-system with N components is a type of power-law formalism and typically a group of nonlinear

ordinary differential equations in the following format:

Ẋi = αi

N∏
j=1

X
gij
j − βi

N∏
j=1

X
hij
j , i = 1, . . . , N, (5.1)

where Xi represents the concentration of metabolite i, whose changes are the difference between production

and degradation, αi and βi are non-negative rate constants, and gij and hij are real-valued kinetic orders.

It is an effective mathematical framework to characterize and analyze the molecular biological systems and

their system dynamics. The representation of this model maps the dynamical and topological information of

the system onto its parameters.

Parameter estimation and structure identification of S-system models are extremely difficult and challeng-

ing tasks, where the parameter estimation usually occurs after or in the process of structure identification.

As the estimation of parameters in S-systems is a nonlinear problem, in principle, all algorithms for nonlinear

optimization problems can be used, for example, Gauss-Newton iteration method, and its variants such as

Box-Kanemasu interpolation method, Levenberg damped least squares method, and Marquardt’s method

[143]. However, these methods are initial-sensitive and most of them need to calculate the inverse of the

Hessian which costs computation effort.
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Several numerical methods have been proposed in the literature to estimate the parameters in S-systems,

most of which are based on heuristics. For example, Kikuchi et al. [61] employed a genetic algorithm to

infer the S-systems. Gonzalez et al. [144] showed the effectiveness of the simulated annealing technique. Voit

and Almeida [59] developed an ANN-based method to identify the structure and estimate the parameters of

S-systems. Ho et al. [63] and Wang et al. [145] respectively proposed an intelligent two-stage evolutionary

algorithm and an unified approach to estimate the parameters in S-systems. Those methods are computa-

tionally expensive and do not sufficiently take the special model structure of the S-system into account.

Wu and Mu [146] introduced a separable parameter estimation method which takes advantage of the

structure of the S-system model, i.e., one group of parameters is linear in model while the other group is

nonlinear. This method has been extended to the case when system topology is unknown with a genetic

algorithm by Liu et al. [64, 147]. One observation of the S-system is that if the parameters in one term on

the right hand side of (5.1) is known, this term can be moved to the left side and a linear model is obtained

by taking logarithm of both sides. Based on this observation, an alternating regression (AR) method was

proposed by Chou et al. [141], which reduces the nonlinear estimation problem into the iterative procedures

of linear regression. However, the objective of the iterations is vague and the necessary and sufficient criteria

for convergence are not known. Inspired by the idea of AR, Vilela et al. [65] proposed a novel method based

on eigenvector optimization of a matrix formed from multiple regression equations of the linearized decoupled

S-systems, which, however, involves an nonlinear optimization problem.

In this paper, an alternating weighted least squares (AWLS) method is proposed. AWLS is a fast de-

terministic method and aims at reducing the nonlinear optimization problem into a series of easily solved

problems, the idea of which is similar as AR’s [141]. AWLS starts from the nonlinear least squares objective

which can be approximated by a quadratic function with the assumption that part of the parameters are

known. The approximated function turns out to be a weighted least squares problem which has an analytical

solution. With the solution of the approximated problem, the other part of the parameters can also be

estimated or further updated by forming another weighted least squares problem. AWLS takes advantage of

the special form of S-systems and has a more clear objective than AR.

Briefly, the paper is organized as follows. In Section 5.2, the AWLS method is introduced and derived.

In Section 5.3, the AWLS approach is applied to estimate the parameters of S-systems. The performance

of AWLS is also compared with that of AR. Finally, in Section 5.4, conclusions are drawn and some future

works along this research are pointed out.

5.2 Alternating Weighted Least Squares

Consider a biological system with N components described by an S-system in (5.1). For each component Xi,

time series data consisting of n time points, xi1, xi2, . . . , xin, are assumed to be observed. The purpose is to

estimate the parameters in (5.1) from these observed data. We substitute the derivative of Xi at each time
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t with the estimated slope, Sit, so that the original coupled differential equations are decoupled into n ×N

uncoupled algebraic equations [65, 59]:

Sit = αi

N∏
j=1

x
gij
jt − βi

N∏
j=1

x
hij
jt , (5.2)

where i = 1, . . . , N and t = 1, . . . , n. The estimation of slopes is a crucial step and may have effects on the

final results. To increase the accuracy, the five-point numerical derivative method is employed in this study,

i.e.,

Sit =
−xi,t+2 + 8xi,t+1 − 8xi,t−1 + xi,t−2

12∆t
, (5.3)

where ∆t is the length of sampling step.

Generally, the sum of least squares is used as a criterion to determine the values of parameters, i.e.,

parameters in each equation i of (5.1) are estimated by minimizing the following objective:

Ji(αi, βi, gi, hi) =

n∑
t=1

Sit − αi N∏
j=1

x
gij
jt + βi

N∏
j=1

x
hij
jt

2

, (5.4)

where gi = [gi1, . . . , giN ]T and hi = [hi1, . . . , hiN ]T . Suppose values of βi and hi are given and let

Dit = Sit + βi

N∏
j=1

x
hij
jt and Pit = αi

N∏
j=1

x
gij
jt .

Then, we have

Ji(αi, βi, gi, hi) =

n∑
t=1

(Dit − Pit)2

=

n∑
t=1

[
elogDit

(
1− elogPit−logDit

)]2
=

n∑
t=1

[Dit (logDit − logPit + o(logDit − logPit))]
2

=

n∑
t=1

D2
it (logDit − logPit)

2
+ o

(
n∑
t=1

D2
it (logDit − logPit)

2

)
.

From (5.2), Dit and Pit should be close and in the third equality above, the first order Taylor approximation

is applied. The last equality shows that Ji(αi, βi, gi, hi) can be minimized if the first term is small enough.

Hence, the last term can be omitted.

This study assumes the structure of the system, i.e., the positions of nonzero kinetic orders, is available.

From this information, some entries in gi and hi are known to be zeros. Let g̃i = [gij1 , . . . , gijp ]T and

h̃i = [hi`1 , . . . , hi`q ]
T denote the vectors of nonzero kinetic orders in gi and hi, respectively. αi and g̃i can be
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estimated by solving the optimization problem

minimize
αi,g̃i

n∑
t=1

Sit + βi

N∏
j=1

x
hij
jt

2 log

Sit + βi

N∏
j=1

x
hij
jt

 − logαi −
p∑
k=1

gijk log xjkt

]2

, (5.5)

which is a weighted least squares problem. Let

W(βi, hi) = diag(D2
i1, . . . , D

2
in), Y(βi, hi) =

[
logDi1, . . . , logDin

]T
, Γi = [ζi, g̃

T
i ]T , where ζi = logαi,

and

Xg,i =


1 log xj11 . . . log xjp1

1 log xj12 . . . log xjp2

...
...

...
...

1 log xj1n . . . log xjpn

 .

Then, (5.5) becomes

minimize
Γi

‖W(βi, hi)
1
2 [Y(βi, hi)−Xg,iΓi]‖22, (5.6)

and the analytical solution is

Γ̂i = (XT
g,iW(βi, hi)Xg,i)

−1XT
g,iW(βi, hi)Y(βi, hi), α̂i = exp(ζ̂i). (5.7)

Similarly, when αi and gi are given, βi and h̃i can be estimated from

minimize
Θi

‖W(αi, gi)
1
2 [Y(αi, gi)−Xh,iΘi]‖22, (5.8)

where Eit = αi
∏N
j=1 x

gij
jt − Sit,

Xh,i =


1 log x`11 . . . log x`q1

1 log x`12 . . . log x`q2
...

...
...

...

1 log x`1n . . . log x`qn

 ,

and

W(αi, gi) = diag(E2
i1, . . . , E

2
in), Y(αi, gi) = [logEi1, . . . , logEin]T , Θi = [ηi, h̃

T
i ]T , where ηi = log βi.

The corresponding analytical solution is

Θ̂i = (XT
h,iW(αi, gi)Xh,i)

−1XT
h,iW(αi, gi)Y(αi, gi), β̂i = exp(η̂i). (5.9)
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Based on the derivations above, we can see that when part of the parameters in an S-system are known,

the rest can be estimated by solving a weighted least squares problem. Thus, given the initial values of one

part of the parameters, all parameters in the S-system can be iteratively estimated by alternately solving

weighted least squares problems. The objective value Ji is reduced in each iteration and the estimated

parameters are obtained when the iterations converge. The proposed AWLS method for each equation i

is:

Require: The structure of the system and initial values of βi and h̃i,

1: repeat

2: Estimate αi and g̃i by (5.7) with known βi and h̃i,

3: Estimate βi and h̃i by (5.9) with known αi and g̃i,

4: until a stopping criteria is met.

In this paper, the stopping criteria is
‖γ(k) − γ(k−1)‖2
‖γ(k)‖2

< θ, (5.10)

or the number of iterations is greater than 10,000, i.e., not convergent. Here, θ is a preset threshold and

γ(k) = [α̂
(k)
i , β̂

(k)
i , ĝ

(k)T
i , ĥ

(k)T
i ]T , i.e., the parameter estimations in the kth iteration.

5.3 Simulation and Comparison

5.3.1 Parameter Estimation

4-dimensional model

Consider the following S-system of 4 metabolites [60]:

Ẋ1 = 12X−0.8
3 − 10X0.5

1 ,

Ẋ2 = 8X0.5
1 − 3X0.75

2 ,

Ẋ3 = 3X0.75
2 − 5X0.5

3 X0.2
4 ,

Ẋ4 = 2X0.5
1 − 6X0.8

4 .

(5.11)

The noise-free time series data are obtained by numerically solving the S-system with an initial condition

X(0) = [x10, x20, x30, x40]T . The data are sampled at time points in the interval [0, 5] with ∆t = 0.1.

In this example, the data are generated with X(0) = [2.7255, 1.8601, 4.7343, 3.7162]T whose elements are

randomly chosen in [0, 5]. The time series data are shown in Figure 5.1, from which we can see all states

of Xi’s are eventually in the steady states. The AWLS method is applied to estimate the parameters from

these data with the initial values for βi and hi chosen by

(βinit
i ;hinit

i ) = (βtrue
i ;htrue

i )(1 + σε), (5.12)
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Figure 5.1: Time series data of the 4-dimensional model.
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Figure 5.2: Objective values over various numbers of iterations in AWLS.

where ε is a standard Gaussian random variable and σ is a positive constant. Since (5.4) is a nonlinear

optimization problem, to avoid falling into the local optimum, we apply AWLS 100 times initiated with

different values and choose the best one as the final solution. Here, we set σ = 90%, the objective values J
(k)
i

for each equation i in each iteration k are illustrated in Figure 5.2. It can be seen that the objective values

decrease with the increase of iteration steps. Table 5.1 shows the estimated results, from which we can see

that the estimated values are quite close to their true values and the optimal objective values are all very

small.
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Table 5.1: Estimated results of the 4-dimensional model.

Parameter True Value Estimation Relative Error Objective Value

α1 12 12.0922 0.77% 1.4754× 10−4

β1 10 10.1040 1.04%

g13 -0.8 -0.7893 1.34%

h11 0.5 0.4936 1.29%

α2 8 7.9851 0.19% 2.0490× 10−4

β2 3 2.9830 0.57%

g21 0.5 0.5025 0.50%

h22 0.75 0.7522 0.29%

α3 3 3.0205 0.68% 1.8454× 10−4

β3 5 5.0550 1.10%

g32 0.75 0.7531 0.41%

h33 0.5 0.4963 0.73%

h34 0.2 0.1996 0.22%

α4 2 2.0081 0.41% 1.0699× 10−4

β4 6 5.9883 0.19%

g41 0.5 0.5157 3.13%

h44 0.8 0.8045 0.57%

5-dimensional model

A benchmark 5-dimensional model [1, 65] is considered,

Ẋ1 = 5X3X
−1
5 − 10X2

1 ,

Ẋ2 = 10X2
1 − 10X2

2 ,

Ẋ3 = 10X−1
2 − 10X−1

2 X2
3 ,

Ẋ4 = 8X2
3X
−1
5 − 10X2

4 ,

Ẋ5 = 10X2
4 − 10X2

5 .

(5.13)

The data used in this example are generated with the initial condition X(0) = [0.1, 0.7, 0.7, 0.16, 0.18]T , the

same in Yang et al. [1]. Figure 5.3 shows the time series data that are sampled in the interval [0, 0.5] with

∆t = 0.01. Note that the states of all variables quickly converge to the steady state. Hence, only limited

information on the dynamics of the system is contained in the data. We run AWLS 100 times with different

initial values obtained from (5.12) with σ = 80% and select the best one as the solution. The results in

Table 5.2 show the effectiveness of AWLS: estimated values of parameters are close to the true values and

the optimal objective values are all very small.
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Figure 5.3: Time series data of the 5-dimensional model.
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Figure 5.4: Time series data of the 6-dimensional model.

