75 research outputs found

    Automotive Inductive Position Sensor

    Get PDF
    Inductive angular position sensors (IAPS) are widely used for high accuracy and low cost angular position sensing in harsh automotive environments, such as suspension height sensor and throttle body position sensor. These sensors ensure high resolution and long lifetime due to their contactless sensing mode and their simple structure. Furthermore, they are suitable for wider application areas. For instance, they can be miniaturized to fit into a compact packaging space, or be adopted to measure the relative angle of multiple rotating targets for the purposes of torque sensing. In this work, a detailed SIMULINK model of an IAPS is first proposed in order to study and characterize the sensor performance. The model is validated by finite element analysis and circuit simulation, which provides a powerful design tool for sensor performance analysis. The sensor error introduced by geometry imperfection is thoroughly investigated for two-phase and three-phase configurations, and a corresponding correction method to improve the accuracy is proposed. A design optimization method based on the response surface methodology is also developed and used in the sensor development. Three types of sensors are developed to demonstrate the inductive sensor technology. The first type is the miniaturized inductive sensor. To compensate for the weak signal strength and the reduced quality (Q) factor due to the scaling down effect, a resonant rotor is developed for this type of sensor. This sensor is fabricated by using the electrodeposition technique. The prototype shows an 8mm diameter sensor can function well at 1.5mm air gap. The second type is a steering torque sensor, which is designed to detect the relative torsional angle of a rotating torsional shaft. It demonstrates the mutual coupling of multiple inductive sensors. By selecting a proper layout and compensation algorithm, the torque sensor can achieve 0.1 degree accuracy. The third type is a passive inductive sensor, which is designed to reduce power consumption and electromagnetic emissions. The realization and excellent performance of these three types of sensors have shown the robustness of the inductive sensor technology and its potential applications. The research conducted in this dissertation is expected to improve understanding of the performance analysis of IAPS and provide useful guidelines for the design and performance optimization of inductive sensors

    Battery-less near field communications (nfc) sensors for internet of things (iot) applications

    Get PDF
    L’ implementació de la tecnologia de comunicació de camp proper (NFC) en els telèfons intel·ligents no para de créixer degut a l’ús d’aquesta per fer pagaments, això, junt amb el fet de poder aprofitar l’energia generada pel mòbil no només per la comunicació, sinó també per transmetre energia, el baix cost dels xips NFC, i el fet de que els telèfons tinguin connectivitat amb internet, possibilita i fa molt interesant el disseny d’etiquetes sense bateria incorporant-hi sensors i poder enviar la informació al núvol, dins del creixent escenari de l’internet de les coses (IoT). La present Tesi estudia la viabilitat d’aquests sensors, analitzant la màxima distància entre lector i sensor per proveir la potència necessària, presenta tècniques per augmentar el rang d’operació, i analitza els efectes de certs materials quan aquests estan propers a les antenes. Diversos sensors han estat dissenyats i analitzats i son presentats en aquest treball. Aquests son: Una etiqueta que mesura la humitat de la terra, la temperatura i la humitat relativa de l’aire per controlar les condicions de plantes. Un sensor per detectar la humitat en bolquers, imprès en material flexible que s’adapta a la forma del bolquer. Dues aplicacions, una per estimació de pH i una altre per avaluar el grau de maduració de fruites, basats en un sensor de color. I, per últim, s’estudia la viabilitat de sensors en implants per aplicacions mèdiques, analitzant l’efecte del cos i proposant un sistema per augmentar la profunditat a la que aquests es poden llegir utilitzant un telèfon mòbil. Tots aquests sensors poden ser alimentats i llegits per qualsevol dispositiu que disposin de connexió NFC.La implementación de la tecnología de comunicaciones de campo cercano (NFC) en los teléfonos inteligentes no para de crecer debido al uso de esta para llevar a cabo pagos, esto, junto con el hecho de poder aprovechar la energía generada por el móvil no sólo para la comunicación, sino también para transmitir energía, el bajo coste de los chips NFC, i el hecho que los teléfonos tengan conectividad a internet, posibilita y hace muy interesante el diseño de etiquetas sin batería que incorporen sensores i poder enviar la información a la nube, enmarcado en el creciente escenario del internet de las cosas (IoT). La presente Tesis estudia la viabilidad de estos sensores, analizando la máxima distancia entre lector i sensor para proveer la potencia necesaria, presenta técnicas para aumentar el rango de operación, y analiza los efectos de ciertos materiales cuando estos están cerca de las antenas. Varios sensores han sido diseñados y analizados y son presentados en este trabajo. Estos son: Una etiqueta que mide la humedad de la tierra, la temperatura y la humedad relativa del aire para controlar las condiciones de plantas. Un sensor para detectar la humedad en pañales, impreso en material flexible que se adapta a la forma del pañal. Dos aplicaciones, una para estimación de pH y otra para evaluar el grado de maduración de frutas, basados en un sensor de color. Y, por último, se estudia la viabilidad de sensores en implantes para aplicaciones médicas, analizando el efecto del cuerpo y proponiendo un sistema para aumentar la profundidad a la que estos se pueden leer usando un teléfono móvil. Todos estos sensores pueden ser alimentados y leídos por cualquier dispositivo que disponga de conexión NFC.The implementation of near field communication (NFC) technology into smartphones grows rapidly due the use of this technology as a payment system. This, altogether with the fact that the energy generated by the phone can be used not only to communicate but for power transfer as well, the low-cost of the NFC chips, and the fact that the smartphones have connectivity to internet, makes possible and very interesting the design of battery-less sensing tags which information can be sent to the cloud, within the growing internet of things (IoT) scenario. This Thesis studies the feasibility of these sensors, analysing the maximum distance between reader and sensor to provide the necessary power, presents techniques to increase the range of operation, and analyses the effects of certain materials when they are near to the antennas. Several sensors have been designed and analysed and are presented in this work. These are: a tag that measures the soil moisture, the temperature and the relative humidity of the air to control the conditions of plants. A moisture sensor for diapers, printed on flexible material that adapts to the diaper shape. Two applications, one for pH estimation and another for assessing the degree of fruit ripening, based on a colour sensor. And finally, the feasibility of sensors in implants for medical applications is studied, analysing the effect of the body and proposing a system to increase the depth at which they can be read using a mobile phone. All of these sensors can be powered and read by any NFC enabled device

