146 research outputs found

    Optimisation of relay placement in wireless butterfly networks

    Get PDF
    As a typical model of multicast network, wireless butterfly networks (WBNs) have been studied for modelling the scenario when two source nodes wish to convey data to two destination nodes via an intermediary node namely relay node. In the context of wireless communications, when receiving two data packets from the two source nodes, the relay node can employ either physical-layer network coding or analogue network coding on the combined packet prior to forwarding to the two destination nodes. Evaluating the energy efficiency of these combination approaches, energy-delay trade-off (EDT) is worth to be investigated and the relay placement should be taken into account in the practical network design. This chapter will first investigate the EDT of network coding in the WBNs. Based on the derived EDT, algorithms that optimize the relay position will be developed to either minimize the transmission delay or minimize the energy consumption subject to constraints on power allocation and location of nodes. Furthermore, considering an extended model of the WBN, the relay placement will be studied for a general wireless multicast network with multiple source, relay and destination nodes

    Performance evaluation of decode and forward cooperative diversity systems over nakagami-m fading channels with non-identical interferers

    Get PDF
    The deficiencies of regular cooperative relaying schemes were the main reason behind the development of Incremental Relaying (IR). Fixed relaying is one of the regular cooperative relaying schemes and it relies on using the relay node to help in transmitting the signal of the source towards the destination despite the channel’s condition. However, adaptive relaying methods allocate the channel resources efficiently; thus, such methods have drawn the attention of researchers in recent years. In this study, we analyze a two-hop Decode-and-Forward (DF) IR system’s performance via Nakagami-m fading channels with the existence of the several L distinguishable interferers placed close to the destination which diminishes the overall performance of the system due to the co-channel interference. Tight formulas for the Bit Error Rate (BER) and the Outage Probability (OP) are drawn. The assumptions are consolidated by numerical calculations

    Performance analysis of diversity techniques in wireless communication systems: Cooperative systems with CCI and MIMO-OFDM systems

    Get PDF
    This Dissertation analyzes the performance of ecient digital commu- nication systems, the performance analysis includes the bit error rate (BER) of dier- ent binary and M-ary modulation schemes, and the average channel capacity (ACC) under dierent adaptive transmission protocols, namely, the simultaneous power and rate adaptation protocol (OPRA), the optimal rate with xed power protocol (ORA), the channel inversion with xed rate protocol (CIFR), and the truncated channel in- version with xed transmit power protocol (CTIFR). In this dissertation, BER and ACC performance of interference-limited dual-hop decode-and-forward (DF) relay- ing cooperative systems with co-channel interference (CCI) at both the relay and destination nodes is analyzed in small-scale multipath Nakagami-m fading channels with arbitrary (integer as well as non-integer) values of m. This channel condition is assumed for both the desired signal as well as co-channel interfering signals. In addition, the practical case of unequal average fading powers between the two hops is assumed in the analysis. The analysis assumes an arbitrary number of indepen- dent and non-identically distributed (i.n.i.d.) interfering signals at both relay (R) and destination (D) nodes. Also, the work extended to the case when the receiver employs the maximum ratio combining (MRC) and the equal gain combining (EGC) schemes to exploit the diversity gain

    POWER ALLOCATION ALGORITHM FOR MIMO BASED MULTI-HOP COOPERATIVE SENSOR NETWORK

    Get PDF
    Cooperative transmission is a new breed of wireless communication systems that enables the cooperating node in a wireless sensor network to share their radio resources by employing a distributed transmission and processing operation. This new technique offers substantial spatial diversity gains as the cooperating nodes help one another to send data over several independent paths to the destination node. In recent times, an extensive effort has been made to incorporate these systems in the future wireless networks like LTE (Long Term Evolution), IEEE 802.16j (Mobile Multi-hop Relay (MMR) Networks) and IEEE 802.16m (Mobile WiMAX Release 2 or WirelessMAN-Advanced). But, there are few technical issues which need to be addressed before this promising technique is integrated into future wireless networks. Among them, managing transmission power is a critical issue, which needs to be resolved to fully exploit the benefits of cooperative relaying. Optimal Power Allocation, is one such technique that optimally distributes the total transmission power between the source and relaying nodes thus saving a lot of power while maintaining the link quality. In the first part of the thesis, mathematical expressions of the received signals have been derived for different phases of cooperative transmission. Average-Bit-error-rate (ABER), has been taken as a performance metric to show the efficiency of cooperative relaying protocols. In the second part of this Chapter, a multi-hop framework has been presented for the power allocation algorithm with Amplify-and-Forward relaying protocol. The efficiency of the power allocation algorithm has been discussed with different scenarios i.e. First for a three node (2-Hop) wireless network configuration and then for a four node (3-Hop) wireless network configuration. The transmission scenarios (2-Hop and 3-Hop) have been further categorized into multiple cases on the basis of channel quality between source-to-destination, source-to-relay, relay-to-relay and relay-to-destination links.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    User Cooperation in TDMA Wireless System