6-dimensional model

In this example, the AWLS method is applied to estimate the parameters in the following 6-dimensional

S-system [1]:

Ẋ1 = 10X−2
3 X5 − 5X0.5

1 ,

Ẋ2 = 5X0.5
1 − 10X0.5

2 ,

Ẋ3 = 2X0.5
2 − 1.25X0.5

3 ,

Ẋ4 = 8X0.5
2 − 5X0.5

4 ,

Ẋ5 = 0.5−X6,

Ẋ6 = X5 − 0.5.

(5.14)
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Table 5.2: Estimated results of the 5-dimensional model.

Parameter True Value Estimation Relative Error Objective Value

α1 5 4.8473 3.05% 6.0840× 10−4

β1 10 9.8529 1.47%

g13 1 1.1337 13.37%

g15 -1 -1.0316 3.16%

h11 2 2.0443 2.21%

α2 10 10.0039 0.04% 8.0113× 10−4

β2 10 9.9626 0.37%

g21 2 2.0049 0.25%

h22 2 1.9898 0.51%

α3 10 9.9699 0.30% 1.5504× 10−4

β3 10 9.9711 0.29%

g32 -1 -0.9686 3.14%

h32 -1 -0.9684 3.16%

h33 2 2.0411 2.05%

α4 8 7.5653 5.43% 1.1× 10−3

β4 10 9.5512 4.49%

g43 2 2.1869 9.35%

g45 -1 -1.0490 4.90%

h44 2 2.0824 4.12%

α5 10 9.9910 0.09% 1.4× 10−3

β5 10 9.9770 0.23%

g54 2 2.0121 0.60%

h55 2 1.9917 0.42%

The noise-free time series data are generated with the initial condition X(0) = [1.1, 0.5, 0.9, 0.75, 0.5, 0.75]T

which matches that in Yang et al. [1]. Figure 5.4 illustrates the time series data which are sampled in the

interval [0, 10] with ∆t = 0.1. Figure 5.4 also shows the periodic oscillating behavior of the data. The initial

values for βi and hi are also chosen by (5.12) with σ = 50%. The solution shown in Table 5.3 is the best one

among 100 runs of AWLS with different initial values. The results in Table 5.3 indicate that the estimated

parameters are close to their true values and the optimal objective values are all very small.

5.3.2 Comparison

The performances of AWLS and AR [141] are compared based on the previous 4-dimensional model (5.11)

in the following procedure: (i) Fix a value of σ and randomly generate an initial condition X(0) in [0, 5]. (ii)

Obtain the noise-free data in the interval [0, 5] with ∆t = 0.1. (iii) Generate 100 initial values of (βi;hi) by

(5.12). (iv) Apply AWLS and AR to each equation i with each initial value, respectively. Therefore, each

method has 100 results for each equation. (v) Remove those results which do not satisfy αi, βi ∈ [0.1, 12]
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Table 5.3: Estimated results of the 6-dimensional model.

Parameter True Value Estimation Relative Error Objective Value

α1 10 10.4440 4.44% 2.0× 10−3

β1 5 5.5333 10.67%

g13 -2 -1.8332 8.43%

g15 1 0.9163 8.37%

h11 0.5 0.4580 8.40%

α2 5 5.3370 6.74% 7.3143× 10−4

β2 10 10.3732 3.73%

g21 0.5 0.4793 4.14%

h22 0.5 0.4794 4.12%

α3 2 2.0485 2.42% 1.8097× 10−4

β3 1.25 1.3000 4.00%

g32 0.5 0.4835 3.29%

h33 0.5 0.4840 3.20%

α4 8 7.9549 0.56% 1.2× 10−3

β4 5 5.0024 0.05%

g42 0.5 0.4934 1.33%

h44 0.5 0.4932 1.35%

α5 0.5 0.4928 1.43% 1.3908× 10−5

β5 1 0.9957 0.43%

h56 1 1.0160 1.60%

α6 1 0.9955 0.45% 1.5696× 10−5

β6 0.5 0.4925 1.51%

g65 1 1.0170 1.70%

or gij , hij ∈ [−2, 3] (cf. [65, 60]) or not converge. Choose the result which has the the minimum objective

value as the best one. (vi) For each method, put the best results of each equation together to form the final

solution of the S-system. We run the aforementioned procedure (i)–(vi) with different X(0)’s and different

σ’s. In this experiment, we have 30 different X(0)’s and for each X(0), σ’s vary from 0 to 1 with step 0.1.

Thus, each method has 30×11 results. We denote the results for the lth data, which are generated by X l(0),

and σ = τ from AWLS and AR by γ
(l,τ)
AWLS and γ

(l,τ)
AR , respectively, where l = 1, . . . , 30 and τ = 0, 0.1, . . . , 1.0.

AWLS and AR are compared from two perspectives: the estimation error (EstErr) and the objective value

(ObjVal).

EstErr(l,τ) =
‖γ(l,τ) − γtrue‖22
‖γtrue‖22

, ObjVal(l,τ) =

N∑
i=1

Ji(γ
(l,τ))

Figure 5.5 shows the mean estimation errors of AWLS and AR with respect to each value of σ, respectively.

Figure 5.6 describes the mean objective values with respect to each value of σ. We can see that both the

mean estimation error and the mean objective value grow with the increase of σ. In addition, both the mean
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Figure 5.5: Comparison of AWLS and AR w.r.t. mean estimation errors.
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Figure 5.6: Comparison of AWLS and AR w.r.t. mean objective values.

estimation error and mean objective value of AWLS are in general less than those of AR, especially for large

σ’s.

To further confirm the conclusion, note that there are totally 330 cases (30 Xk(0)’s and 11 σ’s) and in each

case, the initial values for AWLS and AR are the same. Therefore, the 330 EstErr(l,τ)’s and 330 ObjVal(l,τ)’s

of AWLS can be compared with those of AR, respectively, by paired hypothesis tests. The null hypotheses

for the estimation error and the objective value are:

H0 : EstErr of AWLS ≥ EstErr of AR;

H0 : ObjVal of AWLS ≥ ObjVal of AR.

We perform the paired t-test and paired Wilcoxon signed-rank test for the estimation error and objective
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Table 5.4: Paired t-test (t) and paired Wilcoxon signed-rank test (V ).

t df p-value V p-value

EstErr 3.9859 329 4.143e-05 34151 3.985e-05

ObjVal 5.1832 329 1.907e-07 36958 1.321e-08

value, respectively. The null hypothesis of paired Wilcoxon test is similar as that of paired t-test but on

medians and no normality assumption is required. The hypothesis test results are shown in Table 5.4, in

which the p-values indicate that the estimation error and objective value of AWLS are significantly less than

those of AR. Therefore, AWLS outperforms AR.

5.4 Conclusions

This paper has proposed an AWLS method to estimate the parameters in biological S-systems. AWLS takes

advantage of the special structure of S-systems and is a fast deterministic method with low computational

cost. The superb efficiency comes from the reduction of the complex nonlinear optimization problem into

alternating weighted least squares problems. There is no need to compute the inverse of the Hessian matrix

and only part of the parameters require initial values. The dimension of search space of parameters are hence

reduced. The simulation results show that AWLS can find the values of parameters in S-systems and AWLS

outperform AR, i.e., it has less estimation error and objective value than those of AR.

In this study, the structure of the system is assumed to be known. One direction of the future work is to

extend AWLS with Lasso approach [148, 15] to infer the S-system without knowing the system structure.
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Chapter 6

Estimating Parameters of S-systems by an Auxiliary

Function Guided Coordinate Descent Method

Published as: L.Z. Liu, F.X. Wu, and W.J. Zhang, “Estimating parameters of S-systems by an auxiliary

function guided coordinate descent method,” Systems Science & Control Engineering, vol. 2, no. 1, pp.

125–134, 2014 [149].

In previous chapter, we have developed an AWLS method to estimate the parameters of S-systems from

time-course data. The iteration formula is derived from an objective function by assuming part of the

parameters are known. Although it shows that AWLS outperforms the AR, its convergence cannot be

guaranteed. If the method does not converge, we need rerun the algorithm with another initial values, which

is inefficient in practice.

In this chapter, a novel method, auxiliary function guided coordinate descent (AFGCD), is developed

to estimate the parameters in S-systems from time-course data. The proposed method designs an auxiliary

function, by optimizing which the objective function keep decreasing. We cyclically optimize the auxiliary

function and therefore obtain simple and efficient iteration formulas. This chapter partially fulfills Objective 3

of this thesis.

Abstract

The S-system, a set of nonlinear ordinary differential equations and derived from the generalized mass action

law, is an effective model to describe various biological systems. Parameters in S-systems have significant

biological meanings, yet difficult to be estimated because of the nonlinearity and complexity of the model.

Given time series biological data, its parameter estimation turns out to be a nonlinear optimization prob-

lem. A novel method, auxiliary function guided coordinate descent, is proposed in this paper to solve the

optimization problem by cyclically optimizing every parameter. In each iteration, only one parameter value

is updated and it proves that the objective function keeps nonincreasing during the iterations. The updating

rules in each iteration is simple and efficient. Based on this idea, two algorithms are developed to estimate

the S-systems for two different constraints situations. The performances of algorithms are studied in several

simulation examples. The results demonstrate the effectiveness of the proposed method.
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6.1 Introduction

There are many various molecules and productions in a cell. Some of them can regulate others via some

mechanisms to achieve specific cellular functions, based on which the cells adapt to the changing environments.

These components and their interactions constitute biological systems, such as metabolic pathways and

genetic regulatory networks. One task of systems biology is to reveal the interactions and the biological

functions those interactions may result in [142]. Instead of focusing on individual components, systems

biology applies system engineering methods and principles to studying all components and their interactions

as parts of a biological system. Such a systematic view provides an insight into the control and optimization

of parts of the systems while taking the effects those may have on the whole system into account. It is of

help to the discovery of new properties of biological systems and may provide valuable clues and new ideas

in practical areas such as disease treatment and drug design [20].

One effective way to study the biological system is using mathematical or computational methods. Many

mathematical models have been developed to describe the molecular biological systems based on biochemical

principles. Most of them are nonlinear in both parameters and state variables [142, 60]. Nonlinear optimiza-

tion problems are usually formulated for estimating the parameters in those models. However, analytical

solutions to those problems are hardly available. One of the most popular models is the S-system which is

highly nonlinear and derived from the generalized mass action law [60].

The S-system is an effective mathematical framework to characterize and analyze the molecular biological

systems. An S-system consisting of N components is type of power-law formalism and typically a group of

nonlinear ordinary differential equations,

Ẋi = αi

N∏
j=1

X
gij
j − βi

N∏
j=1

X
hij
j , i = 1, . . . , N, (6.1)

where Xi represents the concentration of molecular species i measured at time t, whose changes are the

difference between production and degradation. αi’s and βi’s are non-negative rate constants, and gij ’s and

hij ’s are real-valued kinetic orders that reflect the interaction intensity of Xj to Xi. If gij > 0, Xj activates

the production of Xi; if gij < 0, Xj inhibits the production of Xi. hij has the same effects but on the

degradation. A zero-valued kinetic order indicates that Xj has no such effect on Xi. The representation of

this model maps the dynamical and topological information of the biological system onto its parameters.

The parameter estimation and structure identification of the S-systems are extremely difficult tasks. The

parameter estimation usually occurs after or in the process of structure identification. As the parameter esti-

mation of the S-systems is essentially a nonlinear problem, in principle, all nonlinear optimization algorithms

can be used, e.g. Gauss-Newton method and its variants, such as Box-Kanemasu interpolation method,

Levenberg damped least squares method, and Marquardt’s method [143]. However, most of these methods

are initial-sensitive and need to calculate the inverse of the Hessian which is computational expensive.

86



Several numerical methods have been proposed to estimate the parameters in S-systems. Most of them

are based on heuristic methods. For example, [61] employ a genetic algorithm to infer the S-systems. The

effectiveness of the simulated annealing is studied in [144]. [59] develop an ANN-based method to identify

and estimate the parameters of S-systems. [63] develop an intelligent two-stage evolutionary algorithm that

combines the genetic algorithm and the simulated annealing. An unified approach has been proposed in [145].

Most of these methods are computational expensive and do not sufficiently take advantage of special model

structure of the S-systems.

Several methods taking the model structure of S-systems into account have been proposed. [146] introduce

a separable parameter estimation method which divides the parameters into two groups: one group is linear

in model while the other nonlinear. This method has been extended with a genetic algorithm to the case

when system topology is unavailable in [64]. One can observe that if parameters in one term on the right

hand side of equation (6.1) is known, moving it to the left and taking logarithm of both sides, a linear model

is obtained. Using this observation, an alternating regression method is proposed by [141], which reduces

the nonlinear optimization into iterative procedures of linear regression. However, the convergence of the

iterations can not be guaranteed. Similarly, an alternating weighted least squares method is proposed by

[140], in which the objective function to be optimized is approximated by a weighted linear regression in each

iteration. However, this approximation may fail in some cases.

