
A N A LY S I S O F B I O - PAT H WAY M O D E L S

U S I N G PA R A L L E L A R C H I T E C T U R E S

R . R A M A N AT H A N

(B . E .)

A T H E S I S S U B M I T T E D F O R T H E D E G R E E

O F

D O C T O R O F P H I L O S O P H Y

D E PA RT M E N T O F C O M P U T E R S C I E N C E

N AT I O N A L U N I V E R S I T Y O F S I N G A P O R E

2 0 1 7

S U P E RV I S O R S :

A S S O C I AT E P R O F E S S O R W O N G W E N G FA I

P R O F E S S O R P. S . T H I A G A R A J A N

E X A M I N E R S :

P R O F E S S O R D O N G J I N S O N G

A S S O C I AT E P R O F E S S O R H E B I N G S H E N G

D R . O D E D M A L E R , V E R I M A G

D E C L A R AT I O N

I hereby declare that this thesis is my original work and it has been

written by me in its entirety. I have duly acknowledged all the sources

of information which have been used in the thesis.

This thesis has also not been submitted for any degree in any univer-

sity previously.

Singapore, March 31st, 2017

R. Ramanathan

A C K N O W L E D G M E N T S

First and foremost, I would like to thank Professor P. S. Thiagarajan and

Professor Wong Weng Fai, my supervisors.

I am deeply indebted to Professor Thiagarajan for his patient men-

torship and support throughout my time in NUS. Besides research, I

also imbibed how to write and present to an audience from him. I am

grateful to Professor Weng Fai for constantly motivating me and involv-

ing me in a number of projects right from my first year. I thank him

for offering invaluable guidance and generous support during the later

stages of my Ph.D. studies.

I want to thank Professors Dong Jin Song, Sung Wing Kin and Bing-

sheng He for serving on my thesis advisory committee and their feed-

back during the thesis proposal exam.

My sincere thanks to Soumya Paul for mentoring me and the many

hours of discussions we had. I owe much gratitude to Yan Zhang for

the encouragement and candid feedback on my ideas. Special thanks to

the former members of the lab: Andrei, Sucheendra, Benjamin and Liu

Bing. I learnt a lot from them. I would also like to thank Zhou Jun and

wish him well for the future.

Life during my graduate education at School of Computing has been

an enriching experience and I am thankful to all the people who made

it possible.

Jing Quan, Charlie and Ratul have been great friends. I wish to thank

Kaveh, Lavanya, Akshay and Muthu. They will always inspire me. I en-

joyed the numerous meetings I have had with Yogesh, Vanchi, Elavarasi

and Sumanan.

v

I consider myself very fortunate to have great people around in the

lab: Peiyong, Haojun, Chern Han, Hoang, Narmada, Chandana, Bora,

Kevin, Zhizhou, Mengyuan, Wilson, Yujing, Junqi, Ramesh, Luyu, Bingxin,

Abha, Iana, Stefano, Meng Ge, Zhiqiang, Qiangwei and Bokui.

Special thanks to Enrico, Lahiru, Shalinda, Abhijeet, Prasanta, Pooja,

Lakshminarasimhan, Anuja, Paramasiven, Parvathy, Yamilet, Malay Singh,

Malai, Minh, Suhendry, Sergey, Shin Hwei, Ankit, Marcel, Inian, Pham

Khanh, Zhang Peng and Rajendra Prasad.

Finally, none of this would have been possible without Shantha paati,

Srimani chithi, Suba chithi and Ganesh mama, who make me who I am

and offer their unconditional support and love.

vi

C O N T E N T S

1 introduction 1

1.1 Context and motivation . 1

1.2 Research contributions . 4

1.3 Outline of the thesis . 5

1.4 Declaration . 6

2 preliminaries 7

2.1 Graphics processing units 7

2.1.1 GPGPUs . 8

2.1.2 GPU programming model 8

2.2 Modelling of bio-pathways as ODEs systems 10

2.2.1 Ordinary Differential Equations systems 11

2.2.2 C1 continuity and measure theory 14

2.2.3 ODEs and flows . 15

2.3 Probabilistic dynamical models 16

2.3.1 Markov chains . 16

2.3.2 Dynamic Bayesian networks 16

2.4 Logical background . 18

2.4.1 Linear temporal logic 19

2.4.2 Bounded linear-time temporal logic 20

2.4.3 Probabilistic model checking 21

2.5 Hybrid systems . 22

2.5.1 Modelling of hybrid systems 23

3 dbn approximation based verification of odes 25

3.1 DBN approximation of a system of ODEs 25

vii

3.1.1 The DBN structure 27

3.1.2 Related work . 29

3.2 GPU implementation of the approximation 30

3.2.1 The GPU computation pipeline 31

3.2.2 The heterogeneous code generation framework . . 33

3.2.3 Mapping to the GPU architecture 39

3.3 Results . 44

3.4 Summary . 50

4 statistical model checking based analysis of odes

systems 53

4.1 Overview . 54

4.2 ODEs and trajectories . 55

4.3 Statistical model checking of ODEs dynamics 57

4.3.1 Bounded linear-time temporal logic 57

4.3.2 Statistical model checking of PBLTL formulas . . . 60

4.4 Parameter estimation . 61

4.4.1 Parameter estimation based on PBLTL specification 62

4.5 Summary . 64

5 a gpu based implementation of the smc procedure

for odes systems 65

5.1 Overview . 66

5.1.1 Related work . 68

5.2 Online statistical model checking procedure 69

5.2.1 Automaton-based BLTL path checking 70

5.3 Mapping to the GPU platform 73

5.3.1 Parallelized parameter estimation based on PBLTL

formulas . 77

5.4 Experimental evaluation . 77

viii

5.4.1 Case studies: Property verification 78

5.4.2 Case studies: Parameter estimation 80

5.4.3 Performance . 81

5.5 Summary . 84

6 statistical model checking of hybrid systems 85

6.1 Overview . 86

6.1.1 Assumptions . 86

6.1.2 Related work . 89

6.2 Hybrid automata . 91

6.2.1 Trajectories . 92

6.3 The Markov chain approximation 93

6.4 Relating the behaviours of H and MH 98

6.4.1 The correspondence result 100

6.4.2 Quantitative atomic propositions 102

6.5 Statistical model checking of hybrid systems 102

6.5.1 The SMC procedure 103

6.6 The GPU implementation 108

6.7 Case studies . 109

6.7.1 Cardiac cell model 110

6.7.2 Circadian rhythm model 113

6.8 Performance . 116

6.9 Summary . 118

7 conclusion 119

7.1 Future work . 121

bibliography 125

a appendix 141

a.1 Quantitative specifications 141

ix

a.1.1 The two semantics 142

a.1.2 The correspondence result 143

a.1.3 Trajectory simulation for quantitative specifications 149

a.2 Performance of the hybrid system sampling algorithm . . 150

x

S U M M A RY

We study models of bio-pathways that arise in systems biology.

Often a bio-pathway can be viewed as a network of bio-chemical re-

actions. One can then model the network as a dynamical system. In this

thesis, we explore two classes of such models, namely, a single system

of ordinary differential equations and hybrid dynamical systems.

Hybrid systems are multi-mode dynamical systems which evolve over

continuous time. The dynamics in each mode is governed by a mode-

specific system of differential equations and at discrete instances there

can be instantaneous jumps between modes depending typically on the

current continuous state.

Both these models —especially when used in systems biology context—

are difficult to analyze and the analysis methods one develops are usu-

ally computationally intensive and hence difficult to scale. With this as

motivation, we broadly explore the twin themes of

(i) Probabilistic approximations of ODEs systems and hybrid systems

accompanied by a probabilistic verification technique known as

statistical model checking,

(ii) GPU based implementations of the SMC procedures and the re-

lated analysis techniques.

In the first part of the thesis, we consider single systems of ODEs. We

first recall a previously developed approximation technique in which a

system of ODEs is first approximated as a dynamic Bayesian network

(DBN). We show how the construction of the DBN can be parallelized

via a GPU implementation.

xi

Next we present a parallelized statistical model checking (SMC) based

analysis method for ODEs systems. The core component of this tech-

nique is an online procedure for verifying whether a numerically gen-

erated trajectory of a model satisfies a dynamical property. We then

show how this method can be applied to parameter estimation of bio-

pathways to achieve significant performance improvement.

The next part of the thesis focuses on analysis of hybrid systems. We

assume that the probability of making a mode transition is proportional

to the measure of the set of pairs of time points and value states at

which the mode transition is enabled. Based on this, we develop a prob-

abilistic approximation scheme in which the hybrid system can be ap-

proximated as a discrete-time Markov chain. However, it is not compu-

tationally feasible to compute this Markov chain for high-dimensional

systems. Hence we construct a simulation based method for sampling

the paths of the Markov chain and carrying out SMC based verifica-

tion. This probabilistic approximation scheme is then parallelized using

a GPU implementation.

We have applied our methods to a number of realistic models. The

results indicate that our approximation schemes scale well and can be

applied in a number of different settings.

xii

L I S T O F TA B L E S

Table 1 Characteristics of the models 46

Table 2 Performance of the proposed approach compared

to a homogeneous GPU implementation 48

Table 3 Execution configuration, register, and SM usage

of the models . 48

Table 4 Benefit of heterogeneous groups and specialized

memory threads . 49

Table 5 Overall speed-up due to thread balancing 49

Table 6 Parameter estimation setup and model specifica-

tions . 81

Table 7 Performance of our scheme across different archi-

tectures (∗Estimated values based on shorter runs) 83

Table 8 Strong scaling performance of the cloud based

implementation . 83

Table 9 Parameter values of the cardiac model for epicar-

dial (EPI), endocardial (ENDO), and midmyocar-

dial (MID) cells under healthy condition 110

Table 10 The 5 mode indicator variables and their associated

guard components (top). The 16 modes of the cir-

cadian clock model with the corresponding com-

bination of binary mode indicator variables (bot-

tom). 115

Table 11 Results summary of SMC for hybrid systems . . . 117

xiii

Table 12 Peformance of the GPU implementation for prop-

erties which were verified to be true 117

xiv

L I S T O F F I G U R E S

Figure 1 Simplified GPU memory architecture 9

Figure 2 CUDA thread hierarchy 10

Figure 3 Encoding the ligand-receptor-kinase-substrate path-

way as an ODEs system [1] 13

Figure 4 Example of a dynamic Bayesian network 18

Figure 5 A two-state thermostat hybrid system 23

Figure 6 (a) Enzyme catalytic reaction network (b) ODEs

model (c) Dynamic Bayesian network 28

Figure 7 Computation steps of a trajectory showing the

Runge-Kutta integration step 32

Figure 8 Data movement in a single simulation step 40

Figure 9 Concurrent execution of trajectories inside an SM 43

Figure 10 The reaction network diagram of the EGF-NGF

pathway [2] . 45

Figure 11 Performance characterization of the proposed het-

erogeneous scheme (left-side graph for each model)

versus the homogeneous approach (right-side graph)

on Tesla 2.0 S2050 50

Figure 12 Automaton for the nested BLTL formula F≤k0G≤`0 p 73

Figure 13 Lock step execution of the numerical integration

and the symbolic BLTL automata 75

Figure 14 Parameter estimation of the thrombin pathway,

showing model fit to (a) training data and (b) test

data. 81

xv

Figure 15 Parameter estimation of the EGF-NGF pathway,

showing fit to (a) training data and (b) test data. . 82

Figure 16 Parameter estimation of the segmentation clock

pathway, showing fit to (a) training data and (b)

test data. 82

Figure 17 Comparison of CPU and GPU runtimes on pa-

rameter estimation with different combinations

of SPRT parameters (error bounds α = β, in-

difference region δ and probability threshold r).

∗Estimated values based on shorter runs 82

Figure 18 The Markov chain construction. The edge from

the state (ρ, X, PX) to the state (ρqm, Xm, PXm) marked

with a ‘×’ represents the case where Xm has mea-

sure 0, and hence the probability of this transition

is 0. Thus, (ρqm, Xm, PXm) will not be a state of the

Markov chain. 94

Figure 19 Propagating a single value v ∈ X to v′ ∈ Xj when

taking the transition q→ qj at time t ∈ Tj(v). . . . 106

Figure 20 The hybrid automaton model for the cardiac cell

system [3]. 111

Figure 21 The AP morphologies of epicardial [4], endocar-

dial [4] and midmyocardial [5] cells. 112

Figure 22 The model diagram, the Clock mRNA signal and

the equations governing the circadian clock model. 114

Figure 23 The relationship of simulation time with choice

of ∆ and J . 151

xvi

1
I N T R O D U C T I O N

1.1 context and motivation

At the turn of the millennium, the field of systems biology emerged as a

result of the need for a network level understanding of the cellular com-

ponents such as genes and proteins [6]. The modelling and analysis of

bio-pathways dynamics is a core activity in systems biology. Often, one

views a bio-pathway as a network of bio-chemical reactions and then

models the network as a dynamical system. Broadly speaking two fun-

damentally different approaches guide the choice of the system model.

In one approach, the number of molecules of each kind is kept track

of and stochastic simulations [7–13] are used to advance the system

state one reaction at a time. In the second approach —assuming that all

the relevant molecular species are present abundantly— one tracks the

concentrations of the molecular species of each kind and ordinary dif-

ferential equations (ODEs) are used to construct the models [1, 14–18].

Deterministic numerical simulations of the ODEs are then deployed to

study the dynamics. Clearly, both approaches are needed to cover dif-

ferent contexts [19]. Here we pursue the second approach.

In general, for a well-defined system of ODEs, under suitable con-

tinuity assumptions, the differential equations will have a unique so-

lution [20]. Therefore, the temporal evolution of the system behaviour

can be obtained by solving the ODEs. However, bio-pathways usually

involve a large number of bio-chemical reactions. Hence the correspond-

1

introduction

ing systems of ODEs will not admit closed-form solutions. Instead one

will have to generate trajectories using numerical integration to study

the dynamics. Further, the quantitative observations of the system will

often have very limited precision. Specifically, the initial concentration

levels of the various proteins and rate constants will often be available

only as intervals of values. In addition, experimental data in terms of the

concentration levels of a few proteins at a small number of time points

will also be available only in terms of intervals of values. Moreover, the

data will often be gathered using a population of cells. Consequently,

when numerically simulating the trajectories of the ODEs model, one

must resort to Monte Carlo methods to ensure that sufficiently many

values from the relevant intervals are being sampled. As a result, stan-

dard analysis tasks such as model validation, parameter estimation and

sensitivity analysis will require the generation of a large number of

trajectories. Thus motivated Liu et. al. [21] developed a probabilistic ap-

proximation technique involving the following major steps:

(i) Sample many (of the order of a few million) times from a set of

initial states,

(ii) Generate trajectories through numerical integration,

(iii) Store the statistical properties of this set of trajectories in the con-

ditional probability tables (CPTs) of a dynamic Bayesian network

(DBN) via a pre-specified discretization of the time and value do-

mains.

Consequently one can carry out all analysis tasks —including param-

eter estimation and sensitivity analysis— using the DBN [21, 22] via

standard Bayesian inferencing techniques. The large number of trajec-

tories and the high dimensionality of the system makes the problem

2

1.1 context and motivation

of constructing the DBN approximation computationally intensive. Re-

cently, graphics processing units (GPUs) have become a compelling plat-

form [23] for a wide variety of computationally intensive tasks. Hence

as our first contribution, we present a GPU based construction of the

DBN approximation.

The above DBN approximation procedure is nonetheless rigid in that

for the analysis of all properties, one must use the same DBN approx-

imation. Further, due to the lack of closed-form solutions, it is not

possible to estimate the error involved in the approximation. To get

around this, a statistical model checking (SMC) procedure was devel-

oped in [24] to approximately and probabilistically analyze the dynam-

ics of a system of ODEs. The basic idea is to assume a probability dis-

tribution —to cater for the dynamic variability across a population of

cells— over a given set of initial states. Under a natural set of continuity

restrictions, it then turns out the set of trajectories that satisfy a given

bounded linear-time temporal formula constitutes a measurable set of

trajectories to which a probability value can be assigned. This leads to

an implicit approximation of the ODEs dynamics as a Markov chain.

However one can sample paths through this chain by simply sampling

from the initial states and generating numerical trajectories. This SMC

procedure is also computationally intensive. As our second contribution,

we present a GPU based implementation of this verification procedure.

Though the ODEs model is widely used to describe the dynamic be-

haviour of the bio-pathways in many contexts it is more natural to use

the hybrid system model to capture the pathway dynamics [25–27]. Hy-

brid systems are dynamical systems which operate in multiple modes

with both continuous and discrete dynamics. The continuous dynam-

ics in each mode is governed by a system of ODEs. The discrete dy-

namics is represented by instantaneous jumps between different modes.

3

introduction

Nevertheless, due to their mixed dynamics, such systems are difficult

to analyze. To get around this, we present as our third contribution a

probabilistic approximation scheme of a hybrid dynamical system as a

Markov chain. Though this Markov chain cannot be constructed explic-

itly —due to the lack of closed-from solutions— one can sample paths

from this chain through sampling the dynamics of the hybrid system

models. The underlying theory is much more involved and securing

the mathematical basis for the corresponding statistical model checking

procedure requires a lot more care. Further, as before, carrying out anal-

ysis tasks using this SMC procedure is computationally very intensive.

To this end, we present as our final contribution a novel GPU based

implementation of this much more sophisticated SMC procedure.

1.2 research contributions

In summary the main contributions of this thesis are:

• A GPU based construction of the DBN approximation of a system

of ODEs,

• A parallelized statistical model checking procedure for a system

of ODEs, that exploits the massive parallelism offered by GPUs,

• A probabilistic approximation scheme by which a hybrid dynam-

ical system is represented as a Markov chain accompanied by a

SMC procedure,

• A GPU implementation of the above SMC procedure for hybrid

dynamical systems.

The technical details concerning these various contributions are pre-

sented in the corresponding chapters that follow. We also mention rele-

4

1.3 outline of the thesis

vant related literature in the chapters. In each chapter we present exper-

imental results using biologically relevant pathway models.

1.3 outline of the thesis

The thesis is organized as follows:

Chapter 2 discusses the preliminaries on Graphics Processing Units,

dynamic Bayesian networks, Markov chains, the logical background,

probabilistic model checking, hybrid systems.

In Chapter 3, we first recall how an ODEs system can be approxi-

mated as a DBN. We then describe an automatic code generation scheme

for GPU based implementation of the DBN approximation.

Chapter 4 describes how statistical model checking can be employed

to verify properties of discrete-time Markov chains which represent the

system dynamics induced by the discretization of the value and time do-

mains of an ODEs system. We present this sketch of [24] as background

material for the next chapter.

In Chapter 5, we develop an automaton-based BLTL path checking

framework for the SMC based analysis of a single system of ODEs de-

scribed in Chapter 4. We then show our technique can be implemented

on GPUs to realize a parallelized parameter estimation method.

In Chapter 6, we build a probabilistic approximation of the hybrid

system as a discrete-time Markov chain and show how one can use SMC

to verify properties expressed in BLTL. We apply our approximation

method to two case studies of cardiac cell model and circadian rhythm

model and also present its GPU implementation.

Finally Chapter 7 summarizes the contributions of the thesis and

points to possible directions of future work.

5

introduction

1.4 declaration

Major portions of the thesis is based on the following works:

1. Hagiescu Andrei, Bing Liu, R. Ramanathan, Sucheendra K. Pala-

niappan, Zheng Cui, Bipasa Chattopadhyay, P. S. Thiagarajan, and

Weng-Fai Wong. “GPU code generation for ODE-based applica-

tions with phased shared-data access patterns.” ACM Transac-

tions on Architecture and Code Optimization (TACO) 10, no. 4

(2013): 55.

2. R. Ramanathan, Yan Zhang, Jun Zhou, Benjamin M. Gyori, Weng-

Fai Wong, and P. S. Thiagarajan. “Parallelized Parameter Estima-

tion of Biological Pathway Models.” Hybrid Systems Biology, pp.

37-57. Springer International Publishing, 2015.

3. Benjamin M. Gyori, Bing Liu, Soumya Paul, R. Ramanathan, and P.

S. Thiagarajan. “Approximate probabilistic verification of hybrid

systems.” Hybrid Systems Biology, pp. 96-116. Springer Interna-

tional Publishing, 2015.

6

2
P R E L I M I N A R I E S

In this chapter, we briefly develop the required background material.

We first introduce GPUs and their programming model. We then present

ODEs models of bio-pathways. Next we describe probabilistic dynam-

ical models, namely DBNs and Markov chains. We then present the

temporal logic known as bounded linear-time temporal logic (BLTL).

Finally, we present a brief description of hybrid systems.

2.1 graphics processing units

A broad class of numerical applications which involve computation-

ally intensive procedures, use specialized processors in order to im-

prove their performance many fold when compared to a conventional

implementation based on central processing unit (CPU). Two widely-

used processors FPGA and GPU, naturally lend themselves for pro-

cessing workload that map well to their parallel architecture. Field-

programmable gate arrays (FPGAs) are programmable computing hard-

ware which can be reconfigured to exploit instruction level parallelism

in parallel applications. Though most of the vendors provide the com-

mon processing functions, programming in hardware description lan-

guages like VHDL or Verilog and creating the entire design from scratch

is costly and requires intensive labour [28]. On the other hand, Graph-

ics processing units (GPUs) are affordable, flexible to program using

high-level languages, allow concurrent execution of a large number of

7

preliminaries

threads and are extensively used due to the high memory bandwidth

they offer. In this thesis, we employ GPUs for accelerating computation-

intensive simulations of high-dimensional systems in our applications.

2.1.1 GPGPUs

General purpose computing on graphics processing units or GPGPUs

as it is called has been extensively used in the research community to

speed-up computation-intensive parts of applications. In our setting, a

large number of parallel simulations of dynamical systems can be ac-

celerated in a GPU platform. A GPU platform is composed of a CPU

host which offloads compute-intensive parallel sections of the program

to one or more GPU devices containing massively parallel processors.

By means of a standard programming model, the parallel sections are

realized as computation kernels in the GPU which read in an input data

stream, process it and produce an output data stream. A modern Nvidia

Tesla GPU server [29] contains thousands of arithmetic processing cores

and has a memory bandwidth of the order of hundreds of giga bytes

per second. Furthermore, by virtue of their design choice to allocate

more transistors to arithmetic logic units (ALUs) than CPUs do, GPUs

offer peak floating point performance of the order of few tera floating

point operations per second at inexpensive costs.

2.1.2 GPU programming model

In recent years, high level programming frameworks like CUDA and

OpenCL have opened up GPU programming beyond conventional graphics-

specific programming to a wide range of scientific and engineering ap-

plications. CUDA is a C-like programming language in which parallel

8

2.1 graphics processing units

computations are executed as multi-threaded kernels on the GPU hard-

ware. Specifically, GPU hardware consists of a number of Streaming

Multiprocessors (SMs) which in turn contain a number of processing

cores that work on data in a SIMD (Single Instruction Multiple Data)

fashion. In each kernel, as shown in Figure 2, multiple coordinating

threads are grouped into independent “thread blocks” such that each

block runs on one SM. Blocks are in turn arranged into grids. Fur-

thermore, instructions are issued to scheduling units of parallel threads

which execute in lock-step called warps. Warps within the same thread

block exchange data using a dedicated on-chip “shared memory”. All

threads running on the GPU may exchange data using the off-chip

“global memory”. Figure 1 is a simplified illustration of the GPU mem-

ory architecture.

Figure 1: Simplified GPU memory architecture

9

preliminaries

Warp1

Block

 ….
 ….
 Warps
 ….

Application

 Kernels
 …………. Kernel 1

Kernel 2

 Kernel

 Blocks
 ………….

 ………….

Block 2

Block 1

Warp2

Warp

32 Threads

Figure 2: CUDA thread hierarchy

2.2 modelling of bio-pathways as odes systems

Bio-pathways consist of a network of bio-chemical reactions which gov-

ern a variety of fundamental cellular functions. These bio-chemical re-

actions typically involve molecules colliding with each other and as

a result, they either bind together or transform into other types of

molecules. Molecules of the same type are called as molecular species.

The interactions between different molecular species bring about vari-

ous complex cellular behaviours. In bio-pathway modelling —depending

on the scope of the investigation— one often restricts the focus to a set

of bio-chemical reactions that regulate a particular cellular behaviour of

interest. Thus bio-pathways enable a systematic understanding of the

biological processes. Based on the functions they perform, they can be

classified into three categories, namely:

• Gene regulatory networks model the interactions between genes.

10

2.2 modelling of bio-pathways as odes systems

• Metabolic networks describe the mechanisms of energy production

and storage within the cell which involve the synthesis and de-

composition of complex molecules called metabolites.

• Signal transduction networks model the reactions in the cell which

are set off in response to an external (or internal) stimuli.

In this thesis, we will mainly focus on signal transduction pathways.

The methods we develop are general and applicable to gene regulatory

pathways and metabolic pathways as well.

2.2.1 Ordinary Differential Equations systems

Traditional modelling approaches for biological systems provide a struc-

tural overview of the various molecular species in the system. Never-

theless, for models with a large number of species, quantitative models

are required to study the dynamics of different reactions. Bio-pathways

can be formalized using a variety of mathematical models, namely ordi-

nary differential equations (ODEs), partial differential equations (PDEs),

boolean networks, Petri nets, etc. Depending on the available experi-

mental data, the analysis technique to be carried out and the nature

of biological phenomenon under study, one chooses a suitable model

that best captures behaviour of the biological system. One of the most

widely used formalism for analyzing bio-pathway dynamics is a system

of ODEs. The basic idea is to formulate the reactions in the bio-pathway

as physicochemical equations [1].

Consider a bio-molecular network with n molecular species and n

reactions. Its ODEs system represents the rates of production and con-

sumption of molecular species xi where i ∈ [1, . . . , n], in terms of the

kinetic laws that govern each reaction yj where j ∈ [1, . . . r]. Typically

11

preliminaries

these kinetic laws are based on mass-action kinetics [1]. The choice of a

kinetics law depends on the nature of the reaction. For instance, the en-

zyme catalyzed reactions are expressed in terms of Michaelis-Menten

equations. We associate a kinetic function f j to denote the rate of the

reaction. As an example, consider the following biomolecular network

consisting of 3 species.

S1 + 2S2
V−−→ P

Here S1 and S2 are the reactants, P denotes the product formed from

this reaction. Based on mass-action kinetics, the rate of the reaction V

will be k1 · [S1] · [S2]
2. Let the quantity k1 be the kinetic rate constant.

The set of coupled ODEs for the system consists of one equation for

each of the variable xi of the form
d[xi]

dt
= ∑r

j=1(pij · fij) where pij = 0

if xi does not participate in reaction yj, pij = 1 if xi is a product in the

reaction yj and pij = -1 if xi is a reactant in the reaction.

In our example, the corresponding system of ODEs will be

d[S1]

dt
= −k1 · [S1] · [S2]

2

d[S2]

dt
= −k1 · [S1] · [S2]

2

d[P]
dt

= k1 · [S1] · [S2]
2

For large bio-pathway systems, simplifying assumptions can be made

in certain cases, as appropriate, to reduce the complexity or size of a

model. One such approximation is the Michaelis-Menten approxima-

tion [18] to enzyme-substrate kinetics. Figure 3 [1] shows the various

steps in the formulation of the ligand-receptor-kinase-substrate path-

way as an ODEs system.

12

2.2 modelling of bio-pathways as odes systems

Figure 3: Encoding the ligand-receptor-kinase-substrate pathway as an ODEs
system [1]

13

preliminaries

2.2.2 C1 continuity and measure theory

To secure the mathematical basis for our approximation schemes we

will often impose a C1 continuity assumption. Further this will be shown

to lead to a measurable set of trajectories.

Let N denote the set of non-negative integers. Assume that X and Y

are metric spaces [30]. A function f : X → Y is said to be of class Ck,

where k ∈ N, if the derivatives f ′, f ′′, . . . , f (k) exist and are continuous.

Thus, the class C0 consists of all continuous functions and the class C1

consists of all continuously differentiable functions.

A σ-algebra over a set X is a nonempty collection of subsets of X

that is closed under complementation and countable unions. The Borel

σ-algebra on a topological space X, denoted as BX, is the minimal σ-

algebra containing all the open sets of X.

A probability space is a triple (ω,F , P) consisting of a set Ω, a σ-algebra

F over Ω, and a function P : F → [0, 1] such that:

(i) P(Ω) = 1;

(ii) if {Aw}w∈W is a countable family of pairwise disjoint sets in F ,

then P(∪w Aw) = ∑w P(Aw)

Let X and Y be nonempty sets andM and N be σ-algebras of subsets

of X and Y respectively. A function f : X → Y is said to be (M,N)-

measurable if

E ∈ N =⇒ f−1(E) ∈ M ≡ {x ∈ X | f (x) ∈ E} ∈ M (1)

Proposition 1 If X and Y are metric spaces and f : X → Y is continuous,

then f is (BX,BY)-measurable.

14

2.2 modelling of bio-pathways as odes systems

2.2.3 ODEs and flows

Let us assume that there are n molecular species {x1, x2, . . . , xn} in a bio-

molecular network. For each xi, an equation of the form dxi
dt = fi(x, Θi)

describes the kinetics of the reactions that produce and consume xi

where x is the concentrations of the molecular species taking part in

the reactions. Θi consists of the rate constants governing the reaction.

Each xi is a real-valued function of time t ∈ R. We assume in this sec-

tion that all rate constants are known. In what follows, we let v to range

over Rn.

We represent our system of ODEs in the vector form, dx
dt = F(x, Θ)

with Fi(x, Θ) := fi. In the setting of bio-chemical networks, the expres-

sions in fi will model kinetic laws such as mass-action and Michaelis-

Menten’s [31]. Moreover, the concentration levels of the various species

will be bounded and the behavior of the system will be of interest

only up to a finite time horizon. Hence we assume that fi is Lipschitz-

continuous for each i . As a result, for each v ∈ INIT the system of ODEs

will have a unique solution Xv(t) [20]. We are also guaranteed that Xv(t)

is a C0-function (i.e., continuous function) [20] and hence measurable.

For convenience, we define the flow Φ : R+ ×V → V for arbitrary

initial vectors v as Xv(t). Intuitively, Φ(t, v) is the state reached under

the ODE dynamics if the system starts at v at time 0. We work with

Φt : V → V where Φt(v) = Φ(t, v) for every t and every v ∈ V. Again,

Φt is guaranteed to be a C0-function (in fact 1− to − 1) and Φ−1
t will

also be a C0-function.

