74 research outputs found

    Model Revision from Temporal Logic Properties in Computational Systems Biology

    Get PDF
    International audienceSystems biologists build models of bio-molecular processes from knowledge acquired both at the gene and protein levels, and at the phenotype level through experiments done in wildlife and mutated organisms. In this chapter, we present qualitative and quantitative logic learning tools, and illustrate how they can be useful to the modeler. We focus on biochemical reaction models written in the Systems Biology Markup Language SBML, and interpreted in the Biochemical Abstract Machine BIOCHAM. We first present a model revision algorithm for inferring reaction rules from biological properties expressed in temporal logic. Then we discuss the representations of kinetic models with ordinary differential equations (ODEs) and with stochastic logic programs (SLPs), and describe a parameter search algorithm for finding parameter values satisfying quantitative temporal properties. These methods are illustrated by a simple model of the cell cycle control, and by an application to the modelling of the conditions of synchronization in period of the cell cycle by the circadian cycle

    ANALYSIS OF BIOPATHWAY MODELS USING PARALLEL ARCHITECTURES

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    ANALYSIS OF BIOPATHWAY MODELS USING PARALLEL ARCHITECTURES

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Petri nets for systems and synthetic biology

    Get PDF
    We give a description of a Petri net-based framework for modelling and analysing biochemical pathways, which uni¯es the qualita- tive, stochastic and continuous paradigms. Each perspective adds its con- tribution to the understanding of the system, thus the three approaches do not compete, but complement each other. We illustrate our approach by applying it to an extended model of the three stage cascade, which forms the core of the ERK signal transduction pathway. Consequently our focus is on transient behaviour analysis. We demonstrate how quali- tative descriptions are abstractions over stochastic or continuous descrip- tions, and show that the stochastic and continuous models approximate each other. Although our framework is based on Petri nets, it can be applied more widely to other formalisms which are used to model and analyse biochemical networks

    2013 Conference Abstracts: Annual Undergraduate Research Conference at the Interface of Biology and Mathematics

    Get PDF
    URC Schedule and Abstract Book for the Fifth Annual Undergraduate Research Conference at the Interface of Biology and Mathematics Date: November 16-17, 2013Plenary Speaker: Mariel Vazquez, Associate Professor of Mathematics at San Francisco State UniversityFeatured Speaker: Andrew Liebhold, Research Entomologist for the USDA Forest Servic

    Annotated Bibliography: Anticipation

    Get PDF

    Formal methods applied to the analysis of phylogenies: Phylogenetic model checking