This study focus on the parameter estimation of S-systems when system topology is known. A novel

method, auxiliary function guided coordinate descent (AFGCD), is proposed. After decoupling the S-systems

by replacing the derivatives with numerical slopes, the parameter estimation is formulated as a nonlinear

optimization problem. AFGCD iteratively solves this problem and in each iteration only one parameter is

optimized with other parameters fixed. Instead of directly optimizing the objective function, AFGCD takes

advantage of a property of the exponential function and constructs an auxiliary function for each kinetic

order parameter to optimize. It shows that optimizing the auxiliary function makes the objective function

keep nonincreasing. Because the auxiliary function is simple and its optimization has analytical solution, the

parameter updating in each iteration is simple and efficient. Based on this idea, two algorithms are developed

to estimate the parameters in S-systems under two different situations. One algorithm is developed for the

case when the range of each parameter is known and the other algorithm for the case that the only constraint

is the non-negativity of the rate constants.

The remaining of this paper is organized as follows. In Section 6.2, two algorithms are developed based on

the idea of AFGCD and their descent properties are proven. In Section 6.3, the effectiveness of the proposed

algorithms are studied by several simulation examples. Finally, Section 6.4 concludes this study and points

out some future works along this research.
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6.2 Auxiliary Function Guided Coordinate Descent

6.2.1 Problem Statement

Consider a biological system of N molecular species, described by an S-system as equation (6.1), and assume

that for each molecular species Xi, a time series concentration data measured at n equally-spaced time points,

xi1, . . . , xin are obtained. This study assumes that the topology of the system is available, i.e., the zero-values

kinetic orders are known. The purpose is to estimate the parameters of nonzero-valued kinetic orders and

rate constants. We substitute the derivative of Xi at time t with the estimated slope, Sit, so that the original

coupled ordinary differential equations are decoupled into n×N uncoupled algebraic equations [59, 65]:

Sit = αi

N∏
j=1

x
gij
jt − βi

N∏
j=1

x
hij
jt + εit, (6.2)

where i = 1, . . . , N , t = 1, . . . , n and εit’s are errors or noises. The estimation of slopes is a crucial step and

may affect the final results. To increase the accuracy, the five-point numerical derivative method is used in

this study, i.e.,

Sit =
−xi,t+2 + 8xi,t+1 − 8xi,t−1 + xi,t−2

12∆t
(6.3)

where ∆t is the length of the sampling step.

To determine the parameter values, the sum of least squares is usually employed as an objective function

to be minimized, i.e., the parameters of each ODE equation i in (6.1) is obtained by solving

minimize
αi,βi,gi,hi

Ji =
1

2

n∑
t=1

Sit − αi ∏
j∈Gi

x
gij
jt + βi

∏
j∈Hi

x
hij
jt

2

,

subject to αi ≥ δ, βi ≥ δ

(6.4)

where δ is predefined small positive number; Gi and Hi are the sets of indexes of molecular species which

have effects on the production and degradation of molecular species i, respectively; gi = {gij , j ∈ Gi} and

hi = {hij , j ∈ Hi}. The minimization of equation (6.4) is non-trivial, as it is highly nonlinear and contains

a lot of parameters.

6.2.2 Proposed Method

The optimization problem (6.4) has no analytical solutions and therefore, iterative methods are considered. A

coordinate descent strategy is applied in this study, i.e., we cyclically optimize one parameter in one iteration

with other parameters fixed such that the objective function keeps nonincreasing in every iteration. More

specifically, denote by θ(`) = (θ
(`)
1 , . . . , θ

(`)
p ) the parameters of an optimization problem (e.g. for (6.4), θ =

(αi, gi, βi, hi)) at iteration `. After one iteration, the first parameter is updated, θ
(`+)
1 = (θ

(`+1)
1 , θ

(`)
2 , . . . , θ

(`)
p )
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and after k iterations, the first k parameters are updated, θ
(`+)
k = (θ

(`+1)
1 , . . . , θ

(`+1)
k , θ

(`)
k+1, . . . , θ

(`)
p ).

Consider the problem (6.4) and suppose the parameter hik, for some k ∈ Hi, needs to be updated at

the current iteration, one simple way to make sure the objective function keeps nonincreasing is to use the

classical gradient descent method:

h
(`+1)
ik = h

(`)
ik − d`

∂Ji(h
(`)
ik )

∂hik
, (6.5)

where values of other parameters are fixed and d` is the stepsize taken along the negative gradient direction.

Some methods can be used to search and select the stepsize, such as minimization rule and Armijo rule

[150, 151]. However, these methods may either depend on a line search algorithm or introduce an extra

iteration loop.

In this paper, a smart stepsize is derived. The introduced stepsize is computational efficient and the non-

increase of the objective function in each iteration is guaranteed, which is proved in the following subsection.

The algorithm for solving the problem (6.4) is illustrated in Algorithm 1, in which the updates for each

parameter are shown in equations (6.6)–(6.9). To check the convergence, the following stopping criteria is

used
‖θ(`+1) − θ(`)‖2
‖θ(`)‖2

< η,

here η is a preset threshold. In this paper, we set η = 10−5.

In some situations, from experiments, the range of each parameter is known. Then, more constrains can

be added to the problem (6.4) as follows,

minimize
αi,βi,gi,hi

Ji =
1

2

n∑
t=1

Sit − αi ∏
j∈Gi

x
gij
jt + βi

∏
j∈Hi

x
hij
jt

2

,

subject to rmin ≤ αi ≤ rmax, rmin ≤ βi ≤ rmax,

kmin ≤ gij ≤ kmax, j ∈ Gi,

kmin ≤ hij ≤ kmax, j ∈ Hi,

(6.10)

that is, we require the rate constants stay in the range [rmin, rmax] and kinetic orders in the range [kmin, kmax].

Simple adaptations to Algorithm 1 lead to Algorithm 2 for solving the problem (6.10). The update rule

(6.11) and (6.13) are slight modifications to (6.6) and (6.8). They efficiently make the objective function

keep nonincreasing, which is proved in the following subsection.

6.2.3 Descent Property

Similar to [135] and [152], we make use of an auxiliary function to prove the nonincrease of the objective

function in each iteration.
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Algorithm 1 AFGCD for problem (6.4)

1. Assign initial values to θ(0) = (α
(0)
i , g

(0)
i , β

(0)
i , h

(0)
i ) and set ` = 0.

2. Let yt = −Sit − β(`)
i

∏
j∈Hi x

h
(`)
ij

jt , t = 1, . . . , n and cyclically update g
(`)
ik to g

(`+1)
ik for each k ∈ Gi as

follows

g
(`+1)
ik = g

(`)
ik −

1

2τg(σ
(`)
g )

∂Ji(g
(`)
ik )

∂gik
, (6.6)

where

τg(σ
(`)
g ) =

∑
t

at|yt|x
g
(`)
ik

kt (log2 xkt)∆(σ(`)
g | log xkt|) + 2

∑
t

a2
tx

2g
(`)
ik

kt (log2 xkt)∆(2σ(`)
g | log xkt|)

σ(`)
g =

∣∣∣∣∂Ji(g(`)ik )

∂gik

∣∣∣∣∑
t at|yt|x

g
(`)
ik

kt log2 xkt + 2
∑
t a

2
tx

2g
(`)
ik

kt log2 xkt

,

at = α
(`)
i

∏
j∈Gi,j 6=k

x
g
(`+1)I(j<k)+(`)I(j≥k)
ij

jt

and the function ∆(·) is defined in equation (6.18).

3. Compute

α
(`+1)
i = max

{
−
∑
t ytpt∑
t p

2
t

, δ

}
, where pt =

∏
j∈Gi

x
g
(`+1)
ij

jt (6.7)

4. Let yt = Sit − α(`+1)
i

∏
j∈Gi x

g
(`+1)
ij

jt , t = 1, . . . , n and cyclically update h
(`)
ik to h

(`+1)
ik for each k ∈ Hi as

follows

h
(`+1)
ik = h

(`)
ik −

1

2τh(σ
(`)
h )

∂Ji(h
(`)
ik )

∂hik
, (6.8)

where

τh(σ
(`)
h ) =

∑
t

bt|yt|x
h
(`)
ik

kt (log2 xkt)∆(σ
(`)
h | log xkt|) + 2

∑
t

b2tx
2h

(`)
ik

kt (log2 xkt)∆(2σ
(`)
h | log xkt|)

σ
(`)
h =

∣∣∣∣∂Ji(h(`)
ik )

∂hik

∣∣∣∣∑
t bt|yt|x

h
(`)
ik

kt log2 xkt + 2
∑
t b

2
tx

2h
(`)
ik

kt log2 xkt

,

and

bt = β
(`)
i

∏
j∈Hi,j 6=k

x
h
(`+1)I(j<k)+(`)I(j≥k)
ij

jt

5. Compute

β
(`+1)
i = max

{
−
∑
t ytdt∑
t d

2
t

, δ

}
, where dt =

∏
j∈Hi

x
h
(`+1)
ij

jt (6.9)

6. Let θ(`+1) = (α
(`+1)
i , g

(`+1)
i , β

(`+1)
i , h

(`+1)
i ) and check the convergence. If converged, output θ(`+1),

otherwise, `← `+ 1 and go to 2.
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Algorithm 2 AFGCD for problem (6.10)

1. Assign initial values to θ(0) = (α
(0)
i , g

(0)
i , β

(0)
i , h

(0)
i ) and set ` = 0.

2. Let yt = −Sit − β(`)
i

∏
j∈Hi x

h
(`)
ij

jt , t = 1, . . . , n and cyclically update g
(`)
ik to g

(`+1)
ik for each k ∈ Gi as

follows

g
(`+1)
ik = min

(
max

(
g

(`)
ik −

1

2τg(σ
(`)
g )

∂Ji(g
(`)
ik )

∂gik
, L

)
, R

)
, (6.11)

where L = max(g
(`)
ik − σ

(`)
g , kmin), R = min(g

(`)
ik + σ

(`)
g , kmax) and τg(σ

(`)
g ) is calculated in the same way

as in Algorithm 1

3. Compute

α
(`+1)
i = max

{
−
∑
t ytpt∑
t p

2
t

, δ

}
, where pt =

∏
j∈Gi

x
g
(`+1)
ij

jt (6.12)

4. Let yt = Sit − α(`+1)
i

∏
j∈Gi x

g
(`+1)
ij

jt , t = 1, . . . , n and cyclically update h
(`)
ik to h

(`+1)
ik for each k ∈ Hi as

follows

h
(`+1)
ik = min

(
max

(
h

(`)
ik −

1

2τh(σ
(`)
h )

∂Ji(h
(`)
ik )

∂hik
, L

)
, R

)
, (6.13)

where L = max(h
(`)
ik − σ

(`)
h , kmin) and R = min(h

(`)
ik + σ

(`)
h , kmax).

5. Compute

β
(`+1)
i = max

{
−
∑
t ytdt∑
t d

2
t

, δ

}
, where dt =

∏
j∈Hi

x
h
(`+1)
ij

jt (6.14)

6. Let θ(`+1) = (α
(`+1)
i , g

(`+1)
i , β

(`+1)
i , h

(`+1)
i ) and check the convergence. If converged, output θ(`+1),

otherwise, `← `+ 1 and go to Step 2 .

Definition 1. F (h, h′) is an auxiliary function of J(h) if there exists σ(h′), such that, if |h− h′| ≤ σ(h′)

F (h, h′) ≥ J(h) and F (h, h) = J(h) (6.15)

are satisfied.

The auxiliary function is useful because of the following lemma.

Lemma 3. If F is an auxiliary function, then J is nonincreasing under the update

h(`+1) = arg min
h∈{h:|h−h(`)|≤σ(h(`))}

F (h, h(`)). (6.16)

Proof.

J(h(`+1)) ≤ F (h(`+1), h(`)) ≤ F (h(`), h(`)) = J(h(`))

Lemma 4 shows a property of the exponential function, which is useful for the following discussions.
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Lemma 4. For some point h′, the exponential function eh satisfies

eh ≤ eh
′
+ eh

′
(h− h′) + eh

′
(h− h′)2∆(σ), if |h− h′| ≤ σ (6.17)

where

∆(σ) =
1

σ2
(eσ − 1− σ). (6.18)

Proof.

eh = eh
′
eh−h

′

= eh
′
(

1 + (h− h′) +
1

2!
(h− h′)2 + · · ·+ 1

n!
(h− h′)n + · · ·

)
= eh

′
+ eh

′
(h− h′) + eh

′
(h− h′)2

(
1

2!
+ · · ·+ 1

n!
(h− h′)n−2 + · · ·

)
≤ eh

′
+ eh

′
(h− h′) + eh

′
(h− h′)2

(
1

2!
+ · · ·+ 1

n!
σn−2 + · · ·

)
= eh

′
+ eh

′
(h− h′) + eh

′
(h− h′)2 1

σ2
(eσ − 1− σ) .