15

preliminaries

2.3 probabilistic dynamical models

2.3.1 Markov chains

Markov chains are a class of stochastic processes used to model dynami-

cal systems. They are described by a finite set of states and probabilistic

transitions where the probability of a transition from a current state to

a next state does not depend on any of the previous states. A sequence

of states is called as a path in the Markov chain.

Definition 1 Consider a stochastic process Xt which takes values from

a finite domain S = {s0, s1, . . . , sn̂}. It is called a Markov chain [32] if for

all times t ≥ 0 and all states s0, . . . , sn̂ ∈ S,

P(Xt+1 = sj|Xt = si, Xt−1 = st−1, . . . , X0 = s0) = P(Xt+1 = sj|Xt = si)

= pij

where st−1, . . . , s0 ∈ S; i, j ∈ 0, 1, . . . , n̂ and t ≥ 0. pij denotes the tran-

sition probability that the markov chain, if it is in state si at time t,

transitions in time t + 1 to state sj with pij ∈ [0, 1] and ∑n̂
j pij = 1. We

represent the transition probabilities using the matrix T of order n̂× n̂,

whose element Tij = pij. An initial distribution λ0 is specified over S at

t = 0. The probability distribution λk over S at t = k will be given by

(λ0)Tk.

2.3.2 Dynamic Bayesian networks

Dynamic Bayesian networks are a special class of probabilistic graphical

models [33] that extend the notion of Bayesian networks to model dy-

namical systems. They are used in modelling the evolution of stochastic

16

2.3 probabilistic dynamical models

processes whose local states are modelled as random variables. Many

varieties of DBNs exist. We deal with a restricted class which are time-

variant two-slice dynamic Bayesian networks [21]. They will be of the

form (B0, {Bd
→}d̂

d=1, Pa), where B0 defines the initial probability dis-

tributions {Pr(X0
i)} of the random variables {Xi}l

i=1. And {Bd
→} are

two-slice temporal Bayesian networks for the time points {t1, . . . , td̂}.

The nodes of the Bayesian network Bd
→ denoted Vd is given by Vd =

{Xd−1
i |1 ≤ i ≤ l} ∪ {Xd

i |1 ≤ i ≤ l} (here we are identifying the nodes

with the random variables associated with them). The edge relation Ed

will be the subset of {Xd−1
i |1 ≤ i ≤ l} × {Xd

i |1 ≤ i ≤ l} satisfying

(Xd−1
j , Xd

i) ∈ Ed iff Xj ∈ Pa(Xi).

As might be expected, Pa : X → 2X with X = {Xi|1 ≤ i ≤ l}. Pa

assigns a set of parents to each node and satisfies:

• Pa(X1
i) = ∅,

• If Xd′
j ∈ Pa(Xd

i) then d′ = d− 1,

• If Xd−1
j ∈ Pa(Xd

i) for some d then Xd′−1
j ∈ Pa(Xd′

i) for every d′ ∈

{1, . . . , d̂}.

Each node Xd
i will also have a conditional probability table (CPTd

i)

associated with it to specify the local probabilistic dynamics. A typi-

cal entry in the CPTd
i of Xd

i will be of the form Pr(Xd
i = x|Xd−1

i1 =

xi1, . . . , Xd−1
ij = xij) where Pa(Xi) = {Xi1, . . . , Xij}.

Thus the way the nodes of the (d + 1)th layer are connected to the

nodes of the dth layer will remain invariant. However, CPTd
i will be, in

general, different from CPTd′
i if d 6= d′. An example of such a dynamic

Bayesian network is shown in Figure 4.

17

preliminaries

X1
1 X2

1 X3
1 X4

1 Xd̂
1

X1
2 X2

2 X3
2 X4

2 Xd̂
2

X1
3 X2

3 X3
3 X4

3 Xd̂
3

X1
4 X2

4 X3
4 X4

4 Xd̂
4

t1 t2 t3 t4 td̂

Pa(X1) = {X1, X2}
Pa(X2) = {X1, X2}
Pa(X3) = {X1, X2, X3}
Pa(X4) = {X4}

Figure 4: Example of a dynamic Bayesian network

2.4 logical background

Temporal logic [34] can be viewed as an extension of propositional logic

with operators that refer to the behaviour of systems over time. A broad

range of system properties such as functional correctness, reachabil-

ity, safety, livenes, fairness, and real-time properties can be expressed

using temporal logics. Using this formalism, one can then mathemat-

ically check whether the system description is a model of a property

expressed in temporal logic. Depending on how time is perceived, tem-

poral logics can be classified into either linear (time is viewed as a single

path in which each moment in time has a single successor moment) or

branching (time is viewed as a branching tree in which a system could

take different paths). Linear temporal logic (LTL) and computation tree

logic (CTL) are widely used temporal logic formalisms [35–40].

18

2.4 logical background

2.4.1 Linear temporal logic

Linear temporal logic was originally developed by Pnueli [35] for rea-

soning about reactive systems.

The syntax of LTL formulas over the set AP of atomic propositions

are defined inductively:

ϕ := true | false | a | ϕ1 ∧ ϕ2 | ¬ϕ | Oϕ | ϕ1Uϕ2

where a ∈ AP.

LTL formulas are interpreted over infinite sequences of sets of atomic

propositions of the form π : ω → 2AP. The semantics for LTL is de-

fined as a language Words(ϕ) that contains all infinite words over the

alphabet 2AP that satisfy ϕ.

The relation π, k |= ϕ is defined as follows:

• π, k |= true, π, k 6|= false,

• π, k |= a for a ∈ AP iff a ∈ π(k),

• π, k |= ¬ϕ iff π, k 6|= ϕ,

• π, k |= ϕ ∨ ϕ′ iff π, k |= ϕ or π, k |= ϕ′,

• π, k |= O(ϕ) iff π, k + 1 |= ϕ,

• π, k |= ϕUϕ′ iff ∃j, j ≥ k such that π, k |= ϕ′ and ∀k, k ≤ i < j, π, k

|= ϕ.

The derived propositional operators such as ∧, ⊃, ≡ and the temporal

operators G, F, follow from the basic operators through the following

relations: ϕ ∧ ϕ′ = ¬(¬ϕ ∨ ¬ϕ′), (ϕ =⇒ ϕ′) = (¬ϕ ∨ ϕ′), (ϕ ≡ ϕ′) =

(ϕ =⇒ ϕ′ ∧ ϕ′ =⇒ ϕ), F(ϕ) = trueUϕ, G(ϕ) = ¬F(¬ϕ).

π is said to be a model of ϕ if π, 0 |= ϕ.

19

preliminaries

2.4.2 Bounded linear-time temporal logic

Bounded linear-time temporal logic (BLTL) is an extension of LTL with

time bounds on temporal operators. We introduce the syntax and then

the semantics of BLTL formulas.

The syntax of the BLTL formulas over the set AP of atomic proposi-

tions is defined as:

• Every atomic proposition as well as the constants true, f alse are

BLTL formulas,

• If ψ and ψ
′

are BLTL formulas then ¬ψ and ψ ∨ ψ
′

are BLTL for-

mulas,

• If ψ is a BLTL formula then O(ψ) is a BLTL formula,

• If ψ and ψ
′

are BLTL formulas and t ≤ T is a positive integer then

ψU≤tψ′ and ψUtψ′ are BLTL formulas.

The derived propositional operators such as ∧, ⊃, ≡ and the temporal

operators G≤t, F≤t are defined as before.

The semantics of BLTL is defined with respect to execution traces of

the system. In our setting, the semantics of BLTL is defined in terms of

the relation σ, t |= ψ where σ is a trajectory of the model and t ∈ T , a

finite set of time points {0, 1, . . . , T} and ψ, the property of interest:

• σ, t |= a iff a ∈ AP,

• ¬ and ∨ are interpreted in the usual way,

• σ, t |= ψU≤kψ′ iff there exists k′ such that k′ ≤ k, t + k′ ≤ T, and

σ, t + k′ |= ψ′. Further, σ, t + k′′ |= ψ for every 0 ≤ k′′ < k′,

• σ, t |= ψUkψ′ iff t + k ≤ T and σ, t + k |= ψ′. Further, σ, t + k′ |= ψ

for every 0 ≤ k′ < k.

20

2.4 logical background

We will use BLTL as our logic of choice in our analysis techniques.

The rationale of choosing BLTL instead of a more sophisticated logic is

two-fold. First, relevant properties of bio-pathway models, especially in

the context of parameter estimation are linear-time properties defined

over a bounded time horizon. Second, BLTL has enough expressive

power to characterize properties relating to bio-pathway models while

being a very simple temporal logic to work with. Hence we choose BLTL

over other commonly-used formalisms, such as continuous stochastic

logic and metric temporal logic.

2.4.3 Probabilistic model checking

Probabilistic model checkers extend traditional model checking tech-

niques for verifying properties in probabilistic systems. The probabilis-

tic model checking problem can be expressed as: given a probabilis-

tic model M over the set of states S, starting state s0, temporal logic

specification ψ, probability threshold θ ∈ [0, 1], to decide whether M,

s0 |= P≥θψ. Essentially, in addition to conventional model checking

where we check whether a model satisfies a specification of interest,

probabilistic model checking verifies whether a property is satisfied

with at least a given probability θ. Markov chains and Markov decision

processes are widely used models of probabilistic systems while a num-

ber of probabilistic flavours of temporal logics: PBLTL [41], PCTL [42]

to name a few, have been developed.

In biological and engineering systems, state space explosion renders

exact probabilistic model checking methods infeasible for large models.

So approximate model checking methods are called for. In approximate

probabilistic model checking, a set of execution traces is sampled and

then the traces are verified against a property of interest. If the specifi-

21

preliminaries

cation is evaluated to be true for sufficiently large number of traces, the

model checking algorithm decides “yes”, otherwise “no”.

Numerical solution techniques and statistical analysis methods are

two standard approaches employed in probabilistic model checking of

stochastic systems. However, as numerical methods [43] are memory

intensive, they do not scale well for large systems. On the other hand,

statistical analysis methods [44–46] rely on continuous sampling of in-

dependent trajectories of the system dynamics. After generating every

sample trajectory, one checks whether the given property is satisfied by

the sampled trajectory. This process of repeatedly sampling and check-

ing a trajectory continues until a reliable estimate on the probability

that the property holds (or does not hold) can be obtained based on

statistics of the samples. As a result, such approximate methods obviate

the construction of a large probabilistic model and also have low time

complexity.

2.5 hybrid systems

Hybrid systems are dynamical systems which involve the interaction of

discrete event states and continuous dynamics. For example, a thermo-

stat switching between two discrete states on and off can be modelled

as a hybrid system. The thermostat regulates the temperature in the

room according to the continuous dynamics defined by a set of ODEs

associated with each of the on and off discrete states. In systems biology,

understanding the dynamics of bio-chemical interactions in large, com-

plex, multi-cellular networks is difficult. To this end, multi-mode hybrid

systems can be conveniently used to model a rich class of bio-molecular

networks.

22

2.5 hybrid systems

2.5.1 Modelling of hybrid systems

In order to carry out rigorous analysis on hybrid systems, a hybrid

automaton is used as a formal model. As many of the problems in com-

puter science, analysis of hybrid automata is hard due to the high ex-

pressive power of the mixed dynamics. The emptiness problem (“Does

a given hybrid automaton have a run?”) and the reachability problem

(“Given a hybrid automaton, does it reach a particular region of the

state space?”) are undecidable [47] for hybrid automata.

In what follows, let us see how a thermostat system can be modelled

as a hybrid automaton as shown in Figure 5. In this thermostat hy-

brid automaton, we have one continuous variable (room temperature,

denoted by x and taking values in R) and two modes off and on. Let’s

assume the the initial mode to be off. When the temperature in the room

goes below 19 ◦ C, the thermostat switches to on mode as per the transi-

tion that is enabled and evolves according to the continuous dynamics

associated with the on mode. Now when the temperature in the room

goes above a certain threshold of 20 ◦ C the hybrid automaton takes the

transition to the off mode and continues to evolve in this new mode.

 ()

x

 ()

Figure 5: A two-state thermostat hybrid system

23

3
D B N A P P R O X I M AT I O N B A S E D V E R I F I C AT I O N O F

O D E S

In [22], it was shown how an ODEs system can be approximated as

a dynamic Bayesian network. Here we show how this approximation

based on generating a large number of trajectories can be parallelized

via a GPU implementation.

We first recall how an ODEs system can be approximated as a DBN.

We then describe how the construction of this DBN can be parallelized

for implementation on GPUs by exploiting the fine-grained parallelism

in the computation of a trajectory of the ODEs system.

3.1 dbn approximation of a system of odes

The dynamics of a bio-pathway is often modelled as a system of ODEs

with one equation of the form dx
dt = fi(x, p) for each molecular species

x in the pathway. Here f describes the kinetics of the reactions that

produce and consume x and x are the molecular species taking part in

these reactions whereas p are the rate constants governing these reac-

tions. For large pathways, this ODE system which will typically have

many unknown parameters will be difficult to calibrate and analyze.

To get around this an approximation scheme was developed in [48]

through which a system of ODEs can be reduced to a DBN.

1. First, we assume the states of the system are observed only at a

finite number of time points, {0, 1, ..., T}. Next, the range of each

25

dbn approximation based verification of odes

variable xi (rate constant rj) is partitioned into a set of intervals

Ii (Ij). Both these discretizations are motivated by the fact that

experimental data will be available only for a finite set of time

points and this data will be of limited precision.

2. Next, the initial values of the variables as well as the rate constants

are assumed to be distributions (usually uniform) over certain of

these intervals.

3. We then sample the initial states of the system according to this

distribution sufficiently many times, and generate a large number

of trajectories by numerical integration for each sampled initial

state.

4. The resulting set of trajectories is then treated as an approximation

of the dynamics of the ODE system.

To handle unknown rate constants we assume that the minimum and

maximum values of these constants are known. We then partition these

ranges of values also into a finite numbers of intervals, and fix a uni-

form distribution over all the intervals. After building the DBN, we use

a Bayesian inference-based technique to perform parameter estimation

to complete the construction of the model. However, unlike the vari-

ables, once the initial value of an unknown rate constant has been sam-

pled, this value will not change during the generation of a trajectory.

Naturally different trajectories can have different initial values for an

unknown rate constant.

A key idea is to compactly store the generated set of sequences as a

DBN. This is achieved by means of a simple counting procedure that

exploits the network structure. In order to keep the focus on the ap-

proximation procedure we give only an informal description of DBNs

here.

26

3.1 dbn approximation of a system of odes

3.1.1 The DBN structure

A DBN consists of a directed acyclic graph where the nodes are grouped

into layers with each layer representing a time point [33]. The nodes in

layer t − 1 will be connected to the nodes in the layer t in the same

way as t ranges from 1 to T. Each node will have a random variable

associated with it. In our setting, there will be one random variable

xt
i(rt

j) corresponding to each variable xi (unknown rate constant rj) to

capture in which interval the value of xi (rj) falls at time t. Further, for

each unknown rate constant k, we add the equation
dk
dt

= 0 to capture

the fact that once the value of k has been sampled, this value will not

change during the numerical integration of a trajectory.

Pa(xt
i), the set of parent nodes of xt

i is determined as follows. The

node xt−1
k (rt−1

j) will be in Pa(xt
i) iff xk(rj) appears in the equation for

xi or xk = xi. On the other hand, rt−1
j will be the only parent of the

node rt
j in case rj is an unknown rate constant. In Figure 6, we show a

simple enzymatic reaction network, its ODE model and the structure of

its DBN approximation. In this example, we have assumed that k3 is the

only unknown parameter.

As indicated in Figure 6(c), each node will also have a conditional

probability table (CPT) associated with it to specify the local proba-

bilistic dynamics. A typical entry in the CPT of xt
i will be of the form

Pr(xt
i = I|zt−1

1 = I1, zt−1
2 = I2, . . . , zt−1

l = Il) = p with Pa(xt
i) =

{zt−1
1 , zt−1

2 , . . . , zt−1
l }. Such an entry means that p is the probability that

the value of xi falls in the interval I at time t, given that the value of

zu was in Iu at time t − 1 for each zt−1
u in Pa(xt

i). The probability p

is calculated through simple counting in we call a binning step of the

approximation. Suppose N is the number of generated trajectories. We

record the number of the trajectories from this collection for which their

27

dbn approximation based verification of odes

S + E
k1−−0.1−−−−⇀↽−−−−
k2−−0.2

ES
k3−−→ E + P

(a)

dS
dt

= −k1.S.E + k2.ES

dE
dt

= −k1.S.E + (k2 + k3).ES

dES
dt

= k1.S.E− (k2 + k3).ES

dP
dt

= k3.ES

dk3

dt
= 0

(b)

S0 St St+1 ST

E0 Et Et+1 ET

ES0 ESt ESt+1 EST

P0 Pt Pt+1 PT

k3
0 k3

t k3
t+1 k3

T

0 t t + 1 T

Pr(Pt+1 = I | Pt = I′, ESt = I′′, k3
t = I′) = 0.7

Pr(kt+1
3 = I′ | kt

3 = I′) = 1

(c)

Figure 6: (a) Enzyme catalytic reaction network (b) ODEs model (c) Dynamic
Bayesian network

28

3.1 dbn approximation of a system of odes

value of zu fell in the interval Iu for each zu in {z1, z2, . . . , zl} at time

t − 1. Suppose this number is J. We then determine for how many of

these J trajectories, the value of xi fell in the interval I at time t. If this

number is J′, then p is set to be J′/J.

If k is unknown, in the CPT of kt we will have Pr(kt = I|kt−1 = I′) = 1

if I = I′ and Pr(kt = I|kt−1 = I′) = 0 otherwise. This is because the

sampled initial value of k does not change during numerical integration.

Suppose k appears on the right-hand side of the equation for x and

Pa(xt
i) = {zt−1

1 , zt−1
2 , . . . , zt−1

l } with zt−1
l = kt−1. Then for each choice

of interval values for nodes other than k in Pa(xt
i) and for each choice

of interval value Î for k there will be an entry in the CPT of xt of the

form Pr(xt
i = I|zt−1

1 = I1, zt−1
2 = I2, . . . , k = Î) = p. This is so since we

will sample for all possible initial interval values for k and k0 = kt−1. In

this sense, the CPTs record the approximated dynamics for all possible

combinations of interval values for the unknown rate constants. These

features are illustrated in Figure 6(c) for the unknown rate constant k3.

Based on the constructed DBN, one can efficiently analyze the dy-

namics of the pathway under study using standard probabilistic formal

verification methods [22]. In what follows, we present the GPU imple-

mentation of the DBN construction.

3.1.2 Related work

A survey of hardware accelerators, including GPUs, for systems biology

applications is presented in [49]. In [50], a Python language based pack-

age called cuda-sim enables accelerated simulations of bio-chemical net-

work models on GPUs. Further, a variety of previous schemes have been

devised to improve the performance of GPU implementations. Of partic-

ular relevance to our work are the data prefetching and memory latency

29

dbn approximation based verification of odes

hiding techniques [51–55]. However, these techniques are not applicable

in our context, as they rely on a large ratio between computation and

the size of the dataset prefetched into the on-chip shared memory. An-

other problem often affecting performance is the relationship between

the kernel geometry and the layout of the data to be processed. In gen-

eral, the selection of the number of parallel threads is correlated with

data placement, and identifying a solution is not trivial [56]. In contrast,

our framework goes beyond traditional data tiling [57] and introduces

an additional level of flexibility in thread scheduling that allows for

changes in the kernel computation without affecting data placement.

Our approach extracts fine-grained parallel code from the bio-pathway

model and distributes it across a number of concurrent threads [58].

Other GPU code generation schemes utilize heterogeneous collabora-

tive threads [59, 60]. However, these schemes have only been directed

to segregate slow global memory accesses into separate threads, thereby

freeing dedicated computation threads from such accesses. Our method

goes beyond these schemes and introduces multiple classes of dedicated

compute threads.

3.2 gpu implementation of the approximation

We now describe how our approximation algorithm is implemented in

GPUs. Recall each GPU unit consists of a number of streaming multi-

processors (SMs). Each SM in turn consists of a large set of registers,

a number of execution cores, and a scratchpad memory that is shared

by all warps allocated to the SM. Threads are grouped into scheduling

units called warps, consisting of threads executing in lockstep. How-

ever, the threads belonging to warp must execute the same instruction.

If not, they will be serialized. Each SM computes a set of trajectories

30

3.2 gpu implementation of the approximation

and records the number of times these trajectories hit the intervals of

values of the variables at different time points. This binning information

is stored in a specific area of the global memory which will be summed

up to produce the CPTs of the DBN. We now describe how the compu-

tation within a single SM is orchestrated according to the scheme.

3.2.1 The GPU computation pipeline

The GPU computation steps are shown in Figure 7. Starting from an

initial state at t = 0, for each time interval ∆t, the new value of a variable

x is determined by applying numerical integration using the current

values of the variables and the values of the rate constants appearing

in the ODE for x as well as the current value of x. Since trajectories are

generated through numerical integration, to ensure numerical accuracy,

each interval [0, ∆t] is uniformly subdivided into r sub-intervals for a

suitable choice of r. We compute an updated value of the variables every

τ = ∆t
r . Each variable may appear in multiple equations, leading to a

large amount of read-sharing. To ensure consistency, all variables are

updated together in an atomic transaction. We use a fourth-order Runge-

Kutta algorithm to compute the next value of a variable for each time

step. Overall, each trajectory is numerically simulated for r · T steps.

Finally, the current values of the variables sampled at each of the time

points {0, ∆t, . . . , T.∆t} are used to count how many of the trajectories

hit a particular interval of values for each variable at that time point.

These counts are then used to derive the entries in the CPTs of the DBN.

As described earlier, there will be one CPT for each variable and each

time point of interest. Each CPT will have |Ii||Pa(xt
i)|+1 entries where Ii

is the set of intervals associated to the variable and Pa(xt
i) is the set

31

dbn approximation based verification of odes

Initialize the ODEs system

),(0 px

),(px t

),(px tT 

),(px t

),(px t 

tx

1

tx

2

t

Nxt

Nx

1

tx1

tx2





t

Nx 1

t

Nx

iODE jODE

In
cr

em
en

ti
n

g
D

B
N

 c
o

u
n

te
rs

Figure 7: Computation steps of a trajectory showing the Runge-Kutta integra-
tion step

of parent nodes of xi. It is important to note that |Pa(xt
i)| will almost

always be much smaller than the number of variables in the system.

Due to the coupling between the variables, the entire front of the new

values of all the variables must be computed at each time step per trajec-

tory. If we naïvely allocate as many threads as possible to each SM with

each thread computing a trajectory then their memory requirements

will exceed the size of the (fast) local memory of the SM. Thus, for high-

dimensional systems, the global memory has to be used to store the

intermediate data. However, this leads to a vicious cycle in which more

parallel threads have to be launched to hide the memory latency that

in turn creates more accesses to the global memory, leading to mem-

ory bandwidth saturation and eventually to performance degradation.

It is also important to note that since the ODEs are not identical, the

resulting threads will be heterogeneous.

32

3.2 gpu implementation of the approximation

To get around this we devise an execution strategy based on fine-

grained parallelism and heterogeneous threads tuned to the GPU archi-

tecture. Briefly, we partition the set of equations into blocks and allocate

each block to a thread. Thus a single trajectory will be computed by a

set of threads C. Each member of C will handle a different block of

equations and compute the new values of the variables appearing on

the left-hand sides of these equations. The binning process executes in

parallel, during the subsequent ∆t iteration, using the memory access

threads (M), which will store the results in a large table located in

global memory.

Many copies of the C andM groups of threads will be assigned to an

SM. How they are scheduled is guided by the hardware organization of

the SM. In what follows, we first describe the generic code generation

scheme that extracts fine-grained parallel code from the ODEs model

and distributes it across C threads. Then we give details of its applica-

tion to the DBN approximation method.

3.2.2 The heterogeneous code generation framework

The code generation scheme described in this section forms the ba-

sis of the trajectory simulation procedure applied to different systems

throughout this thesis.

We first present a review of the GPU architecture and its impact on

performance. Essentially, in a GPU:

1. A large number of threads must be instantiated to obtain the max-

imum performance,

2. There is a warp-level affinity for lock-step execution (a more re-

laxed form of SIMD),

33

dbn approximation based verification of odes

3. The amount of fast(local) shared memory is limited.

It is the programmer’s responsibility to exploit the parallelism in the

application through the programming model in order to satisfy the first

requirement. However, this will often conflict with the other require-

ments. With a large number of threads instantiated, the shared memory

quota for each thread is a small number of bytes, and often the user

has to identify opportunities for data sharing across threads to achieve

efficient execution.

Serialization occurs, with the accompanying penalty, when there is

control flow divergence within a warp. Therefore, the programming

model calls for as little divergence as possible. This leads, in general, to a

particular type of data processing that we call homogeneous computing,

in which loops are unrolled and distributed over the entire thread grid.

Algorithm 2 describes this approach for a standard CPU pseudocode

shown in Algorithm 1.

Algorithm 1 CPU computing model

1: for (i = 0; i < Ni; i++) do

2: for (j = 0; j < Nj; j++) do

3: code0(i, j);

4: . . .

5: codeC−1(i, j);

6: end for

7: end for

34

3.2 gpu implementation of the approximation

Algorithm 2 Conventional GPU computing model

1: for (i = 0; i < Ni/Θ; i++) do

2: for (j = 0; j < Nj/Π; j++) do

3: for (θ ≤ Θ, π ≤ Π) do in parallel: {

4: code0(i ·Θ + θ, j ·Π + π);

5: . . .

6: codeC−1(i ·Θ + θ, j ·Π + π);

7: }

8: end for

9: end for

10: end for

In this code, Ni, Nj, Θ and Π allow for arbitrary geometric shapes of

the loop structure. The loop body is formed of C code segments. We

will discuss the significance of this in our context in Subsection 3.2.3.

The execution does not diverge, as all threads execute the same homo-

geneous computation for different datasets. It is important to ensure

that the product Π ·Θ is high enough so that enough GPU threads are

utilized. However, we need to consider other details of the GPU archi-

tecture. Often as the loops are unrolled and launched on the GPU, in

addition to the divergence problem, strict memory usage limitations im-

posed by the GPU architecture would mean one has to carefully tackle

the memory management problem. In particular, it is desirable that all

data accessed during the parallel execution is located in the SM mem-

ory.

In contrast to the homogeneous approach above, our code generation

scheme is built on the insight that there is no penalty when threads

in different warps diverge —as long as those in the same warp do not.

Therefore, the key concept behind our code generation scheme is to

look for fine-grained parallelism, within the loop body, and identify in-

35

dbn approximation based verification of odes

dependent code segments that can be executed in parallel. Assuming

that code0, code1, . . . , codeC−1 are independent, we place these segments

in threads that belong to different warps in a heterogeneous computing

model. Obviously, some amount of loop-level parallelism is still nec-

essary to fill each warp with similar threads. Therefore, we choose to

partially unroll only the outer loop in Algorithm 3.

Algorithm 3 Heterogeneous GPU computing model

1: for (i = 0; i < Ni/Θ; i++) do

2: for (j = 0; j < Nj; j++) do

3: for (c ≤ C, θ ≤ Θ) do in parallel:

4: codec(i ·Θ + θ, j);

5: end for

6: end for

7: end for

In this implementation, the number of threads is determined by C ·

Θ. In addition, to ensure that threads with similar control flow can be

grouped in each warp of size, Wsize, ∃w ∈N, Θ = w ·Wsize.

When compared to the homogeneous approach, the main advantage

is derived from the lower amount of unrolling, which for certain appli-

cations may significantly decrease the memory requirements. It is im-

portant to observe that the proposed code transformations do not affect

the inner loop. This allows us to optimize even for the case where the

iterations of the inner loop are not independent.

We have described a scheme where data resides only in the shared

memory. However, the input and output of the application must be

transferred from/to global memory. Due to the long latency of global

memory, any such transfer suffers a large delay of up to 400 cycles, dur-

ing which the requesting thread (and its associated warp) must stall.

By default, the GPU architecture replaces the stalled warp with another

36

3.2 gpu implementation of the approximation

available warp. This approach relies on a high enough computation to

memory transfer ratio such that alternative warps are available. If the

global memory transfers are scattered across all warps, the memory ac-

cess delay will impact all threads. Instead, our code generation scheme

prefetches from the global memory within a few specialized memory

access warpsM, handling these transfers in parallel and without inter-

fering with the execution of the other C warps [60].

Our scheme attains the optimal GPU performance only if the amount

of computation in each code segment is balanced such that the GPU

pipeline is always full. Otherwise, some of the warps will finish pro-

cessing early, whereas the remaining warps are not capable of ensuring

sufficient GPU occupancy to fill the GPU pipeline. Our code genera-

tion scheme distributes fine-grained computation blocks extracted from

the loop body among code segments located in different warps and ob-

tains feedback regarding the quality of the computational balance and

pipeline occupancy by analyzing the PTX assembly generated by the

CUDA compiler.

The loop body consists of a list of instructions corresponding to an

integration step for each variable. We can cluster these instructions into

groups that exhibit only inter-iteration dependencies, because each inte-

gration step is independent of the others. These clusters are (eq0, eq1, . . . eqn).

We initially compile the entire loop body as a single thread and an-

alyze its PTX assembly, obtaining the number of PTX instructions in

each cluster i as PTX(eqi). We use this information to determine how to

place these code clusters across threads in order to balance the pipeline

occupancy.

Given the throughput stated in the documentation of the GPU for

each arithmetic operation, we model the number of cycles required to

issue each PTX instruction in the GPU pipeline. The pipeline has a la-

37

dbn approximation based verification of odes

tency of 22 cycles, and multiple warps are multiplexed by the GPU

hardware to issue continuous instructions on the pipeline. The Tesla

2.0 architecture supports the simultaneous execution of two half-warps,

each of them utilizing half the number of compute cores available. For

single-precision floating point instructions, the pipeline occupancy anal-

ysis is equivalent to the assumption that a single full warp is processed

at a time. By compiling the code for “fast math”, we also ensure that the

PTX instructions in the compiled code directly match the operations

supported by the architecture.