    Get PDF
    Los árboles filogenéticos son abstracciones útiles para modelar y caracterizar la evolución de un conjunto de especies o poblaciones respecto del tiempo. La proposición, verificación y generalización de hipótesis sobre un árbol filogenético inferido juegan un papel importante en el estudio y comprensión de las relaciones evolutivas. Actualmente, uno de los principales objetivos científicos es extraer o descubrir los mensajes biológicos implícitos y las propiedades estructurales subyacentes en la filogenia. Por ejemplo, la integración de información genética en una filogenia ayuda al descubrimiento de genes conservados en todo o parte del árbol, la identificación de posiciones covariantes en el ADN o la estimación de las fechas de divergencia entre especies. Consecuentemente, los árboles ayudan a comprender el mecanismo que gobierna la deriva evolutiva. Hoy en día, el amplio espectro de métodos y herramientas heterogéneas para el análisis de filogenias enturbia y dificulta su utilización, además del fuerte acoplamiento entre la especificación de propiedades y los algoritmos utilizados para su evaluación (principalmente scripts ad hoc). Este problema es el punto de arranque de esta tesis, donde se analiza como solución la posibilidad de introducir un entorno formal de verificación de hipótesis que, de manera automática y modular, estudie la veracidad de dichas propiedades definidas en un lenguaje genérico e independiente (en una lógica formal asociada) sobre uno de los múltiples softwares preparados para ello. La contribución principal de la tesis es la propuesta de un marco formal para la descripción, verificación y manipulación de relaciones causales entre especies de forma independiente del código utilizado para su valoración. Para ello, exploramos las características de las técnicas de model checking, un paradigma en el que una especificación expresada en lógica temporal se verifica con respecto a un modelo del sistema que representa una implementación a un cierto nivel de detalle. Se ha aplicado satisfactoriamente en la industria para el modelado de sistemas y su verificación, emergiendo del ámbito de las ciencias de la computación. Las contribuciones concretas de la tesis han sido: A) La identificación e interpretación de los árboles filogeneticos como modelos de la evolución, adaptados al entorno de las técnicas de model checking. B) La definición de una lógica temporal que captura las propiedades filogenéticas habituales junto con un método de construcción de propiedades. C) La clasificación de propiedades filogenéticas, identificando categorías de propiedades según estén centradas en la estructura del árbol, en las secuencias o sean híbridas. D) La extensión de las lógicas y modelos para contemplar propiedades cuantitativas de tiempo, probabilidad y de distancias. E) El desarrollo de un entorno para la verificación de propiedades booleanas, cuantitativas y paramétricas. F) El establecimiento de los principios para la manipulación simbolica de objetos filogenéticos, p. ej., clados. G) La explotación de las herramientas de model checking existentes, detectando sus problemas y carencias en el campo de filogenia y proponiendo mejoras. H) El desarrollo de técnicas "ad hoc" para obtener ganancia de complejidad alrededor de dos frentes: distribución de los cálculos y datos, y el uso de sistemas de información. Los puntos A-F se centran en las aportaciones conceptuales de nuestra aproximación, mientras que los puntos G-H enfatizan la parte de herramientas e implementación. Los contenidos de la tesis están contrastados por la comunidad científica mediante las siguientes publicaciones en conferencias y revistas internacionales. La introducción de model checking como entorno formal para analizar propiedades biológicas (puntos A-C) ha llevado a la publicación de nuestro primer artículo de congreso [1]. En [2], desarrollamos la verificación de hipótesis filogenéticas sobre un árbol de ejemplo construido a partir de las relaciones impuestas por un conjunto de proteínas codificadas por el ADN mitocondrial humano (ADNmt). En ese ejemplo, usamos una herramienta automática y genérica de model checking (punto G). El artículo de revista [7] resume lo básico de los artículos de congreso previos y extiende la aplicación de lógicas temporales a propiedades filogenéticas no consideradas hasta ahora. Los artículos citados aquí engloban los contenidos presentados en las Parte I--II de la tesis. El enorme tamaño de los árboles y la considerable cantidad de información asociada a los estados (p.ej., la cadena de ADN) obligan a la introducción de adaptaciones especiales en las herramientas de model checking para mantener un rendimiento razonable en la verificación de propiedades y aliviar también el problema de la explosión de estados (puntos G-H). El artículo de congreso [3] presenta las ventajas de rebanar el ADN asociado a los estados, la partición de la filogenia en pequeños subárboles y su distribución entre varias máquinas. Además, la idea original del model checking rebanado se complementa con la inclusión de una base de datos externa para el almacenamiento de secuencias. El artículo de revista [4] reúne las nociones introducidas en [3] junto con la implementación y resultados preliminares presentados [5]. Este tema se corresponde con lo presentado en la Parte III de la tesis. Para terminar, la tesis reaprovecha las extensiones de las lógicas temporales con tiempo explícito y probabilidades a fin de manipular e interrogar al árbol sobre información cuantitativa. El artículo de congreso [6] ejemplifica la necesidad de introducir probabilidades y tiempo discreto para el análisis filogenético de un fenotipo real, en este caso, el ratio de distribución de la intolerancia a la lactosa entre diversas poblaciones arraigadas en las hojas de la filogenia. Esto se corresponde con el Capítulo 13, que queda englobado dentro de las Partes IV--V. Las Partes IV--V completan los conceptos presentados en ese artículo de conferencia hacia otros dominios de aplicación, como la puntuación de árboles, y tiempo continuo (puntos E-F). La introducción de parámetros en las hipótesis filogenéticas se plantea como trabajo futuro. Referencias [1] Roberto Blanco, Gregorio de Miguel Casado, José Ignacio Requeno, and José Manuel Colom. Temporal logics for phylogenetic analysis via model checking. In Proceedings IEEE International Workshop on Mining and Management of Biological and Health Data, pages 152-157. IEEE, 2010. [2] José Ignacio Requeno, Roberto Blanco, Gregorio de Miguel Casado, and José Manuel Colom. Phylogenetic analysis using an SMV tool. In Miguel P. Rocha, Juan M. Corchado Rodríguez, Florentino Fdez-Riverola, and Alfonso Valencia, editors, Proceedings 5th International Conference on Practical Applications of Computational Biology and Bioinformatics, volume 93 of Advances in Intelligent and Soft Computing, pages 167-174. Springer, Berlin, 2011. [3] José Ignacio Requeno, Roberto Blanco, Gregorio de Miguel Casado, and José Manuel Colom. Sliced model checking for phylogenetic analysis. In Miguel P. Rocha, Nicholas Luscombe, Florentino Fdez-Riverola, and Juan M. Corchado Rodríguez, editors, Proocedings 6th International Conference on Practical Applications of Computational Biology and Bioinformatics, volume 154 of Advances in Intelligent and Soft Computing, pages 95-103. Springer, Berlin, 2012. [4] José Ignacio Requeno and José Manuel Colom. Model checking software for phylogenetic trees using distribution and database methods. Journal of Integrative Bioinformatics, 10(3):229-233, 2013. [5] José Ignacio Requeno and José Manuel Colom. Speeding up phylogenetic model checking. In Mohd Saberi Mohamad, Loris Nanni, Miguel P. Rocha, and Florentino Fdez-Riverola, editors, Proceedings 7th International Conference on Practical Applications of Computational Biology and Bioinformatics, volume 222 of Advances in Intelligent Systems and Computing, pages 119-126. Springer, Berlin, 2013. [6] José Ignacio Requeno and José Manuel Colom. Timed and probabilistic model checking over phylogenetic trees. In Miguel P. Rocha et al., editors, Proceedings 8th International Conference on Practical Applications of Computational Biology and Bioinformatics, Advances in Intelligent and Soft Computing. Springer, Berlin, 2014. [7] José Ignacio Requeno, Gregorio de Miguel Casado, Roberto Blanco, and José Manuel Colom. Temporal logics for phylogenetic analysis via model checking. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 10(4):1058-1070, 2013