Then, the descent property of algorithm 1 is shown in the following theorem.

Theorem 6.1. The updating rules (6.6)–(6.9) in algorithm 1 keep the objective function in problem (6.4)

nonincreasing.

Proof. First, we show that the updating rules (6.6) and (6.8) can be obtained by minimizing constructed

auxiliary functions. Here, we only prove the rule (6.8) and the rule (6.6) can be proved similarly.

Suppose in one iteration, we need to update the parameter h
(`)
ik to h

(`+1)
ik with all the other parameters

fixed. Using the notations in Algorithm 1, the objective function is

Ji(hik) =
1

2

∑
t

(
yt + btx

hik
kt

)2

. (6.19)

Because other parameters except hik are fixed, Ji can be considered only depends on hik. The following

auxiliary function is proposed

F (hik, h
(`)
ik ) = Ji(h

(`)
ik ) + J ′i(h

(`)
ik )(hik − h(`)

ik ) + τh(σ
(`)
h )(hik − h(`)

ik )2. (6.20)

The definitions of τh(·) and σ
(`)
h can be found in Algorithm 1.

Obviously, F (hik, hik) = Ji(hik). We only need to verify the first condition in Definition 1. Using Lemma
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4, we have, if |hik − h(`)
ik | ≤ σ

(`)
h

Ji(hik) =
1

2

∑
t

y2
t +

∑
t

btyte
hik log xkt +

1

2

∑
t

b2t e
2hik log xkt

≤ 1

2

∑
t

y2
t +

∑
t

btyte
h
(`)
ik log xkt +

1

2

∑
t

b2t e
2h

(`)
ik log xkt

+
∑
t

btyte
h
(`)
ik log xkt(log xkt)(hik − h(`)

ik ) +
∑
t

b2t e
2h

(`)
ik log xkt(log xkt)(hik − h(`)

ik )

+
∑
t

bt|yt|eh
(`)
ik log xkt(log2 xkt)(hik − h(`)

ik )2∆(σ
(`)
h | log xkt|)

+ 2
∑
t

b2t e
2h

(`)
ik log xkt(log2 xkt)(hik − h(`)

ik )2∆(2σ
(`)
h | log xkt|)

= Ji(h
(`)
ik ) + J ′i(h

(`)
ik )(h− h(`)

ik ) + τh(σ
(`)
h )(hik − h(`)

ik )2,

where the function ∆(·) is defined in equation (6.18). Therefore, F defined in (6.20) is an auxiliary function.

By Lemma 3, the minimization of F with respect to hik in the neighbourhood of h
(`)
ik makes the objective

function J keep nonincreasing. Thus, the updating rule is obtained by solving

arg min
hik∈{hik:|hik−h(`)

ik |≤σ
(`)
h )}

F (hik, h
(`)
ik ). (6.21)

Note that the auxiliary function (6.20) is quadratic and its global minimum is attained at

h∗ik = h
(`)
ik −

1

2τh(σ
(`)
h )

J ′i(h
(`)
ik ), (6.22)

Also note that

|h∗ik − h
(`)
ik | =

|J ′i(h
(`)
ik )|

2τh(σ
(`)
h )
≤

|J ′i(h
(`)
ik )|∑

t bt|yt|x
h
(`)
ik

kt log2 xkt + 2
∑
t b

2
tx

2h
(`)
ik

kt log2 xkt

= σ
(`)
h , (6.23)

the inequality is due to that ∆(σ) ≥ 1
2 for all σ > 0. Therefore, the updating rule is (6.22) or (6.8) and the

objective function keeps nonincreasing during the iterations.

The updating steps (6.7) and (6.9) are obtained by simply solving an univariate least squares problem

with a simple constraint, whose objective function is quadratic and thus has an analytical solution. The

derivation is simple and we omit it here. Therefore, the objective function keeps nonincreasing in every

iterations of Algorithm 1.

For Algorithm 2, we have the same descent property.

Theorem 6.2. The updating rules (6.11)–(6.14) in Algorithm 2 keep the objective function in problem (6.10)

nonincreasing.

Proof. Similar to Theorem 6.1, considering the updating of h
(`)
ik , the auxiliary function is defined as (6.20).
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The updating rule is obtained by solving

argmin
hik

F (hik, h
(`)
ik )

subject to h
(`)
ik − σ

(`)
h ≤ hik ≤ h

(`)
ik + σ

(`)
h

kmin ≤ hik ≤ kmax.

(6.24)

Since F is quadratic in hik and the constraints are very simple, analytical solution (6.13) exists. The remaining

proof is similar to Theorem 6.1 and we omit it here.

6.3 Simulation Examples

To study the performances of the proposed methods, we apply the algorithms to simulated data and compare

the estimated parameters with the corresponding true ones.

6.3.1 Performances of Algorithm 1

4-dimensional Model

Consider the following S-system of 4 molecular species [60]:

Ẋ1 = 12X−0.8
3 − 10X0.5

1 ,

Ẋ2 = 8X0.5
1 − 3X0.75

2 ,

Ẋ3 = 3X0.75
2 − 5X0.5

3 X0.2
4 ,

Ẋ4 = 2X0.5
1 − 6X0.8

4 .

(6.25)

The noise-free time series data are obtained by numerically solving the S-system with an initial condition

X(0) = [x10, x20, x30, x40]T . The data are sampled at time points in the interval [0, 5] with ∆t = 0.1.

In this example, the data are generated with X(0) = [10, 1, 2, 3]T . The time series data are shown in

Figure 6.1, from which we can see all states of Xi’s are eventually in the steady states. Algorithm 1 is applied

to estimating the parameters from these data with initial values for all parameters chosen by

θinitial = θtrue(1 + sε), for any θ ∈ {αi, gi, βi, hi}, (6.26)

where ε is a standard Gaussian random variable and s is a positive constant. Since (6.25) is a nonlinear

optimization problem, to avoid falling into the local optimum, we apply Algorithm 1 for 100 times initiated

with different values and choose the one with minimum objective value as the final solution. Here, we set

s = 90%. The objective values Ji of the first 100 iterations in one run are illustrated in Figure 6.2. It can

be seen that the objective values decrease with the increase of iteration steps. Table 6.1 shows the estimated
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Figure 6.1: Time series data of the 4-dimensional model.

Table 6.1: Estimated results of the 4-dimensional model from Algorithm 1.

Parameter True Value Estimation Relative Error Objective Value
α1 12 11.9856 0.12% 6.809× 10−4

β1 10 9.9819 0.18%
g13 -0.8 -0.8022 0.27%
h11 0.5 0.5013 0.25%
α2 8 7.9857 0.18% 3.650× 10−4

β2 3 2.9912 0.29%
g21 0.5 0.5005 0.11%
h22 0.75 0.7511 0.14%
α3 3 3.0377 1.26% 5.8635× 10−5

β3 5 5.0375 0.75%
g32 0.75 0.7444 0.74%
h33 0.5 0.4957 0.86%
h34 0.2 0.1978 1.11%
α4 2 1.9965 0.17% 4.0889× 10−5

β4 6 5.9977 0.04%
g41 0.5 0.5014 0.29%
h44 0.8 0.8014 0.18%
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Figure 6.2: Objective values over various numbers of iterations in Algorithm 1.
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results, from which we can see that the estimated values are quite close to their true values and the optimal

objective values are all very small.

5-dimensional model
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Figure 6.3: Time series data of the 5-dimensional model.

A benchmark 5-dimensional model [1, 65] is considered,

Ẋ1 = 5X3X
−1
5 − 10X2

1 ,

Ẋ2 = 10X2
1 − 10X2

2 ,

Ẋ3 = 10X−1
2 − 10X−1

2 X2
3 ,

Ẋ4 = 8X2
3X
−1
5 − 10X2

4 ,

Ẋ5 = 10X2
4 − 10X2

5 .

(6.27)

The data used in this example are generated with the initial condition X(0) = [0.1, 0.7, 0.7, 0.16, 0.18]T , the

same as in [1]. Figure 6.3 shows the time series data that are sampled in the interval [0, 0.5] with ∆t = 0.01.

Note that the states of all variables quickly converge to the steady state. Hence, only limited information on

the dynamics of the system is contained in the data. We run Algorithm 1 for 100 times with different initial

values obtained from (6.26) with s = 80% and select the one with minimum objective value as the solution.

The results in Table 6.2 show the effectiveness of this algorithm: estimated values of parameters are close to

the true values and the optimal objective values are all very small.
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Table 6.2: Estimated results of the 5-dimensional model from Algorithm 1.

Parameter True Value Estimation Relative Error Objective Value
α1 5 4.7238 5.52% 3.7096× 10−4

β1 10 9.7188 2.81%
g13 1 1.1732 17.32%
g15 -1 -1.0500 4.99%
h11 2 2.0783 3.92%
α2 10 10.0280 0.28% 3.8752× 10−4

β2 10 9.9796 0.20%
g21 2 1.9953 0.24%
h22 2 1.9778 1.11%
α3 10 9.0097 9.90% 4.2896× 10−4

β3 10 9.0220 9.78%
g32 -1 -1.1133 11.33%
h32 -1 -1.1082 10.82%
h33 2 2.1220 6.10%
α4 8 7.5761 5.30% 6.5891× 10−4

β4 10 9.5605 4.40%
g43 2 2.1641 8.21%
g45 -1 -1.0457 4.57%
h44 2 2.0790 3.95%
α5 10 9.9333 0.67% 6.6801× 10−4

β5 10 9.9402 0.60%
g54 2 2.0138 0.69%
h55 2 2.0240 1.20%
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Figure 6.4: Time series data of the 6-dimensional model.
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Table 6.3: Estimated results of the 6-dimensional model from Algorithm 1.

Parameter True Value Estimation Relative Error Objective Value
α1 10 9.7145 2.85% 4.2743× 10−4

β1 5 4.8192 3.61%
g13 -2 -2.0397 1.99%
g15 1 1.0146 1.46%
h11 0.5 0.5047 0.94%
α2 5 4.7858 4.28% 3.4432× 10−4

β2 10 9.9353 0.65%
g21 0.5 0.5266 5.32%
h22 0.5 0.5269 5.39%
α3 2 2.0059 0.29% 4.1841× 10−6

β3 1.25 1.2580 0.64%
g32 0.5 0.4963 0.74%
h33 0.5 0.4964 0.72%
α4 8 8.0231 0.29% 1.2605× 10−4

β4 5 5.0138 0.28%
g42 0.5 0.5002 0.04%
h44 0.5 0.5002 0.05%
α5 0.5 0.4962 0.76% 1.9439× 10−6

β5 1 0.9978 0.22%
h56 1 1.0086 0.86%
α6 1 0.9978 0.22% 1.9949× 10−6

β6 0.5 0.4962 0.76%
g65 1 1.0087 0.87%

6-dimensional model

In this example, Algorithm 1 is applied to estimate the parameters in the following 6-dimensional S-system

[1]:

Ẋ1 = 10X−2
3 X5 − 5X0.5

1 ,

Ẋ2 = 5X0.5
1 − 10X0.5

2 ,

Ẋ3 = 2X0.5
2 − 1.25X0.5

3 ,

Ẋ4 = 8X0.5
2 − 5X0.5

4 ,

Ẋ5 = 0.5−X6,

Ẋ6 = X5 − 0.5.

(6.28)

The noise-free time series data are generated with the initial condition X(0) = [1.1, 0.5, 0.9, 0.75, 0.5, 0.75]T

which matches that in [1]. Figure 6.4 illustrates the time series data which are sampled in the interval [0, 10]

with ∆t = 0.1. Figure 6.4 also shows the periodic oscillating behaviour of the data. The initial values are

also chosen by (6.26) with s = 50%. The solution shown in Table 6.3 is the best one among 100 runs of

Algorithm 1 with different initial values. The results in Table 6.3 indicate that the estimated parameters are

close to their true values and the optimal objective values are all very small.
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6.3.2 Performances of Algorithm 2

Table 6.4: Estimated results of the 4-dimensional model from Algorithm 2.

