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Abstract
A core challenge in wireless communication is choosing appropriate transmission rates for packets.
This rate selection problem is well understood in the context of unicast communication from a
sender to a known receiver that can reply with acknowledgments. The problem is more difficult,
however, in the multicast scenario where a sender must communicate with a potentially large
and changing group of receivers with varied link qualities. In such settings, it is inefficient
to gather feedback, and achieving good performance for every receiver is complicated by the
potential diversity of their link conditions. This paper tackles this problem from an algorithmic
perspective: identifying near optimal strategies for selecting rates that guarantee every receiver
achieves throughput within reasonable factors of the optimal capacity of its link to the sender.
Our algorithms have the added benefit that they are blind: they assume the sender has no
information about the network and receives no feedback on its transmissions. We then prove
new lower bounds on the fundamental difficulty of achieving good performance in the presence
of fast fading (rapid and frequent changes to link quality), and conclude by studying strategies
for achieving good throughput over multiple hops. We argue that the implementation of our
algorithms should be easy because of the feature of being blind (it is independent to the network
structure and the quality of links, so it’s robust to changes). Our theoretical framework yields
many new open problems within this important general topic of distributed transmission rate
selection.
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1 Introduction

Consider the following scenario: a base station must wirelessly deliver a large file or stream
a video to an unknown group of receivers in a conference center. It could send the data
individually to each receiver using unicast communication, but this approach does not scale
and requires knowledge of the group members. The standard alternative is for the sender
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8:2 Bounds for Blind Rate Adaptation

to multicast messages to receivers, i.e., use one-to-many communication where the sender
transmits packets addressed to the whole group.

A challenge faced by wireless multicast is that different receivers might have different
quality links with the sender. Some receivers, for example, might have high quality links with
the sender that can support high transmission rates, while others might have low quality links
that can support only slow rates. What rate(s) should the sender use? The current answer –
i.e., the solution implemented into 802.11 multicast [17] – is to transmit the multicast packets
at the slowest rate. This solution is simple and reliable, but from a performance perspective
it might be unacceptable for receivers capable of supporting much faster communication.
Not surprisingly, practitioners consider the identification of better multicast rate selection
strategies as an important open problem [10, 4, 16, 23, 3, 19, 6, 5, 22, 24].

In this paper, we tackle this open problem from an algorithmic perspective. We first
formalize this rate selection problem in an abstract model of multi-rate wireless transmission.
We then describe and analyze new rate selection strategies that guarantee every receiver in
our above scenario achieves throughput within a reasonable factor of the optimal capacity of
its sender link. We establish lower bounds indicating that these algorithms are near optimal.
To the best of our knowledge, these are the first known rate selection strategies to offer
competitive performance for every receiver in a wireless multicast scenario (see the related
work below for more details). An added and perhaps surprising benefit of our algorithms is
that they are also blind: the sender requires no knowledge of the network and receives no
feedback on the fate of its transmission. This should make the implementation based on the
algorithms robust to change.

1.1 Results
To formalize this multicast problem, assume a sender s and multiple receivers. For each
packet to send, the sender must specify a transmission rate from a set of available rates.
We normalize the transmission times associated with these rates such that the fastest rate
delivers a packet in 1 time step, while the slowest delivers a packet in L time steps, for some
system parameter L > 1. Notice, the range of possible rates with which a packet can be sent
are fixed and provided by the radio hardware in most systems. Each receiver u is connected
to s by a link labeled with a fastest acceptable rate. The sender succeeds in delivering a
packet p to u iff it sends the packet at a rate no faster than the fastest acceptable rate for
this link. Because we model a wireless network, the sender’s packets are transmitted by
broadcast. Therefore, each packet p, sent with some rate r, is received by every receiver
with a link labeled by a fastest acceptable rate at least r. We measure the performance of
the sender’s rate selection strategy at receiver u by comparing the average latency between
packets successfully delivered to u to the latency achieved if the sender had deployed the
optimal strategy (for u) of transmitting every packet at the fastest acceptable rate for u’s
link. The sender’s task is complicated by the fact that it must remain competitive for every
receiver concurrently, even though their link qualities might vary widely and it receives no
information on these qualities.