Using the earlier assumptions, we model, for example, floating-point

add instructions across one warp as being issued in a single cycle,

whereas div instructions are issued within eight cycles. We use the nota-

tion issue(div) = 8. We also model the timing of the ld and st instructions

that access the shared memory. With proper data alignment, all shared

memory banks are utilized. Because of the inherent architectural two-

way conflict on shared memory banks, a memory access is issued every

two cycles. The pipeline occupancy represents the fraction of the execu-

tion cycles where a new operation is issued. For a code segment of size

PTX(code) instructions, this occupancy is calculated as:

o(code) =
∑i∈PTX(code) issue(i)

22 · |PTX(code)| (2)

Our code generation scheme has two objectives:

• to ensure that all C warps have a balanced number of instructions,

and

• to ensure that the pipeline occupancy achieved by summing the

occupancy induced by each warp exceeds (but is close to) 1.

Because the GPU has a fixed latency pipeline and we avoid global

memory accesses, when the occupancy is 1 or below, the number of

38

3.2 gpu implementation of the approximation

instructions corresponds to the latency of their execution. Additional

threads beyond an occupancy of 1 will queue for execution and lead

only to additional register pressure and subsequent performance degra-

dation. We estimate how many threads C are required to occupy the

pipeline by analyzing the average occupancy across all code segments:

C = d 1
o(eq0∪eq1∪...∪eqn)

e. This is a reasonable approximation because dis-

tributing the code over C threads increases the occupancy C times. We

chose which clusters to allocate to each code segment codei such that

|PTX(codei)| = |PTX(eq0∪eq1∪...∪eqn)|
C . We employ a greedy allocation, where

instruction clusters are allocated in sequence to each code segment.

3.2.3 Mapping to the GPU architecture

We now apply our heterogeneous code generation scheme for the DBN

approximation of a system of ODEs. For generating each trajectory, the

dependencies between the variables in the system of ODEs require the

entire front of variables belonging to each trajectory to be computed

together. Hence, we have to store the data in the shared memory. By

doing so, we prevent saturating the global memory bandwidth. For each

time interval, the value of each variable x at the end of the interval

is determined by applying a Runge-Kutta numerical integration using

the current value of x and the current values of other variables (and

parameters) appearing in the ODE for x.

The computational pattern for each trajectory matches the loop body

of the heterogeneous computation scheme. We show the data movement

during one computation step in Fig 8. The equations are valid instruc-

tion clusters and are distributed into compute threads C that will col-

laborate to generate a single trajectory. This entails sharing of the vari-

ables and parameters within a group. The number of threads in such

39

dbn approximation based verification of odes

x

(1)

 (2)

 (4)

To

global memory

(5)

eq
0
, e

q
1
 ,…

xp x

...
, e

q
n

-1
, e

q
n

st
o

re

xp x

Sync

(3)

Sync

Figure 8: Data movement in a single simulation step

40

3.2 gpu implementation of the approximation

a group is C. These threads read the current values of the variables (x)

and parameters (p) appearing in the equations allotted to it from the lo-

cal memory of the SM (step (1)). The ∆x changes during a time step are

computed in parallel and are stored back to local memory (step (2)). The

vector of variables x is then updated (step (3)). This process is applied

iteratively for each time step (of duration τ = ∆t
r). The Θ trajectories are

computed in parallel to satisfy the lock-step requirements of the GPU

architecture. Each trajectory requires Nj = T · r integration steps. The

trajectory computation process is repeated for all N trajectories, hence

Ni =
N
Θ .

In the binning steps of the approximation method, the number of

times the threads hit the various intervals of values of the variables are

counted. To do this, the vector x is replicated as x̄ (step (4)). The bin-

ning process executes in parallel, during the next ∆t iteration, using the

memory access threads M, which will store the results in a large table

located in global memory (step (5)). This will ensure that the numerical

integration can continue during the binning process, which has long

latency memory operations.

As a departure from the code generation scheme described previ-

ously, we require additional synchronization among the C threads after

each integration step. These C threads belong to several warps; hence,

they are scheduled independently, and their execution may not be syn-

chronized. Synchronization is achieved by a partial synchronization

primitive available since the Tesla 2.0 architecture. The bar.sync PTX in-

struction allows for an explicit number of threads to be waited for at the

barrier. The number of threads may be smaller than the total number of

threads executing on the GPU. Once all of the C threads arrive at the

barrier, they proceed to the next integration step.

41

dbn approximation based verification of odes

The vectors x, p, ∆x, and x̄ together form the workset of the trajectory.

All threads of each SM have access to the dedicated SM memory, which

is similar to a scratchpad [61]. To ensure that enough parallel threads

can be instantiated, the computation of each trajectory is unfolded onto

the C threads. This enables a reduction of the number of trajectories

being processed concurrently. In this way, the total memory footprint,

consisting of the worksets of all Θ trajectories being computed in a SM,

can be kept within the limit of the available SM memory.

Finally, the GPU architecture requires all threads belonging to a warp

to have matching control flow in order to achieve the highest perfor-

mance. Otherwise, the threads’ execution will be serialized. Accord-

ingly, we organize the C threads belonging to each trajectory so that

threads executed together in the same warp process the same subset

of model equations from different trajectories. Given a warp size of

32 threads, this eliminates the control flow divergence in each warp if

∃w, Θ = w · 32.

However, Θ is constrained by the SM memory capacity to Θ = SMsize
worksetsize

.

Therefore, it is not always feasible to instantiate a sufficient number

of parallel trajectories in order to completely fill each warp with C

threads having similar control flow. In this case, we have chosen to

fill the rest of the warp with threads that belong to the next equa-

tion group. This ensures the best utilization of the GPU register pool.

However, to maintain warp boundaries, we decrease the number of tra-

jectories to the immediately lower number that matches the equation

∃δ ≥ − log2(Wsize), Θ = Wsize · 2δ. If a warp contains multiple sets of

threads, their execution is serialized, and we can model the combined

warp as if several warps were executed. Ideally, the total number of is-

sue cycles for all C warps in the CUDA code has to match the pipeline

length to ensure full GPU occupancy. In contrast, when Θ > Wsize, mul-

42

3.2 gpu implementation of the approximation

tiple warps may encapsulate the same code segment, and we determine

C as follows:

C = 22 · PTX(eq0 ∪ eq1 ∪ . . .)
∑i∈PTX(eq0,eq1,...) issue(i) · dΘ/Wsizee

The overall orchestration of the application on each SM is shown in

Figure 9. Instructions belonging to C warps are multiplexed onto the

GPU pipelines. All of the GPU pipelines execute in lock-step.M threads

are scheduled from time to time to transfer data to the global memory.

The specialized warps accessing the global memory (GM) are subject to

delays of up to 400 cycles.M threads are grouped together into special-

ized memory access warps such that they will not interfere with the C

threads’ executions. The same orchestration is replicated on all SMs of

the GPU. This can be easily implemented by computing a fraction of

the total number of trajectories on each SM.

ST

EQn-2

EQ0

EQn-1

EQ1

ST

EQn

EQ2

GPU Pipeline

SIMD threads (warp)

GM

T
im

e
m

u
lt

ip
le

x
in

g
 o

f
w

ar
p

s

GM

ST

EQn-2

EQ0

EQn-1

EQ1

ST

EQn

EQ2

GPU Pipeline

GM

GM

Figure 9: Concurrent execution of trajectories inside an SM

For each trajectory, we generate the initial states using a Mersenne

twister algorithm based on the MT 19937 random number generator [62]

43

dbn approximation based verification of odes

running in each of the C threads. This algorithm utilizes a large table

stored in the global memory. Considering that this initialization step is

done only once during the generation of a trajectory, the overhead due

to storing this table in global memory is minimal.

The repetitive Runge-Kutta numerical integration process is at the

heart of the trajectory simulation algorithm. We used a fourth-order

Runge-Kutta algorithm that requires each equation to be applied four

times as part of the integration step.

The code generation scheme produces the corresponding code for

each equation and passes it to the CUDA compiler. The PTX assem-

bly is analyzed using the previously described model to extract timing

information for each equation. Our algorithm then distributes the equa-

tions so that the corresponding timing is balanced among the C threads.

Because we utilize a small number of threads, register pressure is low

and there are no spills to local memory, hence avoiding any additional

delay.

By carefully considering the balance between computation load, data

supply needs, and local resources available, we show in the following

section, that using our code generation scheme for GPUs, one can obtain

a 3.9× speed-up compared to a conventional GPU implementation.

3.3 results

We have implemented the scheme described above and have used it to

generate CUDA code that was compiled for NVIDIA Tesla 2.0 (‘Fermi’)

platforms using the CUDA 4.0 runtime. The target GPU is a S2050 at

1.15GHz with 2GB of memory. To evaluate the performance of our GPU-

based implementation, we utilized three realistic pathway models that

tested various features of our scheme as shown in Table 1. We chose the

44

3.3 results

number of trajectories such that the resulting DBN approximation was

of sufficient good quality and that runtimes were sufficiently long.

Figure 10 shows the reaction network for the EGF-NGF model. The

values for the parameters of this model taken from [2] are known. For

our experiments, we have set a subset of the parameters as “unknown”

in each model and constructed the DBN approximation accordingly.

The same was done to two other pathway models, namely thrombin

dependent MLC phosphorylation pathway [63] and segmentation clock

network [64].

Figure 10: The reaction network diagram of the EGF-NGF pathway [2]

For each model, we listed the number of variables (|x|), the number

of unknown parameters (|p|), the simulation time step (∆t), the number

of time intervals (T), the number of integration sub-intervals (r), and

the total number of trajectories (N) as shown in Table 1. We also listed

the average number of operators within each model equation, as well

as the distribution of each operator’s type. For all models, the range of

each variable and unknown parameter was discretized into five inter-

vals of equal size. A smaller number of trajectories were computed for

the larger models to keep the execution times within reasonable limits.

45

dbn approximation based verification of odes

Model |x| |p| ∆t T r N Avg. Ops +/- × ÷
EGF-NGF 32 20 6 100 100 106

7.4 87 106 44

Segmentation clock 22 40 300 100 500 106
11.9 67 91 33

Thrombin 105 164 2 100 2× 104 3× 104
13 419 942 2

Table 1: Characteristics of the models

The following evaluation strategy was used. We implemented the

target application using both a homogeneous computation approach

(where the workset is stored in global memory, as the datasets do not

fit the shared memory) and our proposed heterogeneous approach. To

emphasize the efficiency of the proposed flow, we characterized a broad

design space by varying the number of threads of both homogeneous

and heterogeneous schemes, producing a large spectrum of kernel ge-

ometries. For the homogeneous implementation, we varied the thread

block size, whereas for the heterogeneous implementation, we varied C,

the number of threads collaborating to generate a trajectory.

In addition to an overall performance evaluation of our framework,

we will show the contribution of each component of the framework: the

proposed heterogeneous thread execution scheme, the separation of the

GM accesses, and the load balancing.

Figure 11 shows a comparative design-space exploration for the three

models we considered. We compare the performance of both the ho-

mogeneous and the heterogeneous implementations. For the graphs de-

picting the homogeneous scheme, the x-axis represents the total number

of warps in a thread block, whereas for the graphs illustrating the het-

erogeneous approach, it represents the number of C threads. The per-

formance is measured in trajectories computed per second, along the

y-axis. The performance of the homogeneous implementation ends up

always being lower, as it is bound by the GPU memory bandwidth. In

addition, this performance cannot be trivially estimated, as it depends

46

3.3 results

on many factors such as the global memory bandwidth, GPU occupancy,

and register pressure. Large performance variations are observed when

the number of threads (warps) is varied.

In contrast, our heterogeneous scheme has a predictable as well as

significantly higher performance. For all benchmarks, performance in-

creases steadily as more parallel code segments are created.

A single code segment, containing all the ODEs (the first point in each

graph for the heterogeneous implementation in Figure 11), is equivalent

to a homogeneous implementation where the data have been moved

from the global memory to the shared memory. The performance is low,

as having a single code segment prevents data reuse across threads,

leading to a higher ratio of data/thread. Only Θ threads can be run

concurrently due to the limited size of the SM memory. This indicates

that simply changing the location of the workset without refactoring the

computation pattern does not provide any performance boost.

Initially, splitting the code leads to a nearly linear performance in-

crease with respect to the number of resulting code segments C. This

shows that the resulting code segments can be well balanced and that

the required synchronization has negligible overhead. Eventually, as

more code segments are added, the performance reaches a plateau.

This corresponds to reaching full pipeline occupancy. From this point

onward, there is no benefit from creating additional code segments. In-

stead, the performance experiences a small degradation due to the gran-

ularity of the load balancing and also due to the additional register pres-

sure. For the smaller benchmarks, performance degrades significantly

more when too many C threads are created. In this case, the load bal-

ancer handles fewer equations, and their granularity prevents adequate

balancing.

47

dbn approximation based verification of odes

We have included the overall results in Table 2. The speed-up achieved

by the heterogeneous scheme indicates the suitability of the proposed

approach.

Table 3 includes additional details about the number of threads in

each thread block of the kernel, the number of registers used, and SM

memory occupancy.

Setup Runtime(s)
Model |x| N T · r Homogeneous Our scheme Speed-up

EGF-NGF 32 3× 106 104
280.29 157.14 1.8×

Segmentation clock 16 3× 106 5× 104
1563.6 403.5 3.9×

Thrombin 105 3× 104 2× 106
8190 4596 1.8×

Table 2: Performance of the proposed approach compared to a homogeneous
GPU implementation

Model Block threads Registers used SM used (KB)

EGF-NGF 64× 6 32 36.25 (75.5%)
Segmentation clock 128× 4 49 46.50 (97.0%)

Thrombin 16 × 23 63 37.69 (78.5%)

Table 3: Execution configuration, register, and SM usage of the models

We also evaluated the impact of the memory thread specialization by

comparing the speed-up achieved by the models

• when heterogeneous threads are used but computation and mem-

ory accesses are mixed within the same threads, and

• when compute and memory threads are distinct.

Table 4 underlines the benefit of this separation. The additional speed-

up introduced by specialized memory access threads reaches up to 13%.

The specialized threads provide better opportunity for data coalescing.

In addition, because computation threads never stall, the C threads can

more quickly reuse the small amount of shared memory.

48

3.3 results

Heterogeneous approach Specialized memory access threads
Model C Speed-up C +M Additional speed-up

EGF-NGF 7 1.65× 6 + 1 1.09×
Segmentation clock 5 3.45× 4 + 1 1.13×

Thrombin 24 1.78× 22 + 2 1.01×

Table 4: Benefit of heterogeneous groups and specialized memory threads

Model Naïve balancing speed-up Additional speed-up

EGF-NGF 1.62× 1.11×
Segmentation clock 3.80× 1.03×

Thrombin 1.50× 1.20×
Average 2.3× 1.11×

Table 5: Overall speed-up due to thread balancing

We also compare the performance of our thread balancer to naïve

load balancing, where the same number of equations is allocated to

each compute thread. Unless the equations have the same complexity,

some of the threads finish processing earlier, and the GPU is not fully

utilized, leading to a significant performance degradation as shown in

Table 5. The proposed thread balancer can improve performance up to

1.5× for the set of benchmarks explored.

The results indicate that the heterogeneous scheme alone provides

most of the performance improvement. Using heterogeneous threads

not only exposes more parallel computation but also enables data reuse

in the shared memory; hence, the global memory traffic is significantly

reduced, whereas the level of parallelism increases. Furthermore, our

method shows one can handle GPUs simulation of ODEs systems that

are significantly larger than what conventional multi-processor imple-

mentation schemes can accommodate.

49

dbn approximation based verification of odes

19,091

9000

12000

15000

18000

21000

0 4 8 12 16

EGF-NGF

(heterogeneous)

7,435

5500

6500

7500

8500

9500

0 2 4 6

Segmentation clock

(heterogeneous)

6.53

1.5

3.5

5.5

7.5

9.5

0 5 10 15 20

Thrombin

(heterogeneous)

10,703

6500

8500

10500

12500

14500

0 8 16 24 32

EGF-NGF

(homogeneous)

1,919

0

1000

2000

3000

4000

0 8 16 24 32

Segmentation clock

(homogeneous)

3.66

2.5

3.25

4

4.75

5.5

0 8 16 24 32

Thrombin

(homogeneous)

Figure 11: Performance characterization of the proposed heterogeneous
scheme (left-side graph for each model) versus the homogeneous
approach (right-side graph) on Tesla 2.0 S2050

3.4 summary

In this chapter, we have presented a GPUs based code-generation scheme

for simulations of ODEs dynamics. Specifically, we recalled how an

ODEs system can be approximated as a dynamic Bayesian network.

Once we construct the DBN, it can be directly used for multiple analy-

sis tasks by repeatedly computing the probability of a random variable

assuming a specific value at a particular time point. For large models,

approximate inferencing techniques are employed to this effect. How-

ever, one must pay a high one time cost of constructing the DBN. There

50

3.4 summary

are other analysis methods to study ODEs dynamics. In the next chapter

we introduce one such approach based on statistical model checking for

ODEs systems. The automatic GPU code generation scheme which was

described in this chapter forms the basis for the computational model

of the parallelized implementation of the statistical model checking pro-

cedure.

51

4
S TAT I S T I C A L M O D E L C H E C K I N G B A S E D A N A LY S I S

O F O D E S S Y S T E M S

In the previous chapter, we described how an ODEs system can be ap-

proximated as a DBN. As pointed out in the introduction, this method

is rigid and it is not possible to estimate the error involved in the ap-

proximation. Here we provide —as background material for the next

chapter— an analysis framework based on a statistical model checking

procedure [24], which can provide error guarantees using the machin-

ery of sequential hypothesis testing.

We consider ODEs systems that arise in systems biology. In bio-chemical

networks, variability in a population of cells has at least two major

causes. First, as discussed in [65], differences in the initial concentra-

tions of proteins are the primary source of variability in response to

external stimuli. Second, due to differing internal and external condi-

tions among cells, the values of kinetic rate constants also vary across

cells [66, 67]. In our ODEs setting, the variables will represent the con-

centrations of the bio-chemical species (typically proteins) in the path-

way, and hence the initial concentrations of these species will constitute

the initial values of the variables. Further, the parameters appearing in

the equations will consist of the kinetic rate constants governing the

reactions. Thus we can capture cell-to-cell variability in the behaviour

of the bio-pathway by studying the ODEs dynamics across a range of

values for the initial concentrations and kinetic rate constant values. We

do this in a probabilistic setting by assuming initial probability distri-

butions (usually uniform) over an interval of values for the initial con-

53

statistical model checking based analysis of odes systems

centrations and rate constants. We then show that the resulting space

of trajectories can be used to construct a natural probability measure

space if the vector field defined by the ODEs system is continuously

differentiable. In our setting this requirement is easily met.

4.1 overview

To analyze the ODEs system, we first formalize properties using our

specification logic and decide a corresponding confidence level (proba-

bility) with which we wish to assess them. Consequently, an SMC proce-

dure —which poses the problem as a hypothesis test— is used to decide

approximately, but with statistical guarantees, whether the properties

are satisfied with the desired probability. SMC continues to sample and

verify trajectories from the ODEs system until a decision can be made.

It is well-established that SMC is efficient since its complexity does not

depend on the size of the system. Moreover, posing the problem as a se-

quential hypothesis test reduces the overall number of samples needed

to make a decision [43]. These components form a principled method

for analyzing the dynamics of a bio-pathway in the presence of dynamic

variability across a population of cells.

To demonstrate the applicability of the approach, we describe a SMC

based parameter estimation method. The unknown model parameters

usually consist of initial concentrations and kinetic rate constants. Here,

for convenience, we shall assume that all the initial concentrations are

known but that their nominal values can vary over a cell population.

The parameter estimation procedure searches through the value space

of the unknown parameters to determine the “best” combination of val-

ues that can explain the given data and predict new behaviours [68].

The key step in this procedure is to determine the fit-to-data of the cur-

54

4.2 odes and trajectories

rent set of parameter values. We use our specification logic to encode

both experimental time series data and known qualitative trends con-

cerning the dynamics of the pathway. We then use our statistical model

checking procedure (SMC) to determine the goodness of the given set

of parameter values, while taking into account that these values can

fluctuate across the population of cells that the data is based on. Subse-

quently, we use a global optimization strategy known as SRES [69] to

choose a new set of candidate parameter values according to the SMC

based score assigned to the current set. In Chapter 5, we will see how

this procedure can be parallelized using GPUs to numerically generate

trajectories in parallel and use our online model checking method to

determine if the current trajectory satisfies the given specification.

4.2 odes and trajectories

We first recall the notations developed for describing the dynamics of

a bio-chemical network as a system of ODEs. Assume that there are

n molecular species {x1, x2, . . . , xn} involved in the network. For each

molecular species xi taking part in the pathway there will be an equation

of the form dxi
dt = fi(x, Θi). Here fi describes the kinetics of the reactions

that produce and consume xi, x are the molecular species taking part in

these reactions while the vector Θi gives the rate constants governing

these reactions.

Each xi is real-valued function of t with t ∈ R+, where R+ denotes

the set of non-negative reals. We shall realistically assume that xi(t)

takes values in the interval [Li, Ui] where Li and Ui are non-negative

rationals with Li < Ui. Hence the state space of the system will be V =

[L1, U1]× [L2, U2] . . .× [Ln, Un] ⊆ Rn
+. Let Θ =

⋃
i Θi = {θ1, θ2, . . . , θm}

be the set of all rate constants. We again assume that the range of values

55

statistical model checking based analysis of odes systems

for each θj is [Lj, Uj] for 1 ≤ j ≤ m. We shall present the SMC procedure

while assuming that all the rate constants are known. In the next chapter,

we shall explain how we handle the unknown rate constants in more

detail and our approach to solving these problems. Here, in order to

develop the basic material and notions, we shall assume all the rate

constants are known rational values.

An implicit assumption in what follows is that the value of a rate con-

stant, when fixed initially, does not change during the time evolution of

the dynamics, although this value can be different for different cells. To

capture the cell-to-cell variability and uncertainties regarding the initial

states we define for each variable xi an interval [Linit
i , Uinit

i] with Li ≤

Linit
i < Uinit

i ≤ Ui. The actual value of the initial concentration of xi is

assumed to fall in this interval. Similarly, we shall assume that the nomi-

nal value of the rate constant θj falls in the interval [Lj
init, U j

init] with Lj ≤

Lj
init < U j

init ≤ U j. We set INIT = (Πi[Linit
i , Uinit

i])×Πj([L
j
init, U j

init]). .

Thus INIT captures the cell-to-cell variability in the initial concentra-

tion and the rate constant values. In what follows we let v to range over

Πi[Linit
i , Uinit

i] and w to range over Πj([L
j
init, U j

init]).

In what follows, it will be convenient to represent our system of

ODEs in vector form as
dx
dt

= F(x, Θ) with x = (x1, x2, . . . , xn) and

Fi(x, Θ) := fi. Recall that a function fi : V → V is a C1 function if f ′i ,

the derivative of f , exists at all v ∈ V and is a continuous function. In

the setting of bio-chemical networks, the expressions in fi will model ki-

netic laws such as mass law and Michaelis-Menten’s [31]. Moreover, the

concentration levels of the various species will be bounded and the be-

haviour of the system will be of interest only up to a finite time horizon.

Hence we assume that fi is Lipschitz-continuous for each i. As a result,

for each (v,w) ∈ INIT, the system of ODEs will have a unique solution

Xv,w(t) [20]. Further, it will satisfy: Xv,w(0) = v and X′v,w(t) = F(Xv,w(t)).

56

4.3 statistical model checking of odes dynamics

We are also guaranteed that Xv,w(t) is a C0-function (i.e. continuous

function) [20] and hence measurable. This fact will be crucial when we

later turn to probabilistic verification.

It will be convenient to define the flow Φw : R+ ×V → V for arbi-

trary initial vectors v as Xv,w(t). Intuitively, Φw(t, v) is the state reached

under the ODEs dynamics if the system starts at v at time 0. The flow

will be the C0-function given by: Φw(t, v) = Xv,w(t). Thus Φw(0, v) =

Xv,w(0) = v and ∂(Φw(t, v))/∂t = F(Φw(t, v)) for all t [20]. We will, in

fact, work with Φw,t : V → V instead of Φw, where Φw,t(v) = Φw(t, v)

for every t and every v ∈ V. Again, Φw,t is guaranteed to be a C0-

function (in fact 1-to-1) and Φ−1 will also be a C0-function.).

In our application, the dynamics will be of interest only up to a max-

imal time point T. Fixing such a T, a trajectory starting from v ∈ V at

time 0 and with w as parameter values is denoted σv,w to be the (con-

tinuous) function σv,w : [0, T] → V satisfying: σv,w(t) = Xv,w(t). The

behaviour of our dynamical system is the set of trajectories given by

BEH = {σv,w | (v,w) ∈ INIT}. Our first goal is to probabilistically

verify the dynamical properties of BEH.

4.3 statistical model checking of odes dynamics

In order to formally express dynamical properties of BEH, we will use

formulas in bounded linear-time temporal logic (BLTL) since our trajec-

tories will be of finite duration.

4.3.1 Bounded linear-time temporal logic

An atomic proposition in our logic will be of the form (i, `, u) with

Li ≤ ` < u ≤ Ui. Such a proposition will be interpreted as “the current

57

statistical model checking based analysis of odes systems

concentration level of xi is in the interval [`, u]”, and we fix a finite set

of such atomic propositions.

We recall again —to fit the present context— the syntax and then the

semantics of BLTL formulas. The BLTL formulas are defined as:

• Every atomic proposition as well as the constants true, f alse are

BLTL formulas.

• If ψ and ψ
′

are BLTL formulas then ∼ ψ and ψ ∨ ψ
′

are BLTL

formulas.

• If ψ is a BLTL formula then O(ψ) is a BLTL formula.

• If ψ and ψ
′

are BLTL formulas and t ≤ T is a positive integer then

ψU≤tψ′ and ψUtψ′ are BLTL formulas.

We have mildly strengthened BLTL to be able to express that a certain

property will hold exactly at t time units from now. This will enable us

to encode experimental data in the specification. The derived proposi-

tional operators such as ∧, ⊃, ≡ and the temporal operators G≤t, F≤t,

Ft are defined in the usual way.

We will interpret the formulas of our logic at the finite set of time

points T = {0, 1, . . . , T}. Such a discretization is reasonable since ex-

perimental data will be available only at a finite number of discrete

time points. Further, qualitative properties of interest are expressible in

discrete time. We assume that T has been chosen appropriately and it

includes all the relevant time points with respect to the specified prop-

erties.

Further the corresponding semantics of the logic is defined in terms

of the relation σ, t |= φ where σ is a trajectory in BEH and t ∈ T , a finite

set of time points {0, 1, . . . , T} and φ, the property of interest:

• σ, t |= (i, `, u) iff ` ≤ σ(t)(i) ≤ u where σ(t)(i) is the ith component

of the n-dimensional vector σ(t).

58

4.3 statistical model checking of odes dynamics

• ¬ and ∨ are interpreted in the usual way.

• σ, t |= ψU≤kψ′ iff there exists k′ such that k′ ≤ k, t + k′ ≤ T and

σ, t + k′ |= ψ′. Further, σ, t + k′′ |= ψ for every 0 ≤ k′′ < k′.

• σ, t |= ψUkψ′ iff t + k ≤ T and σ, t + k |= ψ′. Further, σ, t + k′ |= ψ

for every 0 ≤ k′ < k.

Now one can define Models(ψ) = {σ | σ, 0 |= ψ, σ ∈ BEH}.

Next, we wish to make statements of the form P≥r(ψ), where the

intended meaning is that the probability that a trajectory in BEH be-

longs to models(ψ) is at least r. To assign meaning to such statements,

we need to define a probability measure over sets of trajectories. Note,

however, that the trajectory σ ∈ BEH is completely determined by σ(0),

the (vector) value it assumes at t = 0. Hence we will identify BEH with

INIT, the set of initial states. To make this explicit, we define the set

Models(ψ) ⊆ INIT as:

(v,w) ∈ Models(ψ) iff σv,w ∈ models(ψ). We define the formulas of

PBLTL as P≥r(ψ) and P≤r′(ψ) provided r ∈ [0, 1), r′ ∈ (0, 1] and ψ is

a BLTL formula. We shall say that S , the system of ODEs, meets the

specificationP≥r(ψ) —and this is denoted S |= P≥r(ψ)— iff P(Models(ψ)) ≥

r, while S |= P≤r′(ψ) iff P(Models(ψ)) ≤ r′.Here, and in what follows,

P is the standard probability measure assigned to members of the σ-

algebra generated by the open intervals contained in INIT. It is easy

to show that Models(ψ) is a member of this σ-algebra for every ψ. The

only case that requires an argument is the one for atomic propositions,

and here the measurability of the solution functions Xv,w(t) is crucial.

59

statistical model checking based analysis of odes systems

4.3.2 Statistical model checking of PBLTL formulas

We now introduce a statistical framework for deciding approximately,

but with statistical guarantees, whether the model satisfies a property of

the form P≥r(ψ). Instead of directly approximating the probability of ψ

being satisfied [44], we formulate the model checking problem whether

the ODEs system S |= P≥r(ψ), as a sequential hypothesis test. Accord-

ing to [70], the test is posed between the null hypothesis H0 : p ≥ r + δ

and the alternative hypothesis H1 : p ≤ r− δ, where p = P(Models(ψ)).

Here, δ is supplied by the user and signifies the indifference region. The

strength of the test is decided by parameters α and β which bound the

Type-I (false positive) and Type-II (false negative) errors respectively.

Thus the verification is carried out approximately but with guaranteed

confidence levels and error bounds. The test proceeds by generating

a sequence of sample trajectories σ1, σ2, . . . by randomly sampling an

initial state from the initial distribution. One assumes a corresponding

sequence of Bernoulli random variables y1, y2 . . ., where each yk is as-

signed the value 1 if σk, 0 |= ψ; otherwise yk is assigned the value 0.

A sequential test is constructed that helps to decide if the number of

samples taken are sufficient or whether more samples need to be taken

to guarantee the chosen test strength. For each m ≥ 1, after drawing m

samples, we compute a quantity qm as:

qm =
[r− δ](∑

m
i=1 yi)[1− [r− δ]](m−∑m

i=1 yi)

[r + δ](∑
m
i=1 yi)[1− [r + δ]](m−∑m

i=1 yi)
(3)

When sufficient samples are drawn, the test terminates. Otherwise, the

test proceeds to draw more samples until the statistical guarantee de-

fined by the error bounds and the indifference region are met. The ratio

qm serves as a stopping criterion for the sampling process. Hypothesis

60

4.4 parameter estimation

H1 is accepted if qm ≥ Â, and Hypothesis H0 is accepted if qm ≤ B̂. If

neither is the case then another sample is drawn. The constants Â and

B̂ are chosen such that it results in a test of strength (α, β). In practice,

a good approximation is Â = 1−β
α and B̂ = β

1−α .