    A Theory of Cortical Neural Processing.

    Get PDF
    This dissertation puts forth an original theory of cortical neural processing that is unique in its view of the interplay of chaotic and stable oscillatory neurodynamics and is meant to stimulate new ideas in artificial neural network modeling. Our theory is the first to suggest two new purposes for chaotic neurodynamics: (i) as a natural means of representing the uncertainty in the outcome of performed tasks, such as memory retrieval or classification, and (ii) as an automatic way of producing an economic representation of distributed information. We developed new models, to better understand how the cerebral cortex processes information, which led to our theory. Common to these models is a neuron interaction function that alternates between excitatory and inhibitory neighborhoods. Our theory allows characteristics of the input environment to influence the structural development of the cortex. We view low intensity chaotic activity as the a priori uncertain base condition of the cortex, resulting from the interaction of a multitude of stronger potential responses. Data, distinguishing one response from many others, drives bifurcations back toward the direction of less complex (stable) behavior. Stability appears as temporary bubble-like clusters within the boundaries of cortical columns and begins to propagate through frequency sensitive and non-specific neurons. But this is limited by destabilizing long-path connections. An original model of the post-natal development of ocular dominance columns in the striate cortex is presented and compared to autoradiographic images from the literature with good matching results. Finally, experiments are shown to favor computed update order over traditional approaches for better performance of the pattern completion process

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp
    corecore