21 research outputs found

    Architectural and mobility management designs in internet-based infrastructure wireless mesh networks

    Get PDF
    Wireless mesh networks (WMNs) have recently emerged to be a cost-effective solution to support large-scale wireless Internet access. They have numerous ap- plications, such as broadband Internet access, building automation, and intelligent transportation systems. One research challenge for Internet-based WMNs is to design efficient mobility management techniques for mobile users to achieve seamless roam- ing. Mobility management includes handoff management and location management. The objective of this research is to design new handoff and location management techniques for Internet-based infrastructure WMNs. Handoff management enables a wireless network to maintain active connections as mobile users move into new service areas. Previous solutions on handoff manage- ment in infrastructure WMNs mainly focus on intra-gateway mobility. New handoff issues involved in inter-gateway mobility in WMNs have not been properly addressed. Hence, a new architectural design is proposed to facilitate inter-gateway handoff man- agement in infrastructure WMNs. The proposed architecture is designed to specifi- cally address the special handoff design challenges in Internet-based WMNs. It can facilitate parallel executions of handoffs from multiple layers, in conjunction with a data caching mechanism which guarantees minimum packet loss during handoffs. Based on the proposed architecture, a Quality of Service (QoS) handoff mechanism is also proposed to achieve QoS requirements for both handoff and existing traffic before and after handoffs in the inter-gateway WMN environment. Location management in wireless networks serves the purpose of tracking mobile users and locating them prior to establishing new communications. Existing location management solutions proposed for single-hop wireless networks cannot be directly applied to Internet-based WMNs. Hence, a dynamic location management framework in Internet-based WMNs is proposed that can guarantee the location management performance and also minimize the protocol overhead. In addition, a novel resilient location area design in Internet-based WMNs is also proposed. The formation of the location areas can adapt to the changes of both paging load and service load so that the tradeoff between paging overhead and mobile device power consumption can be balanced, and at the same time, the required QoS performance of existing traffic is maintained. Therefore, together with the proposed handoff management design, efficient mobility management can be realized in Internet-based infrastructure WMNs

    User-centric power-friendly quality-based network selection strategy for heterogeneous wireless environments

    Get PDF
    The ‘Always Best Connected’ vision is built around the scenario of a mobile user seamlessly roaming within a multi-operator multi-technology multi-terminal multi-application multi-user environment supported by the next generation of wireless networks. In this heterogeneous environment, users equipped with multi-mode wireless mobile devices will access rich media services via one or more access networks. All these access networks may differ in terms of technology, coverage range, available bandwidth, operator, monetary cost, energy usage etc. In this context, there is a need for a smart network selection decision to be made, to choose the best available network option to cater for the user’s current application and requirements. The decision is a difficult one, especially given the number and dynamics of the possible input parameters. What parameters are used and how those parameters model the application requirements and user needs is important. Also, game theory approaches can be used to model and analyze the cooperative or competitive interaction between the rational decision makers involved, which are users, seeking to get good service quality at good value prices, and/or the network operators, trying to increase their revenue. This thesis presents the roadmap towards an ‘Always Best Connected’ environment. The proposed solution includes an Adapt-or-Handover solution which makes use of a Signal Strength-based Adaptive Multimedia Delivery mechanism (SAMMy) and a Power-Friendly Access Network Selection Strategy (PoFANS) in order to help the user in taking decisions, and to improve the energy efficiency at the end-user mobile device. A Reputation-based System is proposed, which models the user-network interaction as a repeated cooperative game following the repeated Prisoner’s Dilemma game from Game Theory. It combines reputation-based systems, game theory and a network selection mechanism in order to create a reputation-based heterogeneous environment. In this environment, the users keep track of their individual history with the visited networks. Every time, a user connects to a network the user-network interaction game is played. The outcome of the game is a network reputation factor which reflects the network’s previous behavior in assuring service guarantees to the user. The network reputation factor will impact the decision taken by the user next time, when he/she will have to decide whether to connect or not to that specific network. The performance of the proposed solutions was evaluated through in-depth analysis and both simulation-based and experimental-oriented testing. The results clearly show improved performance of the proposed solutions in comparison with other similar state-of-the-art solutions. An energy consumption study for a Google Nexus One streaming adaptive multimedia was performed, and a comprehensive survey on related Game Theory research are provided as part of the work