4.4 parameter estimation

Here we present our parameter estimation method. In doing so, we as-

sume the terminology and notations developed in the previous sections.

As a first step, we describe how experimental data can be encoded as

BLTL formulas.

Assume, without loss of generality, that O ⊆ {x1, x2, . . . , xk} is the set

of variables for which experimental data is available and which has been

alloted as training data to be used for parameter estimation. Assume

Ti = {τi
1, τi

2, . . . , τi
Ti
} are the time points at which the concentration level

of xi has been measured and reported as [`i
t, ui

t] for each t ∈ Ti. The

interval [`i
t, ui

t] is chosen to reflect the noisiness, the limited precision

and the cell-population-based nature of the experimental data. For each

t ∈ Ti we define the formula ψt
i = F t(i, `i

t, ui
t). Then ψi

exp =
∧

t∈Ti
ψt

i . We

then set ψexp =
∧

i∈O ψi
exp. In case the species xi has been measured un-

der multiple experimental conditions, then the above encoding scheme

is extended in the obvious way.

Often qualitative dynamic trends will be available —typically from

the literature— for some of the molecular species in the pathway. For in-

stance, we may know that a species shows transient activation in which

its level rises in the early time points and later falls back to initial lev-

els. Similarly, a species may be known to show oscillatory behaviour

with certain characteristics. Such information can be described as BLTL

61

statistical model checking based analysis of odes systems

formulas that we term to be trend formulas. We let ψqlty to be the con-

junction of all the trend formulas.

Finally we fix the PBLTL formula P≥r(ψexp ∧ ψqlty), where r will cap-

ture the confidence level with which we wish to assess the goodness of

the fit of the current set of parameters to experimental data and qual-

itative trends. We also fix an indifference region δ and the strength of

the test (α, β). The constants r, δ, α and β are to be fixed by the user. In

our application it will be useful to exploit the fact that both ψexp and

ψqlty are conjunctions and hence can be evaluated separately. As shown

in [70], one can choose the strength of each of these tests to be (α
J , β),

where J is the total number of conjuncts in the specification. This will

ensure that the overall strength of the test is (α, β). Further, the results

for the individual statistical tests can be used to compute the objective

function associated with the global search strategy, as detailed below.

4.4.1 Parameter estimation based on PBLTL specification

We assume Θu = {θ1, θ2, . . . , θK} as the set of unknown parameters. For

convenience we will assume that the other parameter values are known

and that their nominal values do not fluctuate across the cell population.

We will also assume nominal values for the initial concentrations and

the range of their fluctuations of the form [Linit
i , Uinit

i] for each variable

xi. Again, for convenience, we fix a constant δ′′ so that if the current es-

timate of the values of the unknown parameters is w ∈ ∏1≤j≤K[Lj, U j]

then this value will fluctuate in the range [w(j) − δ′′, w(j) + δ′′]. Set-

ting Lj
init,w = w(j) − δ′′ and U j

init,w = w(j) + δ′′ we define INITw =

(∏i[Linit
i , Uinit

i])× (∏j[L
j
init,wU j

init,w]). The set of trajectories BEHw is de-

fined accordingly.

62

4.4 parameter estimation

To estimate the quality of w, we run our parallel SMC procedure —

using INITw— to verify P≥r(ψexp ∧ψqlty). Depending on the outcome of

the test for the various conjuncts in the specification, we assign a score

to w using an objective function detailed below. We then iterate this

scheme for various values of w generated using a suitable search strat-

egy. The objective function consists of two components, evaluating the

contribution from the qualitative properties and the experimental data

respectively. It evaluates how many statistical tests carried out with w

resulted in acceptance of the null hypothesis (desired outcome). For

the second component, the tests are evaluated species-wise. The corre-

sponding objective value is then composed as a summation of normal-

ized contribution from each species.

The objective function is formed as follows. Let Ji
exp (= Ti) be the

number of conjuncts in ψi
exp, and Jqlty the number of conjuncts in ψqlty.

Let Ji,+
exp(w) be the number of formulas of the form ψt

i (a conjunct in ψi
exp)

such that the statistical test for P≥r(ψt
i) accepts the null hypothesis (that

is, P≥r(ψt
i) holds) with the strength (α

J , β), where J = ∑i∈O Ji
exp + Jqlty.

Similarly, let J+qlty(w) be the number of conjuncts in ψqlty of the form

ψ`,qlty that pass the statistical test P≥r(ψ`,qlty) with the strength (α
J , β).

Then G(w) is computed via:

G(w) = J+qlty(w) + ∑
i∈O

Ji,+
exp

Ji
exp

(4)

Thus the goodness to fit of w is measured by how well it agrees with

the qualitative properties as well as the number of experimental data

points with which there is acceptable agreement. To avoid over-training

the model, we do not insist that every qualitative property and every

data point must fit well with the dynamics predicted by w.

63

statistical model checking based analysis of odes systems

The search strategy to evolve candidate parameters will use the val-

ues G(w) to traverse the parameter value space. Global search methods

such as Genetic Algorithms (GA) [71], and Stochastic Ranking Evolu-

tionary Strategy (SRES) [69] are computationally more intensive than

local methods, but are much better at avoiding local minima. In prac-

tice, one usually maintains a population of parameter value vectors in

each round, and a round is usually called a generation. We use the SRES

strategy in our work since it is known to perform well in the context

of pathway models [68]. The particular choice of search algorithm, how-

ever, is orthogonal to our proposed method.

4.5 summary

Here we described an SMC based approach for studying ODEs systems

as background material based on the results presented in [24]. We have

used the temporal logic BLTL to encode both quantitative experimen-

tal data and qualitative properties of pathway dynamics. To cater for

variability among cells, we assume a uniform distribution over a set

of initial states and kinetic rate constants —and impose a reasonable

continuity restriction— and show how the probability of the property

being met by the behaviour of the model can be assessed using an SMC

procedure. In the next chapter, we develop a GPU-based implementa-

tion of our SMC algorithm to exploit the inherent massive parallelism

in generating trajectories through numerical integration. By combining

this method with a global search strategy, we arrive at an efficient pa-

rameter estimation procedure.

64

5
A G P U B A S E D I M P L E M E N TAT I O N O F T H E S M C

P R O C E D U R E F O R O D E S S Y S T E M S

In the previous chapter, we showed how a system of ODEs together

with a (initial) set of values for the initial concentrations and the rate

constant values can be formulated as a model of a bio-chemical net-

work that takes into account cell-cell variability in a population. These

ODEs systems will be high dimensional with no closed-form solutions.

To get around this, a probabilistic approximation technique accompa-

nied by a statistical model checking (SMC) procedure —as sketched in

the previous chapter and whose underlying theory was developed in

detail in [24]— is used to carry out parameter estimation as follows. A

conjunction of BLTL formulas describe the available experimental time-

course data as well as known qualitative properties. One then deploys

the statistical model checking procedure to evaluate the goodness of the

current estimates for unknown parameter values. With the help of an

evolutionary search strategy one then searches through the parameter

space to obtain a good set of parameter values. The estimated values

are then validated using test data that was not made available to the

estimation procedure.

For high dimensional ODEs systems with many unknown parame-

ters, one will have to call upon the SMC procedure many times and for

each such call one will have to generate sufficiently many trajectories of

the ODEs system to ensure the termination of the SMC procedure. Con-

sequently, the computational cost induced by the repeated executions

of the SMC procedure can be quite high. In this chapter, we develop a

65

a gpu based implementation of the smc procedure for odes

systems

GPU based implementation of the above mentioned parameter estima-

tion procedure.

5.1 overview

Obviously, one can numerically generate trajectories in parallel on a

GPU. Thus it is tempting to take for granted an easy parallel implemen-

tation and a corresponding increase in performance. This is, however,

not the case. The memory hierarchy of a GPU and its single-instruction

multiple-thread (SIMT) organization of its arithmetic units constitute

severe constraints. A naïve implementation will often perform no bet-

ter than (and in some cases worse than!) a sequential implementation.

GPUs are, however, an attractive candidate since they are available off-

the-shelf and can offer performance that is comparable to the more-

expensive and less-available multi-core platforms. Furthermore, it is

possible to form large pools of GPUs in a scalable and cost effective

way using cloud services. Therefore, the effort required to overcome the

architectural constraints of GPUs may well be worth it and this is the

hypothesis we pursue here.

In simplified terms, the iterative parameter estimation procedure based

on SMC consists of:

(i) Encode the experimental data and known qualitative trends as a

BLTL formula ϕ (as detailed in Section 5.2).

(ii) Fix the required confidence level and the false positives and nega-

tives rates w.r.t. which one wishes to verify ϕ.

(iii) Guess a current value for each unknown parameter.

66

5.1 overview

(iv) Evaluate the goodness of these estimated parameters by repeat-

edly generating trajectories till the statistical test associated with

the SMC procedure terminates.

(v) If the outcome is yes then the current estimate is a good one. If not,

guess a new set of values using the evolutionary search strategy

and iterate.

Thus it is step (iv) which is ripe for parallelization. However just gen-

erating a numerical trajectory is not enough. One must evaluate if it

satisfies ϕ which is of course easy to do. However only a small amount

of memory will be available in the vicinity of a GPU core. Hence the

generated trajectories need to be sent up through a number of levels

in the memory hierarchy, each of which is significantly slower than the

previous one. This will all but eliminate the performance gains obtained

by generating the trajectories in parallel. Hence one must verify whether

a generated trajectory satisfies ϕ on the fly without having to store the

whole trajectory. Again this is not difficult to do though one must mini-

mize the amount of intermediate data (typically Boolean combinations

of the subformulas of ϕ that still need to be satisfied) to be kept track

of. However the obvious online procedures will involve branching that

is based on the current requirements and this will clash with the hard-

ware parallelism available in GPUs. At the level of a single core, groups

of parallel threads called warps are scheduled to run the compiled code,

which at each step, execute the same machine instruction in a lock-step

fashion. This is the heart of GPU’s execution model. If two threads in a

warp take different branches, the warp will have to be executed twice,

once for each branch. This so called branch divergence causes severe per-

formance degradation [72]. To avoid this, we construct a deterministic

automaton-based online model checking technique. It turns out that it

is better to store the automaton (as a look-up table) in the intermediate

67

a gpu based implementation of the smc procedure for odes

systems

storage shared by the cores and hence we also implement a standard la-

tency hiding technique to mitigate the data transfer delays between this

shared store and the global store (using which the rest of the analysis is

carried out) during model checking.

5.1.1 Related work

Efficient methods for model checking probabilistic systems have been

studied [43, 73–76]. The statistical model checking (SMC) approach ini-

tiated by Younes and Simmons [70] based on the sequential probability

ratio test proposed by Wald [77] has turned out to be a fruitful one

and is adopted here. SMC usually involves checking whether an indi-

vidual trace satisfies a given temporal specification. When the specifica-

tion is a BLTL formula, this is known as BLTL path checking. Kuhtz and

Finkbeiner show that the path checking problem can be parallelized by

unrolling the BLTL formulas into Boolean circuits [78]. Barre et al. adopt

the MapReduce framework [79] to verify a single large trace using dis-

tributed computing [80]. However, it is not clear how these methods can

be implemented on a GPU-based platform.

On the other hand, Barnat et al. take an automata-theoretic approach

to parallel model checking of a restricted class of multi-affine ODEs sys-

tems [81, 82]. The ODEs model dynamics is first approximated as a rect-

angular abstraction automaton and a given LTL property is translated

into a Büchi automaton that represents its negation. A parallel model

checker then looks for an accepting cycle in the product automaton by

symbolically exploring the state space. But this approach tends to over-

approximate the model dynamics. Oshima et al. present a FPGA-based

framework for the checking of BLTL specifications with applications on

partial differential equations [83]. Their method also involves a Büchi au-

68

5.2 online statistical model checking procedure

tomaton construction but requires a large set of trajectories to be stored

in the hardware before a property can be verified. In contrast our online

method is based on GPUs, which we believe are more accessible and

scalable. Further our focus is on ODEs systems.

In recent years, statistical model checking has become a building

block to solve complex problems. David et al. apply SMC using analysis

of variance (ANOVA) to find the optimal set of parameters of a network

of stochastic hybrid automata [84]. Jha et al. show how the parameter

synthesis problem for stochastic systems can be approached using sta-

tistical model checking [85]. Here, we focus on efficient parallelization

techniques for traditional analysis tasks based on SMC, especially pa-

rameter estimation [86].

5.2 online statistical model checking procedure

Recall from the previous chapter, we use formulas in bounded linear-

time temporal logic (BLTL). The problem of BLTL path checking in-

volves determining whether a BLTL formula is satisfied by a trajectory.

According to the BLTL semantics, it is easy to see that the truth value of

a BLTL formula can be decided by trajectories with finite length. Online

BLTL path checking requires only the current valuation of the atomic

propositions as input. At each step, it evaluates the BLTL formula under

the current valuation and generates a new formula that represents the

“obligation” in the following step. The procedure terminates when the

formula under consideration becomes either true or false, indicating a

satisfaction or falsification of the original formula.

Such an algorithm can be easily implemented on CPUs. On the other

hand, to achieve good performance on GPUs one must address the prob-

lem of branch divergence, which occurs when two GPU threads choose

69

a gpu based implementation of the smc procedure for odes

systems

different code segments under the evaluation of a condition as illus-

trated in the following example.

Example 1 Branch Divergence: Consider BLTL formula φ = F≤8G≤5p, where

p is an atomic proposition. Expanding φ, we get φ =
(

p ∧XG≤4p
)
∨XF≤7G≤5p.

Notice that if the current valuation is σ1 = {p 7→ false}, φ is reduced to φ1 =

F≤7G≤5p; if it is σ2 = {p 7→ true}, φ is reduced to φ2 = G≤4p ∨ F≤7G≤5p.

Now we initiate two GPU threads to check whether φ is satisfied for two

different trajectories. Naively, we implement each thread as if σ1 then check φ1

else check φ2. Branch divergence happens when the two trajectories take dif-

ferent valuations. Since GPU stream processors require that each GPU thread

executes identical instructions, the two threads will process both φ1 and φ2 and

simply discard the unrelated part, resulting in a 50% loss of performance. 2

5.2.1 Automaton-based BLTL path checking

To better utilize the parallelism of GPUs, we introduce an automaton-

based BLTL path checking algorithm. Given a BLTL formula ψ, it is

well-known that there exists a positive integer K that depends only on ψ

such that for any trajectory τ whose length is greater than K, one needs

to examine only a prefix of length K to determine whether τ is a model

of ψ [87]. The online procedure we shall construct examines τ as it is

being generated (through numerical simulation) in a lock-step fashion.

Instead of generating a trajectory of length K at once, it incrementally

simulates the ODEs model and checks whether the current trajectory

satisfies the formula ψ.

It is convenient to focus on the sequence of truth values of the atomic

propositions induced by a trajectory. Let us call such a sequence AP-

sequence. Given a trajectory τ = v0v1 . . . vk, its induced AP-sequence is

denoted as τap, which is the sequence P0P1 . . . Pk where for 0 ≤ i ≤ k:

70

5.2 online statistical model checking procedure

(xj ./ v) ∈ Pi iff vi(j) ./ v , ./∈ {≤,≥} .

We now wish to construct a deterministic automaton for ψ that ac-

cepts (rejects) an AP-sequence iff it is (not) a model of ψ.

As the first step, we replace the time constants mentioned in ψ by

symbolic variables and manipulate these variables separately. To this

end, we define the formula sym(ψ) inductively as follows.

• sym(ψ) = ψ if ψ is an atomic proposition;

• sym(¬ψ) = ¬sym(ψ) and sym(ψ1 ∨ ψ2) = sym(ψ1) ∨ sym(ψ2);

• sym(Xψ) = Xsym(ψ);

• sym(ψ1U≤tψ2) = sym(ψ1)U≤xα sym(ψ2) where α = ψ1U≤tψ2.

Thus the subscript assigned to the symbolic variable is the sub-formula

in which the time constant appears. Often for convenience we will in-

dex these variables by integers rather than concrete formulas. Thus

sym(F≤8p ∨ G≤3q) will be typically represented as F≤x1 p ∨ G≤x2q. We

refer to sym(ψ) as a symbolic BLTL formula.

For a BLTL formula ψ, we now define the automatonAψ = 〈Sψ, 2APψ ,→

, sin,F〉, where Sψ is the set of states, APψ is the set of atomic proposi-

tions that appear in ψ, →⊆ Sψ × 2APψ × Sψ is the transition relation (to

be defined below), sin ∈ Sψ is the initial state and F ⊆ Sψ are the final

states.

Let φin = sym(ψ) and CL be the least set of formulas that contains

the sub-formulas of sym(ψ) and satisfies:

If ψ1U≤xψ2 is in CL then Xψ1U≤xψ2 is also in CL.

We let BC denote the Boolean combinations of formulas in CL. A state

of the automaton is a triple of the form (φ, Y, V), where φ ∈ BC, Y is

the set of variables that appear in φ, and V is a valuation that assigns

a positive integer to every variable in Y. We define sin = (φin, Yin, Vin),

71

a gpu based implementation of the smc procedure for odes

systems

where Yin is the set of the symbolic variables that appear in φin, and

Vin assigns to each variable in Yin the corresponding value in ψ. More

precisely, if xα is in Yin and α = ψ1U≤tψ2 then Vin(xα) = t. F =

{(true, ∅, ∅), (false, ∅, ∅)}.

Next we define the the transition relation → of A. Let (φ, Y, V) and

(φ′, Y′, V′) be states and P ⊆ APψ be a set of atomic propositions. Then

(φ, Y, V)
P−→ (φ′, Y′, V′) is a transition iff the following conditions are

satisfied.

• Suppose φ = p is an atomic proposition. If p ∈ P, then φ′ = true;

otherwise, φ′ = false. In either case Y′ = V′ = ∅.

• Suppose φ = ¬ϕ, and there exists a transition (ϕ, Y, V)
P−→ (ϕ′, Y′′, V′′).

Then φ′ = ¬ϕ′, Y′ = Y′′ and V′ = V′′.

• Suppose φ = φ1 ∨ φ2, and there exist transitions (φ1, Y1, V1)
P−→

(φ′1, Y′1, V′1) and (φ2, Y2, V2)
P−→ (φ′2, Y′2, V′2). Then φ′ = φ′1 ∨ φ′2, Y′ =

Y′1 ∪Y′2, and V′(xi) = V′i (xi) for xi ∈ Xi, i ∈ {1, 2}.

• Suppose φ = Xϕ. Then φ′ = ϕ and Y′ = Y and V′ = V.

• Suppose φ = φ1U≤xα φ2, and there exist transitions (φ1, Y1, V1)
P−→

(φ′1, Y′1, V′1) and (φ2, X2, V2)
P−→ (φ′2, Y′2, V′2). Then φ′ = φ′2 ∨ (φ′1 ∧

Xϕ) where ϕ = φ2 if V(xα) = 1. Furthermore Y′ = Y′1 ∪ Y′2 and

V′ restricted to Y′1 is V′1 and V′ restricted to Y′2 is V′2. If V(xα) > 1

then ϕ = φ1U≤xα φ2. Furthermore Y′ = Y′1 ∪ Y′2 ∪ {xα} while V′

restricted to Y′1 is V′1 and V′ restricted to Y′2 is V′2. In addition

V′(xα) = V(xα)− 1.

The set of states Sψ is given inductively:

sin ∈ Sψ. Suppose s ∈ Sψ and s P−→ s′. Then s′ ∈ Sψ.

72

5.3 mapping to the gpu platform

It is easy to show that this automaton has the required properties.

Moreover its number of states is bounded by `+ Σx∈XinVin(x) where `

is the number of appearances of the X operator in ψ.

s1 : F≤kG≤`0 p

s2 : G≤`p ∨ F≤kG≤`0 p

sin

false

true

p
k := k− 1
` := `0 − 1

¬p
k := k− 1

¬p
k := k− 1

p
k := k− 1 , ` := `− 1

¬p
k := k− 1

p
k := k− 1
` := `− 1

k = k0 , ` = `0

k < 0

` < 0

Figure 12: Automaton for the nested BLTL formula F≤k0G≤`0 p

Example 2 Consider the BLTL formula ψ = F≤k0G≤`0 p, where k0 and `0 are

constants. Figure 12 shows a fragment of the automaton Aψ. To avoid clutter

we have not explicitly shown the symbolic variables and their valuations. The

dashed arcs indicate that the input states will transit to the corresponding final

states given proper valuations of atomic propositions. 2

5.3 mapping to the gpu platform

In this section, we first describe the design of our online method that

overcomes the stringent memory restrictions imposed by the GPU plat-

form to evaluate large number of trajectories as they are numerically

generated. We then discuss how the SMC procedure described in Sec-

tion 4.3 is implemented in our setting using latency hiding. This will

lead to a GPU implementation of the parameter estimation problem

first presented in Section 4.4.

73

a gpu based implementation of the smc procedure for odes

systems

Our online approach uses the automaton constructed in Section 5.2,

which eliminates the need for handling different formulas explicitly. Re-

call that running an automaton A is equivalent to evaluating the corre-

sponding BLTL formula under a series of valuations at different time

points until a final state is reached. To efficiently implement this on

GPU, branch divergence should be avoided as much as possible. Our

solution is to index states, variables and the atomic propositions as de-

fined in Section 5.2, and encode the transitions and the operations on

the valuations into an array AT. This array represents transitions and

operations on the valuations, in which each row corresponds to an in-

put state, and each column to an atomic proposition. Each element of

the array consists of an output state and the operations on the valua-

tions associated to the transition. Each GPU thread has access to AT

which is pre-computed and stored in the shared memory. A step in the

run of the automaton is performed by all threads of a warp executing

in lock-step updating the state and the variables according to AT. Note

that dummy self-loops for the terminal states are added so that once

one of them is reached, the automaton stays there forever. This avoids

explicit checking for termination, which induces branch divergence.

Example 3 For the fragment of the automaton Aψ defined in Figure 12, the

array

AT =

σ1 σ2



sin s1, a01 s2, a02

s1 s1, a11 s2, a12

s2 s1, a21 s2, a22

> >, {} >, {}

⊥ ⊥, {} ⊥, {}

74

5.3 mapping to the gpu platform

encodes the automaton, where σ1 = {p 7→ false} and σ2 = {p 7→ true}, and

aij updates the set of time variables for the jth transition out of the ith state.

The GPU computation steps are shown in Figure 13. Starting from an

initial state at t = 0, for each time interval ∆t, the new value of a variable

x is determined by applying numerical integration using the current

values of the variables and the values of the rate constants appearing

in the ODE for x as well as the current value of x. Since trajectories are

generated through numerical integration, to ensure numerical accuracy,

each interval [0, ∆t] is uniformly subdivided into q sub-intervals for

a suitable choice of q. We compute an updated value of the variables

every λ = ∆t
q . Each variable may appear in multiple equations, leading

to a large amount of read-sharing. To ensure consistency, all variables

are updated together in an atomic transaction. We use a fourth-order

Runge-Kutta algorithm to compute the next value of a variable for each

timestep. Overall, each trajectory is numerically simulated for q ·K steps.

Finally, the current values of the variables sampled at each of the time

points {0, ∆t, . . . , K.∆t} are used to update the atomic propositions and

in turn execute a step in the run of the set of automata.

Initialize the ODEs system and the
symbolic automata

),(0 x

),(tKx 

),(tx

),(tx

tx

1

tx

2

t

Nxt

Nx

1

tx1

tx2





t

Nx 1

t

Nx
1 2 1L L

1AP 2AP 1MAP MAP iODE jODE

),(tx

tx

1

tx

2

t

Nxt

Nx

1

Figure 13: Lock step execution of the numerical integration and the symbolic
BLTL automata

75

a gpu based implementation of the smc procedure for odes

systems

Our code generation scheme for the multi-thread based numerical

simulation of an ODEs system distributes the fine-grained computation

involved in the computation of a variable across different warps and

obtains feedback regarding the quality of the computational balance by

analyzing the PTX assembly generated at compile time. This informa-

tion is then used to efficiently distribute the computation blocks across

threads. The load balancing and latency hiding methods described here

are based on the automatic code generation scheme described in Chap-

ter 3. Moreover at a higher level, we generate a number of blocks of

trajectories in parallel and the blocks are distributed across a number of

GPU cores. At each time step, for each trajectory, we update the current

state of the constructed deterministic automaton running in lockstep

with the numerical integration. We also periodically check if the trajec-

tories have hit a final state in the automaton. When this is the case, we

update this state information for all the trajectories in the block to the

global memory.

If threads from other warps are also scheduled for such long latency

global memory accesses, the memory access delay due to control flow

divergence will impact performance. To get around this, we use a la-

tency hiding technique where by the global memory accesses are pre-

fetched by threads in a separate warp at the same time as when the

other threads carry out the numerical integration.

At the global memory level, we first pick the terminal state of a trajec-

tory uniformly at random and use it to update the current SPRT score.

When the SMC procedure reaches a decision we stop the concurrent

numerical integration.

76

5.4 experimental evaluation

5.3.1 Parallelized parameter estimation based on PBLTL formulas

We refer to Section 4.4, where we described how experimental data can

be encoded as BLTL formulas. To do so we mildly extend the syntax

of BLTL with the formulas of type ψ1Utψ2 with the semantics: ψ1 will

hold exactly up to t time units from now at which point ψ2 will hold.

The construction of the automaton presented in Section 5.2 can be easily

extended to handle this case.

As described in Section 4.4, using a suitable search strategy, we gen-

erate estimates for the unknown parameters and iterate the scheme. In

order to estimate the quality of w —the current estimate of the values

of the unknown parameters— we launch a fresh instance of the parallel

SMC procedure, using INITw, to verify P≥r(ψexp ∧ ψqlty) on the GPU

network. Depending on the outcome of the test, we assign a score to

w using the objective function in Section 4.4. This evaluation is done at

the global memory level. Using a cloud service, one can launch as many

parallel sets of SMC procedures as there are GPU instances available.

5.4 experimental evaluation

We applied our method to three ODEs based pathway models taken

from the BioModels database [88]. We first verified properties of inter-

est on each of the three pathway models. Using our parallelized SMC

framework, we then performed parameter estimation on these models.

The GPU implementation was based on CUDA 5.0 runtime and tested

on four NVidia Tesla K20m GPUs with 4.8 GB global memory, clocked

at 706 MHz each. We compared the performance of our algorithm with

that of a CPU based implementation on a PC with 3.4 Ghz Intel Core

i7 processor with 8 GB of memory. The model checker and the numer-

77

a gpu based implementation of the smc procedure for odes

systems

ical solver for the CPU implementation were written in C++. On the

GPU, we implemented the fourth order Runge-Kutta method (used for

the EGF-NGF and segmentation clock model) and the adaptive step-

size Runge-Kutta-Fehlberg method [89] (used for the thrombin pathway

model). For the cloud implementation, we ported our single node im-

plementation to 25 Amazon Web Service (AWS) cloud g2.8xlarge GPU

nodes. Each such node has two Intel Xeon E5-2670 CPUs of 8 cores each

and four NVIDIA GK104 GPUs with 60 GB host memory and 4 GB

global memory on each GPU device. The nodes are connected by AWS

Enhanced Networking and communicate using CUDA-aware OpenMPI.

The NVIDIA GK104 GPUs have 1536 cores clocked at 797 MHz each

with 4 GB global memory and a memory bandwidth of 160 GB/s.

5.4.1 Case studies: Property verification

5.4.1.1 Thrombin dependent MLC-phosphorylation pathway

Thrombin plays an important role in the contraction of endothelial cells

through multiple pathways leading to the phosphorylation of MLC [90].

The pathway model has 105 differential equations and 197 kinetic pa-

rameters. Simulation time was fixed at 1000 seconds divided into 20

equally spaced time points. We used the nominal model (all rate pa-

rameter values known) to verify if it conformed to a property with a

high probability expressed in BLTL. It is known experimentally that the

concentration of MLC∗ (phosphorylated MLC) starts at a low level, and

then reaches a high steady state value. The corresponding formula is

P≥0.9(([MLC∗ ≤ 1]) ∧ F≤5(G≤20([MLC∗ ≥ 3]))).

Our SMC analysis concluded that the nominal model does not satisfy

this property, and we found that phosphorylated MLC shows a tran-

78

5.4 experimental evaluation

sient profile. This discrepancy has been studied in [91], where it was

attributed to missing components in the proposed model.

Our online procedure for this case achieves significant speed-up (4.6×

in a single GPU setting) compared to an offline GPU based model

checker which first generates trajectories in parallel, stores them in the

global memory and then carries out the model checking procedure on

the CPU.

5.4.1.2 EGF-NGF pathway

The EGF-NGF signaling pathway captures the differential response to

two growth factors, EGF and NGF in the PC12 neuro-endocrine cell

line [2]. EGF induces cell proliferation while NGF promotes cell differ-

entiation. The difference in cell fate is attributed to the duration of Erk

activation. For studying this model, simulation time was set to 61 min-

utes divided into equally spaced intervals of 1 minute each. We checked

whether starting from a low value, the concentration of Erk∗ (active Erk)

reaches a high value and then begins to fall. This property can be for-

malized as

P≥0.9([0 ≤ Erk∗ ≤ 2.2 · 105] ∧ F≤10([4.8 · 105 ≤ Erk∗ ≤ 5.6 · 105])

∧F≤20(G≤30([2.2 · 105 ≤ Erk∗ ≤ 4.8 · 105]))).

The property was confirmed to be true by our SMC method suggesting

that Erk shows sustained activation upon EGF stimulation.

5.4.1.3 Segmentation clock pathway

The segmentation pattern of the spine in developing embryos is con-

trolled by oscillations in Notch, Wnt and FGF signaling due to coupled

feedback loops [64]. The ODEs model representing this pathway was

simulated up to 200 minutes with observations assumed to be available

79

a gpu based implementation of the smc procedure for odes

systems

every 5 minutes. We formulated the oscillations observed in the concen-

tration profile of Dusp6-mRNA as a BLTL property as follows

P≥0.9([Dusp6 mRNA ≤ 1] ∧ (F≤10([Dusp6 mRNA ≥ 5.5]∧

F≤10([Dusp6 mRNA ≤ 1] ∧ F≤10([Dusp6 mRNA ≥ 5.5]))))).

This property was verified to be true suggesting oscillations in Dusp6

mRNA with a period of approximately 100 minutes.