    Eddy current angular position sensor for automotive

    Get PDF
    Programa doutoral em Líderes para Indústrias TecnológicasOs sensores angulares usados em aplicações automóveis, requerem uma boa resolução, fiabilidade, baixa manutenção, baixo custo de produção e capacidade de trabalhar sob condições adversas. Devido a estes requisitos, os sensores mais utilizados são os magnéticos, indutivos e magneto-indutivos. Outro fator crítico é a dimensão do sensor, quanto mais reduzido e compacto, maior é o número de aplicações em que pode ser aplicado. No caso dos sensores magneto-indutivos e indutivos, uma forma de reduzir o seu tamanho é através do uso de a bobines planares impressas em placas de circuito impresso (PCB). Estas, para além de mais compactas, conseguem também reduzir os custos de produção, otimizar a repetibilidade e assemblagem, e permitir que o seu desenho seja facilmente adaptado às suas aplicações. No desenvolvimento de sensores indutivos, obter a indutância das bobinas, que funcionam como elemento transdutor, é essencial e desafiador no caso de bobinas planas. Atualmente, há duas abordagens no estado da arte: fórmulas de aproximação (para geometrias regulares), e simulações de modelos de elementos finitos (FEM). As simulações são demoradas e recorrem a ferramentas de software dispendiosas e que exigem muitos recursos computacionais. Esta tese tem como objetivo desenvolver uma ferramenta de cálculo analítico para obter a indutância de bobinas planas genéricas, reduzindo o tempo de desenvolvimento. A ferramenta possibilita ainda o cálculo da interferência que um alvo planar condutivo tem na indutância da bobine, tornando assim possível obter a resposta de um sensor indutivo baseado em eddy currents durante a sua fase de desenvolvimento. Esta tese, além de detalhar o desenvolvimento da ferramenta mencionada, também descreve todos os processos de validação implementados, através de simulações FEM e testes experimentais. A metodologia proposta foi aplicada com sucesso no desenvolvimento de um sensor de posição angular automotivo baseado em eddy currrents. Foi possível comprovar que a precisão da ferramenta desenvolvida está de acordo com as metodologias usualmente utilizadas, com a vantagem de ser mais rápida e económica.Angular sensors used in automotive applications require good precision, reliability, low maintenance, low production costs and the ability to work in harsh conditions. Due to these requirements, magnetic, inductive and magneto-inductive sensors are preferred and are used in current generations of automotive angular position sensors. The size of the sensors is another relevant factor in the development of new solutions. The smaller and more compact, the larger the number of applications in which they can be applied. In the case of magneto-inductive and inductive sensors, one way to reduce their size is to use planar coils printed on printed circuit boards (PCBs). These, in addition to occupy a smaller volume when compared to solenoids, also reduce production costs and optimize repeatability and simplify assembly. When developing inductive sensors, knowing the required inductance value of its coils is essential and this task can be challenging in the case of planar coils. Currently, two approaches are used to calculate the inductances of planar coils. When the coils have regular geometry approximation formulas are used, configuring some parameters. When they have irregular geometry or a more accurate result is desired, simulations using finite element methods (FEM) are chosen. These simulations have the disadvantage of being time-consuming, requiring expensive software applications and a huge computing resources. In view of the budget and the reduction of development time, this thesis provides an analytical calculation tool for the inductance of generic multi-layer planar coils. In this way, it is possible to develop dedicated applications in reduced time. The tool also allows to calculate the interference that a planar conductive target, of arbitrary geometry, can have on the coil inductance. Thus, it is possible to obtain the response of an inductive sensor based on eddy currents during its development phase. This thesis, in addition to detailing the development of the aforementioned tool, also describes all the validation processes implemented using FEM simulations and experimental tests. The proposed methodology was successfully applied in the development of an automotive angular position sensor based on eddy currents. It was possible to prove that the precision of the developed analytical tool is in concordance with the methodologies usually used, with the advantage of being faster and open source.Fundação para a Ciência e a Tecnologia (FCT) - bolsa de doutoramento PD/BD/128142/201