    Routing for Flying Networks using Software-Defined Networking

    Get PDF
    Nos últimos anos, os Veículos Aéreos Não Tripulados (UAVs) estão a ser usados de forma crescente em inúmeras aplicações, tanto militares como civis. A sua miniaturização e o preço reduzido abriram o caminho para o uso de enxames de UAVs, que permitem melhores resultados na realização de tarefas em relação a UAVs independentes. Contudo, para permitir a cooperação entre UAVs, devem ser asseguradas comunicações contínuas e fiáveis.Além disso, os enxames de UAVs foram identificados pela comunidade científica como meio para permitir o acesso à Internet a utilizadores terrestres em cenários como prestação de socorros e Eventos Temporários Lotados (TCEs), tirando partido da sua capacidade para transportar Pontos de Acesso (APs) Wi-Fi e células Long-Term Evolution (LTE). Soluções que dependem de uma Estação de Controlo (CS) capaz de posicionar os UAVs de acordo com as necessidades de tráfego dos utilizadores demonstraram aumentar a Qualidade de Serviço (QoS) oferecida pela rede. No entanto, estas soluções introduzem desafios importantes no que diz respeito ao encaminhamento do tráfego.Recentemente, foi proposta uma solução que tira partido do conhecimento da CS sobre o estado futuro da rede para atualizar dinamicamente as tabelas de encaminhamento de modo a que as ligações na rede voadora não sejam interrompidas, em vez de se recuperar da sua interrupção, como é o caso na maioria dos protocolos de encaminhamento existentes. Apesar de não considerar o impacto das reconfigurações na rede de acesso, como consequência da mobilidade dos APs, ou o balanceamento da carga na rede, esta abordagem é promissora e merece ser desenvolvida e implementada num sistema real.Esta dissertação tem como foco a implementação de um protocolo de encaminhamento para redes voadoras baseado em Software-Defined Networking (SDN). Especificamente, aborda os problemas de mobilidade e de balanceamento da carga na rede de uma perspetiva centralizada, garantindo simultaneamente comunicações ininterruptas e de banda-larga entre utilizadores terrestres e a Internet, permitindo assim que os UAVs se possam reposicionar e reconfigurar sem interferir com as ligações dos terminais à rede.In recent years, Unmanned Aerial Vehicles (UAVs) are being increasingly used in various applications, both military and civilian. Their miniaturisation and low cost paved the way to the usage of swarms of UAVs, which provide better results when performing tasks compared to single UAVs. However, to enable cooperation between the UAVs, always-on and reliable communications must be ensured.Moreover, swarms of UAVs are being targeted by the scientific community as a way to provide Internet access to ground users in scenarios such as disaster reliefs and Temporary Crowded Events (TCEs), taking advantage of the capability of UAVs to carry Wi-Fi Access Points (APs) or Long-Term Evolution (LTE) cells. Solutions relying on a Control Station (CS) capable of positioning the UAVs according to the users' traffic demands have been shown to improve the Quality of Service (QoS) provided by the network. However, they introduce important challenges regarding network routing.Recently, a solution was proposed to take advantage of the knowledge provided by a CS regarding how the network will change, by dynamically updating the forwarding tables before links in the flying network are disrupted, rather than recovering from link failure, as is the case in most of the existing routing protocols. Although it does not consider the impact of reconfigurations on the access network due to the mobility of the APs, it is a promising approach worthy of being improved and implemented in a real system.This dissertation focuses on implementing a routing solution for flying networks based on Software-Defined Networking (SDN). Specifically, it addresses the mobility management and network load balancing issues from a centralised perspective, while simultaneously enabling uninterruptible and broadband communications between ground users and the Internet, thus allowing UAVs to reposition and reconfigure themselves without interfering with the terminals' connections to the network

    Multimedia

    Get PDF
    The nowadays ubiquitous and effortless digital data capture and processing capabilities offered by the majority of devices, lead to an unprecedented penetration of multimedia content in our everyday life. To make the most of this phenomenon, the rapidly increasing volume and usage of digitised content requires constant re-evaluation and adaptation of multimedia methodologies, in order to meet the relentless change of requirements from both the user and system perspectives. Advances in Multimedia provides readers with an overview of the ever-growing field of multimedia by bringing together various research studies and surveys from different subfields that point out such important aspects. Some of the main topics that this book deals with include: multimedia management in peer-to-peer structures & wireless networks, security characteristics in multimedia, semantic gap bridging for multimedia content and novel multimedia applications

    Distributed Cooperative Framework and Algorithms for wireless Network Performance Optimization

    Get PDF
    In Wireless Local Access Networks (WLANs), the Medium Access Control (MAC) protocol is the primary element that determines the efficiency of sharing the limited communication bandwidth of the wireless channel. IEEE 802.11 MAC uses the contention-based Distributed Coordination Function (DCF) as a fundamental medium access mechanism. However, the dynamic nature of the wireless environment creates mobility challenges of maintaining maximum channel capacity, of obtaining optimal throughput and latency, and of retaining good security in a distributed wireless network. This dissertation first introduces a set of parameters to characterize the medium status and radio environment, and a mechanism for mobile devices to exchange measurements in order to obtain broad and comprehensive knowledge of the wireless environment. Then the dissertation proposes a distributed cooperative wireless architecture and framework, and three cooperative algorithms to optimize wireless network performance. The cooperative algorithms allow wireless devices to cooperatively adjust configurations and optimize operations based on the characteristics of the environment. The first algorithm adaptively adjusts the contention window size to reduce the number of collisions as the number of mobile devices increases, in order to reach maximum channel utilization. However, if a channel reaches the saturated state, the throughput per user decreases significantly. Therefore, the second algorithm discussed in this dissertation is to select the best Access Point (AP) in overlapped AP coverage areas to balance network loads and maximally utilize the network capacity. When the mobile device transitions from one AP to another AP, it may take milliseconds to seconds due to required re-association and re-authentication with the new AP. Thus, the third cooperative algorithm optimizes the device transition to provide an acceptable balance of latency and security. The corresponding simulation or experiment results that demonstrate a significant improvement of wireless network performance are explained for each algorithm. Forgery and confidentiality are major concerns for distributed radio resource measurement and cooperation. Thus, this dissertation concludes with an analysis of security threats to radio resource measurement and cooperation, and proposes an action frame protection scheme to ensure secure distributed cooperative wireless networks
    corecore