Parameter True Value Estimation Relative Error Objective Value
α1 12 11.945 0.4585% 8.2968× 10−4

β1 10 9.9288 0.7119%
g13 -0.8 -0.807 0.8789%
h11 0.5 0.5034 0.6858%
α2 8 7.9857 0.1787% 3.65× 10−4

β2 3 2.9912 0.2931%
g21 0.5 0.5005 0.1093%
h22 0.75 0.7511 0.1411%
α3 3 3.0337 1.1233% 7.9833× 10−5

β3 5 5.0244 0.4879%
g32 0.75 0.7435 0.8691%
h33 0.5 0.4937 1.26%
h34 0.2 0.1964 1.7893%
α4 2 2.0051 0.2528% 1.991× 10−4

β4 6 5.9847 0.2551%
g41 0.5 0.4927 1.457%
h44 0.8 0.7938 0.7776%

The performances of Algorithm 2 is studied in this example. We apply the algorithm to the data generated

from the 4-dimensional, 5-dimensional and 6-dimensional models, respectively. The time series data we use

are exactly the same as above-mentioned examples. Since Algorithm 2 solves the problem (6.10) which

includes a range constraint for each parameter, the initial values for the algorithm are randomly generated in

those ranges. In this study, the rate constants are restricted in the range [0.1, 10] and kinetic orders are in the

range [−2, 3]. For each model, we run the algorithm for 100 times with different initial values and choose the

one with minimum objective value as the final result. The estimated results from algorithm 2 for each model

are reported in the Tables 6.4–6.6. From the results, it can be seen that estimated parameters for the 4-

dimensional and 6-dimensional models have very small relative errors compared with their corresponding true

values. For the 5-dimensional model, most parameters are estimated with low errors, while the estimations

of the parameters in the 3rd ODE have relatively large errors. This may due to the limited information

contained in the time series data. We can also see that, the estimated objective function values for these 3

models are all very small. All these results show the effectiveness of the proposed algorithm.
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Table 6.5: Estimated results of the 5-dimensional model from Algorithm 2.

Parameter True Value Estimation Relative Error Objective Value
α1 5 4.7704 4.5918% 3.1738× 10−4

β1 10 9.7686 2.3138%
g13 1 1.1535 15.3495%
g15 -1 -1.0424 4.2402%
h11 2 2.0652 3.2612%
α2 10 10.0133 0.1333% 3.9712× 10−4

β2 10 9.9644 0.3563%
g21 2 2.0022 0.1122%
h22 2 1.9845 0.7763%
α3 10 8.1857 18.1435% 9.5442× 10−4

β3 10 8.1839 18.1609%
g32 -1 -1.2361 23.6145%
h32 -1 -1.2363 23.6264%
h33 2 2.2322 11.6124%
α4 8 7.5565 5.5442% 6.7221× 10−4

β4 10 9.5398 4.6023%
g43 2 2.1688 8.4413%
g45 -1 -1.0476 4.7607%
h44 2 2.0827 4.1342%
α5 10 9.9649 0.3505% 5.6977× 10−4

β5 10 9.958 0.4204%
g54 2 2.0152 0.7598%
h55 2 2.0047 0.2345%

Table 6.6: Estimated results of the 6-dimensional model from Algorithm 2.

Parameter True Value Estimation Relative Error Objective Value
α1 10 9.7512 2.4881% 4.3511× 10−4

β1 5 4.9344 1.3118%
g13 -2 -1.9891 0.5461%
g15 1 0.9872 1.2845%
h11 0.5 0.4899 2.0172%
α2 5 4.6623 6.7549% 3.3703× 10−4

β2 10 9.6115 3.8853%
g21 0.5 0.5221 4.4167%
h22 0.5 0.5218 4.3684%
α3 2 1.9983 0.084% 4.0053× 10−6

β3 1.25 1.2484 0.1248%
g32 0.5 0.5005 0.0925%
h33 0.5 0.5005 0.0912%
α4 8 7.9848 0.1896% 1.2578× 10−4

β4 5 4.9926 0.1487%
g42 0.5 0.4996 0.0864%
h44 0.5 0.4995 0.0953%
α5 0.5 0.4991 0.1864% 1.2022× 10−7

β5 1 0.9994 0.0609%
h56 1 1.002 0.1989%
α6 1 0.9977 0.2326% 2.2004× 10−6

β6 0.5 0.496 0.8035%
g65 1 1.0091 0.9094%
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6.4 Conclusions

The S-system is an effective mathematical model to characterize and analyze the molecular biological sys-

tems. The parameters in S-systems have significant biological meanings. However, the estimation of these

parameters from time series biological data is non-trivial, because of the nonlinearity and complexity of this

model. An novel method, the auxiliary function guided coordinate descent (AFGCD), is proposed in this

study to estimate the parameters of S-systems. To solve the nonlinear optimization problem involved in

the parameter estimation, the proposed method optimizes one parameter at a time. Taking advantage of a

property of the exponential function, an auxiliary function is constructed for each kinetic order parameter.

We prove that updating the parameter value by optimizing the auxiliary function keeps the objective func-

tion nonincreasing. As the auxiliary function is quadratic, the analytical solution exists and therefore the

updating rule for each parameter is simple and efficient. Based on this idea, two algorithms are developed:

one estimates the parameters in S-system with the only non-negative constraints on rate constants; the other

puts constraints both on rate constants and kinetic orders. Their performances are studied in simulation

examples, which show that the estimated parameter values from the proposed algorithms are very close to

the corresponding true values and the optimized objective functions has very low values. All of these results

demonstrate the effectivenesses of the proposed algorithms.

In this study, the topology information of the system is assumed to be known. One direction of the future

work is to extend the current method with structure identification method to infer the S-system without

knowing the system topology.
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Chapter 7

Inference of Biological S-system Using Separable Es-

timation Method and Genetic Algorithm

Published as: L.Z. Liu, F.X. Wu, and W.J. Zhang, “Inference of biological s-system using the separable

estimation method and the genetic algorithm,” Computational Biology and Bioinformatics, IEEE/ACM

Transactions on, vol. 9, no. 4, pp. 955–965, 2012 [64]. This work is an extension to our conference

paper: L.Z. Liu, F.X. Wu, L.L. Han, and W.J. Zhang, “Structure identification and parameter estimation of

biological S-systems,” in Bioinformatics and Biomedicine (BIBM), 2010 IEEE International Conference on,

pp. 329 334, Dec. 2010 [147].

Chapters 5 and 6 focus on estimating the parameters in S-systems from time-course data when the system

structure is known. In practice, the system structure is not always available and the main task is to infer the

system structure from the data.

In this chapter, we assume the system structure is unknown and aim at identifying the structure and

estimating the parameters of S-system from time-course data alone. By considering the sparseness of the

network and special mathematical form of the model, a method called pruning separable parameter estimation

algorithm (PSPEA) is developed to locally infer the S-system from time-course data. PSPEA is then combined

with a continuous genetic algorithm (CGA) to form a hybrid algorithm which can globally identify the

structure and estimate the parameters of S-system from time-course data. Chapters 5, 6 and 7 accomplish

Objective 3 of this thesis.

Abstract

Reconstruction of a biological system from its experimental time series data is a challenging task in systems

biology. The S-system which consists of a group of nonlinear ordinary differential equations is an effective

model to characterize molecular biological systems and analyze the system dynamics. However, inference of S-

systems without the knowledge of system structure is not a trivial task due to its nonlinearity and complexity.

In this paper, a pruning separable parameter estimation algorithm is proposed for inferring S-systems. This

novel algorithm combines the separable parameter estimation method and a pruning strategy, which includes

adding an `1 regularization term to the objective function and pruning the solution with a threshold value.

Then, this algorithm is combined with the continuous genetic algorithm to form a hybrid algorithm who owns
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the properties of these two combined algorithms. The performance of the pruning strategy in the proposed

algorithm is evaluated from two aspects: the parameter estimation error and structure identification accuracy.

The results show that the proposed algorithm with the pruning strategy has much lower estimation error

and much higher identification accuracy than the existing method.

7.1 Introduction

Biological systems, such as gene regulation networks, metabolic pathways, and signal transduction cascades

are all complex systems with many interacting components. The reconstruction of structure and mechanisms

of interactions among components in biological systems from available experimental data is one of the most

challenging tasks of systems biology. Recent advances in biological technologies such as DNA microarrays

make more and more biological data available. These data are important information sources for under-

standing the biological systems or processes. The information contained in the data can be retrieved with

the parameter estimation methods when the system structure is known. The system structure can also be

extracted from the data with system structure identification methods. However, due to the complexity of

biological systems, both the parameter estimation and the structure identification are not trivial tasks.

The reconstruction or inference of biological systems from experimental data is refer to as a reverse

engineering problem. It encompasses the choice of the model, fitting of the structures and parameters of the

model into the available data, and inference of the underlying principles of the biological systems. Many

mathematical models and algorithms have been proposed to describe and infer biological systems. Some

of the typical methods, especially for the inference of genetic regulatory networks, include the generalized

Bayesian networks [41, 92], boolean networks [34, 35, 101, 38] and linear and nonlinear ordinary differential

equations (ODEs) [2, 20, 153]. Besides, many new methods are developed recently. A recurrent neural

network (RNN) is proposed to model the genetic regulatory networks in [102]. The network is inferred from

gene expression time series by a particle swarm optimization (PSO) based search algorithm. The interactions

among genes are explained through a connection weight matrix. Tenenhaus et al. [14] considers modeling

the genetic regulatory network as Gaussian Graphical Model (GGM), in which the conditional independence

between any two genes is measured by the partial correlation which is estimated by partial least squares (PLS)

regression method. Ram and Chetty [154] use the Markov blanket method to model the genetic regulatory

networks. The relationships among genes are inferred from time series data with the aid of a novel genetic

algorithm. In [22], the role of soft computing methodologies, such as fuzzy sets, evolutionary strategies and

neurocomputing, and their hybridizations for reconstruction of the genetic network are well surveyed.

Most of models for molecular biological systems are nonlinear and are required to be general enough

to capture all the essence of observed experimental data. Thus, the structure identification and parameter

estimation in these nonlinear models always turn out to be nonlinear optimization problems [155, 156, 157].

In this paper, the parameter estimation for one of the most popular models which is referred to as the
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S-system model is studied. The S-system model in Biochemical System Theory (BST) is considered as an

effective mathematical framework and a consistent model to represent and analyze the biological systems

[59]. It is a type of power-law formalism and a particular set of nonlinear ordinary differential equations.

Each parameter in an S-system model has its own unique specific meaning and role in the system. The

dynamical and structural characteristics of an S-system can be mapped onto its parameters. Therefore, the

identification of system structure has been reduced to a parameter estimation task which is a major advantage

of its representation. However, due to the complexity of S-systems, it is not easy to estimate the parameters

from experimental time series data. This reverse engineering problem is a large-scale and time-consuming

parameter optimization problem.

Several evolutionary computation techniques have been proposed to obtain the global optimization of

parameters in S-systems. Kikuchi et al. [61] used a real coded genetic algorithm to optimize the parameters

in S-systems, whose objective has a penalty term to prune unnecessary connections in investigated gene net-

works. A simple crossover method was incorporated into the genetic algorithm and a gradual optimization

strategy was introduced in the estimation procedure. Daisuke and Horton [158] introduced a distributed ge-

netic algorithm with the scale-free restriction. Kimura et al.[159] used a genetic local search with a distance

independent diversity control method to estimate the parameters based on the decomposition strategy. One

drawback of this decomposition strategy is that there is no information exchange between the sub-problems.

Kimura et al. [62] proposed a cooperative coevolutionary algorithm to solve the decomposed subtasks si-

multaneously. The values calculated in each sub-problem are transferred to other sub-problems, that is, the

sub-problems interact with each other. A two-stage evolutionary algorithm (iTEA) was proposed by Ho et

al. [63]. The first stage applied a novel intelligent genetic algorithm with intelligent crossover based on an

orthogonal experimental design (OED) to solve each sub-problem. The solutions from the first stage are then

combined as an initial solution for the OED-based simulated annealing algorithm at the second stage. Tsai

and Wang [160] used the hybrid differential evolution method to get satisfied solution and a gradient-based

optimization method is used to refine the solution. An S-tree along with genetic programming has been

introduced by Cho et al. [161] to identify the network structure and find parameter values without adding a

penalty term to the objective function.

The computation cost for methods based on stochastic search algorithms is very expensive. Besides the

evolutionary computation, there are some other methods proposed in literatures. Alternating regression [141]

estimates the parameters by using iterative linear regression based on decoupling of S-systems. This method

is very fast. However, sometimes, it doesn’t converge. Vilela et al. [65] proposed a novel parameter estimation

method which is based on eigenvector optimization of a matrix formed from multiple regression equations of

the linearized decoupled S-systems. Tucker and Moulton [162] used an interval analysis technique to estimate

parameters.

In this paper, algorithms to infer the S-system without any structure information are proposed. The

proposed algorithms are extensions of the method proposed by Wu and Mu [146], which take advantage of
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the special structure of the S-system, that is, one group of parameters is linear and the other is nonlinear,

such that the parameter searching space and computation time is reduced. However, the separable parameter

estimation method can only be applied with the knowledge of structure information. Without knowing the

system structure, all the parameters in S-system are free and the algorithm has to search the full model. Since

the number of parameters become very large even for an intermediate-scale network, the estimation task turns

out to be very complex. To reduce the complexity of the problem, a prior knowledge that biological network

is sparse is incorporated into the algorithm by implementing a pruning strategy which includes adding an

`1 regularization term to the original objective function and using a threshold to prune the solutions in the

optimization process. To improve the robustness to the initial values and searching abilities, the proposed

algorithm is further combined with the continuous genetic algorithm.