5.4.2 Case studies: Parameter estimation

We next evaluated our method for estimating unknown model parame-

ters based on a combination of quantitative time series data and quali-

tative specifications of dynamical trends. Using the nominal model we

generated training data to be used for parameter estimation and an in-

dependent set of test data not used for fitting. To generate time series

data points, we simulated random trajectories on the GPU by sampling

initial concentration from a ±5 % range around the nominal values. We

also encoded the dynamic trends of a few species as properties in BLTL.

Later, for each BLTL property, its respective symbolic automaton was

constructed. We allowed 0.5% parameter variability around the current

estimate of parameters in each iteration of the search procedure. Table 6

summarizes the key features of the models including the number of

variables (Nx), the number of parameters (NΘ), the number of parame-

ters assumed to be unknown (NΘu), the number of equally spaced time

points (T) and for SRES, the total number of individuals (λ) and the

number of generations (G).

For the thrombin pathway, all training data and test data were quanti-

tative time course data with one exception. Namely, for Thrombin R∗, a

dynamical trend formulated in BLTL was used as training data express-

ing that it reaches a high level within 200 seconds and then falls to a

80

5.4 experimental evaluation

Table 6: Parameter estimation setup and model specifications

Bio-pathway model Nx NΘ NΘu T λ G
EGF-NGF 32 48 20 61 200 100

Segmentation clock 16 75 39 40 200 300

Thrombin 105 197 100 20 100 500

low level (Figure 14). We used only quantitative data for the EGF-NGF

pathway and found a good fit to both training and test data by the fit-

ted model (Figure 15). For the segmentation clock model, only Axin2

mRNA was assumed to have quantitative time course data available,

and dynamical trends were given as training and test data for the re-

maining species. For instance, the test data for Dusp6 protein expresses

that at least two peaks and troughs are reached within 200 minutes —

this test property was satisfied by the fitted model as seen in Figure 16.

In each case, the simulated dynamics of the fitted model is plotted by

sampling randomly from the initial conditions while using the fitted

parameter values.

0 500 1000
0

0.005

0.01

0.015

0.02

0.025

RGS_2

Time (s)

C
on

ce
nt

ra
tio

n
(µ

m
ol

/l
)

0 500 1000
0

0.01

0.02

0.03

0.04

0.05

Rho.GTP

Time (s)

C
on

ce
nt

ra
tio

n
(µ

m
ol

/l
)

0 500 1000
0

0.05

0.1

0.15

0.2

0.25

PKC.DAG

Time (s)

C
on

ce
nt

ra
tio

n
(µ

m
ol

/l
)

0 500 1000
0

1

2

3

4

5
x 10

−3 ThrombinR*

Time (s)

C
on

ce
nt

ra
tio

n
(µ

m
ol

/l
)

(a)

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

8

9
x 10

−3 Rho−kinase.MLC

Time (s)

C
o

n
ce

n
tr

at
io

n
 (µ

m
o

l/
l)

(b)

Figure 14: Parameter estimation of the thrombin pathway, showing model fit
to (a) training data and (b) test data.

5.4.3 Performance

We measured the runtime of the parameter estimation procedure with

different combinations of SPRT error bounds (α and β), indifference re-

gions (δ), and threshold probability (r) used within the SMC procedure.

81

a gpu based implementation of the smc procedure for odes

systems

0 20 40 60
0

2000

4000

6000

8000

10000

boundNGFReceptor

Time (min)

M
ol

ec
ul

e
nu

m
be

r

0 20 40 60
0

5

10

x 10
4 SosActive

Time (min)

M
ol

ec
ul

e
nu

m
be

r

0 20 40 60
0

1

2

3

4

5

6
x 10

4 AktActive

Time (min)

M
ol

ec
ul

e
nu

m
be

r

0 20 40 60
0

1

2

3

4

5

6

x 10
5 ErkActive

M
ol

ec
ul

e
nu

m
be

r

Time (min)

(a)

0 20 40 60
0

5

10

15
x 10

4 PI3KActive

Time (min)

M
ol

ec
ul

e
nu

m
be

r

(b)

Figure 15: Parameter estimation of the EGF-NGF pathway, showing fit to (a)
training data and (b) test data.

0 200
0

0.2

0.4

0.6

0.8
Notch protein

100
Time (min)

Co
nc

en
tr

at
io

n
(n

m
ol

/l)

0 200
0

0.5

1

1.5

2

2.5

3
Lunatic fringe mRNA

100
Time (min)

Co
nc

en
tr

at
io

n
(n

m
ol

/l)

0 200
0

0.5

1

1.5

2
active ERK

100
Time (min)

Co
nc

en
tr

at
io

n
(n

m
ol

/l)

0 200
0

5

10

15

20

25

Axin2 mRNA

100
Time (min)

Co
nc

en
tr

at
io

n
(n

m
ol

/l)
(a)

0 50 100 150 200
0

10

20

30

40
Dusp6 protein

Time (min)

C
o

n
ce

n
tr

at
io

n
 (n

m
o

l/
l)

(b)

Figure 16: Parameter estimation of the segmentation clock pathway, showing
fit to (a) training data and (b) test data.

We found that for all three models, while GPU runtimes stayed roughly

constant across all SPRT parameter combinations, runtimes for the CPU

based implementation increased significantly for more stringent statisti-

cal tests (see Figure 17). For instance with the most stringent statistical

test, the GPU implementation took just 42 minutes for finding the best

parameter set for the EGF-NGF model on a 4-GPU node, a 24.6× speed-

up compared to the 17.2 hours taken by the CPU implementation.

(0.05, 0.05) (0.01, 0.05) (0.05, 0.01) (0.01, 0.01)
0

5

10

15

20

EGF−NGF pathway

SPRT parameters (α = β, δ)

R
u
n
ti
m

e
 (

h
o
u
rs

)

CPU, r=0.8

CPU, r=0.9

GPU, r=0.8

GPU, r=0.9

(0.05, 0.05) (0.01, 0.05) (0.05, 0.01) (0.01, 0.01)
0

20

40

60

80

Segmentation clock pathway

SPRT parameters (α = β, δ)

R
u
n
ti
m

e
 (

h
o
u
rs

)

CPU, r=0.8

CPU, r=0.9

GPU, r=0.8

GPU, r=0.9

(0.05, 0.05) (0.01, 0.05) (0.05, 0.01) (0.01, 0.01)
0

100

200

300

400

500

600

Thrombin pathway

SPRT parameters (α = β, δ)

R
u
n
ti
m

e
 (

h
o
u
rs

)

*

*

CPU, r=0.8

CPU, r=0.9

GPU, r=0.8

GPU, r=0.9

Figure 17: Comparison of CPU and GPU runtimes on parameter estimation
with different combinations of SPRT parameters (error bounds α =
β, indifference region δ and probability threshold r). ∗Estimated val-
ues based on shorter runs

Next, Table 7 shows the performance of our parameter estimation

method on a range of parallel architectures with the SPRT parameters

82

5.4 experimental evaluation

Table 7: Performance of our scheme across different architectures (∗Estimated
values based on shorter runs)

Model CPU [hr] 4-GPU node [hr] 100-GPU cloud [hr] 4-GPU node over CPU

EGF-NGF 17.22 0.69 0.05 24.6×
Segmentation clock 47.5 4.01 0.45 11.9×

Thrombin 556.8∗ 111.1 5 5×∗

Table 8: Strong scaling performance of the cloud based implementation
Bio-pathway model 40-GPUs Time[s] 80-GPUs over 40-GPUs 100-GPUs over 40-GPUs

EGF-NGF 445.28 1.62x 2.36x

Segmentation clock 3864.74 1.74x 2.35x

set to α = β = δ = 0.01 and r = 0.9. In the 4-GPU server setup, for every

generation in our single node parallel implementation, we divided the

total number of individuals across 4 GPUs equally. For the cloud based

implementation, the set of individuals were divided across 100 GPU

instances in 25 machines with 4 GPUs per node.

While the 4-GPU server implementation took 42 minutes to complete

the EGF-NGF parameter estimation task, the same took only 3 minutes

on the 100-GPU cloud. For the segmentation clock pathway, the 4-GPU

implementation took 4 hours, a speed-up of approximately 11.9× over

the CPU implementation. Finally, parameter estimation for the throm-

bin model would take an estimated 23.2 days using a CPU based imple-

mentation. (Note that this estimate was obtained by running an initial

number of generations in the parameter search, calculating the average

time taken for a generation, and then extrapolating the run time for the

maximal generation number.) The cloud based implementation on the

other hand is able to estimate the parameters in about 5 hours.

Finally, Table 8 presents the scaled performance of our parameter es-

timation method applied on the EGF-NGF and the segmentation clock

pathway models on the cloud. As might be expected our method achieves

near perfect linear scaling when all the individuals in each round of the

SRES procedure are launched on unique instances on the cloud.

83

a gpu based implementation of the smc procedure for odes

systems

5.5 summary

In this chapter, we proposed a technique for studying the dynamics of

ODEs systems that utilizes the power of commodity graphics processors.

In particular, we developed a parallel, online procedure for checking if

the trajectories of this model satisfy a bounded linear temporal logic

formula. Our procedure works around various architectural constraints

of the graphics processor execution model to achieve significant perfor-

mance both on local systems as well as in the cloud. We believe that

this opens the door for studying large pathway models in a scalable

and cost-effective manner. We used the parameter estimation problem

to illustrate the applicability of our method, which consists of a paral-

lel SMC procedure whose core is a deterministic online model checking

procedure that determines if the trajectory under construction satisfies a

given BLTL formula. Many analysis questions can be tackled by assum-

ing a distribution over the set of initial concentrations and parameter

values, which will then induce a probability measure on the set of tra-

jectories satisfying a given BLTL formula.

84

6
S TAT I S T I C A L M O D E L C H E C K I N G O F H Y B R I D

S Y S T E M S

In this chapter, we consider the analysis of hybrid systems. A rich class

of biological, cyber-physical and engineering systems can be naturally

modelled as hybrid systems [25, 92, 93]. Hybrid systems are multi-

mode dynamical systems which evolve over continuous time and have

instances where jumps between discrete states occur. Generally, the evo-

lution “flows” in continuous time according to a set of ordinary differ-

ential equations (ODEs) associated with a given state. At some instance,

the system jumps from a current state to a new state in which the sys-

tem now evolves according to a different set of ODEs associated with

the new state.

The interaction between the discrete and the continuous components

makes analysis of hybrid systems intractable. Even very basic analysis

questions for simple hybrid systems become undecidable [47, 94]. Var-

ious lines of work have explored ways to mitigate this problem with a

common technique being to restrict the mode dynamics [95–100]. How-

ever, for many of the models arising in systems biology or engineering,

the continuous dynamics will be governed by a system of non-linear

ODEs. So one must look for approximate methods for their analysis.

In this chapter, we first describe a probabilistic approximation method

for analysis of a hybrid system in which such a system can be approx-

imated as a discrete-time Markov chain. We then develop a statistical

model checking procedure based on this approximation.

85

statistical model checking of hybrid systems

Once we relate the behaviours of the Markov chain and the hybrid

system, we can randomly sample paths in the Markov chain according

to the underlying transition probabilities and approximately verify time

bounded properties of the Markov chain.

6.1 overview

A key difficulty in analyzing a hybrid system’s behaviour is that the

time points and value states at which a trajectory meets a guard will

depend on the solutions to the ODE systems associated with the modes.

For high-dimensional systems these solutions will not be available in

closed-form. To get around this, we approximate the mode transitions

as stochastic events by fixing the probability of a mode transition to

be proportional to the measure of the set of value state and time point

pairs at which this transition is enabled. More sophisticated hypotheses

could be considered. For instance one could tie the mode transition

probability to how long the guard has been continuously enabled or

how deeply within a guard region the current state is.

6.1.1 Assumptions

To secure a sound mathematical basis for our approximation, we make

the following crucial assumptions.

• It is impossible, if not impractical to observe the system continu-

ously. So we assume the states of the system are observed only

at discrete time points. Fixing a suitable unit time interval ∆, we

discretize the time domain as t = 0, ∆, 2∆,

86

6.1 overview

• The vector fields associated with the ODEs are Lipschitz continu-

ous functions.

• The set of initial states and the guard sets are bounded open sets.

• A hybrid system is said to contain Zeno executions if the system

makes an infinite number of mode switches in a finite time inter-

val. In reality, engineering or biological systems are non-Zeno but

design flaws in modelling or over-abstraction may introduce Zeno

behaviour. The hybrid systems we consider are strictly non-Zeno

in the sense that there is a uniform upper bound on the number

of transitions that can take place in a unit time interval. For tech-

nical convenience we in fact assume that time discretization is so

chosen that at most one mode transition takes place between two

successive discrete time points.

Under these assumptions, we show that the dynamics of the hybrid

system H can be approximated as an infinite-state Markov chain M.

Given the application domain we have in mind, namely, biological path-

way dynamics, we focus on the behaviour of the hybrid system over a

finite time horizon and BLTL (bounded linear-time temporal logic) [101]

to specify dynamic properties of interest. The maximum discrete time

point we fix will be determined by the BLTL specification. Our prob-

abilistic approximation is such that the set of trajectories satisfying a

BLTL formula will correspond to a measurable set of paths of the Markov

chain and hence can be assigned a probability value. We then show that

H meets the specification ψ–i.e. every trajectory of H is a model of ψ–iff

M meets the specification ψ with probability 1. This allows us to ap-

proximately verify interesting properties of the hybrid system using its

Markov chain approximation. However, even a bounded portion of M

can not be constructed effectively. This is because the transition proba-

87

statistical model checking of hybrid systems

bilities of the Markov chain will depend on the solutions to the ODEs as-

sociated with the modes, which will not be available in a closed-form. In

addition, the structure of M itself will be unknown since the states of the

chain will be those that can reached with non-zero probability from the

initial mode and we can not determine which transitions have non-zero

probabilities. To cope with this, we design a statistical model checking

procedure to approximately verify that the chain (and hence the hybrid

system) almost certainly meets the specification. One just needs to en-

sure that the dynamics of the Markov chain is being sampled according

to underlying probabilities. We achieve this by randomly generating tra-

jectories of H through numerical simulations in a way that corresponds

to randomly sampling the paths of the Markov chain according to its

underlying structure and transition probabilities. We note that a simple

minded Monte Carlo simulations based strategy consisting of sampling

an initial state (according to the given initial distribution) followed by a

random generation of trajectory will flounder on the issue of how one

“randomly” picks a mode transition during the generation of a trajec-

tory in the presence of the non-linear dynamics captured by the ODEs

systems. Our approximation technique instead establishes a principled

way of achieving this.

In establishing these results, we assume that the atomic propositions

in the specification are interpreted over the modes of the hybrid system.

Consequently one can specify patterns of mode visitations while quan-

titative properties can be inferred only indirectly and in a limited fash-

ion. Our results however can be extended to handle quantitative atomic

propositions (“the current concentration of protein X is greater than 2

µM”). The details of this extension can be found in the Appendix A.1.

88

6.1 overview

6.1.2 Related work

A well studied subclass of hybrid automata is timed automata. In this

formalism, the continuous dynamics which model time are defined by

variables having derivative 1. Though the continuous dynamics is re-

stricted, timed automata are interesting since a rich class of real-time

systems can be modelled in this formalism. Moreover, the reachability

problem for timed automata being decidable, model checking problem

can be solved exactly [102]. But in a more general setting, analyzing

classical hybrid automata is hard for complex systems.

The continuous dynamics associated with a mode often makes it diffi-

cult to pin down mode transitions. On the other hand, it is important to

note that restricting the discrete mode dynamics or the continuous dy-

namics of hybrid automata is often unrealistic. So approximation tech-

niques are called for. Mode transitions have been approximated as ran-

dom events in the literature. In [103], the dynamics of a hybrid system

is approximated by substituting the guards with probabilistic barrier

functions. When a vector field approaches a guard, integration steps

are dynamically adapted to precisely detect whether a mode switch oc-

curs.In our approximation scheme, the transition probabilities are con-

structed using similar but simpler considerations. We have done so in

order to be able to carry out temporal logic based verification based on

simulations.

In [104], Julius and Pappas describe an approximation scheme for a

restricted class of hybrid automata namely stochastic linear hybrid au-

tomata. The approximation is based on the assumption that there exists

a stochastic bisimulation function which is quadratic in nature. A bisim-

ulation function provides a sufficient condition for the existence of a

simpler automaton with one state which approximates the dynamics

89

statistical model checking of hybrid systems

of the stochastic linear hybrid automaton. The authors also hint that

though the approximation scheme is not restricted in theory, the com-

putational implementation does not take non-determinism in the model

into account.

Another relevant related work is [105], which studies a network of hy-

brid automata that communicate with each other through input/output

actions. The main idea roughly boils down to: the time point in (0, 1), at

which the decision about what the mode should be up to the next dis-

crete time point, is determined by the uniform distribution over (0, 1).

In our setting, however, this probability is determined by the intersec-

tion of the continuous mode dynamics with the guard sets.

An alternative approach to approximately verifying non-linear hybrid

systems is one based on δ-reals [106]. Here one verifies bounded reach-

ability properties that are robust under small perturbations of the nu-

merical values mentioned in the specification. Since the approximation

involved is of a very different kind, it is difficult to compare this line

of work with ours. However, it may be fruitful to combine the two ap-

proaches to verify a richer set of reachability properties.

Ballarini et al. developed statistical model checking tool for stochastic

processes based on an extension of continuous stochastic logic (CSL).

In [107], the temporal logic for expressing properties of stochastic pro-

cesses, namely Hybrid Automata Stochastic Logic (HASL) is based on

acceptance of a path in the linear hybrid automaton synchronized with

the probabilistic model. But the continuous dynamics in the framework

does not consider ODEs based models.

The present work may be viewed as an extension of [24] where a sin-

gle system of ODEs is considered. This method however, breaks down

in the multi-mode hybrid setting and an entirely new machinery is

required to tackle hybrid behaviours. Finally, a wealth of literature is

90

6.2 hybrid automata

available on the analysis of stochastic automata [104, 107–109]. It will

be interesting to explore if these methods can be transported to our

setting.

6.2 hybrid automata

We fix n real-valued variables {xi}n
i=1 viewed as functions of time xi(t)

with t ∈ R+, the set of non-negative reals. A valuation of {xi}n
i=1 is

v ∈ Rn with v(i) ∈ R representing the value of xi. The language of

guards is given by: (i) a < xi and xi < b are guards where a, b are

rationals and i ∈ {1, 2, . . . , n}. (ii) If g and g′ are guards then so are

g ∧ g′ and g ∨ g′.

G denotes the set of guards. We define v |= g (i.e. v satisfies the guard

g) via: v |= a < xi iff a < v(i) and similarly for xi < b. The clauses

for conjunction and disjunction are standard. We let ‖g‖= {v | v |= g}.

We note that ‖g‖ is an open subset of <n for every guard g. We will

abbreviate ‖g‖ as g.

Definition 2 A hybrid automaton is a tuple H = (Q, qin, {Fq(x)}q∈Q,G,→

, INIT), where

• Q is a finite set of modes and qin ∈ Q is the initial mode.

• For each q ∈ Q, dx/dt = Fq(x) is a system of ODEs, where x =

(x1, x2, . . . , xn) and Fq = (f 1
q (x), f 2

q (x), . . . , f n
q (x)). Further, f i

q is

Lipschitz continuous for each i.

• →⊆ (Q,G, Q) is the mode transition relation. If (q, g, q′) ∈→ we

shall often write it as q
g→ q′.

• INIT = (L1, U1)× (L2, U2) . . .× (Ln, Un) is the set of initial states

where Li < Ui and Li, Ui are rationals.

91

statistical model checking of hybrid systems

We have not associated invariant conditions with the modes or re-

set conditions with the mode transitions. They can be introduced with

some additional work.

Fixing a suitable unit time interval ∆, we discretize the time domain

as t = 0, ∆, 2∆, We assume the states of the system are observed only

at these discrete time points. Furthermore, we shall assume that only a

bounded number of mode changes can take place between successive

discrete time points. Both in engineered and biological processes this

is a reasonable assumption. Given this, we shall in fact assume that ∆

is such that at most one mode change takes place within a ∆ time in-

terval. We note that there can be multiple choices for ∆ that meet this

requirement and in practice one must choose this parameter carefully.

(Our method can be extended to handle a bounded number of mode

transitions in a unit time interval but this will entail notational compli-

cations that will obscure the main ideas.) In what follows, for technical

convenience we also assume the time scale has been normalized so that

∆ = 1. As a result, the discretized set of time points will be {0, 1, 2, . . .}.

6.2.1 Trajectories

In what follows, we fix a hybrid automaton H as defined in 6.2. The

behaviour of H will consist of its finite trajectories. To define this notion

and for later use, we start with some preliminaries. We recall that a

function f : R → R is C1 if f ′, the derivative of f , exists everywhere

and is continuous. This notion extends to R in the obvious way. Further,

the function F : Rn → Rn is Lipschitz if there exists a c ∈ R, c > 0,

such that for all v1, v2 ∈ Rn, |F(v1)− F(v2)| ≤ c|v1 − v2|, where | · | is

the standard Euclidean norm on Rn.

92

6.3 the markov chain approximation

We have assumed that for every mode q, the right hand side of the

ODEs, Fq(x), is Lipschitz continuous for each component. As a result,

for each initial value v ∈ Rn and in each mode q, the system of ODEs

dx/dt = Fq(x) will have a unique solution Zq,v(t) [20]. We are also

guaranteed that Zq,v(t) is Lipschitz and hence measurable [20]. It will

be convenient to work with two sets of functions derived from solutions

to the ODE systems.

The (unit interval) flow Φq : (0, 1)×Rn → Rn is given by Φq(t, v) =

Zq,v(t). Φq will also be Lipschitz. Next we define the parametrized fam-

ily of functions Φq,t : Rn → Rn given by Φq,t(v) = Φq(t, v). Applying

once again the fact that the RHS of the ODEs are Lipschitz continu-

ous functions, we can conclude that these parametrized functions Φq,t

(which will be 1− 1) as well as their inverses will be Lipschitz.

Definition 3 A (finite) trajectory is a sequence τ = (q0, v0) (q1, v1) . . . (qk, vk)

such that for 0 ≤ j < k the following conditions are satisfied:

(i) For 0 ≤ j < k, qj
gj→ qj+1 for some guard gj.

(ii) There exists t ∈ (0, 1) such that Φqj,t(vj) ∈ g. Furthermore vj+1 =

Φqj+1,1−t(Φqj,t(vj)).

We say that the trajectory τ as defined above starts from q0 and ends in

qk. Further, its initial value state is v0 and its final value state is vk. We

let TRJ denote the set of all finite trajectories that start from the initial

mode qin with an initial value state in INIT.

6.3 the markov chain approximation

A (finite) path in H is a sequence ρ = q0q1 . . . qk such that for 0 ≤ j < k,

there exists a guard gj such that qj
gj→ qj+1. We say that this path starts

93

statistical model checking of hybrid systems

from q0, ends at qk and is of length k + 1. We let pathsH denote the set

of all finite paths that start from qin.

In what follows µ will denote the standard Lebesgue measure over

finite dimensional Euclidean spaces. We will construct MH = (Υ,⇒),

the Markov chain approximation of H inductively. Each state in Υ will

be of the form (ρ, X, PX) with ρ ∈ pathsH, X an open subset of Rn of

non-zero, finite measure and PX a probability distribution over SA(X),

the Borel σ-algebra generated by X.

We start with (qin, INIT, PINIT) ∈ Υ. Clearly, INIT is an open set

of non-zero, finite measure since µ(INIT) = ∏i(Ui − Li). For techni-

cal convenience we shall assume PINIT to be the uniform probability

distribution, but other probability distributions with respect to which

the Lebesgue-measure is absolutely continuous could also be chosen.

Assume inductively that (ρ, X, PX) is in Υ with X an open subset of

Rn of non-zero, finite measure and PX a probability distribution over

SA(X). Suppose ρ ends in q and there are m outgoing transitions q
g1→

q1, . . . , q
gm→ qm from q in H (Figure 18 illustrates this inductive step).

(qin, INIT, PINIT)

(ρ, X, PX)

(ρq1, X1, PX1) . . . (ρqj, Xj, PXj) . . . (ρqm, Xm, PXm)

ρ

×

Figure 18: The Markov chain construction. The edge from the state (ρ, X, PX)
to the state (ρqm, Xm, PXm) marked with a ‘×’ represents the case
where Xm has measure 0, and hence the probability of this transition
is 0. Thus, (ρqm, Xm, PXm) will not be a state of the Markov chain.

94

6.3 the markov chain approximation

Then for 1 ≤ j ≤ m we define the triples (ρqj, Xj, PXj) as follows. In

doing so we will assume the required properties of the objects involved

in this construction. We will then establish these properties and thus the

soundness of the construction. For convenience, through the remaining

parts of this section j will range over {1, 2, . . . , m}.

For each v ∈ X and each j we first define the set of time points

Tj(v) ⊆ (0, 1) via

Tj(v) = {t |Φq(t, v) ∈ gj}. (5)

Thus Tj(v) is the set of time points in (0, 1) at which the guard gj is

satisfied if the system starts from v in mode q and evolves according to

dynamics of mode q up to time t. We next define Xj for each j as

Xj =
⋃

v∈X
{Φqj(1− t, Φq(t, v)) | t ∈ Tj(v)}. (6)

Thus Xj is the set of all value states obtained by starting from some v ∈

X at time k, evolving up to k + t according to the dynamics q, making

an instantaneous mode switch to qj at this time point, and evolving up

to time k + 1 according to dynamics of mode qj.

To complete the definition of the triples (ρqj, Xj, PXj), we first denote

by PTj(v) a probability distribution over Tj(v). We shall choose this dis-

tribution to be uniform but it could be any other non-uniform proba-

bility distribution with respect to which the Lebesgue-measure is abso-

lutely continuous. We now define the probability distributions PXj over

SA(Xj) as follows. Suppose Y is a measurable subset of Xj. Then

PXj(Y) =
∫

v∈X

∫
t∈Tj(v)

1(Φqj (1−t,Φq(t,v))∩Y)dPTj(v)dPX. (7)

95

statistical model checking of hybrid systems

As usual 1Z is the indicator function of the set Z while dPTj(v) indi-

cates that the inner integration over Tj(v) is w.r.t. the probability mea-

sure PTj(v) and dPX indicates that the outer integration over X is w.r.t.

the probability measure PX. Thus PXj(Y) captures the probability that

the value state Φqj(1− t, Φq(t, v)) lands in Y ⊆ Xj by taking the tran-

sition q
gj→ qj at some time point in Tj(v) given that one started with

some value state in X.

Next we define the triples ((ρ, X, PX), pj, (ρqj, Xj, PXj)), where pj is

given by

pj =
∫

v∈X

µ(Tj(v))

∑m
`=1 µ(T`(v))

dPX. (8)

Thus pj captures the probability of taking the mode transition q
gj→ qj

when starting from the value states in X and mode q. For every j we add

the state (ρqj, Xj, PXj) to Υ and the triple ((ρ, X, PX), pj, (ρqj, Xj, PXj)) to

⇒ iff µ(Xj) > 0.

Finally, (qin, INIT, PINIT) is the initial state of MH. We can summarize

the key properties of our construction as follows (while assuming the

associated terminology and notations).

Theorem 1 1. Tj(v) is an open set of finite measure for each v ∈ X and

each j.

2. Xj is open and is of finite measure for each j.

3. If (ρqj, Xj, PXj) ∈ Υ then µ(Xj) > 0.

4. PXj is a probability distribution for each j.

5. MH = (Υ,⇒) is an infinite-state Markov chain whose underlying graph

is a finitely branching tree.

96

6.3 the markov chain approximation

proof To prove the first part, suppose t ∈ Tj(v). Then Φq(t, v) =

v′ ∈ gj and gj is open. Hence v′ will be contained in an open neighbor-

hood U contained in gj. Since Φq is Lipschitz we can pick U such that

Y′ = Φ−1
q (U) is an open set containing (v, t) with Y′ ⊆ (0, 1)× X. Thus

every element of Tj(v) is contained in an open neighborhood in (0, 1)

and hence Tj(v) is open.

Using the definition of Xj, the fact that X and Tj(v) are open, and

the continuity of the inverses of the flow functions it is easy to observe

that Xj is open. To see that it is of finite measure, by the induction

hypothesis, X is open and µ(X) is finite. Hence ((0, 1)× X) is open as

well and µ((0, 1) × X) is finite. Since Rn+1 is second-countable [110],

there exists a countable family of disjoint open-intervals {Ii}i≥1 in Rn+1

such that ((0, 1)× X) =
⋃

i Ii. Clearly each Ii has a finite measure. By

the Lipschitz continuity of Φq we know that there exists a constant c

such that µ(Φq(Ii)) < c · µ(Ii) for all i. We thus have

µ(Φq((0, 1), X)) ≤∑
i

µ(Φq(Ii))

< c ∑
i

µ(Ii) = cµ((0, 1)× X) < ∞. (9)

Therefore Φq((0, 1), X) has a finite measure. By a similar argument

we can show that Φqj((0, 1), Φq((0, 1), X)) has a finite measure as well.

Since Xj =
⋃

t Φqj,1−t(Φq,t(X) ∩ g) ⊆ Φqj((0, 1), Φq((0, 1), X)), it must

have a finite measure.

The remaining parts of the theorem follow easily from the definitions

and basic measure theory. 2

97

statistical model checking of hybrid systems

6.4 relating the behaviours of H and MH

In order to give a framework of comparison between the hybrid automa-

ton H and the constructed Markov chain MH , we shall use bounded

linear-time temporal logic (BLTL) [101] to specify time bounded proper-

ties and use it to relate the behaviours of H and MH . For convenience

we shall write M instead of MH from now on.

We assume a finite set of atomic propositions AP and a valuation

function Kr : Q → 2AP. Formulas of BLTL are defined as: (i) Every

atomic proposition as well as the constants true, false are formulas. (ii)

If ψ, ψ′ are formulas then ¬ψ and ψ ∨ ψ′ are formulas. (iii) If ψ, ψ′

are formulas and ` is a positive integer then ψU≤`ψ′ is a formula. The

derived operators F≤` and G≤` are defined as usual: F≤`ψ ≡ trueU≤`ψ

and G≤`ψ ≡ ¬F≤`¬ψ.

We shall assume through the rest of the paper that the behaviour of

the system is of interest only up to a maximum time point K > 0. This

is guided by the fact that given a BLTL formula ψ there is a constant

Kψ that depends only on ψ so that it is enough to evaluate an execu-

tion trace of length at most Kψ to determine whether ψ is satisfied [87].