We begin by describing and analyzing a pair of blind rate selection algorithms (one
randomized and one deterministic) that both guarantee that for each receiver v in the
network, the throughput at v is within a O(logL)-factor of optimal. Notice that the simple
strategy of transmitting at the slowest available rate can be exponentially worse (i.e., achieve
only an L factor of optimal). The core idea leveraged by both algorithms is to have the
sender copy each packet into multiple queues, each associated with a different representative
rate. The sender then dequeues and transmits messages from these queues at a frequency
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proportional to the corresponding rates (e.g., the fast rate queues are sampled more frequently
than the slow rate queues). This means that each packet might end up being sent multiple
times, but we show our proportional sampling prevents this from degrading throughput too
much over time. We then establish this O(logL) competitive ratio near optimal by proving
that no (randomized) blind rate selection algorithm can guarantee throughput better than a
Ω
( logL

log logL
)
-factor of optimal (with constant probability).

We next turn our attention to the setting where the fastest acceptable rates on the links
change rapidly and unpredictably, as might be described in a fast fading scenario. We prove
that for every deterministic blind rate selection algorithm there exists a sequence of fades
(i.e., link quality changes) that reduce its average latency guarantee to a trivial Ω(L)-factor
of optimal (which can always be matched within a constant factor by simply sending packets
at the slowest rate). We then describe a type of fade for which no randomized algorithm can
perform guarantee better than a Ω(

√
L)-factor of optimal (still exponentially worse than our

results for the static setting). Interestingly, this latter bound holds even for non-blind unicast
communication (i.e., where there is a single receiver and the sender learns the fate of each
transmission), proving the difficulties caused by fading are not unique to blind algorithms.

To conclude, we consider multihop networks. We describe and analyze a generalization
of the deterministic protocol that guarantees every receiver achieves throughput within a
O(logL)-factor of the optimal achievable through the best single multihop route (i.e., path)
from the source. Notice, however, in a multihop network, the optimal throughput possible
using multiple paths in the network might be better than the optimal throughput on a single
path (e.g., perhaps multiple packets are routed concurrently on disjoint routes). We prove
that no blind algorithm can guarantee a non-trivial approximation of this notion of optimal
while also maintaining a fixed bound on its packet ordering.

1.2 Related Work
The multicast problem is well-studied in the wired network setting; c.f., [10]. In the wireless
setting, the technology is still evolving. As mentioned, the default strategy implemented
in 802.11 is to simply broadcast multicast packets at a slow but reliable bitrate. The
research literature contains many proposals for adding more advanced functionality to
wireless multicast, with a focus on detecting multicast packet loss. These strategies, however,
depend on the sender interacting with at least some members of the multicast group (i.e.,
use feedback). Chandra et al. [4], for example, send the multicast data in unicast packets
to a single member of the multicast group (leveraging link layer acknowledgments to detect
packet loss), while the other members listen for these packets in promiscuous mode. Miroll
et al. [16] refine this approach to select the group member with the worst channel as the
unicast receiver to ensure more losses are detected. Sun et al. [23] organize nodes into clusters,
and has the sender poll the leaders of each cluster to determine the fate of packets. (These
are just a few examples among many: see [3] for a detailed survey.) The main goal of the
above examples is to detect packet loss so the sender can schedule retransmissions. Most of
these strategies, however, also implement some basic link adaptation. For example, when
transmitting unicast packets to a leader, some of these strategies allow the default unicast
rate adaptation strategy to adjust the rate used (e.g., [19, 6, 5, 22, 24]). Other wireless
multicast strategies propose measuring loss rates for all receivers and using this information
to choose the best single rate to use (as mentioned, a strategy that does not scale). This
paper, by contrast, focuses on the problem of transmitting packets at multiple rates so as
to ensure every receiver achieves a throughput close to its individual notion of optimal. It
achieves this goal without the overhead and scaling issues of requiring feedback from group
members.
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8:4 Bounds for Blind Rate Adaptation

It is also important to note that because we achieve competitive rates for every receiver,
loss detection is less important with our scheme. For example, if we define the fastest
acceptable bitrate for each receiver to be the fastest rate at which the forward error correcting
coding parameters used for the packets are effective, then our blind rate selection algorithms
will guarantee that every receiver has a sufficiently low loss rate to enable sufficient packet
recovery.