Briefly, the remainder of the paper is organized as follows. In Section 7.2, the S-system and its parameter

estimation problem are described. In Section 7.3, the pruning separable parameter estimation algorithm is

introduced. In Section 7.4, A hybrid algorithm is developed by combing the pruning separable parameter

estimation algorithm with the continuous genetic algorithm. In Section 7.5, the performance of pruning

strategy used in our proposed algorithms is discussed. Finally, Section 7.6 concludes this study and points

out some directions of future work.

7.2 Problem Statement

The S-system model [60] is a type of power-law formalism, based on a particular set of nonlinear differential

equations, which is described as follows:

Ẋi = αi

N∏
j=1

X
gij
j − βi

N∏
j=1

X
hij
j , (7.1)

where i = 1, 2, . . . , N , Xi is the state variable and represents the concentration of reaction component i and

N is the number of components in the system. For each ODE, the right hand side is composed of two terms.

The first term represents the production of reactants and the other term corresponds to the degradation. The

change of state variable over the time is described by the difference between these two terms. αi and βi are

nonnegative rate constants, and gij and hij are real-valued kinetic orders that reflect the interaction intensity

of Xj to Xi. If gij > 0, Xj activates the production of Xi while if gij < 0, Xj inhibits the production of Xi.

hij has the same effects but on degradation. A zero-value kinetic order indicates Xj has no such effect on

Xi. In this way, the system structure is mapped onto the kinetic order parameters in S-systems. Therefore,

the system structure can be determined by estimating the parameters.

Given the observed experimental time series data, xi,tk , k = 1, 2, . . . , n, i = 1, 2, . . . , N which represent

the concentration of component i at time point tk, the parameter estimation problem is in fact to search

for particular values for the parameters such that the solutions from the model with these parameter values
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can fit well with the given observation data in some specified manner. For example, find the parameter

values which minimize the least squares errors between observed and estimated data. Therefore, parameter

estimation is formulated as an optimization problem.

7.3 Pruning Separable Parameter Estimation Algorithm (PSPEA)

In this section, the separable parameter estimation method (SPEM) [146] is introduced first. Then, a new

algorithm named pruning separable parameter estimation algorithm (PSPEA) is proposed to infer the S-

system. This algorithm extends the SPEM by applying a pruning strategy. Details are shown below.

7.3.1 Separable Parameter Estimation Method

Suppose the system has N components and for each component Xi, a time series data consisting of n time

points, xi,t1 , xi,t2 , . . . , xi,tn have been observed. Here, the derivative of Xi at time point tk in equation (7.1) is

substituted by the deduced slop Si(tk). Then the system is reformulated as

Si(t1) ≈ αi
N∏
j=1

x
gij
j,t1
− βi

N∏
j=1

x
hij
j,t1

,

...

Si(tk) ≈ αi
N∏
j=1

x
gij
j,tk
− βi

N∏
j=1

x
hij
j,tk

,

...

Si(tn) ≈ αi
N∏
j=1

x
gij
j,tn
− βi

N∏
j=1

x
hij
j,tn

,

where i = 1, 2, . . . , N . Thus, the original N coupled differential equations can be analyzed in the form of

n×N uncoupled algebraic equations [60, 59]. The estimation of the slop is a crucial step in the decoupling

procedure. To increase the accuracy of the proposed method, the five-point numerical derivative method is

applied in this paper, that is,

Si(tk) =
−xi,tk+2

+ 8xi,tk+1
− 8xi,tk−1

+ xi,tk−2

12∆t
, (7.2)

where ∆t is the sampling interval and ∆t = tk+1 − tk for all k. Then, for each i, we estimate the parameters

by minimizing the following objective function:

Ji(αi, βi, gi, hi)

=

n∑
k=1

Si(tk)−

αi N∏
j=1

X
gij
j − βi

N∏
j=1

X
hij
j

2

,
(7.3)
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where gi = [gi1, gi2, . . . , giN ]T and hi = [hi1,hi2,. . . ,hiN ]T . Let Γi = (αi, βi)
T , Si = [Si(t1), Si(t2), . . . , Si(tn)]T

and

X̃i =


∏N
j=1 x

gij
j,t1

−
∏N
j=1 x

hij
j,t1

...
...∏N

j=1 x
gij
j,tn

−
∏N
j=1 x

hij
j,tn

 .
Then equation (7.3) can be rewritten as

Ji(Γi, gi, hi) = ‖Si − X̃iΓi‖22, (7.4)

where ‖ · ‖2 is the `2 norm. Note that X̃i is the function of (gi, hi) and does not depend on Γi, that is, the

parameters are in a separable structure. Therefore, the method SPEM [146] can be applied.

For a given value of (gi, hi) = (ḡi, h̄i), X̃i can be considered as constant. Thus, using the least squares

method, Γi is estimated as follows

Γ̂i = (X̃i
T
X̃i)
−1X̃i

T
Si. (7.5)

Substitute equation (7.5) into (7.4) to obtain

J̃i(ḡi, h̄i) = Ji(Γi, ḡi, h̄i) = STi [I − X̃i(X̃
T
i X̃i)

−1X̃T
i ]Si. (7.6)

Note that only kinetic order parameters appear in (7.6). Then, the minimization of (7.4) is transformed into

minimization of (7.6), that is, once (g̃i, h̃i) that minimizes (7.6) is founded, the optimal Γ̃i can be computed

from (7.5) by letting (gi, hi) = (g̃i, h̃i). In this way, both the dimension of parameter searching space and the

computation effort can be reduced as discussed in [146].

7.3.2 Proposed Algorithm

The S-system parameter estimation by SPEM with the knowledge of system structure information was studied

in [146]. In this paper, we focus on inferring S-systems without structure information. Without knowledge

of the structure, the algorithm to optimize (7.6) has to search a full model, that is, all parameters are free

and can be any value. When the number of variables N is not small, the number of parameters 2N2 in

(7.6), becomes very large and the estimation process becomes extremely difficult. To reduce the complexity

of the estimation task, a priori knowledge is incorporated here. Recall that if one variable does not affect the

production or degradation of another variable, its corresponding kinetic order in the S-system is zero. Since

biological networks have been known to be sparse, most of the kinetic orders should be zero.

According to optimization theory [163], `1 regularization can produce the sparse solution. We add an `1

regularization term to the objective function (7.6) as follows:

J̃∗i (gi, hi, λ) = J̃i(gi, hi) + λ(‖gi‖1 + ‖hi‖1) (7.7)
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where λ is a nonnegative scalar and ‖·‖1 is the `1 norm, ‖gi‖1 =
∑N
i |gij |. The `1 regularization term in (7.7)

is also called a pruning penalty term, whose variants have been used in some literatures [61, 159, 62, 63]. Note

that for non-zero λ, the large value kinetic orders receive heavy penalties. Therefore, this term can make zero

kinetic orders to be zero. The first term in (7.7) aims at the reproduction of given time series, while the second

term, on the other hand, expresses the sparseness of the network. In this paper, we estimate the kinetic order

by minimizing (7.7) and get the rate constants from (7.5). In practice, by optimizing function (7.7) zero

kinetic orders may not be exactly zero, but are very close to zero. In this study, a small value threshold θ is

applied to prune the solutions such that the very small-value parameter to be zero, that is, if |gij |(or |hij |)

≤ θ, set gij(or hij) = 0, otherwise, it does not change. Based on (7.7), the pruning separable parameter

estimation algorithm (PSPEA) is proposed as follows:

Step 1. For each time series, use (7.2) to estimate the slop, Si(tk), at each time point.

Step 2. Use the Matlab fmincon function to optimize objective function (7.7) several times with various

initial values. Among all the solutions, pick up the one (ĝi, ĥi) that minimizes (7.6) as the elite solution.

Step 3. Use the elite solution from Step 2 as the initial value to optimize (7.7) by Matlab fminunc function.

Prune the solution with threshold θ.

Step 4. If any parameter, gij or hij has been pruned in Step 3, then take the new solution as initial value

and go to Step 3, else go to Step 5.

Step 5. Use the solution from Step 4 as initial value to optimize (7.6) and then calculate the rate constants

by substituting the solution from Step 4 into (7.5).

In the algorithm above, Steps 2–4 are to identify S-system structure while Step 5 is to estimate parameters

in the S-system. The proposed algorithm combines a pruning strategy and the method SPEM. The pruning

strategy includes adding an `1 regularization term as shown in (7.7) and using the pruning threshold θ. The

regularization term forces kinetic orders to approach zero and the threshold makes some of them become

zero. This strategy is mainly employed in Steps 2–4 which are the crucial steps of the proposed algorithm.

The purpose of these steps is to determine the network structure, that is, finding the non-zero kinetic orders

and their signs. Then the parameter values are further refined in the following step. To avoid falling into the

local minimum, we calculate Step 2 for several times with different initial values and pick up the elite one to

be used in the next steps.

7.3.3 Experiments

To evaluate the performance of the PSPEA, it is applied to infer two S-systems from simulated time series

data.

Example 1. We first consider the dynamics of pathway shown in Figure 7.1. There are four dependent
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Figure 7.1: A 4-dimensional metabolic pathway branch

variables in the system. The production of X1 is affected by the inhibition exerted by X3, which is produced

by X1 via intermediate X2. X1 can be used for the production of X4, which promotes the degradation of X3.

Furthermore, the degradation for each variable is also promoted by itself. The S-system for this metabolic

network is described by ordinary differential equations below.

Ẋ1 = α1X
g13
3 − β1X

h11
1 ,

Ẋ2 = α2X
g21
1 − β2X

h22
2 ,

Ẋ3 = α3X
g32
2 − β3X

h33
3 Xh34

4 ,

Ẋ4 = α4X
g41
1 − β4X

h44
4 .

(7.8)

The corresponding values of rate constants and kinetic orders are shown in Table 7.1. There are totally 40

parameters: 8 positive rate constants, 9 non-zero kinetic orders and 23 zero kinetic orders.

Table 7.1: Values of parameters in 4-dimensional S-system.

i αi gi1 gi2 gi3 gi4 βi hi1 hi2 hi3 hi4

1 12 0 0 -0.8 0 10 0.5 0 0 0

2 8 0.5 0 0 0 3 0 0.75 0 0

3 3 0 0.75 0 0 5 0 0 0.5 0.2

4 2 0.5 0 0 0 6 0 0 0 0.8

In order to investigate the proposed algorithm, a set of noise-free simulated time series data is generated

from (7.8) with initial state x1 = 10, x2 = 1, x3 = 2 and x4 = 3 and parameter values in Table 7.1. The

trajectories for all state variables are plotted in Figure 7.2. The time t is from 0 to 5 and the sampling

interval ∆t is 0.1.

The PSPEA is applied to estimate the parameters. Here, the threshold θ is set to be 0.05 and λ = 1.

The optimization of objective (7.7) is formulated as a nonlinear constraint problem. The kinetic orders are

searched in the interval [−1, 1]. We assume that at most only one of gij and hij is non-zero for each i, since it

110



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

8

9

10

time

co
nc

en
tra

tio
n

 

 

X1

X2

X3

X4

Figure 7.2: Trajectories of the variables in (7.8).
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Figure 7.3: Fitness of the integrated system (full lines) found by PSPEA.
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is relatively rare that the same variable is present in both the production and degradation terms of another

variable [59]. In this example, Step 2 runs for 8 times with different initial guesses generated by the strategy

similar as [146]. We employ the true kinetic order value plus a fraction of Gaussian noise as initial guess

values, that is, (g0
i ;h0

i ) = (gi;hi) + σε, where ε is a random vector whose element follows a standard normal

distribution and σ is a positive constant. Here, σ is chosen as 20%. The estimated results are shown in Table

7.2.

Table 7.2: Results from PSPEA for the 4-dimensional example.

i αi gi1 gi2 gi3 gi4 βi hi1 hi2 hi3 hi4

1 11.9723 0 0 -0.8032 0 9.9678 0.5018 0 0 0

2 8.0066 0.4994 0 0 0 3.0059 0 0.7491 0 0

3 3.0184 0 0.7466 0 0 5.0126 0 0 0.4970 0.1981

4 1.9990 0.5012 0 0 0 6.0013 0 0 0 0.8010

As illustrated in Table 7.2, the network structure has been exactly identified, that is, all zero-valued

kinetic orders have been recognized and the signs of the other estimated kinetic orders are the same with the

corresponding true parameter values. It can also be seen that the non-zero estimated values are very close to

the corresponding true values. The final values of optimized objective function (7.6) are smaller than 10−2.

The dynamics and fitness of the integrated system found by the proposed algorithm are shown in Figure 7.3.

The inferred system (solid line) perfectly fits the simulated data (other lines).

�� ��
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��
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Figure 7.4: A 5-dimensional linear pathway with feedback.