Hence we assume that a sufficiently high K has been chosen to handle

the specifications of interest. Having fixed K, we denote by TRJK+1 the

trajectories of length K + 1, and view this set as representing the time

bounded non-deterministic behaviour of H of interest.

To develop the corresponding notion for M, we first define a finite

path in M to be a sequence η0η1 . . . ηk such that ηj ∈ Υ for 0 ≤ j ≤ k.

Furthermore for 0 ≤ j < k there exists pj ∈ (0, 1] such that ηj
pj⇒ ηj+1.

Such a path is said to start from η0 and its length is k + 1. We define

pathsM to be the set of finite paths that start from the initial state of M

while pathsK+1
M is the set of paths in pathsM of length K + 1.

98

6.4 relating the behaviours of H and MH

the trajectory semantics : Let τ = (q0, v0) (q1, v1) . . . (qk, vk)

be a finite trajectory, ψ a BLTL formula and 0 ≤ j ≤ K. Then τ, j |=H ψ

is defined via:

• τ, j |=H A iff A ∈ Kr(qj), where A is an atomic proposition.

• ¬ and ∨ are interpreted in the usual way.

• τ, j |=H ψU≤`ψ′ iff there exists j′ such that j′ ≤ ` and j+ j′ ≤ k and

τ, (j + j′) |=H ψ′. Further, τ, (j + j′′) |=H ψ for every 0 ≤ j′′ < j′.

We now define modelsH(ψ) ⊆ TRJK+1 via: τ ∈ modelsH(ψ) iff τ, 0 |=H

ψ. We say that H meets the specification ψ, denoted H |= ψ, iff modelsH(ψ) =

TRJK+1.

the markov chain semantics : Let π = η0η1 . . . ηk be a path in

M with ηj = (ρqj, Xj, PXj) for 0 ≤ j ≤ k. Let ψ be a BLTL formula and

0 ≤ j ≤ k. Then π, j |=M ψ is given by:

• π, j |=M A iff A ∈ Kr(qj), where A is an atomic proposition.

• The remaining clauses are defined just as in the case of |=H.

Now we define modelsM(ψ) ⊆ pathsK+1
M via: π ∈ modelsM(ψ) iff

π, 0 |=M ψ. We can now define the probability of satisfaction of a for-

mula in M. Let π = η0η1 . . . ηK be in pathsK+1
M . Then Pr(π) = ∏0≤`<K p`,

where η`
p`⇒ η`+1 for 0 ≤ ` < K. This leads to

Pr(modelsM(ψ)) = ∑
π∈modelsM(ψ)

Pr(π).

We write M |= ψ to denote Pr(modelsM(ψ)) = 1. For p ∈ [0, 1] we write

as usual Pr≥p(ψ) instead of Pr(modelsM(ψ)) ≥ p. We note that Pr(π) >

0 for every π ∈ modelsM(ψ). Furthermore ∑π∈modelsM(ψ) Pr(π) ≤ 1.

Hence Pr≥1(ψ) iff modelsM(ψ) = pathsK+1
M iff M |= ψ.

99

statistical model checking of hybrid systems

6.4.1 The correspondence result

We wish to show that H meets the specification ψ iff Pr≥1(ψ). To this

end let π = η0η1 . . . ηk be a path in M with ηj = (q0q1 . . . qj, Xj, PXj) for

0 ≤ j ≤ k and let τ = (q′0, v0) (q′1, v1) . . . (q′k′ , vk′) be a trajectory. Then

we say that π and τ are compatible iff k = k′ and qj = q′j and vj ∈ Xj for

0 ≤ j ≤ k. The following three observations based on this notion will

easily lead to the main result.

Lemma 1 1. Suppose the path π = η0η1 . . . ηk in M and the trajectory

τ = (q0, v0) (q1, v1) . . . (qk, vk) are compatible. Let 0 ≤ j ≤ k and ψ be

a BLTL formula. Then π, j |=M ψ iff τ, j |=H ψ.

2. Suppose π is a path in M. Then there exists a trajectory τ such that π

and τ are compatible. Furthermore if π ∈ pathsM then τ ∈ TRJ.

3. Suppose τ is a trajectory. Then there exists a path π in M such that τ

and π are compatible. Furthermore if τ ∈ TRJ then π ∈ pathsM.

proof The proof follows via a systematic application of the defini-

tions. To prove the first part we note that if A is an atomic proposition

then π, j |=M A iff A ∈ Kr(qj) iff τ, j |=H A. We next note that the suffix

of length m of π will be compatible with the suffix of length m of τ

whenever π and τ are compatible. The result now follows at once by

structural induction on ψ.

To show the second part let π = η0η1 . . . ηk be a path in M with

ηj = (q0q1 . . . qj, Xj, PXj) for 0 ≤ j ≤ k. Clearly Xj is non-empty for

0 ≤ j ≤ k since ηj ∈ Υ implies µ(Xj) > 0. We proceed by induction on

k. If k = 0 then we can pick v0 ∈ X0 and the trajectory (q0, v0) will be

compatible with τ. So assume k > 0. Then by the induction hypothesis

there exists a trajectory (q1, v1)(q2, v2) . . . (qk, vk) which is compatible

100

6.4 relating the behaviours of H and MH

with the path η1η2 . . . ηk. Let q0
g→ q1. Since v1 ∈ X1 there must exist v0

in X0 and t ∈ (0, 1) such that Φq0,t(v0) ∈ g and v1 = Φq1,1−t(Φq0,t(v0)).

Clearly v0v1 . . . vk is a trajectory that is compatible with π. The fact that

τ ∈ TRJ if π ∈ pathsM follows from the definition of compatibility.

To prove the third part let τ = (q0, v0) (q1, v1) . . . (qk, vk) ∈ TRJ.

Again we proceed by induction on k. Suppose k = 0. Then (qin, INIT, PINIT)

is in pathsM which is compatible with τ. So suppose k > 0. Then

by the induction hypothesis there exits π′ = η0η1 . . . ηk−1 such that

π′ is compatible with τ′ = (q0, v0)(q1, v1) . . . (qk−1, vk−1). Let qk−1
g→

qk. Since Xk−1 is open there exists an open neighborhood Y ⊆ Xk−1

that contains vk−1. But then both Φ−1
qk−1

and Φ−1
qk

are continuous. Thus

Φqk−1,t(Y) is open and Φqk−1,t(Y) ∩ g should be open and non-empty

(since g is open and (qk, vk) is part of the trajectory). Hence Y′ =⋃
t∈(0,1) Φqk,1−t(Φqk−1,t(Y) ∩ g) is a non-empty open set with a positive

measure. This means there will be a state of the form ηk = (ρk, Xk, PXk)

in Υ with Y′ ⊆ Xk and ηk−1
p⇒ ηk for some p ∈ (0, 1]. Clearly π =

π′ηk ∈ pathsM and is compatible with τ. Again the fact that π ∈ pathsM

if τ ∈ TRJ follows from the definition of compatibility. 2

Theorem 2 H |= ψ iff M |= ψ.

proof Suppose H does not meet the specification ψ. Then there

exists τ ∈ TRJK+1 such that τ, 0 6|=H ψ. By the third part of Lemma 1

there exists π ∈ pathsK+1
M which is compatible with τ. By the first part

of Lemma 1 we then have π /∈ modelsM(ψ) which leads to Pr<1(ψ).

Next suppose that Pr<1(ψ). Then there exists π ∈ pathsK+1 such that

π, 0 6|=M ψ. By the second part of Lemma 1 there exists τ ∈ TRJK+1

which is compatible with π. By the first part of Lemma 1 this implies

τ, 0 6|=H ψ and this in turn implies that H does not meet the specification

ψ. 2

101

statistical model checking of hybrid systems

6.4.2 Quantitative atomic propositions

The above results can be extended to handle atomic propositions of the

form 〈xi < c〉 and 〈xi > c〉 where c is a rational constant. We parti-

tion <n into hypercubes according to the constants appearing in the

given set of quantitative atomic propositions in APqt. We then blow up

the state space of the Markov chain to record which hypercube the cur-

rent values of the variables fall in. We restrict our attention to robust

trajectories and show that every robust trajectory of H meets a BLTL

specification iff its Markov chain approximation meets the same speci-

fication with probability 1. Informally a robust trajectory is one which

has an open neighborhood of trajectories under a natural topology over

the space of K + 1-length trajectories. Under an associated measure the

set of non-robust trajectories will have measure 0. The details can be

found in the Appendix A.1.

6.5 statistical model checking of hybrid systems

To verify whether the hybrid system H meets the specification ψ, we

solve the equivalent problem whether Pr≥1(ψ) on its associated Markov

chain M. This model checking problem can be solved using approxi-

mate probabilistic model checking algorithms. One such computation-

ally effective verification technique increasingly employed in verifying

large, complex engineering and biological models is statistical model

checking (SMC). Using either hypothesis testing approach or confidence

interval estimation approach, SMC is based on sampling independent

traces of a system until enough statistical evidence for the satisfaction

or violation of the specification has been found.

102

6.5 statistical model checking of hybrid systems

Following a SMC based approach, we don’t need to explicitly repre-

sent M, which may be intractable. We generate random realizations of

the branches of M and pose a hypothesis test to decide whether Pr≥1(ψ)

based on these realizations.

6.5.1 The SMC procedure

To verify whether H meets the specification ψ, we solve the equiva-

lent problem whether Pr≥1(ψ) on M. However, as discussed in the Sec-

tion 6.1, M cannot be constructed explicitly since both its structure and

transition probabilities, defined in terms of the solutions to the ODEs,

will not be available. Therefore we shall use randomly generated trajec-

tories to sample the paths of M and formulate a sequential hypothesis

test to decide with bounded error rate whether Pr≥1(ψ) holds. Algo-

rithm 1 describes our trajectory sampling procedure.

103

statistical model checking of hybrid systems

Algorithm 1 Trajectory simulation
Input: Hybrid automaton H = (Q, qin, {Fq(x)}q∈Q,G,→, INIT), maxi-

mum time step K.

Output: Trajectory τ

1: Sample v0 from INIT uniformly, set q0 := qin and τ := (q0, v0).

2: for k := 1 . . . K do

3: Generate time points T := {t1, . . . , tJ} uniformly in (0, 1).

4: Simulate vj := Φqk−1(tj, vk−1), for j ∈ {1, . . . , J}

5: Let T̂j := {t ∈ T : vj ∈ gj} be the time points where gj is

enabled.

6: Pick g` randomly according to probabilities {pj :=

|T̂j|/ ∑m
i=1 |T̂i|}.

7: Pick t` uniformly at random from T̂`.

8: Simulate v′ := Φq′(1− t`, v`), where q′ is the target of g`.

9: Set qk := q′, vk := v′, and extend τ := (q0, v0) . . . (qk, vk).

10: end for

11: return τ

Clearly Algorithm 1 generates a trajectory in TRJK+1. We now relate

these trajectories to paths in M.

The initial value v0 is sampled uniformly on INIT, and we start in

mode qin, consistent with the initial state (qin,INIT,PINIT) of M. Induc-

tively, suppose η = (ρ, X, PX) is a state of M with ρ ending in q. Suppose

η
pj⇒ ηj is a transition in M such that ηj = (ρqj, Xj, PXj).

Proposition 2 Suppose, we obtain a sample v ∼ PX. The probability of choos-

ing guard gj whose target mode is qj in Algorithm 1 tends to pj as J → ∞.

104

6.5 statistical model checking of hybrid systems

proof According to Algorithm 1, the probability of picking guard

gj for a trajectory starting at v ∈ X is defined as |T̂j|/ ∑m
i=1 |T̂i|, which,

by the law of large numbers tends to

pj(v) :=
µ(Tj(v))

∑m
i=1 µ(Ti(v))

(10)

as J tends to ∞.

Now if v is randomly sampled according to PX, then the probability

of picking guard j can be expressed as the expected value of pj(v) under

v ∼ PX as

Ev∼PX [pj(v)] =
∫

v∈X
pj(v)dPX =

∫
v∈X

µ(Tj(v))

∑m
i=1 µ(Ti(v))

dPX, (11)

which by (8) is equal to pj, the corresponding transition probability in

the Markov chain. 2

Similarly, picking the transition time t from T̂j will approximate sam-

pling t ∼ PTj(v), for sufficiently high J. Next, assume that we have

picked q
gj→ qj as the transition to take. We sample t ∼ PTj(v), and

obtain v′ by numerical simulation via:

v′ = Φqj(1− t, Φq(t, v)). (12)

Proposition 3 v′ is distributed according to PXj .

proof Clearly it suffices to show that for a measurable subset Y ⊆

Xj, Pr(v′ ∈ Y) = PXj(Y). We start with

Pr(v′ ∈ Y | v) =
∫

t∈Tj(v)
1(Φqj (1−t,Φq(t,v))∩Y)dPTj(v).

105

statistical model checking of hybrid systems

k k + 1

v ∼ PX

Tj(v)

Φq(t, v) Φqj(1− t, Φq(t, v))
v′ ∼ PXj

t ∼ PTj(v)

Figure 19: Propagating a single value v ∈ X to v′ ∈ Xj when taking the transi-
tion q→ qj at time t ∈ Tj(v).

Integrating now over all possible choices of v with respect to PX we

have

Pr(v′ ∈ Y) =
∫

v∈X
Pr(v′ ∈ Y | v)dPX.

From (7) it follows that Pr(v′ ∈ Y) = PXj(Y) with v ∼ PX and t ∼ PTj(v).

2

Consequently, the trajectory being generated will now be in mode qj

with v′ ∈ Xj and v′ distributed according to PXj , compatible with the

state ηj = (ρqj, Xj, PXj) of M. Inductively it is hence guaranteed that

each subsequent iteration of Algorithm 1 will produce values compati-

ble with a path of M.

Whether the generated trajectory of length K + 1 (and hence the cor-

responding path of M) is a model of ψ can be determined using a stan-

dard BLTL model checker [101]. In fact this can be done on the fly which

will often avoid generating the whole trajectory. Based on this, we can

test whether Pr≥1(ψ) on M by testing the following alternative pair of

hypotheses: H0 : Pr≥1(ψ) and H1 : Pr<1−δ(ψ), where 0 < δ < 1 is a

parameter chosen by the user marking the interval [1− δ, 1) as an in-

difference region in which accepting either hypothesis is fine. In our

setting, whenever we encounter a sample (i.e. a randomly generated

trajectory) that does not satisfy ψ, we can reject H0 and accept H1. Thus

we only have to deal with false positives (when H0 is accepted while H1

happens to be true).

106

6.5 statistical model checking of hybrid systems

This leads to Algorithm 2 that repeatedly generates a random trajec-

tory (using Algorithm 1), and decides after a finite number of tries be-

tween H0 and H1. For doing so we also fix a user-defined false positive

rate α.

Algorithm 2 Sequential hypothesis test
Input: Markov chain M, BLTL property ψ, indifference parameter δ,

false positive bound α.

Output: H0 or H1.

1: Set N := dlog α/ log(1− δ)e

2: for i := 1 . . . N do

3: Generate a random trajectory τ using Algorithm 1

4: if τ, 0 |=H ψ then Continue

5: else return H1

6: end for

7: return H0

The accuracy of Algorithm 2 is captured by the next result.

Theorem 3 1. The probability of choosing H1 when H0 is true (false nega-

tive) is 0.

2. Further, suppose N ≥ log α/ log(1− δ). Then the probability of choos-

ing H0 when H1 is true (false positive) is no more than α.

proof As observed earlier the first part is obvious. To prove the

second part, if H1 is true, then we know that Pr<1−δ(ψ). The probability

of N sampled trajectories all satisfying ψ (and thus returning H0, a false

positive) is at most (1− δ)N. Therefore we have α ≤ (1− δ)N, leading

to N ≥ log α/ log(1− δ). 2

107

statistical model checking of hybrid systems

Hence we use N := dlog α/ log(1 − δ)e to set the sample size. For

example for δ = 0.01 and α = 0.01 we get N = 459 while for δ = 0.001

and α = 0.01 we get N = 4603.

6.6 the gpu implementation

One general approach would be to map the computation of each trajec-

tory of the hybrid system to a GPU thread. In this way a large number

of such threads can be executed in parallel on GPUs. But conventional

methods of realizing parallelism in computation of independent simula-

tions have their fair share of challenges. As observed before in previous

chapters, the GPU programming model has poor tolerance for control

flow divergence and crude memory coalescence. The mode switchings

in the evolution of a trajectory could translate to a large number of

control-flow divergences and hence result in serious performance degra-

dation. We developed a method based on the heterogeneous code gener-

ation scheme described in Chapter 3 which overcomes these challenges

by generating a dedicated pool of compute threads that coordinate to

compute a single trajectory.

We generate a number of blocks of trajectories that execute the sam-

pling algorithm —Algorithm 1— in parallel. These blocks are distributed

across a number of GPU cores. Starting from an initial state at t = 0, for

each time interval ∆t, the new value of a variable x and the mode q

is determined by applying numerical integration using the current val-

ues of the variables and the set of ODEs corresponding to the current

mode. This state information of the variables and its current operating

mode of a trajectory is maintained in the shared memory. In each ∆t,

for the J sampled time points at which the guards are to be evaluated,

each trajectory computes the set of guards that are enabled. This, along

108

6.7 case studies

with the current operating mode information, is stored in the fast on-

chip memory. Each trajectory then picks g` according to the probability

{pj := |T̂j|/ ∑m
i=1 |T̂i|} and the time point t is picked uniformly at ran-

dom from the set of timepoints at which g` is enabled. Based on the

chosen g` and t, each trajectory then updates its state information of

the variables x at t and the new operating mode q to the shared store,

so that the simulation continues based on the new mode.

Further, to get around the stringent memory restriction imposed by

the GPU kernels, one often has to manage latency hiding to move data

between the small on-chip scratch pad memory and the slow global

memory. Hence to achieve optimal performance, we spawn a dedicated

set of memory access threads that carry out the high-latency memory

transfers while the trajectory simulation continues in parallel.

6.7 case studies

We first evaluated our method on a a model of the electrical dynamics

of the cardiac cell [111] and a model of circadian rhythm network [112].

The ∆ time step parameter for the cardiac cell model and the circadian

rhythm model were both set to 0.1.The parameters used for the statisti-

cal model checking were δ = 0.01 and α = 0.01. We have implemented

our method using MATLAB and C++. The experiments were carried

out on a PC with a 3.4GHz Intel Core i7 processor with 8GB RAM. The

GPU implementation was based on CUDA 5.0 runtime and the target

GPU was NVidia Tesla K20m clocked at 706 MHz with 4.8 GB global

memory.

We note that when checking quantitative properties, the trajectories

that hit corner points such as u = 1.4 for the cardiac cell model will be

non-robust and hence can be ignored.

109

statistical model checking of hybrid systems

6.7.1 Cardiac cell model

Heart rhythm depends on the organized opening and closing of gates–

called ion channels–on the cell membrane, which govern the electrical

activity of cardiac cells. Disordered electric wave propagation in heart

muscle can cause cardiac abnormalities such as tachycardia and fibrilla-

tion. The dynamics of the electrical activity of a single human ventric-

ular cell has been modelled as a hybrid automaton [3, 111] shown in

Figure 20. The model contains 4 state variables and 26 parameters. Ven-

tricular cells consist of three subtypes, namely epicardial, endocardial,

and midmyocardial cells, which possess different dynamical character-

istics. The cell-type-specific parameters of the model are summarized in

Table 9.

Parameter EPI ENDO MID Parameter EPI ENDO MID
θo 0.006 0.006 0.006 τ−v1 60 75 80
θw 0.13 0.13 0.13 τ−v2 1150 10 1.4506
θv 0.3 0.3 0.3 τ−w1 60 6 70
u−w 0.03 0.016 0.016 τ−w2 15 140 8
uso 0.65 0.65 0.6 τo1 400 470 410
us 0.9087 0.9087 0.9087 τo2 6 6 7
uu 1.55 1.56 1.61 τso1 30.0181 40 91
w∗∞ 0.94 0.78 0.5 τso2 0.9957 1.2 0.8
k−w 65 200 200 τs1 2.7342 2.7342 2.7342
kso 2.0458 2 2.1 τs2 16 2 4
ks 2.994 2.994 2.994 τf i 0.11 0.1 0.078
τ+

v 1.4506 1.4506 1.4506 τsi 1.8875 2.9013 3.3849
τ+

w 200 280 280 τw∞ 0.07 0.0273 0.01

Table 9: Parameter values of the cardiac model for epicardial (EPI), endocardial
(ENDO), and midmyocardial (MID) cells under healthy condition

An action potential (AP) is a change in the cell’s transmembrane po-

tential u, as a response to an external stimulus (current) ε. The flow of

110

6.7 case studies

total currents is controlled by a fast channel gate v and two slow gates

w and s.

1
)(2

)(2
12

1

1

1

0

1
1

1
1

1

1

s
uuk

uuk
ww

w

w

v

o

s
edt

ds
e

wu

dt
dw

v
dt
dv

u
dt
du

q

ss

ww


















 






























1
)(2

)(2
12

1

*
2

2

1

1
1

1
1

s
uuk

uuk
ww

w

v

o

s
edt

ds
e

ww
dt
dw

v
dt
dv

u
dt
du

q

ss

ww
















 





























1
)(2

2

)(2
12

1

2

1
1

1

1

1

s
uuk

w

v

si

uuk
soso

so

s
edt

ds

w
dt
dw

v
dt
dv

sw
e

dt
du

q

ss

soso


















 

























1
)(2

2

)(2
12

1

3

1
1

1

1

1

))((

s
uuk

w

v

si
uuk

soso
so

fi

uv

s
edt

ds

w
dt
dw

v
dt
dv

sw

e

uuuv
dt
du

q

ss

soso


















 



























u o

u o

u w

u w

u v

u v

Figure 20: The hybrid automaton model for the cardiac cell system [3].

In mode q0, the “Resting mode”, the cell is waiting for stimulation. We

assume an external stimulus ε equal to 1 mV lasting for 1 millisecond.

The stimulation causes u to increase which may trigger a mode transi-

tion to mode q1. In mode q1, gate v starts closing and the decay rate of

u changes. The system will jump to mode q2 if u > θw. In mode q2, gate

w is also closing. When u > θv, mode q3 can be reached, which means a

successful “AP initiation”. In mode q3, u reaches its peak due to the fast

opening of a sodium channel. The cardiac muscle then contracts and u

starts decreasing.

Property C1 It is known that the cardiac cell can lose its excitability,

which will lead to disorders such as ventricular tachycardia and fibrilla-

tion. We formulated the property for responding to stimulus by leaving

the resting mode:

F≤500(¬[Resting mode]).

The property was verified to be true for all three cell types under the

healthy condition. However, under a disease condition (for example

τo1 = 0.004 or τo2 = 0.1 [113]) the property was verified to be false

no matter what stimulation value of ε was used. Consequently, a region

of such unexcitable cells blocks the impulse conduction and can lead to

111

statistical model checking of hybrid systems

cardiac disorders such as fibrillation. This is consistent with experimen-

tal results reported in [114].

Property C2 After successfully generating an AP (that is, reaching the

“AP mode”, q3), the cardiac cell should return to a low transmembrane

potential and wait in “Resting mode” for the next stimulation. The cor-

responding formula is

F≤500([AP mode]) ∧ F≤500(G≤100([Resting mode])).

The above query was verified to be true for all three cell types under the

healthy condition and transient stimulation. However, if we change the

stimulation profile from transient to sustained, i.e. assuming ε lasts for

500 milliseconds, the property was verified to be false–the cell doesn’t

return to and settle at a low transmembrane potential resting state. In

ventricular tissue the stimulus ε can be delivered from neighboring

cells [111]. Thus, our results suggest that the transient activation of a

single cardiac cell depends on the stimulation profile of its neighboring

cells.

Property C3 It has been reported that epicardial, endocardial, and mid-

myocardial cells have different AP morphologies [4, 5]. In particular, a

crucial “spike-and-dome” (i.e. a sharp peak followed by a blunt peak)

AP morphology can only be observed in epicardial cells but not endo-

cardial and midmyocardial cells (Figure 21).

Epicardial cell Endocardial cell Midmyocardial cell

spike

V
o

lt
a

g
e

 (
m

V
)

dome

Time Time Time

V
o

lt
a

g
e

 (
m

V
)

V
o

lt
a

g
e

 (
m

V
)

Figure 21: The AP morphologies of epicardial [4], endocardial [4] and midmy-
ocardial [5] cells.

We formulated the property for a spike-and-dome AP morphology as

a quantitative property,

112

6.7 case studies

F≤500(G≤1([1.4 ≤ u]) ∧ F≤500([0.8 ≤ u] ∧ [u ≤ 1.1] ∧ F≤500(G≤50([1.1 ≤

u])))).

The property was verified to be true for epicardial cells and false for

endocardial and midmyocardial cells under the healthy condition and

transient stimulation. Among 26 model parameters, 20 of them have

different values over different cell types. We then perturbed each epi-

cardial parameter and checked if the above property still holds. Our

results show that τs2 is key to the AP morphology (i.e. the spike-and-

dome AP morphology disappears when τs2 = 2), which highlights the

importance of s gate to epicardial cells. This is consistent with [115]

in that the model proposed in [116] (which does not include s gate) is

unable to capture the dynamics of epicardial cells.

6.7.2 Circadian rhythm model

Mammalian cells follow a circadian rhythm with a 24h period, which is

generated and governed by a highly coupled transcription-translation

network. The model diagram and the corresponding hybrid system dy-

namics proposed in [112, 117] is described below.

The equations governing the dynamics of the circadian clock model

are given in Figure 22. The equations contain rate constants which are

denoted k1 to k28 and are set according to [117]. The combination of

“mode indicator” binary variables θCB to θRE, θPC1, θPC2 and θPC3 define

the mode of the dynamics, and each mode is defined by a unique value

combination of the mode indicators. These value combinations are listed

in Table 10. The guards associated with a source and target mode are

constructed as follows. Each mode indicator corresponds to a guard

component which is a threshold on a state variable. For instance, θRE

has the corresponding guard component [REV-ERB]< 1.1. The guard

113

statistical model checking of hybrid systems

PER-CRY
PER Per mRNA

CRY Cry mRNA

REV-ERB Rev-Erb mRNA

CLOCK Clock mRNA

BMAL Bmal mRNA
CLOCK-BMAL

Core NF

Complement NF

0 200 400 600 800
0.5

1

1.5

Time (min)

Clock mRNA signal

d/dt[Per] = −k1 · [Per] + k13 · θPC2 · θCB + k14

d/dt[PER] = −k2 · [PER] + k15 · [Per]− k16 · [PER] · [CRY]
d/dt[Cry] = −k3 · [Cry] + k17 · θPC2 · θCB + k18

d/dt[CRY] = −k4 · [CRY] + k19 · [Cry]− k16 · [PER] · [CRY]
d/dt[PER-CRY] = −k5 · [PER-CRY] + k16 · [PER] · [CRY]

d/dt[Rev-Erb] = −k6 · [Rev-Erb] + k20 · θPC1 · θCB + k21

d/dt[REV-ERB] = −k7 · [REV-ERB] + k22 · [Rev-Erb]
d/dt[CLOCK] = −k9 · [CLOCK] + k24 · [Clock]− k25 · [CLOCK] · [BMAL]

d/dt[Bmal] = −k10 · [Bmal] + k26 · θPC3 · θRE + k27

d/dt[BMAL] = −k11 · [BMAL] + k28 · [Bmal]− k25 · [CLOCK] · [BMAL]
d/dt[CLOCK-BMAL] = −k12 · [CLOCK-BMAL] + k25 · [CLOCK] · [BMAL]

Figure 22: The model diagram, the Clock mRNA signal and the equations gov-
erning the circadian clock model.

to a target mode is enabled if all the mode indicators that are on in

the mode are enabled according to their respective guard components.

Finally, a transition between a source and a target mode only exists if

there is only one difference in the combination of mode indicators. For

instance, there is a transition from mode 1 to mode 2 but not from mode

1 to mode 9. The dynamics of the Clock mRNA is governed externally.

The system comprises 16 modes, each of which contains 12 state vari-

ables and 29 parameters. Each mode corresponds to a particular com-

bination of ON or OFF transcriptional states of genes Per, Cry, Rev-Erb,

Clock, and Bmal. The switches between modes are guarded by the thresh-

114

6.7 case studies

Mode indicator Guard component
θRE [REV-ERB]< 1.1
θCB [CLOCK-BMAL]> 1.0
θPC1 [PER-CRY]< 1.4
θPC2 1.4 <[PER-CRY]< 1.5
θPC3 2.2 <[PER-CRY]

Mode 1 2 3 4

(θPC1, θPC2, θPC3, θRE, θCB) (1,1,0,1,0) (1,1,0,1,1) (1,1,0,0,0) (1,1,0,0,1)
Mode 5 6 7 8

(θPC1, θPC2, θPC3, θRE, θCB) (0,1,0,1,0) (0,1,0,1,1) (0,1,0,0,0) (0,1,0,0,1)
Mode 9 10 11 12

(θPC1, θPC2, θPC3, θRE, θCB) (0,0,0,1,0) (0,0,0,1,1) (0,0,0,0,0) (0,0,0,0,1)
Mode 13 14 15 16

(θPC1, θPC2, θPC3, θRE, θCB) (0,0,1,1,0) (0,0,1,1,1) (0,0,1,0,0) (0,0,1,0,1)

Table 10: The 5 mode indicator variables and their associated guard components
(top). The 16 modes of the circadian clock model with the correspond-
ing combination of binary mode indicator variables (bottom).

old levels of protein complexes PER-CRY, CLOCK-BMAL and REV-REB.

The mRNA levels of Per and Cry are known to be oscillating due to the

negative feedback loops in the network. Specifically, there are two ma-

jor negative feedback (NF) loops: (i) the core NF formed by PER-CRY,

CLOCK-BMAL, PER, and CRY and (ii) a complement NF formed by

REV-ERB, BMAL, and CLOCK-BMAL. The time constants appearing in

the properties are in minute units.

Property R1 Similar to Per and Cry, the expression level of Bmal gene is

also oscillating [118]. We formulated this property as

F≤500([1.5 ≤ Bmal] ∧ F≤500([Bmal ≤ 0.8] ∧ F≤500([1.5 ≤

Bmal] ∧ F≤500([Bmal ≤ 0.8] ∧ F≤500([1.5 ≤ Bmal])))))

The property was verified to be true under the wild type condition. It

was verified to be false under Cry mutant condition but true in the Rev-

Erb mutant condition, which is consistent with the experimental data

in [118, 119]. This suggests that the oscillatory behaviour of Bmal mRNA

115

statistical model checking of hybrid systems

is induced by the core negative feedback mediated by PER-CRY, instead

of the complement negative feedback mediated by REV-ERB.