Finally, wireless rate adaptation is well-studied in the context of unicast communication
from a sender to a single known receiver capable of sending acknowledgments. Some strategies
adapt the rate using frame loss information [12, 14, 11, 21, 15] and others attempt to directly
measure the channel quality [18, 13, 25, 2]. Another approach is the use of rateless modulation
schemes like Spinal codes [20] or Strider codes [9], in which the data transmitted in a fixed
manner but the receiver is able to decode it at a rate close to the Shannon capacity for its
channel. All these unicast adaptation strategies, however, depend on feedback from the single
receiver to the sender. They cannot therefore be directly applied to the multicast scenario
where such feedback is no longer efficient. Our blind protocols, by contrast, can be deployed
in the unicast scenario. This might be desirable in low power scenarios where their simplicity
provides an advantage, or scenarios such as satellite broadcast where feedback is prohibitively
expensive (i.e., due to the much higher cost of uplink versus downlink transmission).

2 Model

We model a collection of wireless devices broadcasting in a synchronous radio network with
variable link quality and transmission rates (typically called bitrates in the wireless literature
as well as in the remainder of this paper). The network topology is represented as a connected
directed graph D = (V,E), where the nodes in V correspond to wireless devices and the
edges in E represent links between nodes (e.g., an edge (x, y) ∈ E means that x has a link to
y with a quality above some minimum threshold). We use directed graphs for generality and
to capture the well-known observation that link quality is not necessarily symmetric. The
main topology we consider is a star with the node in the center playing the role of the sender
with directed edges pointing toward the receivers. We call this configuration a single hop
network. Later in the paper, we also examine the performance in general multihop networks
of varying topologies connected with respect to the source (i.e., there is a path from the
source to all nodes).

To capture link quality we assume that in each round, each link (i.e., edge in D) is
assigned a minimum latency (i.e., fastest acceptable bitrate), which is specified by the weight
function C(r, e) (which we sometimes call a channel) for round r and edge e. We say that
links are static if the weight of links does not change (i.e., C(r, e) = C(r′, e), for all r, r′ and
e); otherwise, we say that the links are fading. These weights capture the fastest transmission
speed that can be supported by the current link quality. In this paper, we typically specify
these weights in terms of the latency (i.e., rounds per packet), rather than in terms of the
bitrate (which describes the inverse). Therefore, smaller weights represent higher quality
links. We assume that all latencies are integers in [L] (where we define [k] = {1, 2, ..., k}),
with 1 and L rounds being the fastest and slowest transmission latencies, respectively. We
also assume that L is a power of 2. To simplify our strategies, we will restrict the possible
latencies considered for packet transmission to the set L∗ = {2, 4, 8, . . . , L}. (Notice, there is
a latency in L∗ within a factor of 2 of each available latency.)

Nodes communicate with their neighbors in D using local broadcast. When a node s in
D decides to broadcast a message in round r, it selects a latency ` ∈ L∗ (this is equivalent to
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selecting bitrate `−1). This transmission requires ` rounds to complete, and the transmitter
must wait until the transmission completes before it can begin another transmission. Each
neighbor w of s receives the message if the attempted broadcast latency remains as least
as large as the minimal acceptable latency for the link throughout the full transmission.
Formally, the transmission succeeds at w if and only if: ∀i ∈ [0 . . . `−1] : C(r+ i, (s, w)) ≤ `.
If this condition does not hold, then node w does not receive the message. We assume no
feedback mechanism (e.g., link layer ACKs) for the sender to learn the fate of its transmission,
and assume nodes have no information about the network size or link weights.