Table 7.3: Values of parameters in 5-dimensional S-system.

i αi gi1 gi2 gi3 gi4 gi5 βi hi1 hi2 hi3 hi4 hi5

1 2 0 0 0 0 0 2 0.5 0 0 0 -1

2 2 0.5 0 0 0 -1 4 0 0.5 0 0 0

3 4 0 0.5 0 0 0 4 0 0 0.8 0 0

4 4 0 0 0.8 0 0 1 0 0 0 1 0

5 1 0 0 0 1 0 4 0 0 0 0 0.5

112



Example 2. Another 5 dimensional S-system from [60] is inferred by the proposed algorithm in the

following. The system to be estimated is a linear pathway with feedback as depicted in Figure 7.4. In

this system, there are 5 dependent variables which are represented by an S-system (7.9) with the associated

parameter values shown in Table 7.3.

Ẋ1 = α1 − β1X
h11
1 Xh15

5 ,

Ẋ2 = α2X
g21
1 Xg25

5 − β2X
h22
2 ,

Ẋ3 = α3X
g32
2 − β3X

h33
3 ,

Ẋ4 = α4X
g43
3 − β4X

h44
4 ,

Ẋ5 = α5X
g54
4 − β5X

h55
5 .

(7.9)

There are totally 60 parameters consisting of 10 positive rate constants, 11 non-zero kinetic orders and 39

zero-valued kinetic orders. A set of simulated noise-free time series data generated from the S-system with

the initial state x1 = 10, x2 = 1, x3 = 2, x4 = 3, and x5 = 4 is used to estimate the system. The time t

starts from 0 to 10 and time interval ∆t is 0.1. As in the first example, we set λ = 1, θ = 0.05 and σ = 20%.

To avoid falling into the local minimum, for this example, Step 2 was run with 30 different initial values.

The results from the proposed algorithm are shown in Table 7.4. Comparing Table 7.3 and Table 7.4, similar

conclusions can be drawn as the 4-dimensional example. The network structure has been exactly identified

and parameter values are very close to their true values only except α2. The values of the optimized objective

function (7.6) are again all less than 10−2.

Table 7.4: Results from PSPEA for 5-dimensional example.

i αi gi1 gi2 gi3 gi4 gi5 βi hi1 hi2 hi3 hi4 hi5

1 2.0014 0 0 0 0 0 2.0008 0.5000 0 0 0 -1.0000

2 1.0142 0.9949 0 0 0 -0.9958 4.0271 0 0.4975 0 0 0

3 3.9986 0 0.4997 0 0 0 3.9986 0 0 0.7996 0 0

4 4.0005 0 0 0.8000 0 0 1.0001 0 0 0 1.0000 0

5 1.0024 0 0 0 0.9990 0 4.0042 0 0 0 0 0.4996

7.4 PSPEA with Genetic Algorithm

The crucial parts of PSPEA are Steps 2–4, because these steps are responsible for the structure identification

which is the main concern of this paper. In these steps, the objective function (7.7) is optimized by Matlab

function fmincon. Due to the nonlinearity of (7.7), the optimization is likely to fall into the local minimum.

To overcome this problem, in PSPEA, various different initial values are used to optimize (7.7). However,

using different initial values can only alleviate this problem to some extent. A strategy which can help the

algorithm search the whole parameter space are needed. In this section, we propose to combine the genetic
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algorithm and PSPEA to infer the biological S-system.

7.4.1 Continuous Genetic Algorithm

Since the kinetic orders in S-system are real numbers, it is naturel to consider using the genetic algorithm

which encodes the variables by floating-point numbers. In this paper, we employ the continuous genetic

algorithm (CGA) in [164]. Compared with binary coded genetic algorithm, CGA requires less storage and

runs faster in that the variable is represented by a single floating-point number instead of many integers and

do not need to be decoded prior to the evaluation of the cost function. In addition, CGA represents the

continuous variables more precisely than the binary GA. Given an objective function, the procedure of CGA

is briefly described as follows.

Step 1 (Initiation). Randomly generate an initial population with Npop feasible individuals of Nvar real-value

parameters in the variable range.

Step 2 (Evaluation). Evaluate the fitness for each individual by the cost function. Let Ibest be the best

individual in the population.

Step 3 (Selection). In one generation, only top Nkeep = Ps × Npop individuals are kept for mating and the

rest are discarded to make room for the new offspring, where Ps is selection fraction.

Step 4 (Crossover). Using the ranking selection method, two individuals are chosen and paired from Nkeep

kept individuals to produce two new offspring by performing the crossover operation. Paring and crossover

take place until Npop −Nkeep are born to replace the discarded individuals.

Step 5 (Mutation). Mutate all the values except the best individual Ibest according to a mutation probability

Pm. The best individual is excluded to prevent the best cost value from deteriorating. The mutation is

realized by replacing the value of mutated variable by a new random value in the variable range.

Step 6 (Termination). If the specified number Nstop of iterative generations is achieved or some stopping

condition is met, terminate the algorithm. Otherwise, go to Step 2.

In this paper, we use the crossover operator introduced in [164] which will be described in detail in the

following. Suppose the S-system to be inferred is N -dimensional, that is, it has 2N2 kinetic orders. After

the aforementioned Step 1, a population of Npop individuals is generated. Each individual, Ik, is a 2N2-

dimensional vector of values of kinetic orders, where k = 1, 2, . . . , Npop. Then, after Step 2 and Step 3, top

Nkeep individuals are kept and the others are abandoned.

In Step 4, first, we choose two from the pool of Nkeep individuals as parents. The Nkeep individuals are

ranked according to their cost values in ascending order. The individual with the rank j is chosen with the

114



probability pj as

pj =
Nkeep − j + 1∑Nkeep

j=1 j
.

When two parents, Ip1 and Ip2, are chosen, for convenience, we denote them as

Ip1 = [I
(1)
p1 , I

(2)
p1 , . . . , I

(2N2)
p1 ],

Ip2 = [I
(1)
p2 , I

(2)
p2 , . . . , I

(2N2)
p2 ],

where I
(i)
pk , i = 1, 2, . . . , 2N2, is the ith element of vector Ipk, k = 1, 2. Then, the crossover begins with

randomly select a variable in the pair of parents to be the crossover point. Assume that the crossover

position is η, then the selected variables are combined to form new variables that will appear in the children

as follows.

I
(η,new)
p1 = I

(η)
p1 − ω(I

(η)
p1 − I

(η)
p2 ),

I
(η,new)
p2 = I

(η)
p2 + ω(I

(η)
p1 − I

(η)
p2 ),

where ω is a random value between 0 and 1. The values of new variables do not lie outside the variable range

as ω ∈ (0, 1). The final step is to complete the crossover similarly as the binary genetic algorithm, resulting

in two offspring.

Ichild,1 = [I
(1)
p1 , I

(2)
p1 , . . . , I

(η,new)
p1 , I

(η+1)
p2 , . . . , I

(2N2)
p2 ],

Ichild,2 = [I
(1)
p2 , I

(2)
p2 , . . . , I

(η,new)
p2 , I

(η+1)
p1 , . . . , I

(2N2)
p1 ].

That is, the variables to the right of the crossover point are swapped. If the last variable is selected as the

crossover point, then the variables to the left of the selected variables are swapped.

7.4.2 Hybrid Algorithm

Results in Section 7.3 show that PSPEA can correctly infer the S-system with the initial values chosen around

the true parameter values. In other words, the PSPEA can locally infer the S-system. In the following, we

combine the CGA and PSPEA to develop a hybrid algorithm (PSPE-CGA). The proposed hybrid algorithm

combines the global-search properties of the CGA with the local S-system inference ability of PSPEA. Given

a set of time-series data, the procedure to infer an N dimensional S-system, whose kinetic orders fall into the

range [Kl,Kh], by the proposed hybrid algorithm is described as follows.

Step 1. For each time series, estimate the slop, Si(tk), at each time point by (7.2).

Step 2. Randomly generate an initial population with Npop feasible individuals of 2N2 real-value parameters

in the range [Kl,Kh].
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Step 3. For each individual, Ik, k = 1, 2, . . . , Npop, take it as initial values and use the Matlab fmincon

function to optimize the objective function (7.7). The parameters are subjected to the range [Kl,Kh].

Prune the solution with threshold θ.

Step 4. If any parameter, gij or hij , has been pruned in Step 3, then take the pruned solution as initial values

and go to Step 3, in which the pruned parameters are constrained to be zero. Otherwise go to Step 5.

Step 5. Fix the zero-value parameters in solution from Step 4 to be zeros and refine the nonzero parameters

by optimizing objective function (7.6) with Matlab function fmincon.

Step 6. After Step 5, an updated individual I ′k for Ik is obtained. Do Step 3–5 for each individual in the

population, then we get an updated population I ′k, k = 1, 2, . . . , Npop.

Step 7. The optimized objective value of (7.6) is assigned as cost value to corresponding updated individual

I ′k. Then, perform the Selection, Crossover and Mutation operations mentioned above in CGA.

Step 8. A new generation of population is obtained from Step 7. If the specified number Nstop of iterative

generations is achieved or some stopping condition is met, then terminate the algorithm and go to Step

9, else keep the structure each individual represents in the new generation and go to Step 3.

Step 9. Substitute the solution from Step 8 into (7.5) to calculate the rate constants.

In the hybrid algorithm, PSPE-CGA, the main part of PSPEA is embedded into the CGA. For each

individual solution in a generation, Step 3 and Step 4 iteratively prune the solution to make most of the

parameters, especially those unnecessary parameters, become zero. Then, the structure that the solution

represents is kept and the nonzero parameters are further refined in Step 5. After that, a population of

estimated solutions of kinetic orders are obtained. However, each solution may only be a local inference,

because the Matlab function fmincon can only provide a local solution to the nonlinear optimization problems

in this paper. Thus, we perform the selection, crossover and mutation in CGA to these solutions and try to

find the global inference of the S-system. PSPEA has the ability of finding a local inference of the S-system,

while the CGA has the global-search property. The hybrid algorithm, PSPE-CGA, combines the traits of

these two algorithms to make global inference of the S-system. Figure 7.5 shows the flowchart of the hybrid

algorithm.

7.4.3 Experiments

To show the effectiveness of the hybrid algorithm, we apply it to infer the S-systems from simulated time

series data.

Example 3. Consider a 3-dimensional linear pathway with feedback in Figure 7.6 [65]. In this system,

there are 3 dependent variables which are represented by an S-system (7.10) with the associated parameter
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time series data

Calculate the slopes 

Generate an initial 
population

Take it as initial values 
and optimized (7.7). Prune 

the solution with 

For each individual kI

Fix the structure. Take it 
as initial to optimize (7.6).

   Pruned ? 
Yes

Take as initial

No

Get the updated population. 
Perform selection, 

crossover and mutation.

Stop? 

Yes

Calculate the rates by (7.5)

No

output parameters

Figure 7.5: Flow chart of the hybrid algorithm, PSPE-CGA.
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1 2 3 

Figure 7.6: A 3-dimensional linear pathway with feedback.

values shown in Table 7.5. For this system, the efflux from X1 is identical to the influx into X2, and the

efflux from X2 is equal to the influx into X3. Hence, as shown in Table 7.5, the degradation term of X1 is the

same as the production term of X2, and the degradation term of X2 is exactly the same as the production

term of X3.

Ẋ1 = α1X
g13
3 − β1X

h11
1 ,

Ẋ2 = α2X
g21
1 − β2X

h22
2 ,

Ẋ3 = α3X
g32
2 − β3X

h33
3 .

(7.10)
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Figure 7.7: Trajectories of variables in (7.10).

Table 7.5: Values of parameters in 3-dimensional linear pathway.

i αi gi1 gi2 gi3 βi hi1 hi2 hi3

1 12 0 0 -0.8 10 0.5 0 0

2 10 0.5 0 0 3 0 0.75 0

3 3 0 0.75 0 5 0 0 0.5

For this 3-dimensional S-system, there are totally 24 parameters consisting of 6 positive rate constants,
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6 nonzero kinetic orders and 12 zero-value kinetic orders. A set of simulated noise-free time series data is

generated from (7.10) with the initial state x1 = 1.9, x2 = 0.9 and x3 = 3.0. The trajectories of the state

variables are plotted in Figure 7.7. Time t starts from 0 to 5 with the sampling interval ∆t = 0.1. These

three variables reach steady state at the end.

Table 7.6: Results from hybrid algorithm for 3-dimensional linear pathway.

i αi gi1 gi2 gi3 βi hi1 hi2 hi3

1 10.9658 0 0 -0.9686 8.8079 0.6078 0 0

2 9.0123 0.5882 0 0 2.1709 0 0.8886 0

3 2.9355 0 0.7573 0 4.9190 0 0 0.5044

We apply the hybrid algorithm to infer the S-system from these time series data. The parameters in the

algorithm are set as follows. Let θ = 0.001 and λ = 0.5. Set the population size Npop = 14, selection fraction

Ps = 0.5 and mutation probability Pm = 0.2. All the kinetic orders are searched in the interval [−1, 1]. When

using the Matlab function fmincon, we choose the interior-point method. The estimated results are shown in

Table 7.6. As shown in the results, all the non-zero kinetic order parameters are correctly recognized, that

is, the structure of the system is successfully identified. The value of the non-zeros parameters are close to

their true values and the final values of the optimized objective function (7.6) are less than 10−3.