    Electronic identification systems for asset management

    Get PDF
    Electronic identification is an increasingly pervasive technology that permits rapid data recovery from low-power transponders whenever they are placed within the vicinity of an interrogator device. Fundamental benefits include proximity detection not requiring line-of-sight, multiple transponder access and data security. In this document, electronic identification methods for asset management are devised for the new target application of electrical appliance testing. In this application mains-powered apparatus are periodically subjected a prescribed series of electrical tests performed by a Portable Appliance Tester (PAT). The intention is to enhance the process of appliance identification and management, and to automate the test process as far as possible. Three principal methods of electronic identification were designed and analysed for this application: proximity Radio Frequency Identification (RFID), cable RFID and power- line signalling. Each method relies on an inductively coupled mechanism that utilities a signalling technique called direct-load modulation. This is particularly suited to low- cost passive transponder designs. Physical limitations to proximity RFID are identified including coil size, orientation and susceptibility to nearby conducting surfaces. A novel inductive signalling method called cable RFID is then described that permits automatic appliance identification. This method uses the appliance power cable and inlet filter to establish a communication channel between interrogator and transponder. Prior to commencing the test phase, an appliance is plugged into the PAT and identified automatically via cable RFID. An attempt is made to extend the scope of cable RFID by developing a novel mains power-line signalling method that uses direct-load modulation and passive transponders. Finally, two different implementations of RFID interrogator are described. The first takes the form of an embeddable module intended for incorporation into electronic identification products such as RFID enabled PAT units. Software Defined Radio (SDR) principles are applied to the second interrogator design in an effort to render the device reconfigurable