A subtlety of our model motivation is that our abstract notion of “receiving” a message
does not correspond to the concrete notion of a packet being successfully delivered. For u
to “receive” a message from s in our model simply means that s sent this packet at a rate
that was acceptable for its current link to u. What it means for a rate to be acceptable are
details we abstract away: we aim only for every packet to be sent at acceptable rates for
each receiver, for whatever definition of acceptable is relevant to a given a scenario.1

3 Problem

In this paper, we study the problem of a single distinguished source node s attempting to
transmit an infinite stream of packets to the other nodes (called receivers) in the network.
We measure the performance of an algorithm in a given execution by comparing the average
packet receive latency at each receiver u with an offline optimal algorithm that services
only u. We consider a restricted type of solution called a blind rate selection algorithm.
An algorithm of this type running on the source node in the network is provided access
to a packet queue called the source queue. To simplify definitions we assume the queue is
infinite and the packets unique. The source node can only dequeue and transmit packets
from the source queue (i.e., it cannot send arbitrary packets). In the multihop setting, where
non-source nodes can forward packets, we assume each arriving packet is queued in a FIFO
queue (ignoring duplicates), and then restrict nodes to dequeueing and transmitting packets
from their local queue. In the single hop setting, receivers are passive (i.e., they cannot send
packets.)

Recall, as described in the previous section, to “receive” a message in our abstract model
simply means it was sent at an acceptable rate for the relevant link. How this translates to
low level packet loss behavior is abstracted away. In this paper, we study the performance
of correct blind rate selection algorithms defined with respect to the average time between
packet arrivals at a given destination. We call this metric average latency (which is a mild
abuse of terminology as “latency” often refers to end-to-end delivery, not inter-packet delay
at a receiver). More precisely: Fix an execution of a blind rate selection algorithm in a
network D = (V,E) with weight function C. Fix some receiver v ∈ V (i.e., non-source node)
and integer duration T ≥ 1. Let NT

v be the number of unique packets received by v in the
first T rounds of the execution. We define the average latency of v through the first T rounds
of this execution to be T/NT

v . By contrast, let OPTTv be the optimal average latency v
could have achieved in these T rounds given an offline optimal schedule for transmissions
and rate selections (when clear, we will use simply OPT ). We now pull together these pieces
to obtain the main performance definition:

1 For example, an acceptable rate for a link in a given scenario might be defined as a rate for which the
packet loss rate is sufficiently low. To send a packet at an acceptable rate in this example, therefore,
does not guarantee that it was delivered, but merely that it was given a reasonable chance of delivery.
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8:6 Bounds for Blind Rate Adaptation

I Definition 1. Fix some function f : N∗ → R. We say a deterministic (randomized) blind
rate selection algorithm A is f(L)-competitive with respect to a family D of networks and
static/fading channels, if the algorithm is correct and there exists some integer duration
T0 ≥ 1 such that for every D ∈ D and static/fading link weight function C, for every receiver
v in D, and for every duration T ≥ T0: the (expected) average latency of v through T rounds
in an execution of A in D with C, is no more than f(L) ·OPTTv .

4 Static Links

In this section, we study blind rate selection algorithms in the context of single hop networks
with static links (i.e., the link qualities do not change). We begin by describing a simple
randomized blind rate adaption algorithm that is O(logL)-competitive in single hop networks.
We then describe a more complex deterministic algorithm that matches this same O(logL)-
competitive ratio. There are two motivations for deterministic solutions. The first is that
rate selection algorithms are often implemented at low layers of the network stack where
efficient access to randomness is difficult. Second, the multihop algorithm studied later in
the paper uses the deterministic algorithm as a key building block (analyzing the randomize
strategy over multiple hops is difficult). We conclude this section by proving our algorithms
near optimal with an Ω (logL/log logL) lower bound on competitive ratio for blind rate
adaption algorithms.