Property R2 It has been observed that the peaks of Bmal mRNA are

always located between two successive Per or Cry mRNA peaks [119].

The corresponding formula is

F≤500([Bmal ≤ 0.8] ∧ [2.0 ≤ Per] ∧ [2.0 ≤ Cry] ∧ F≤500([1.5 ≤

Bmal] ∧ [Per ≤ 0.8] ∧ [Cry ≤ 0.8] ∧ F≤500([Bmal ≤ 0.8] ∧ [2.0 ≤

Per] ∧ [2.0 ≤ Cry] ∧ F≤500([1.5 ≤ Bmal] ∧ [Per ≤ 0.8] ∧ [Cry ≤ 0.8]))))

The above query was verified to be true under wild type condition. If we

remove the dependence between Bmal transcription and PER-CRY con-

centration, the property R2 was verified to be false, while the property

R1 was verified to true (i.e. oscillating). Thus, our results suggest that

the complement negative feedback mediated by REV-ERB is responsi-

ble for maintaining the oscillatory behaviour of Bmal mRNA level while

PER-CRY plays a role in delaying the Bmal expression responses.

6.8 performance

Table 11 is a summary of the performance of the verification of all prop-

erties for the three models for the three hybrid systems along with the

number of samples taken to complete the verification.

In our experiments, we used J = 10 as the number of intermediate

time steps for choosing mode transitions. We investigated whether this

choice is sufficient for accurate simulation. We simulated 1000 indepen-

dent realizations of the cardiac cell system with J = 10 and J = 100,

and compared the distributions of the modes that the system is in at a

series of discrete time points. The Kolmogorov-Smirnov statistical test

did not reject the hypothesis that the two distributions are the same (at

confidence level 95%). This indicates that using J = 10 is adequate.

116

6.8 performance

For the GPU implementation, we used δ = 0.001 and α=0.01. The aver-

age runtime and the speed-up achieved for the properties which were

verified to be true are summarized in Table 12 for both the case stud-

ies. For properties which were verified to be false, the hypothesis test-

ing algorithm, Algorithm 2 terminates after sampling 1 trajectory. Our

parallelization scheme for the trajectory sampling procedure achieves

approximately 6× speed-up for both the case studies. It is noted that

our parallelization scheme can be further enhanced for handling larger

hybrid systems in future.

Property Condition Decision # samples

C1 Epicardial, Healthy True 459

C1 Endocardial, Healthy True 459

C1 Midmyocardial, Healthy True 459

C1 Epicardial, Diseased False 1

C1 Endocardial, Diseased False 1

C1 Midmyocardial, Diseased False 1

C2 Epicardial, Transient True 459

C2 Endocardial, Transient True 459

C2 Midmyocardial, Transient True 459

C2 Epicardial, Sustained False 1

C2 Endocardial, Sustained False 1

C2 Midmyocardial, Sustained False 1

C3 Epicardial, τs2 = 16 True 459

C3 Epicardial, τs2 = 2 False 1

C3 Endocardial False 1

C3 Midmyocardial False 1

R1 Wild type True 459

R1 Cry mutant False 1

R1 Rev-Erb mutant True 459

R2 Wild type True 459

R2 Without PER-CRY dependence False 1

R1 Without PER-CRY dependence True 459

Table 11: Results summary of SMC for hybrid systems

Model Average CPU runtime (s) Average GPU runtime (s) Speed-up

Cardiac cell (C1, C2, C3) 846 144 5.9 ×
Circadian clock (R1, R2) 253 41.5 6.1 ×

Table 12: Peformance of the GPU implementation for properties which were
verified to be true

117

statistical model checking of hybrid systems

6.9 summary

We have presented an approximate probabilistic verification method for

analyzing the dynamics of a hybrid system H in terms of a Markov

chain M. For bounded time properties, we have shown a strong corre-

spondence between the behaviours of H and M. We have also extended

this result to handle quantitative atomic propositions in Appendix A.1

and shown a similar correspondence result for the sub-dynamics con-

sisting of robust trajectories. Thus the intractable verification problem

for H can be solved approximately using its Markov chain approxima-

tion. Accordingly, we have devised a statistical model checking proce-

dure to verify that M almost certainly meets a BLTL specification and

then applied this procedure to two examples to demonstrate the appli-

cability of our approximation scheme. Our GPU accelerated parallel im-

plementation of the trajectory sampling procedure achieves significant

speed-up when compared with a CPU implementation.

118

7
C O N C L U S I O N

We briefly summarize the key contributions of the thesis and look at

possible directions for future work. The focus of our work has been on

approximation methods for the complex dynamics of biopathways. We

have studied both single system of ODEs and the much more involved

setting of hybrid systems. Our approximations are probabilistic in na-

ture and consequently they are also accompanied by a statistical model

checking procedure. This then provides the basis for carrying out analy-

sis tasks such as parameter estimation and sensitivity analysis. A second

focus has been on GPU based implementations in order to mitigate the

very high computational demands of the various analysis tasks.

In Chapter 3, we first recalled from [22] how the dynamics of a sys-

tem of ODEs can be approximated as a dynamic Bayesian network.

This DBN approximation consists of pre-computing a representative

sample of trajectories induced by the system of ODEs. We then devel-

oped a GPU based parallelization scheme that exploits the fine-grained

parallelism in the generation of a single trajectory by using multiple

dedicated compute threads. Further by employing latency-hiding and

load-balancing techniques, we mapped the entire DBN approximation

scheme to the GPU platform. We showed our method achieved signifi-

cant performance improvement.

Next, in Chapter 4, we recalled a statistical model checking frame-

work for analysis of a single system of ODEs, developed in [24]. By at-

taching a probability distribution to the set of initial states of the ODEs,

we first approximated the ODEs system as a discrete-time Markov chain.

119

conclusion

One can then use an SMC procedure to verify whether the system sat-

isfies dynamical properties expressed in BLTL. The key point here is

this can be achieved without explicitly constructing the discrete-time

Markov chain which is in any case an intractable problem. One needs

to just sample from the initial states and then generate a trajectory us-

ing numerical simulation. One main advantage of SMC based analysis,

as against the DBN construction based approach is the (or lack thereof)

model construction cost. Also, the complexity of the model checking

algorithm is independent of the size of the system. As a result, the re-

quired number of samples only depends on the probabilistic distribu-

tion and the error bounds associated with the statistical test. Yet SMC

requires a large number of simulations and this brings us to the con-

struction of a parallelized statistical model checking framework.

For porting the SMC based analysis technique to GPUs, in Chapter 5,

we introduced an automaton-based BLTL path checking algorithm. The

online procedure we constructed was efficient in that the algorithm ex-

amines a trajectory as it is being generated. Instead of generating the

entire trajectory and then checking whether it satisfies a given property,

it incrementally simulates the ODEs model and checks whether the cur-

rent trajectory satisfies the BLTL formula. The gains due to the reduced

memory usage were significant and it reflected in the performance of

our parallelized parameter estimation procedure.

We demonstrated the applicability of the two approximation tech-

niques with the help of biopathway models taken from the Biomodels

database [88]. The key feature in the GPU implementations in Chap-

ter 3 and in Chapter 5 is the novel way of handling the GPU threads for

generation of a single trajectory of the ODEs system. The fine-grained

parallelism —inherent in the fact that the next state value of each vari-

able can be computed independently by the current state value of the

120

7.1 future work

other variables— renders itself to an efficient GPU implementation. To

this end, a heterogeneous pool of multiple threads were instantiated to

handle the simulation of a single trajectory. As a result, our method

achieves higher GPU utilization due to the large number of parallel

threads spawned. Also because the thread pool shares the intermediate

data of a trajectory, our method gains from huge reduction in memory

usage.

We then built on these parallelized approximation schemes to analyze

hybrid systems. In Chapter 6, we developed a probabilistic approxima-

tion of the dynamics of a hybrid system as a Markov chain. Based on

the correspondence we established between the behaviour of the hybrid

automaton and the Markov chain using BLTL, we developed a statisti-

cal model checking procedure to verify dynamical properties by sam-

pling trajectories of the hybrid system. Our approximation scheme was

applied to verify properties of a circadian rhythm model and a cardiac

cell model. Consequently, this approximation technique was then imple-

mented on a GPU and our parallelization method achieved significant

speed-up.

We note that with the advent of affordable GPUs in solving compu-

tationally intensive problems, analysis tasks which involve drawing a

prohibitively large number of numerical simulations can benefit greatly

from our parallelization techniques.

7.1 future work

It would be interesting to augment the current probabilistic analysis

framework for a single system of ODEs with additional tools which

can help in the synthesis of non-trivial temporal properties. This can be

achieved by learning the properties from the simulation profiles of the

121

conclusion

dynamical system. We have some preliminary results and are focusing

along this direction to automatically mine requirements of dynamical

systems.

As an extension of the probabilistic approximation method for the hy-

brid systems, one could consider more sophisticated stochastic assump-

tions regarding the time points and value states at which the mode

transitions take place. These assumptions will however have to be jus-

tified and motivated by the modeling problem at hand, especially in

systems biology applications. Yet another valuable extension will be to

study a network of hybrid systems. This will enable us to model the

cross talk, feed-forward and feed-back loops involving multiple signal-

ing pathways. A further discretization of the continuous component of

the hybrid system could also be coupled with the proposed approach

to reduce the complexity and increase the robustness of biological mod-

els [120].

On the GPU front, currently we deal with a maximum of 12 state vari-

ables for the circadian clock model. However, for handling larger hybrid

systems in future, one would have to overcome the stringent memory

restrictions imposed by the GPU hardware for models with many state

variables. To enhance the usability of our approach, we are currently

working on developing sophisticated load balancing techniques in this

regard.

When constructing dynamical models to explain experimental obser-

vations, one often ends up with a population of models with different

structures corresponding to different hypotheses about the underlying

system. With sufficient GPU units available, one can evaluate the qual-

ity of a large number of these models in parallel using our method.

One can also explore the parameter landscape to identify regions most

likely to induce the desired pathway responses to chosen stimuli. Our

122

7.1 future work

future work will involve exploring such issues in the context of model

comparison.

We are exploring the applicability of our approximation techniques

to partial differential equations (PDEs) based systems. Coupled with

our heterogeneous code generation scheme for GPUs, this would open

up the parallelized techniques for analysis of a rich class of systems

in fields like fluid dynamics. Another appealing direction of future re-

search would be to explore parallelized analysis schemes using many-

core processors like Intel Xeon Phi coprocessors.

We believe that our approximation and parallelization techniques

open the door for studying large dynamical systems in a scalable and

cost-effective manner.

123

B I B L I O G R A P H Y

[1] Bree B Aldridge, John M Burke, Douglas A Lauffenburger, and

Peter K Sorger. Physicochemical modelling of cell signalling path-

ways. Nature cell biology, 8(11):1195–1203, 2006.

[2] Kevin S Brown, Colin C Hill, Guillermo A Calero, Christopher R

Myers, Kelvin H Lee, James P Sethna, and Richard A Cerione.

The statistical mechanics of complex signaling networks: nerve

growth factor signaling. Physical biology, 1(3):184, 2004.

[3] Radu Grosu, Gregory Batt, Flavio H. Fenton, James Gilmm, Co-

las Le Guernic, Scott A. Smolka, and Ezio Bartocci. From cardiac

cells to genetic regulatory networks. In CAV’11, pages 396–411,

2011.

[4] M. Nabauer, D. J. Beuckelmann, P. Uberfuhr, and G. Steinbeck. Re-

gional differences in current density and rate-dependent proper-

ties of the transient outward current in subepicardial and suben-

docardial myocytes of human left ventricle. Circulation, 93:169–

177, 1996.

[5] E. Drouin, F. Charpentier, C. Gauthier, K. Laurent, and H. Le

Marec. Electrophysiologic characteristics of cells spanning the left

ventricular wall of human heart: evidence for presence of m cells.

J Am Coll Cardiol, 26:185–192, 1995.

[6] H. Kitano. Systems biology: a brief overview. Science,

295(5560):1662–1664, 2002.

125

bibliography

[7] Daniel T Gillespie et al. Exact stochastic simulation of coupled

chemical reactions. J. phys. Chem, 81(25):2340–2361, 1977.

[8] Harley H McAdams and Adam Arkin. Stochastic mechanisms in

gene expression. Proceedings of the National Academy of Sciences,

94(3):814–819, 1997.

[9] Michael A Gibson and Jehoshua Bruck. Efficient exact stochas-

tic simulation of chemical systems with many species and many

channels. The journal of physical chemistry A, 104(9):1876–1889,

2000.

[10] Daniel T Gillespie. Approximate accelerated stochastic simulation

of chemically reacting systems. The Journal of Chemical Physics,

115(4):1716–1733, 2001.

[11] Haluk Resat, H Steven Wiley, and David A Dixon. Probability-

weighted dynamic monte carlo method for reaction kinetics sim-

ulations. The Journal of Physical Chemistry B, 105(44):11026–11034,

2001.

[12] Michael B Elowitz, Arnold J Levine, Eric D Siggia, and Peter S

Swain. Stochastic gene expression in a single cell. Science,

297(5584):1183–1186, 2002.

[13] Yang Cao, Hong Li, and Linda Petzold. Efficient formulation of

the stochastic simulation algorithm for chemically reacting sys-

tems. The journal of chemical physics, 121(9):4059–4067, 2004.

[14] Leon Glass and Stuart A Kauffman. Co-operative components,

spatial localization and oscillatory cellular dynamics. Journal of

theoretical biology, 34(2):219–237, 1972.

126

bibliography

[15] Leon Glass and Stuart A Kauffman. The logical analysis of con-

tinuous, non-linear biochemical control networks. Journal of theo-

retical Biology, 39(1):103–129, 1973.

[16] Hidde De Jong. Modeling and simulation of genetic regula-

tory systems: a literature review. Journal of computational biology,

9(1):67–103, 2002.

[17] Grégory Batt, Calin Belta, and Ron Weiss. Temporal logic analysis

of gene networks under parameter uncertainty. IEEE Transactions

on Automatic Control, 53(Special Issue):215–229, 2008.

[18] Herbert M Sauro. Enzyme kinetics for systems biology. Future Skill

Software, 2011.

[19] Hiroaki Kitano. Computational systems biology. Nature,

420(6912):206–210, 2002.

[20] M.W. Hirsch, S. Smale, and R.L. Devaney. Differential equations,

dynamical systems, and an introduction to chaos. Academic Press,

2012.

[21] B. Liu, D. Hsu, and PS Thiagarajan. Probabilistic approxima-

tions of ODEs based bio-pathway dynamics. Theor. Comput. Sci.,

412(21):2188–2206, 2011.

[22] Bing Liu, Andrei Hagiescu, Sucheendra K. Palaniappan, Bipasa

Chattopadhyay, Zheng Cui, Weng-Fai Wong, and P. S. Thiagara-

jan. Approximate probabilistic analysis of biopathway dynamics.

Bioinformatics, 28(11):1508–1516, 2012.

[23] John D Owens, David Luebke, Naga Govindaraju, Mark Harris,

Jens Krüger, Aaron E Lefohn, and Timothy J Purcell. A survey of

general-purpose computation on graphics hardware. In Computer

127

bibliography

graphics forum, volume 26, pages 80–113. Wiley Online Library,

2007.

[24] Sucheendra K Palaniappan, Benjamin M Gyori, Bing Liu, David

Hsu, and PS Thiagarajan. Statistical model checking based cal-

ibration and analysis of bio-pathway models. In Computational

Methods in Systems Biology, pages 120–134. Springer, 2013.

[25] Grégory Batt, Delphine Ropers, Hidde De Jong, Johannes Geisel-

mann, Michel Page, and Dominique Schneider. Qualitative anal-

ysis and verification of hybrid models of genetic regulatory net-

works: Nutritional stress response in escherichia coli. In Hybrid

Systems: Computation and Control, pages 134–150. Springer, 2005.

[26] Thao Dang, Colas Le Guernic, and Oded Maler. Computing reach-

able states for nonlinear biological models. In International Confer-

ence on Computational Methods in Systems Biology, pages 126–141.

Springer, 2009.

[27] Adám Halász, Vijay Kumar, Marcin Imielinski, Calin Belta, Oleg

Sokolsky, Sen Pathak, and Harvey Rubin. Analysis of lactose

metabolism in e. coli using reachability analysis of hybrid sys-

tems. IET Systems Biology, 1(2):130–148, 2007.

[28] Shuai Che, Jie Li, Jeremy W Sheaffer, Kevin Skadron, and John

Lach. Accelerating compute-intensive applications with gpus and

fpgas. In Application Specific Processors, 2008. SASP 2008. Sympo-

sium on, pages 101–107. IEEE, 2008.

[29] Tesla P100 GPU accelerator. https://www.nvidia.com/object/

tesla-p100.html.

[30] Victor Bryant. Metric spaces: iteration and application. Cambridge

University Press, 1985.

128

https://www.nvidia.com/object/tesla-p100.html
https://www.nvidia.com/object/tesla-p100.html

bibliography

[31] E. Klipp, R. Herwig, A. Kowald, C. Wierling, and H. Lehrach.

Systems biology in practice: concepts, implementation and application.

Wiley-VCH, Weinheim, 2005.

[32] James R Norris. Markov chains. Number 2. Cambridge university

press, 1998.

[33] Kevin Patrick Murphy. Dynamic bayesian networks: representation,

inference and learning. PhD thesis, University of California, Berke-

ley, 2002.

[34] Christel Baier, Joost-Pieter Katoen, and Kim Guldstrand Larsen.

Principles of model checking. MIT press, 2008.

[35] Amir Pnueli. The temporal logic of programs. In Foundations of

Computer Science, 1977., 18th Annual Symposium on, pages 46–57.

IEEE, 1977.

[36] Edmund Clarke and E Emerson. Design and synthesis of synchro-

nization skeletons using branching time temporal logic. Logics of

programs, pages 52–71, 1982.

[37] Oded Maler and Dejan Nickovic. Monitoring temporal properties

of continuous signals. In Formal Techniques, Modelling and Analysis

of Timed and Fault-Tolerant Systems, pages 152–166. Springer, 2004.

[38] Ron Koymans. Specifying real-time properties with metric tem-

poral logic. Real-time systems, 2(4):255–299, 1990.

[39] Rajeev Alur and David L Dill. A theory of timed automata. Theo-

retical computer science, 126(2):183–235, 1994.

[40] Rajeev Alur and Thomas A Henzinger. A really temporal logic.

Journal of the ACM (JACM), 41(1):181–203, 1994.

129

bibliography

[41] Paolo Zuliani, André Platzer, and Edmund M Clarke. Bayesian

statistical model checking with application to stateflow/simulink

verification. Formal Methods in System Design, 43(2):338–367, 2013.

[42] Hans Hansson and Bengt Jonsson. A logic for reasoning about

time and reliability. Formal aspects of computing, 6(5):512–535, 1994.

[43] Håkan LS Younes, Marta Kwiatkowska, Gethin Norman, and

David Parker. Numerical vs. statistical probabilistic model check-

ing. International Journal on Software Tools for Technology Transfer,

8(3):216–228, 2006.

[44] Thomas Hérault, Richard Lassaigne, Frédéric Magniette, and Syl-

vain Peyronnet. Approximate probabilistic model checking. In

VMCAI’04, pages 73–84, 2004.

[45] Sumit K Jha, Edmund M Clarke, Christopher J Langmead, Axel

Legay, André Platzer, and Paolo Zuliani. A bayesian approach to

model checking biological systems. In Computational Methods in

Systems Biology, pages 218–234. Springer, 2009.

[46] Håkan LS Younes. Error control for probabilistic model checking.

In Verification, Model Checking, and Abstract Interpretation, pages

142–156. Springer, 2006.

[47] Thomas A. Henzinger. The theory of hybrid automata. In LICS’96,

pages 278–292, 1996.

[48] Bing Liu, PS Thiagarajan, and David Hsu. Probabilistic approx-

imations of signaling pathway dynamics. In International Confer-

ence on Computational Methods in Systems Biology, pages 251–265.

Springer, 2009.

[49] Lorenzo Dematté and Davide Prandi. Gpu computing for systems

biology. Briefings in bioinformatics, 11(3):323–333, 2010.

130

bibliography

[50] Yanxiang Zhou, Juliane Liepe, Xia Sheng, Michael PH Stumpf,

and Chris Barnes. Gpu accelerated biochemical network simu-

lation. Bioinformatics, 27(6):874–876, 2011.

[51] John D Owens, Mike Houston, David Luebke, Simon Green,

John E Stone, and James C Phillips. Gpu computing. Proceedings

of the IEEE, 96(5):879–899, 2008.

[52] Mark Silberstein, Assaf Schuster, Dan Geiger, Anjul Patney, and

John D Owens. Efficient computation of sum-products on gpus

through software-managed cache. In Proceedings of the 22nd annual

international conference on Supercomputing, pages 309–318. ACM,

2008.

[53] Xiaochun Ye, Dongrui Fan, Wei Lin, Nan Yuan, and Paolo Ienne.

High performance comparison-based sorting algorithm on many-

core gpus. In Parallel & Distributed Processing (IPDPS), 2010 IEEE

International Symposium on, pages 1–10. IEEE, 2010.

[54] Francois Bodin and Stephane Bihan. Heterogeneous multicore

parallel programming for graphics processing units. Scientific Pro-

gramming, 17(4):325–336, 2009.

[55] Michael Wolfe. Implementing the pgi accelerator model. In

Proceedings of the 3rd Workshop on General-Purpose Computation on

Graphics Processing Units, pages 43–50. ACM, 2010.

[56] Shane Ryoo, Christopher I Rodrigues, Sara S Baghsorkhi, Sam S

Stone, David B Kirk, and Wen-mei W Hwu. Optimization princi-

ples and application performance evaluation of a multithreaded

gpu using cuda. In Proceedings of the 13th ACM SIGPLAN Sympo-

sium on Principles and practice of parallel programming, pages 73–82.

ACM, 2008.

131

bibliography

[57] Cedric Bastoul. Code generation in the polyhedral model is easier

than you think. In Proceedings of the 13th International Conference on

Parallel Architectures and Compilation Techniques, pages 7–16. IEEE

Computer Society, 2004.

[58] Long Chen, Oreste Villa, and Guang R Gao. Exploring fine-

grained task-based execution on multi-gpu systems. In Clus-

ter Computing (CLUSTER), 2011 IEEE International Conference on,

pages 386–394. IEEE, 2011.

[59] Amir H Hormati, Mehrzad Samadi, Mark Woh, Trevor Mudge,

and Scott Mahlke. Sponge: portable stream programming on

graphics engines. In ACM SIGPLAN Notices, volume 46, pages

381–392. ACM, 2011.

[60] Andrei Hagiescu, Huynh Phung Huynh, Weng-Fai Wong, and

Rick Siow Mong Goh. Automated architecture-aware mapping

of streaming applications onto gpus. In Parallel & Distributed Pro-

cessing Symposium (IPDPS), 2011 IEEE International, pages 467–478.

IEEE, 2011.

[61] Lian Li, Hui Feng, and Jingling Xue. Compiler-directed scratch-

pad memory management via graph coloring. ACM Transactions

on Architecture and Code Optimization (TACO), 6(3):9, 2009.

[62] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a

623-dimensionally equidistributed uniform pseudo-random num-

ber generator. ACM Transactions on Modeling and Computer Simula-

tion (TOMACS), 8(1):3–30, 1998.

[63] Akio Maeda, Yu-ichi Ozaki, Sudhir Sivakumaran, Tetsuro

Akiyama, Hidetoshi Urakubo, Ayako Usami, Miharu Sato, Kozo

Kaibuchi, and Shinya Kuroda. Ca2+-independent phospholipase

132

bibliography

a2-dependent sustained rho-kinase activation exhibits all-or-none

response. Genes to Cells, 11(9):1071–1083, 2006.

[64] Albert Goldbeter and Olivier Pourquié. Modeling the segmen-

tation clock as a network of coupled oscillations in the notch,

wnt and fgf signaling pathways. Journal of theoretical biology,

252(3):574–585, 2008.

[65] S.L. Spencer, S. Gaudet, J.G. Albeck, J.M. Burke, and P.K. Sorger.

Non-genetic origins of cell-to-cell variability in TRAIL-induced

apoptosis. Nature, 459(7245):428–432, 2009.

[66] Berend Snijder and Lucas Pelkmans. Origins of regulated cell-to-

cell variability. Nature reviews Molecular cell biology, 12(2):119–125,

2011.

[67] Andrea Y Weiße, Richard H Middleton, and Wilhelm Huisinga.

Quantifying uncertainty, variability and likelihood for ordinary

differential equation models. BMC systems biology, 4(1):144, 2010.

[68] Carmen G. Moles, Pedro Mendes, and Julio R. Banga. Parame-

ter estimation in biochemical pathways: A comparison of global

optimization methods. Genome Res., 13(11):2467 –2474, 2003.

[69] Thomas P Runarsson and Xin Yao. Stochastic ranking for con-

strained evolutionary optimization. Evolutionary Computation,

IEEE Transactions on, 4(3):284–294, 2000.

[70] Håkan LS Younes and Reid G Simmons. Statistical probabilistic

model checking with a focus on time-bounded properties. Infor-

mation and Computation, 204(9):1368–1409, 2006.

[71] D.E. Goldberg. Genetic algorithms in search, optimization, and ma-

chine learning. Addison-Wesley, 1989.

133

bibliography

[72] Erik Lindholm, John Nickolls, Stuart Oberman, and John Mon-

trym. Nvidia tesla: A unified graphics and computing architec-

ture. IEEE micro, 28(2):39–55, 2008.

[73] Edmund M Clarke, James R Faeder, Christopher J Langmead,

Leonard A Harris, Sumit Kumar Jha, and Axel Legay. Statistical

model checking in biolab: Applications to the automated analysis

of t-cell receptor signaling pathway. In Computational Methods in

Systems Biology, pages 231–250. Springer, 2008.

[74] Axel Legay, Benoît Delahaye, and Saddek Bensalem. Statistical

model checking: An overview. In Runtime Verification, pages 122–

135. Springer, 2010.

[75] Koushik Sen, Mahesh Viswanathan, and Gul Agha. On statistical

model checking of stochastic systems. In Computer Aided Verifica-

tion, pages 266–280. Springer, 2005.

[76] Peter Bulychev, Alexandre David, Kim Gulstrand Larsen, Mar-

ius Mikučionis, Danny Bøgsted Poulsen, Axel Legay, and Zheng

Wang. Uppaal-smc: Statistical model checking for priced timed

automata. arXiv preprint arXiv:1207.1272, 2012.

[77] Abraham Wald. Sequential tests of statistical hypotheses. The

Annals of Mathematical Statistics, 16:117–186, 1945.

[78] Lars Kuhtz and Bernd Finkbeiner. Efficient parallel path checking

for linear-time temporal logic with past and bounds. arXiv preprint

arXiv:1210.0574, 2012.

[79] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified

data processing on large clusters. Communications of the ACM,

51(1):107–113, 2008.

134

bibliography

[80] Benjamin Barre, Mathieu Klein, Maxime Soucy-Boivin, Pierre-

Antoine Ollivier, and Sylvain Hallé. Mapreduce for parallel trace

validation of ltl properties. In Runtime Verification, pages 184–198.

Springer, 2013.

[81] Jiri Barnat, Lubos Brim, Ivana Cerná, Sven Drazan, Jana Fab-

riková, Jan Láník, David Safránek, and Hongwu Ma. Biodivine: A

framework for parallel analysis of biological models. In Proceed-

ings Second International Workshop on Computational Models for Cell

Processes, COMPMOD 2009, Eindhoven, the Netherlands, November

3, 2009., pages 31–45, 2009.

[82] Jiri Barnat, Lubos Brim, Milan Ceska, and Tomas Lamr. Cuda

accelerated ltl model checking. In Parallel and Distributed Systems

(ICPADS), 2009 15th International Conference on, pages 34–41. IEEE,

2009.

[83] Kosuke Oshima, Takeshi Matsumoto, and Masahiro Fujita. Hard-

ware implementation of bltl property checkers for acceleration of

statistical model checking. In Proceedings of the International Con-

ference on Computer-Aided Design, pages 670–676. IEEE Press, 2013.

[84] Alexandre David, Dehui Du, Kim Guldstrand Larsen, Axel Legay,

and Marius Mikučionis. Optimizing control strategy using sta-

tistical model checking. In NASA formal methods, pages 352–367.

Springer, 2013.

[85] Sumit Kumar Jha and Christopher James Langmead. Synthesis

and infeasibility analysis for stochastic models of biochemical sys-

tems using statistical model checking and abstraction refinement.

Theoretical Computer Science, 412(21):2162–2187, 2011.

135

bibliography

[86] Luca Bortolussi and Guido Sanguinetti. Learning and designing

stochastic processes from logical constraints. In Quantitative Eval-

uation of Systems, pages 89–105. Springer, 2013.

[87] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model check-

ing without bdds. In Intl. Conf. on Tools and Algorithms for the Anal-

ysis and Construction of Systems (TACAS’99), volume 1579. Springer,

1999.

[88] N. Le Novere, B. Bornstein, A. Broicher, M. Courtot, M. Donizelli,

H. Dharuri, L. Li, H. Sauro, M. Schilstra, B. Shapiro, J.L. Snoep,

and M. Hucka. BioModels Database: A free, centralized database

of curated, published, quantitative kinetic models of biochemical

and cellular systems. Nucleic Acids Res., 34:D689–D691, 2006.

[89] John Denholm Lambert. Numerical methods for ordinary differential

systems: the initial value problem. John Wiley & Sons, Inc., 1991.

[90] Akio Maeda, Yu-ichi Ozaki, Sudhir Sivakumaran, Tetsuro

Akiyama, Hidetoshi Urakubo, Ayako Usami, Miharu Sato, Kozo

Kaibuchi, and Shinya Kuroda. Ca2+-independent phospholipase

a2-dependent sustained rho-kinase activation exhibits all-or-none

response. Genes to Cells, 11(9):1071–1083, 2006.

[91] Akio Maedo, Yuichi Ozaki, Sudhir Sivakumaran, Tetsuro

Akiyama, Hidetoshi Urakubo, Ayako Usami, Miharu Sato, Kozo

Kaibuchi, and Shinya Kuroda. Ca2+-independent phospholi-

pase A2-dependent sustained Rho-kinase activation exhibits all-

or-none response. Genes Cells, 11:1071–1083, 2006.