    Signaling in 3-D integrated circuits, benefits and challenges

    Get PDF
    Three-dimensional (3-D) or vertical integration is a design and packaging paradigm that can mitigate many of the increasing challenges related to the design of modern integrated systems. 3-D circuits have recently been at the spotlight, since these circuits provide a potent approach to enhance the performance and integrate diverse functions within amulti-plane stack. Clock networks consume a great portion of the power dissipated in a circuit. Therefore, designing a low-power clock network in synchronous circuits is an important task. This requirement is stricter for 3-D circuits due to the increased power densities. Synchronization issues can be more challenging for 3-D circuits since a clock path can spread across several planes with different physical and electrical characteristics. Consequently, designing low power clock networks for 3-D circuits is an important issue. Resonant clock networks are considered efficient low-power alternatives to conventional clock distribution schemes. These networks utilize additional inductive circuits to reduce power while delivering a full swing clock signal to the sink nodes. In this research, a design method to apply resonant clocking to synthesized clock trees is proposed. Manufacturing processes for 3-D circuits include some additional steps as compared to standard CMOS processes which makes 3-D circuits more susceptible to manufacturing defects and lowers the overall yield of the bonded 3-D stack. Testing is another complicated task for 3-D ICs, where pre-bond test is a prerequisite. Pre-bond testability, in turn, presents new challenges to 3-D clock network design primarily due to the incomplete clock distribution networks prior to the bonding of the planes. A design methodology of resonant 3-D clock networks that support wireless pre-bond testing is introduced. To efficiently address this issue, inductive links are exploited to wirelessly transmit the clock signal to the disjoint resonant clock networks. The inductors comprising the LC tanks are used as the receiver circuit for the links, essentially eliminating the need for additional circuits and/or interconnect resources during pre-bond test. Recent FPGAs are quite complex circuits which provide reconfigurablity at the cost of lower performance and higher power consumption as compared to ASIC circuits. Exploiting a large number of programmable switches, routing structures are mainly responsible for performance degradation in FPAGs. Employing 3-D technology can providemore efficient switches which drastically improve the performance and reduce the power consumption of the FPGA. RRAM switches are one of the most promising candidates to improve the FPGA routing architecture thanks to their low on-resistance and non-volatility. Along with the configurable switches, buffers are the other important element of the FPGAs routing structure. Different characteristics of RRAM switches change the properties of signal paths in RRAM-based FPGAs. The on resistance of RRAMswitches is considerably lower than CMOS pass gate switches which results in lower RC delay for RRAM-based routing paths. This different nature in critical path and signal delay in turn affect the need for intermediate buffers. Thus the buffer allocation should be reconsidered. In the last part of this research, the effect of intermediate buffers on signal propagation delay is studied and a modified buffer allocation scheme for RRAM-based FPGA routing path is proposed

    Interface Circuits for Microsensor Integrated Systems

    Get PDF
    ca. 200 words; this text will present the book in all promotional forms (e.g. flyers). Please describe the book in straightforward and consumer-friendly terms. [Recent advances in sensing technologies, especially those for Microsensor Integrated Systems, have led to several new commercial applications. Among these, low voltage and low power circuit architectures have gained growing attention, being suitable for portable long battery life devices. The aim is to improve the performances of actual interface circuits and systems, both in terms of voltage mode and current mode, in order to overcome the potential problems due to technology scaling and different technology integrations. Related problems, especially those concerning parasitics, lead to a severe interface design attention, especially concerning the analog front-end and novel and smart architecture must be explored and tested, both at simulation and prototype level. Moreover, the growing demand for autonomous systems gets even harder the interface design due to the need of energy-aware cost-effective circuit interfaces integrating, where possible, energy harvesting solutions. The objective of this Special Issue is to explore the potential solutions to overcome actual limitations in sensor interface circuits and systems, especially those for low voltage and low power Microsensor Integrated Systems. The present Special Issue aims to present and highlight the advances and the latest novel and emergent results on this topic, showing best practices, implementations and applications. The Guest Editors invite to submit original research contributions dealing with sensor interfacing related to this specific topic. Additionally, application oriented and review papers are encouraged.

    Development of a High-Bandwidth Current Sensor for High-Frequency Power Applications

    Get PDF
    The aim of this master thesis is to develop a high-bandwidth current sensor for a nominal design current of 100 A and a nominal design bandwidth of 100 MHz. After an analysis which properties are important to develop a current sensor, a requirement list was stated. Several current sensing methods were described and their qualification for the stated requirements were evaluated. With the resulting sensing concept, consisting out of Rogowski coils and magneto resistors, a system design was elaborated. One requirement was to develop a current sensor which needs less effort in series production than a regular Rogowski coil. Therefore, a planar Rogowski coil was proposed for this sensor development. Furthermore, a magnetic field simulation was designed. Based on the results, a optimal placement simulation for both sensors was carried out. In the final design phase, the galvanic insulation requirements of 4.8 kV based on the corresponding standards were investigated and implemented. The test equipment used in this thesis was designed and build in-house at IPE (KIT-ADL). Commercial solutions did not offer the suggested requirements for generating a double pulse with the necessary rise time to characterize the current sensor’s bandwidth. The test equipment was able to apply pulses with a maximum current of 200 A and a rise time of 1 ns to the device under test. The prototype is able to sense a current up to ±100 A with a bandwidth of 20 MHz

    Sensor-based management systems based on RFID technology

    Get PDF
    Παρατηρήσεις έκδοσης: λείπουν οι σελίδες 78, 102 από το φυσικό τεκμήριο.In this diploma thesis, the RFID technology is analyzed (operating principles, readers' and tags hardware, coding, modulation, anticollision procedures, frequencies, standards, applications). Moreover, a protocol to synchronize readers working in a multi-reader multi-tag environment is proposed. The protocol is applied to the store shelf scanning application and further refined to meet the requirements of this specific application
    corecore