    Get PDF
    Abstract: Reliability of radio link is limited, owing to path loss, shadowing and multi-path fading. This necessitates the use of a certain type of diversity. In recent years, cooperative diversity has gained considerable attention. Here, wireless nodes cooperate in such a way that they share their antennas and other resources, to create a virtual array through distributed transmission and signal processing. This increases coverage and reduces transmitted power, thereby bringing down co-channel interference, which results in increased system capacity. This paper gives an overview of the state of art of various cooperation schemes and issues related to their implementation

    On the Diversity Order and Coding Gain of Multi-Source Multi-Relay Cooperative Wireless Networks with Binary Network Coding

    Full text link
    In this paper, a multi-source multi-relay cooperative wireless network with binary modulation and binary network coding is studied. The system model encompasses: i) a demodulate-and-forward protocol at the relays, where the received packets are forwarded regardless of their reliability; and ii) a maximum-likelihood optimum demodulator at the destination, which accounts for possible demodulations errors at the relays. An asymptotically-tight and closed-form expression of the end-to-end error probability is derived, which clearly showcases diversity order and coding gain of each source. Unlike other papers available in the literature, the proposed framework has three main distinguishable features: i) it is useful for general network topologies and arbitrary binary encoding vectors; ii) it shows how network code and two-hop forwarding protocol affect diversity order and coding gain; and ii) it accounts for realistic fading channels and demodulation errors at the relays. The framework provides three main conclusions: i) each source achieves a diversity order equal to the separation vector of the network code; ii) the coding gain of each source decreases with the number of mixed packets at the relays; and iii) if the destination cannot take into account demodulation errors at the relays, it loses approximately half of the diversity order.Comment: 35 pages, submitted as a Journal Pape

    Cooperative diversity techniques for high-throughput wireless relay networks

    Get PDF
    Relay communications has attracted a growing interest in wireless communications with application to various enhanced technologies. This thesis considers a number of issues related to data throughput in various wireless relay network models. Particularly, new implementations of network coding (NC) and space-time coding (STC) techniques are investigated to offer various means of achieving high-throughput relay communications. Firstly, this thesis investigates different practical automatic repeat request (ARQ) retransmission protocols based on NC for two-way wireless relay networks to improve throughput efficiency. Two improved NC-based ARQ schemes are designed based on go-back-N and selective-repeat (SR) protocols. Addressing ARQ issues in multisource multidestination relay networks, a new NC-based ARQ protocol is proposed and two packet-combination algorithms are developed for retransmissions at relay and sources to significantly improve the throughput. In relation to the concept of channel quality indicator (CQI) reporting in two-way relay networks, two new efficient CQI reporting schemes are designed based on NC to improve the system throughput by allowing two terminals to simultaneously estimate the CQI of the distant terminal-relay link without incurring additional overhead. The transmission time for CQI feedback at the relays is reduced by half while the increase in complexity and the loss of performance are shown to be negligible. Furthermore, a low-complexity relay selection scheme is suggested to reduce the relay searching complexity. For the acknowledgment (ACK) process, this thesis proposes a new block ACK scheme based on NC to significantly reduce the ACK overheads and therefore produce an enhanced throughput. The proposed scheme is also shown to improve the reliability of block ACK transmission and reduce the number of data retransmissions for a higher system throughput. Additionally, this thesis presents a new cooperative retransmission scheme based on relay cooperation and NC to considerably reduce the number of retransmission packets and im- prove the reliability of retransmissions for a more power efficient and higher throughput system with non-overlapped retransmissions. Moreover, two relay selection schemes are recommended to determine the optimised number of relays for the retransmission. Finally, with respect to cognitive wireless relay networks (CWRNs), this thesis proposes a new cooperative spectrum sensing (CSS) scheme to improve the spectrum sensing performance and design a new CSS scheme based on NC for three-hop CWRNs to improve system throughput. Furthermore, a new distributed space-time-frequency block code (DSTFBC) is designed for a two- hop nonregenerative CWRN over frequency-selective fading channels. The proposed DSTFBC design achieves higher data rate, spatial diversity gain, and decoupling detection of data blocks at all destination nodes with a low-complexity receiver structure
    • …
    corecore