[92] Doug Bruce, Pras Pathmanathan, and Jonathan P Whiteley. Mod-

elling the effect of gap junctions on tissue-level cardiac electro-

physiology. Bulletin of mathematical biology, 76(2):431–454, 2014.

136

bibliography

[93] Evelyn Buckwar and Martin G Riedler. An exact stochastic hybrid

model of excitable membranes including spatio-temporal evolu-

tion. Journal of mathematical biology, 63(6):1051–1093, 2011.

[94] Eugene Asarin, Oded Maler, and Amir Pnueli. Reachability anal-

ysis of dynamical systems having piecewise-constant derivatives.

Theoretical computer science, 138(1):35–65, 1995.

[95] Antoine Girard, Colas Le Guernic, and Oded Maler. Efficient com-

putation of reachable sets of linear time-invariant systems with

inputs. In HSCC’06, pages 257–271, 2006.

[96] Goran Frehse. Phaver: Algorithmic verification of hybrid systems

past hytech. In HSCC’05, pages 258–273, 2005.

[97] Edmund Clarke, Ansgar Fehnker, Zhi Han, Bruce Krogh, Olaf

Stursberg, and Michael Theobald. Verification of hybrid sys-

tems based on counterexample-guided abstraction refinement. In

TACAS’03, pages 192–207, 2003.

[98] Rajeev Alur, Thomas A Henzinger, Gerardo Lafferriere, and

George J Pappas. Discrete abstractions of hybrid systems. P. IEEE,

88(7):971–984, 2000.

[99] Manindra Agrawal, Frank Stephan, PS Thiagarajan, and Shaofa

Yang. Behavioural approximations for restricted linear differential

hybrid automata. In HSCC’06, pages 4–18, 2006.

[100] Thomas A Henzinger and Peter W Kopke. Discrete-time control

for rectangular hybrid automata. Theor. Comput. Sci., 221(1):369–

392, 1999.

[101] Edmund M Clarke, Orna Grumberg, and Doron A Peled. Model

checking. MIT press, 1999.

137

bibliography

[102] Rajeev Alur and Thomas A. Henzinger. Modularity for timed and

hybrid systems. In CONCUR’97, pages 74–88, 1997.

[103] Alessandro Abate, Aaron D Ames, and S Shankar Sastry. Stochas-

tic approximations of hybrid systems. In ACC’05, pages 1557–

1562, 2005.

[104] A Agung Julius and George J Pappas. Approximations of stochas-

tic hybrid systems. IEEE T. Automat. Contr., 54(6):1193–1203, 2009.

[105] Alexandre David, Dehui Du, Kim G. Larsen, Axel Legay, Marius

Mikučionis, Danny Bøgsted Poulsen, and Sean Sedwards. Statis-

tical model checking for stochastic hybrid systems. In HSB’12,

pages 122–136, 2012.

[106] Sicun Gao, Soonho Kong, and Edmund Clarke. Delta-complete

reachability analysis (part i). In Technical report, CMU SCS, CMU-

CS-13-131, 2013.

[107] Paolo Ballarini, Hilal Djafri, Marie Duflot, Serge Haddad, and Ni-

hal Pekergin. COSMOS: a statistical model checker for the hybrid

automata stochastic logic. In QEST’11, pages 143–144, 2011.

[108] Christos G Cassandras and John Lygeros. Stochastic hybrid systems.

CRC Press, 2010.

[109] Henk AP Blom, John Lygeros, M Everdij, S Loizou, and K Kyri-

akopoulos. Stochastic hybrid systems: Theory and safety critical appli-

cations. Springer Heidelberg, 2006.

[110] Willard Stephen. General topology, 1970.

[111] Alfonso Bueno-Orovio, Elizabeth M. Cherry, and Flavio H. Fenton.

Minimal model for human ventricular action potentials in tissue.

J. Theor. Biol., 253:544–560, 2008.

138

bibliography

[112] H Matsuno, S. T. Inouye, Y. Okitsu, Y. Fujii, and S. Miyano. A

new regulatory interaction suggested by simulations for circadian

genetic control mechanism in mammals. J Bioinform Comput Biol,

4(1):139–153, 2006.

[113] Bing Liu, Soonho Kong, Sicun Gao, and E Clarke. Parameter

identification using delta-decisions for biological hybrid systems.

Technical report, CMU SCS Technical Report, CMU-CS-13-136,

2014.

[114] K Tanaka, S Zlochiver, K. L. Vikstrom, M Yamazaki, J Moreno,

M Klos, A. V. Zaitsev, R Vaidyanathan, D. S. Auerbach, S Landas,

G Guiraudon, J Jalife, O Berenfeld, and J. Kalifa. Spatial distribu-

tion of fibrosis governs fibrillation wave dynamics in the posterior

left atrium during heart failure. Circ. Res., 8(101):839–847, 2007.

[115] B. Liu, S. Kong, S. Gao, P. Zuliani, and E. M. Clarke. Parame-

ter synthesis for cardiac cell hybrid models using δ-decisions. In

CMSB’14, pages 99–113, 2014.

[116] F. Fenton and A. Karma. Vortex dynamics in 3D continuous my-

ocardium with fiber rotation: filament instability and fibrillation.

Chaos, 8:20–47, 1998.

[117] K. Nakamura, R. Yoshida, M. Nagasaki, S. Miyano, and

T. Higuchi. Parameter estimation of in silico biological pathways

with particle filtering towards a petascale computing. In PSB’09,

pages 227–238, 2009.

[118] L. Shearman, S. Sriram, D. Weaver, E. Maywood, I. Chaves,

B. Zheng, K. Kume, C. Lee, G. van der Horst, M. Hastings, and

S. Reppert. Interacting molecular loops in the mammalian circa-

dian clock. Science, 288:1013–1019, 2000.

139

bibliography

[119] J. K. Kim and D. B. Forger. A mechanism for robust circadian time-

keeping via stoichiometric balance. Mol Syst Biol, 8:1–14, 2012.

[120] Luca Bortolussi and Alberto Policriti. The importance of being (a

little bit) discrete. Electronic Notes in Theoretical Computer Science,

229(1):75–92, 2009.

140

A
A P P E N D I X

a.1 quantitative specifications

To specify quantitative properties we fix a finite set of atomic propo-

sitions APqt of the form 〈xi < c〉 or 〈xi > c〉 where c is a rational

constant. In what follows we shall assume for convenience that all the

atomic propositions that we encounter are members of APqt. It will be

straightforward to extend our arguments to include qualitative atomic

propositions as well.

We partition <n into hypercubes according to the constants men-

tioned in the quantitative atomic propositions in APqt. (Actually one

could just focus on the members of APqt that appear in a given specifi-

cation but we wish to deal with specifications later). Accordingly, define

Ci to be the set of rational constants so that c ∈ Ci iff an atomic proposi-

tion of the form 〈xi < c〉 or 〈xi > c〉 appears in APqt. We next define for

each dimension i the set of intervals

Ii = {(−∞, c1
i), {c1

i }, (c1
i , c2

i), {c2
i }, . . . (cm

i ,+∞)}

where Ci = {c1
i < c2

i < . . . < cm
i }. In case Ci = ∅ we set Ii =

{(−∞,+∞)}.

This leads to the set of hypercubes H given by H = {∏i Ii | Ii ∈ Ii}.

Clearly H is a partition of <n. The states of the Markov chain Mqt we

wish to define as the approximation of H will be the states of M defined

previously but now refined using H. More precisely we define Mqt =

141

appendix

(Υqt,⇒qt) inductively as follows: ε ∈ Υqt and it is the initial state of Mqt.

Every other state in Υqt will be of the form (ρ, X, h, PX) where ρ is a

path in H, X is an open subset of Rn of finite non-zero measure, h ∈ H

and PX is a probability distribution over X. Furthermore X ⊆ h.

a.1.1 The two semantics

For interpreting BLTL formulas over Mqt it will be convenient to assume

the following syntax in which negation is immediately followed by a

quantitative atomic proposition:

A | ¬A | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 |G≤k ϕ | F≤k ϕ | ϕ1U≤k ϕ2.

Clearly, every BLTL formula can be transformed into an equivalent

formula that has the above syntax. This can be achieved by pushing

negation inwards using equivalences such as ¬(ϕ1 ∨ ϕ2) ≡ ¬ϕ1 ∧ ¬ϕ2,

¬G≤k ϕ ≡ F≤k¬ϕ, ¬(ϕ1U≤k ϕ2) ≡ G≤k¬ϕ2 ∨ (¬ϕ2U≤k(¬ϕ1 ∧ ¬ϕ2)) etc.

The trajectory semantics is defined along previous lines but the atomic

propositions are handled as follows. Let τ = (q0, v0) (q1, v1) . . . (qk, vk)

be a finite trajectory and 0 ≤ ` ≤ k. Then τ, ` |=H,qt 〈xi < c〉 iff v`(i) < c.

On the other hand τ, ` |=H,qt ¬〈xi < c〉 iff τ, ` 6|=H 〈xi < c〉. The clauses

for the other cases are defined in the obvious way. As before τ is a

(trajectory) model of ψ iff τ ∈ TRJK+1 and τ, 0 |=H,qt ψ.

To interpret BLTL formulas over Mqt, let π = η0η1 . . . ηk be a path in

Mqt with η0 = ε and η` = (ρq`, X`, h`, PX`
) for 0 < ` ≤ k. Let ψ be a

BLTL formula and 0 < ` ≤ k. Then π, ` |=qt ψ is given by:

• π, ` |=qt 〈xi < c〉 iff there exists v ∈ X` such that v(i) < c.

• π, ` |=qt ¬〈xi < c〉 iff there exists v ∈ X` such that v(i) ≥ c.

142

appendix

• The remaining clauses are defined in the obvious way.

For v ∈ <n let v |= A denote the fact that v(i) < c in case A = 〈xi < c〉

and v(i) > c in case A = 〈xi > c〉. Next suppose (ρ, X, h, PX) is a state

of Mqt and A ∈ APqt. Then X ⊆ h by construction. Furthermore it is

easy to check that v |= A for every v ∈ h or v 6|= A for every v ∈ h. Thus

the semantics defined above will be consistent in the sense it will be the

case that either π, ` |=qt A or π, ` |=qt ¬A but not both.

Let B be the set of paths of length K + 2 that start from the initial

state of Mqt. Now we define modelsqt(ψ) ⊆ B via: π ∈ modelsqt(ψ)

iff π, 1 |=qt ψ. We can now define the probability of satisfaction of a

formula in Mqt. Let π = η0η1 . . . ηK+1 ∈ B. Then Pr(π) = ∏0≤`<K p`,

where η`
p`⇒ η`+1 for 0 ≤ ` < K + 1. This leads to

Pr(modelsqt(ψ)) = ∑
π∈modelsqt(ψ)

Pr(π).

We let Mqt |= ψ denote the fact Pr(modelsqt(ψ)) = 1.

a.1.2 The correspondence result

We shall relate the behavior of H to that Mqt using the notion of robust

trajectories. To start with, for v ∈ <n we let hc(v) be the hypercube h

in H such that v ∈ h. Since H is a partition of <n we have that hc(v)

exists and is unique. In what follows we let ` range over {0, 1, . . . , K}.

We now define the equivalence relation ≈⊆ TRJK+1 as follows: Let

τ, τ′ ∈ TRJK+1 with τ(`) = (q`, v`) and τ′(`) = (q′`, v′`). Then τ ≈ τ′

iff q` = q′` and hc(v`) = hc(v′`) for each `. We let [τ] denote the ≈-

equivalence class containing τ.

143

appendix

Next suppose τ ∈ TRJK+1 with τ(`) = (q`, v`). Let Q(τ, `) = q` and

V(τ, `) = v`. Define [τ](`) = {V(τ′, `) | τ′ ∈ [τ]}. It is easy to verify

that [τ](`) is a measurable set (but perhaps with measure 0) for each `.

The trajectory τ ∈ TRJK+1 is said to be robust iff µ([τ](`)) > 0 for

every `. We will say that H robustly satisfies the specification ψ-and

this is denoted by H |=R ψ iff τ, 0 |=H ψ for every robust trajectory τ in

TRJK+1. It is now straightforward to show (along the lines of the proof

of Theorem 2) show:

Theorem 4 H |=R ψ iff Mqt |= ψ.

First the following properties of the Markov chain Mqt can easily be

proved along the lines of the proof of Theorem 1.

Lemma 2 1. Xh
j is open and is of finite measure for each j and each h ∈ H.

2. If (ρqj, Xh
j , h, PXh

j
) ∈ Υqt then µ(Xh

j) > 0.

3. PXh
j

is a probability distribution for each j and each h ∈ H.

4. Mqt = (Υqt,⇒qt) is an infinite-state Markov chain whose underlying

graph is a finitely branching tree.

We wish to show that for quantitative specifications, H robustly satis-

fies a BLTL specification ψ if and only if Mqt satisfies ψ with probability

1. We begin with:

Lemma 3 Let τ = (q0, v0), (q1, v1), . . . (qK, vK) ∈ TRJK+1. Then the follow-

ing statements are equivalent.

1. τ is robust.

2. There exist open sets of non-zero measure Oj and hj ∈ H such that

vj ∈ Oj ⊆ [γ][j] ⊆ hj for 0 ≤ j ≤ K.

3. vj(i) /∈ Ci for every j ∈ {0, 1,≤ K} and every i ∈ {1, 2, . . . , n}.

144

appendix

proof In what follows we let j range over {0, 1, . . . , K}. Suppose τ

is robust. Let hc(vj) = hj for each j. By the definition of ≈, we have

vj ∈ [τ](j) ⊆ hj for each j. Since µ([τ](j)) > 0 we have µ(hj) > 0 for

each j. This implies that hj(i) is a finite open interval for 1 ≤ i ≤ n. But

then [τ](j) ⊆ hj and µ([τ](j)) > 0 now together imply that there exists

a non-empty open set Oj of finite measure such that vj ∈ Oj ⊆ [τ](j) for

each j. Thus (1) implies (2).

Next suppose part (2) of the lemma holds. Then µ([τ](j)) > 0 for each

j. Thus τ is robust and we have (2) implies (1).

To show that (2) implies (3) assume that vj(i) ∈ Ci for some j and i.

Then µ(hc(vj)) = 0 . We need to find hj and an open set of non-zero

measure such that vj ∈ Oj ⊂ [τ](j) ⊆ hj. This implies hc(vj) = hj. But

then µ(hj) = 0 implies there can not exist an open set Oj of non-zero

measure satisfying vj ∈ Oj ⊆ hj. Hence (2) can not hold and this shows

(2) implies (3).

Next suppose (3) holds. Let hj = hc(vj) for each j. Then (3) implies

µ(hj) > 0 for each j. Let τ(j) be the j-length prefix of τ for each j.

Since INIT is open O0 = INIT ∩ h0 is open. It is non-empty since

v0 ∈ O0 and hence has non-zero measure. Furthermore [τ(0)](0) = O0.

We now have v0 ∈ O0 ⊆ [τ(0)](0) ⊆ h0. Assume inductively 0 < j < K

and for 0 ≤ k ≤ j there exist open sets Ok of non-zero measure such

that vk ∈ Ok ⊆ [τ(j)](k) ⊆ hk.

Since τ is a trajectory there exist gj and tj ∈ (0, 1) such that qj
gj→ qj+1

and Φqj,tj(vj) ∈ gj and vj+1 = Φqj+1,1−tj(Φqj,tj(vj)). Let Yj = [τ(j)](j) and

Y′j+1 =
⋃

v∈Yj
{Φqj+1,1−t(Φqj,t(v))|t ∈ T(v)} where T(v) = {t|Φqj,t(v) ∈

g}. Clearly [τ(j+1)](j+ 1) = Y′j+1∩hj+1. Next define O′j+1 = Φqj+1,1−tj(Φqj,tj(Oj)).

Since both Φ−1
qj,1−tj

and Φ−1
qj,tj

are continuous bijections, O′j+1 is an open

set and vj+1 ∈ O′j+1. Let Oj+1 = O′j+1 ∩ hj+1. Since vj+1 ∈ hj+1 and

hj+1 is open we have Oj+1 is open and non-empty and hence with non-

145

appendix

zero measure. Further Oj+1 ⊆ [τ(j+1)](j+ 1) ⊆ hj+1. This establishes the

induction hypothesis and hence (3) implies (2). 2

We define the notion of compatibility as before. Let π = η0η1 . . . ηk be

a path in Mqt with ηj = (q0q1 . . . qj−1, X
hj
j , hj, Pr

X
hj
j

) for 0 < j ≤ k, and

η0 = ε. Let τ = (q′1, v1)(q′2, v1) . . . (q′k′ , vk′) be a trajectory. Then we say

that π and τ are compatible iff k = k′ and for 1 ≤ j ≤ k, qj = q′j and

vj ∈ X
hj
j . As it will turn out, if τ and π are compatible then τ will be

robust.

In what follows we shall assume that our BLTL specifications involve

only quantitative atomic propositions in APqt and the formulas obey

the syntax in which negation is immediately followed by an atomic

proposition. Further the semantic notions |=H and |=Mqt (abbreviated

as |=qt) are defined in the expected way.

Lemma 4 1. Suppose the trajectory

τ = (q1, v1)(q2, v1) . . . (qk, vk) ∈ TRJ and the path π = η0η1 . . . ηk

in Mqt with η0 = ε are compatible. Let ψ be a BLTL specification and

j ∈ {1, . . . k}. Then τ, j |=H ψ iff π, j |=qt ψ.

2. Suppose π is a path in Mqt starting from ε. Then there exists a robust

trajectory τ in TRJ such that π and τ are compatible.

3. Suppose τ is a robust trajectory in TRJ. Then there exists a path π in

Mqt starting from ε such that τ and π are compatible.

proof

1. From the definitions it follows that if A ∈ APqt and h ∈ H then

v |= A for every v ∈ h or v |= ¬A for every v ∈ h but not both.

Since vj ∈ hj we then have τ, j |=H A iff π, j |=qt A and τ, j |=H ¬A

iff π, j |=qt ¬A for every atomic proposition. The remaining cases

now follow easily by structural induction on ψ.

146

appendix

2. Let π = η0η1 . . . ηk in Mqt with η0 = ε and ηj = (q0q1 . . . qj−1, X
hj
j , hj, Pr

X
hj
j

)

for 0 < j ≤ k. For notational convenience we will write Xj instead

of X
hj
j .

Since µ(Xk) > 0 we can fix vk ∈ Xk. Further hk being a product

of open intervals in < with Xk ⊆ hk, we can find an open set Ok

of non-zero measure such that vk ∈ Ok ⊆ Xk. Thus we have vk ∈

Ok ⊆ Xk ⊆ hk. From the construction of Mqt it follows there exists

qk−1
g→ qk and T(v) ⊆ (0, 1) for each v ∈ Xk such that Φ−1

qk,1−t(v) ∈

g for every t ∈ T(v). Let Yk−1 =
⋃

v∈Xk
{Φ−1

qk−1,t(Φ
−1
qk,1−t(v)) | t ∈

T(v)}. From the construction of it follows that Yk−1 ⊆ Xk−1.

Next let Ok−1 =
⋃

v∈Ok
{Φ−1

qk−1,t(Φ
−1
qk,1−t(v)) | t ∈ T(v)}. Clearly

Ok−1is an open set of non-zero measure with Ok−1 ⊆ Yk−1. More-

over we can fix vk−1 ∈ Ok−1 such that vk−1 = Φ−1
qk,1−t(vk) for some

t ∈ T(vk). Continuing this way we can find vj, Oj, Yj for 1 ≤ j ≤ k

(with Yk = Xk) such that τ = (q1, v1)(q2, v2) . . . (qk, vk) is a trajec-

tory and vj ∈ Oj ⊆ Yj ⊆ hj for 1 ≤ j ≤ k. From the construction of

Mqt it follows that Yj = [τ](j) for 1 ≤ j ≤ k. From Lemma 3 it fol-

lows that π and τ are compatible. It is also clear due to Lemma 3

that τ is robust.

3. Suppose τ = (q1, v1)(q2, v1) . . . (qk, vk) ∈ TRJ is robust. Then by

Lemma 3 there exist open sets Oj of non zero measure and hj ∈ H

such that vj ∈ Oj ⊆ [τ](j) ⊆ hj for 1 ≤ j ≤ k. Let τ(j) denote the

j-length prefix of τ for 1 ≤ j ≤ k. We now define Xj = [τ(j)](j) for

1 ≤ j ≤ k. Then using the construction of Mqt it is easy to show

that there exists distributions Prj over Xj such that π = εη1η2 . . . ηk

is a path in Mqt with ηj = (qj, Xj, hj, Prj) for 1 ≤ j ≤ k and that π

is compatible with τ.

2

147

appendix

We can now prove Theorem 5.

Theorem 5 H |=R ψ iff Mqt |= ψ.

proof Suppose H 6|=R ψ. Then there exists τ ∈ TRJ such that τ is

robust and τ, 0 6|=H ψ. By Lemma 4, there exists a path π in Mqt which is

compatible with τ. Hence again by Lemma 4 we then have π /∈ modelsMqt(ψ)

which leads to Pr<1(ψ). Next suppose that Pr<1(ψ). Then there exists a path

π in Mqt such that π, 1 6|=Mqt ψ. By Lemma 4, there exists a robust trajectory

τ which is compatible with π and τ, 0 6|=H ψ. This implies H 6|=R ψ. 2

Finally, we wish to show that the number of non-robust trajectories

are negligible compared with the robust ones. Hence they do not con-

tribute much towards the dynamics of H. For that we need the following

lemma.

Lemma 5 Suppose τ = (q0, v0)(q1, v1) . . . (qk, vk) is a non-robust trajectory

and τ(j) is the j-length prefix of τ for 1 ≤ j ≤ k + 1. Let hj = hc(vj) and

Yj = [τ(j+1)](j + 1) for 0 ≤ j ≤ k. Then Yj is measurable and Yj ⊆ hj for

0 ≤ j ≤ k. Furthermore Yj is of measure 0 for each j in {0, 1, ..., k}.

proof Since τ is not robust, there exists j : 0 ≤ j ≤ k such that

vj(i) = ci ∈ Ci for some i and hence for all v ∈ hj, v(i) = ci which im-

plies µ(hj) = 0. We induct on j. For j = 0, Y0 = INIT∩ h0 is measurable

and has measure 0. Suppose q0
g→ q1 and let Y′1 =

⋃
v∈Y0
{Φq1,1−t(Φq0,t(v)) | t ∈

T(v)} where T(v) = {t | Φq0,t(v) ∈ g}. Then Y1 = Y′1 ∩ h1. Let Ŷ1 =

Φq1((0, 1)×Φq0((0, 1)×Y0)∩ g). Since µ(Y0) = 0 hence µ((0, 1)×Y0) =

0. Now both Φq1 and Φq0 are Lipschitz, and hence µ(Ŷ1) = 0 [since

the image of a set of measure 0 has measure 0 under a Lipschitz func-

tion]. Now note that Y1 ⊆ Ŷ1 and hence Y1 must be measurable and

µ(Y1) = 0. Continuing this way, we can show that Yj is measurable for

all j : 2 ≤ j ≤ k and µ(Yj) = 0.

148

appendix

Next suppose j > 0. By a similar argument we can show that Y` is

measurable for all j < ` ≤ k and µ(Y`) = 0. Let qj−1
g→ qj and let Y′j−1 =⋃

v∈Yj
{Φ−1

qj−1,1−t(Φ
−1
qj,t(v)) | t ∈ T(v)} where T(v) = {t | Φqj−1,t(v) ∈

g}. Then Yj−1 = Y′j−1 ∩ hj−1. Let Ŷj−1 = Φqj−1((−1, 0)× Φqj((−1, 0)×

Yj) ∩ g). Since µ(Yj) = 0 hence µ((−1, 0) × Yj) = 0. Now both Φqj

and Φqj−1 are Lipschitz, and hence µ(Ŷj−1) = 0 [since the image of a

set of measure 0 has measure 0 under a Lipschitz function]. Now note

that Yj−1 ⊆ Ŷj−1 and hence Yj−1 must be measurable and µ(Yj−1) = 0.

Continuing this way, we can show that Ym is measurable for all m : 0 ≤

m < j and µ(Ym) = 0. 2 2

Thus by the above lemma, if a trajectory τ ∈ TRJK+1 is not robust

then there exists a j ∈ {0, 1, . . . , K} such that µ(Yj) = 0. This implies

that in the product topology of QK+1 ×RK+1, [τ] has measure 0. Thus,

the contribution made by the non-robust trajectories to the dynamics of

H is negligible.

Thus in terms of the sub-dynamics consisting of robust trajectories

there is again a strong relationship between the behaviors of H and

Mqt. It also turns out that in measure-theoretic terms the non-robust

trajectories can be ignored. More precisely if one starts with the discrete

topology over QK+1 and the usual topology over <nK+1
one can easily

define a natural measure space over the product topology QK+1×<nK+1
.

In this space for every non-robust trajectory τ the representation of [τ]

will be measurable but with measure 0. In this sense the contributions

made by the non-robust trajectories to the dynamics of H are negligible.

a.1.3 Trajectory simulation for quantitative specifications

Algorithm 3 gives the procedure for simulating robust trajectories for

the verification of quantitative BLTL specifications. By Lemma 3, a tra-

149

appendix

jectory is robust iff it does not hit any of the constants mentioned in the

atomic propositions. The procedure is the same as Algorithm 1 before,

except that whenever a value state vk at any time step k hits a constant

mentioned in any of the atomic propositions, we discard vk and start

the simulation again from the value state of the previous time step.

Algorithm 3 Robust trajectory simulation
Input: Hybrid automaton H = (Q, qin, {Fq(x)}q∈Q,G,→, INIT), maxi-
mum time step K.
Output: Trajectory τ

1: Sample v0 from INIT uniformly. If v0(i) ∈ Ci for any i, repeat.
2: Set q0 := qin and τ := (q0, v0).
3: for k := 1 . . . K do
4: repeat
5: Generate time points T := {t1, . . . , tJ} uniformly in (0, 1).
6: Simulate v` := Φqk−1(t`, vk−1), for ` ∈ {1, . . . , J}
7: Let T̂j := {t ∈ T : v` ∈ gj} be the time points where gj is

enabled.
8: Pick g` randomly according to probabilities pj :=

|T̂j|
∑m

j′=1 |T̂j′ |
.

9: Pick t` uniformly at random from T̂`.
10: Simulate v′ := Φq′(1− t`, v`), where q′ is the target of g`.
11: until v′(i) /∈ Ci for any i
12: Set qk := q′, vk := v′, and extend τ := (q0, v0) . . . (qk, vk).
13: end for
14: return τ

To see that the algorithm terminates with probability 1, note that if

v0 ∈ h and h(i) = {c} for some c ∈ Ci then µ(h) = 0. Thus Step

1 repeats with probability 0. As a result with probability 1 it will be

repeated only a finite number of times. Similarly the repeat loop of Step

4-11 will terminate with probability 1.

a.2 performance of the hybrid system sampling algorithm

We measured the average runtime for simulating a single trajectory (see

Algorithm 1) for the room heating system and the cardiac cell system

under varying values of ∆ and J based on the MATLAB implementa-

150

appendix

tion. Figure 23 (a) shows that the runtime scales linearly with 1/∆, the

number of time steps within a unit time. The relationship of simulation

time as a function of J is also empirically linear, shown in Figure 23 (b).

Figure 23: The relationship of simulation time with choice of ∆ and J

151

	Declaration
	Acknowledgments
	Contents
	Summary
	List of Tables
	List of Figures

	1 Introduction
	1.1 Context and motivation
	1.2 Research contributions
	1.3 Outline of the thesis
	1.4 Declaration

	2 Preliminaries
	2.1 Graphics processing units
	2.1.1 GPGPUs
	2.1.2 GPU programming model

	2.2 Modelling of bio-pathways as ODEs systems
	2.2.1 Ordinary Differential Equations systems
	2.2.2 C1 continuity and measure theory
	2.2.3 ODEs and flows

	2.3 Probabilistic dynamical models
	2.3.1 Markov chains
	2.3.2 Dynamic Bayesian networks

	2.4 Logical background
	2.4.1 Linear temporal logic
	2.4.2 Bounded linear-time temporal logic
	2.4.3 Probabilistic model checking

	2.5 Hybrid systems
	2.5.1 Modelling of hybrid systems

	3 DBN approximation based verification of ODEs
	3.1 DBN approximation of a system of ODEs
	3.1.1 The DBN structure
	3.1.2 Related work

	3.2 GPU implementation of the approximation
	3.2.1 The GPU computation pipeline
	3.2.2 The heterogeneous code generation framework
	3.2.3 Mapping to the GPU architecture

	3.3 Results
	3.4 Summary

	4 Statistical model checking based analysis of ODEs systems
	4.1 Overview
	4.2 ODEs and trajectories
	4.3 Statistical model checking of ODEs dynamics
	4.3.1 Bounded linear-time temporal logic
	4.3.2 Statistical model checking of PBLTL formulas

	4.4 Parameter estimation
	4.4.1 Parameter estimation based on PBLTL specification

	4.5 Summary

	5 A GPU based implementation of the SMC procedure for ODEs systems
	5.1 Overview
	5.1.1 Related work

	5.2 Online statistical model checking procedure
	5.2.1 Automaton-based BLTL path checking

	5.3 Mapping to the GPU platform
	5.3.1 Parallelized parameter estimation based on PBLTL formulas

	5.4 Experimental evaluation
	5.4.1 Case studies: Property verification
	5.4.2 Case studies: Parameter estimation
	5.4.3 Performance

	5.5 Summary

	6 Statistical model checking of hybrid systems
	6.1 Overview
	6.1.1 Assumptions
	6.1.2 Related work

	6.2 Hybrid automata
	6.2.1 Trajectories

	6.3 The Markov chain approximation
	6.4 Relating the behaviours of H and MH
	6.4.1 The correspondence result
	6.4.2 Quantitative atomic propositions

	6.5 Statistical model checking of hybrid systems
	6.5.1 The SMC procedure

	6.6 The GPU implementation
	6.7 Case studies
	6.7.1 Cardiac cell model
	6.7.2 Circadian rhythm model

	6.8 Performance
	6.9 Summary

	7 Conclusion
	7.1 Future work

	Bibliography
	A Appendix
	A.1 Quantitative specifications
	A.1.1 The two semantics
	A.1.2 The correspondence result
	A.1.3 Trajectory simulation for quantitative specifications

	A.2 Performance of the hybrid system sampling algorithm

