1,145 research outputs found

    A Multirate MAC Protocol for Reliable Multicast in Multihop Wireless Networks

    Get PDF
    Many multicast applications, such as audio/video streaming, file sharing or emergency reporting, are becoming quite common in wireless mobile environment, through the widespread deployment of 802.11-based wirelessnetworks. However, despite the growing interest in the above applications, the current IEEE 802.11 standard does not offer any medium access control (MAC) layer support to the efficient and reliable provision of multicast services. It does not provide any MAC-layer recovery mechanism for unsuccessful multicast transmissions. Consequently, lost frames cannot be detected, hence retransmitted, causing a significant quality of service degradation. In addition, 802.11 multicast traffic is sent at the basic data rate, often resulting in severe throughput reduction. In this work, we address these issues by presenting areliablemulticastMACprotocol for wirelessmultihopnetworks, which is coupled with a lightweight rate adaptation scheme. Simulation results show that our schemes provide high packet delivery ratio and when compared with other state-of-the-art solutions, they also provide reduced control overhead and data delivery dela

    A Cooperative Framework for Reliable Multicast Forwarding in Mobile Ad Hoc NETworks

    Full text link

    An Adaptive Strategy for Maximizing Throughput in MAC layer Wireless Multicast

    Get PDF
    Bandwidth efficiency of wireless multicast can be improved substantially by exploiting the fact that several receivers can be reached at the MAC layer by a single transmission. The multicast nature of the transmissions, however, introduces several design challenges, and systematic design approaches that have been used effectively in unicast and wireline multicast do not apply in wireless multicast. For example, a transmission policy that maximizes the stability region of the network need not maximize the network throughput. Therefore, the objective is to design a policy that decides when a sender should transmit in order to maximize the system throughput subject to maintaining the system stability. We present a sufficient condition that can be used to establish the throughput optimality of a stable transmission policy. We subsequently design an adaptive stable policy that allows a sender to decide when to transmit using simple computations based only on limited information about current transmissions in its neighborhood, and without using any information about the network statistics. The proposed policy attains the same throughput as the optimal offline stable policy that uses in its decision process past, present, and even future network states. We prove the throughput optimality of this policy using the suffi- cient condition and the large deviation results. We present a MAC protocol for acquiring the local information necessary for executing this policy, and implement it in ns-2. The performance evaluations demonstrate that the optimal strategy significantly outperforms the existing approaches in adhoc networks consisting of several multicast and unicast sessions

    Bounds for Blind Rate Adaptation

    Get PDF
    A core challenge in wireless communication is choosing appropriate transmission rates for packets. This rate selection problem is well understood in the context of unicast communication from a sender to a known receiver that can reply with acknowledgments. The problem is more difficult, however, in the multicast scenario where a sender must communicate with a potentially large and changing group of receivers with varied link qualities. In such settings, it is inefficient to gather feedback, and achieving good performance for every receiver is complicated by the potential diversity of their link conditions. This paper tackles this problem from an algorithmic perspective: identifying near optimal strategies for selecting rates that guarantee every receiver achieves throughput within reasonable factors of the optimal capacity of its link to the sender. Our algorithms have the added benefit that they are blind: they assume the sender has no information about the network and receives no feedback on its transmissions. We then prove new lower bounds on the fundamental difficulty of achieving good performance in the presence of fast fading (rapid and frequent changes to link quality), and conclude by studying strategies for achieving good throughput over multiple hops. We argue that the implementation of our algorithms should be easy because of the feature of being blind (it is independent to the network structure and the quality of links, so it\u27s robust to changes). Our theoretical framework yields many new open problems within this important general topic of distributed transmission rate selection

    Mobile Ad hoc Networking: Imperatives and Challenges

    Get PDF
    Mobile ad hoc networks (MANETs) represent complex distributed systems that comprise wireless mobile nodes that can freely and dynamically self-organize into arbitrary and temporary, "ad-hoc" network topologies, allowing people and devices to seamlessly internetwork in areas with no pre-existing communication infrastructure, e.g., disaster recovery environments. Ad hoc networking concept is not a new one, having been around in various forms for over 20 years. Traditionally, tactical networks have been the only communication networking application that followed the ad hoc paradigm. Recently, the introduction of new technologies such as the Bluetooth, IEEE 802.11 and Hyperlan are helping enable eventual commercial MANET deployments outside the military domain. These recent evolutions have been generating a renewed and growing interest in the research and development of MANET. This paper attempts to provide a comprehensive overview of this dynamic field. It first explains the important role that mobile ad hoc networks play in the evolution of future wireless technologies. Then, it reviews the latest research activities in these areas, including a summary of MANET\u27s characteristics, capabilities, applications, and design constraints. The paper concludes by presenting a set of challenges and problems requiring further research in the future

    Wireless Multicast: Theory and Approaches

    Get PDF
    We design transmission strategies for medium access control (MAC) layer multicast that maximize the utilization of available bandwidth. Bandwidth efficiency of wireless multicast can be improved substantially by exploiting the feature that a single transmission can be intercepted by several receivers at the MAC layer. The multicast nature of transmissions, however, changes the fundamental relations between the quality of service (QoS) parameters, throughput, stability, and loss, e.g., a strategy that maximizes the throughput does not necessarily maximize the stability region or minimize the packet loss. We explore the tradeoffs among the QoS parameters, and provide optimal transmission strategies that maximize the throughput subject to stability and loss constraints. The numerical performance evaluations demonstrate that the optimal strategies significantly outperform the existing approaches

    Mobile Ad-Hoc Networks

    Get PDF
    Ad-hoc networks are a key in the evolution of wireless networks. Ad-hoc networks are typically composed of equal nodes, which communicate over wireless links without any central control. Ad-hoc wireless networks inherit the traditional problems of wireless and mobile communications, such as bandwidth optimisation, power control and transmission quality enhancement. In addition, the multi-hop nature and the lack of fixed infrastructure brings new research problems such as configuration advertising, discovery and maintenance, as well as ad-hoc addressing and self-routing. Many different approaches and protocols have been proposed and there are even multiple standardization efforts within the Internet Engineering Task Force, as well as academic and industrial projects. This chapter focuses on the state of the art in mobile ad-hoc networks. It highlights some of the emerging technologies, protocols, and approaches (at different layers) for realizing network services for users on the move in areas with possibly no pre-existing communications infrastructure
    • …
    corecore