Table 7.7: Results from the hybrid algorithm for the 4-dimensional S-system example.

i αi gi1 gi2 gi3 gi4 βi hi1 hi2 hi3 hi4

1 11.9723 0 0 -0.8032 0 9.9678 0.5018 0 0 0

2 8.0066 0.4994 0 0 0 3.0059 0 0.7491 0 0

3 3.0184 0 0.7466 0 0 5.0126 0 0 0.4970 0.1981

4 1.9990 0.5012 0 0 0 6.0013 0 0 0 0.8010

Example 4. In this example, we apply the hybrid algorithm to infer the 4-dimensional S-system (7.8) in

Example 1. Use the same time series data in Example 1 and set the threshold θ = 0.05, λ = 1, population size

Npop = 12, selection fraction Ps = 0.5, and mutation probability Pm = 0.2. Search the kinetic orders in the

interval [−2, 2] and choose interior-point method when using the Matlab fmincon function. The estimated

results are shown in Table 7.7. The results show that the structure of S-system is correctly identified and

the estimated values of non-zeros parameters are very close to their true values. The optimized objective

function (7.6) is less than 10−2.

7.5 Discussion

This paper aims at the inference of the S-system from time-series data, which is achieved through two phases:

First, the identification of its structure, that is, the recognization of zero or non-zero kinetic order parameters.

Second, with the identified structure, the values of non-zero parameters are further estimated. Obviously,

119



the structure identification is very important which is realized by the pruning strategy introduced in this

paper. The pruning strategy plays important roles in both PSPEA and the hybrid algorithm, PSPE-CGA.

To further investigate the effect of pruning strategy, we perform the following comparisons.

Since the main extension to SPEM in PSPEA is the implementation of the pruning strategy, In the

following, we employ the relative error defined in (7.11) and accuracy in (7.12) to compare the performances

of SPEM and PSPEA.

Let γ = [ΓT1 , . . . ,Γ
T
N , g

T
1 , . . . , g

T
N , h

T
1 , . . . , h

T
N ]T , which contains all the parameters of an S-system in a

vector. Then the relative estimation error is defined as follows:

error =
‖γest − γtrue‖2
‖γtrue‖2

(7.11)

where γest is the estimated parameter value and γtrue is the real parameter value.

Knowing the system structure is very important. Recall that the network structure is mapped onto the

S-system kinetic orders. The signs of kinetic orders reflect the relationships among the components in the

network. Therefore, the system structure identification can be achieved by studying the signs of kinetic orders.

Let r = [gT1 , . . . , g
T
N , h

T
1 , . . . , h

T
N ]T , which includes all the kinetic order parameters. The length of vector r

is 2N2. Suppose rtrue is true parameter value and rest is the estimated value. The structure identification

accuracy is defined as follows:

accuracy

=
#{1 ≤ i ≤ 2N2 : sign[rtrue(i)] = sign[rest(i)]}

2N2

(7.12)

where # represents the number of elements in the following set, rtrue(i) and rest(i) are the ith components

of vector rtrue and rest, respectively.

In the following, the effect of pruning strategy is studied from two aspects: the parameter estimation

error and structure identification accuracy. For comparison, both PSPEA and SPEM are applied to infer

the previous 4-dimensional S-system from the same simulated time series data as before. The initial value

for optimization process is still generated as (g0
1 ;h0

i ) = (gi;hi) + σε. σ changes from 0.1 to 1 with the step

length 0.1. For each value of σ, both methods run 100 times with various random initial guess values and

then 100 estimation results are obtained for each method. We compare the average estimation error and

average identification accuracy of each method with respect to a specific σ value. The results are plotted in

Figure 7.8 and 7.9.

The estimation errors are illustrated in Figure 7.8(a) and their boxplot is shown in Figure 7.9(a). It can

be seen that the proposed algorithm PSPEA has much lower estimation error, around 0.078, than the method

SPEM, around 0.576. Figure 7.8(b) shows the identification accuracy for each method and their boxplot is

also shown in Figure 7.9(b). PSPEA shows much higher identification accuracy, almost 100%, than SPEM,

around 55%. Therefore, the pruning strategy introduced in this paper can significantly reduce the estimation
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Figure 7.8: (a) Estimation error and (b) identification accuracy for each σ.
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Figure 7.9: Boxplot of (a) average estimation error and (b) average identification accuracy.
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error and improve the structure identification accuracy.

7.6 Conclusion

This paper aims to infer the biological S-system from time-series data without any structure information.

A novel algorithm called PSPEA is developed by combing a pruning strategy and the separable parameter

estimation method. The pruning strategy includes adding an `1 regularization term to the original objective

function and applying a threshold value to prune the solution in the optimization process. Using the separable

parameter estimation method can reduce the dimension of parameter searching space. There is no need to

provide initial values for rate constants. As examples, a 4-dimensional and a 5-dimensional S-systems have

been studied by our proposed algorithm. In each example, the system structure, that is, all zero-valued

parameters and the signs of the other non-zero parameters, has been exactly identified and the estimated

results of the non-zero parameters are very close to their true values. To improve the robustness to the initial

values, we developed a hybrid algorithm, PSPE-CGA, which embeds the main part of PSPEA into the frame

of CGA, so that the hybrid algorithm has the global-search properties of CGA and the local inference ability

of PSPEA. A 3-dimensional and a 4-dimensional S-systems are successfully inferred by the hybrid algorithm.

The effect of the pruning strategy has been studied from two aspects: the parameter estimation error and

structure identification accuracy. The results show that compared with the method SPEM, PSPEA with the

pruning strategy has much lower estimation error and much higher identification accuracy.

In the proposed algorithms, there are two parameters whose values are assigned by our experience. One

parameter is the scalar associated with `1 regularization term and the other is the pruning threshold. One

direction of the future work is to develop a method to determine the values of these two parameters. Another

direction of future work is to develop a method to infer the S-system from multiple datasets to improve the

inference accuracy.

Acknowledgments

This study is supported by Natural Science and Engineering Research Council of Canada (NSERC).

122



Chapter 8

Conclusions and Future Work

8.1 Overview and Conclusions

Reverse engineering of the GRNs from gene expression data is a challenging problem in systems biology. It

has broad applications in both research and practice. The difficulties come from the problem itself and the

limited information contained in the data. This thesis aims at approaching to the solution of the problem

with three objectives listed in Chapter 1. The works to achieve those objectives constitute the main context

of the thesis.

Chapter 2 provides a comprehensive review of the methods for reverse engineering of GRNs and accom-

plishes Objective 1. Based on the linear model, Chapter 3 studies the properties of two sparse penalties used

to infer GRNs from time-course gene expression data and Chapter 4 proposes a robust method to infer the

GRNs from multiple time-course data. These two chapters complete Objective 2. Objective 3 focuses on

inferring GRNs based on nonlinear models, specifically, S-systems. Due to the difficulty of the problem, It

has been divided into two specific objectives: (i) estimating the parameters with known system structure; (ii)

inferring the S-systems without knowing the system structure. Chapter 5 and Chapter 6 develop two methods

to estimate the parameters of S-systems from time-course data and thus fulfill the Objective 3(i). Chapter 7

proposes a method to globally infer the S-systems from time-course data and thus fulfills Objective 3(ii).

Therefore, all the objectives of this thesis are achieved.

In summary, the following works have been done and presented in this thesis:

• Reviewing and discussing current methods of reverse engineering of GRNs.

• Based on the linear model, analyzing the statistical properties of two penalties, adaptive LASSO and

SCAD, used for inferring GRNs from time-course gene expression data.

• Based on the linear model, developing a method to infer the GRNs from multiple time-course gene

expression datasets, which is also robust to the large noises and outliers.

• Developing methods to estimate the parameters in S-systems from time-course data with the system

structure known.

• Developing methods to infer the S-systems from time-course data without knowing the system structure.
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The following conclusions can be drawn from the research results:

• Reverse engineering of GRNs from biological data is an extremely difficult problem. Each method has

its advantages and disadvantages. The results from all methods have limited accuracy because of the

limited information in the data. Robust methods that use prior biological knowledge and other source

of information should be developed.

• Based on the linear model, the adaptive LASSO and SCAD penalties have the “oracle properties” and

therefore can asymptotically reconstruct the GRNs from time-course gene expression data.

• Based on the linear model, the developed method, Huber group LASSO, can effectively infer the GRNs

from multiple time-course gene expression datasets and is robust to large errors and outliers in the

data. The convergence of the proposed inference algorithm is mathematically proved.

• The developed method, alternating weighted least squares (AWLS), for estimating parameters of S-

system from time-course data is derived from a clear optimization objective function, takes advantage

of the special form of the model and outperforms the existing method, alternating regression (AR),

significantly.

• The developed method, auxiliary function guided coordinate descent (AFGCD), estimates the param-

eters of S-systems from time-course data in an efficient way and its convergence is mathematically

guaranteed.

• The developed method, pruning separable parameter estimation algorithm (PSPEA), can locally infer

the S-system from time-course data. The hybrid algorithm which combines PSPEA and the continuous

genetic algorithm (CGA) can globally infer the S-systems.

8.2 Contributions

Briefly, this thesis has advanced the reverse engineering of GRNs by providing a comprehensive review,

developing novel methods based on linear and nonlinear models. The specific contributions of the thesis are

summarized as follows:

• A comprehensive review of the mainstream methods for GRN reconstruction has been provided. It has

analyzed the major challenges of the problem and discussed the pros and cons of each method.

• A theoretical foundation has been provided for the methods using adaptive LASSO or SCAD penalties

based on the linear model to infer the GRNs from time-course data. With this foundation, these

methods and their extensions are promising to succeed in GRN inference.

• A method which is able to integrate multiple time-course gene expression datasets to infer the GRNs

and is robust to large errors and outliers has been developed in the thesis. The convergence analysis of

the inference algorithm has also been provided.
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• A method, AWLS, which takes advantage of the special form of S-systems model, has been developed

to estimate the parameters of S-systems from time-course data. It outperforms the existing method,

AR, significantly.

• A method, AFGCD, which utilizes the auxiliary function and coordinate descent techniques, has been

developed to estimate the parameters of S-systems from time-course data. The convergence of this

method is mathematically guaranteed.

• A novel method, PSPEA, has been developed to locally infer the S-system without knowing the system

structure. This method has also been combined with CGA to form a hybrid algorithm which can

globally infer the S-system from time-course data.

8.3 Future Work

The methods developed in this thesis have some limitations. First, only the time-course gene expression data

are used in the study. As the information contained in the gene expression data is very limited, the accuracy

of the methods is still not very high. Second, because of the nonlinearity of real biological systems, the linear

models should be extended such that they can capture the nonlinear behaviors of the system to a certain

degree. Third, the method developed in this study for the inference of S-systems can only be applied to

relatively small networks. The method is too slow for very large networks. Fourth, the system structure is

assumed to remain the same during the period the time-course data are collected. However, since the GRNs

are dynamic systems, its system structure may happen to change during the experiments.

To overcome these limitations, some directions of future work along this study are listed below:

(1) Since the information in gene expression data is limited, to improve the inference accuracy, other source

of information should be incorporated into the methods. One source of the information is the prior

biological knowledge. In this thesis, the sparseness of the GRN is the most important prior knowledge

and also constraint used in the methods. Other knowledge, such as the scale-free property of the GRN,

could be able to improve the quality of the inferred network. Another source is various other types of

biological data. For example, in protein protein interaction (PPI) data, if there exists a link between two

proteins, it has a high probability that these two proteins form a complex and therefore the corresponding

two genes tend to regulate the same target gene.

(2) Although methods based on linear models can be applied to large networks, the real biological system

is nonlinear and cannot be well approximated by linear models. Some extensions to the linear models

may be considered and lead to nonlinear models which are not as complex as models such as S-systems

and can still be applied to large networks by using similar techniques for linear models. For example,

the regulation from one gene to the target gene can be modeled by nonlinear function while effects from

different regulatory genes are additive.
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(3) In this thesis, the AFGCD method has been developed to estimate the parameters in S-systems with the

system structure known. This method could be extended to infer the S-systems without knowing the

system structure by utilizing the sparse penalties. The extended method may be efficient enough to be

applied to relatively large networks.

(4) Considering the system structure may change during the experiments, models that can describe the

structures switching can be used to infer and detect the changing behaviors of the system. The piecewise

linear function could be a good candidate while the inference of changing point is challenging.

(5) The methods developed in this thesis could be extended to other relevant biological studies, such as drug

target predication and repositioning, genome-wide association study (GWAS) and expression quantitative

trait loci (eQTL) mapping.
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