4.1 The RandSelect Algorithm
We model the infinite packet queue at the source s with the notation Q0 = p1p2p3 . . .. Recall,
as defined in Section 2, L∗ = {2, 4, . . . , L}.

A simple random strategy for s would be to dequeue packets from Q0 one by one, sending
each at a latency chosen uniformly from L∗. An issue with this approach is reliability:
if s chooses some latency ` for a given packet pi, and there is some receiver u such that
C(s, u) > `, then u will fail to receive pi. Another issue with this strategy is that the slowest
latency, L, will be chosen approximately once every logL rounds – requiring L full rounds for
a single transmission every time it is chosen. This will yield non-competitive performance for
receivers connected to the source with low latency links. Our proposed algorithm improves
this simple scheme with two modifications to circumvent these two issues. First, the source
maintains logL copies of its source queue, associating one copy with each latency in L∗. We
logically organize these queue copies into a packet table with one row for each latency. In
more detail, each row j ∈ [logL] is associated with latency 2j , and contains its own copy
of the source queue, denoted Qj , as well as a nextpacketj field which indicates the packet
currently at the head Qj . The second modification is to replace the uniform distribution over
rates in L∗ with the following distribution π(x) over the latency indices {1, 2, ..., logL}2:

π(x) : Pr{j = x}
{

2−x x ∈ [1, logL− 1]
2/L x = logL .

Combining these modifications, our algorithm, which we call RandSelect, works as
follows: At the beginning of the execution, the sender initializes its packet table by setting
Qj to Q0 for each j ∈ [logL]. It then proceeds by repeating the following steps: draw a
latency index x from π, transmit nextpacketx at latency 2x, and then update nextpacketx

2 Notice, it is easy to show that distribution π is normalized, i.e.
∑log L

x=1 Pr{j = x} = 1.



S. Gilbert, C. Newport, and T. Wang 8:7

RandSelect (for sender s)
Initialization:

for j ← 1 to logL
Qj ← Q0

nextpacketj ← p1

Transmission:
do
Select j according to distribution π
Send nextpacketj with latency `← 2j

pop(Qj)
nextpacketj ← peek(Qj)

while TRUE

Figure 1 The RandSelect Algorithm.

by dequeueing the packet at the head of Qx. (See Figure 1 for the algorithm pseudocode.)
Notice that this strategy overcomes both the issues described above for the simple random
strategy: no packet is ever lost, as every packet is eventually sent at the slowest latency,
and the algorithm now samples the slow latencies less frequently than the fast latencies,
preventing them from dominating the link bandwidths.

The following theorem establishes that the actual competitive ratio guaranteed by this
strategy is bounded by O(logL). We defer the proof of this theorem to the full version [8].

I Theorem 2. The RandSelect blind rate selection algorithm is O(logL)-competitive with
respect to single hop networks and static links.

A straightforward practical optimization would be to remove a packet from fast latency
queues in the case that it is sent first by a slower latency. This optimization does not effect
the asymptotic analysis.

4.2 The BCSSelect Algorithm
We now describe a deterministic blind rate selection algorithm we call BCSSelect (see
Figure 2), which we will prove to have the same competitive ratio as RandSelect in single
hop networks. The only difference between these two algorithm is how indices are selected.
Our main strategy for derandomizing RandSelect is to leverage a useful object from
number theory called the binary carry seqeuence (BCS) [1]. This BCS is defined such that
its kth term is the lowest position of a 1 bit in the binary representation of k. To use this
sequence for our algorithms, we use the deterministic schedule function defined as follows: for
k ∈ N∗ : schedule(k) = max{α ∈ N : 2α−1|k}. The output of schedule, for example, produces
the sequence: 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1. . . Before proceeding to
our algorithm description (which uses the schedule output to sample queues), we first state
some useful facts about schedule (first identified in [7] and reworded here):

I Lemma 3. Each value j ∈ N is selected every 2j iterations.

I Lemma 4. If s = schedule(k), then:
(i) ∀t < s, ∃r ∈ [k − 2s−2, k) such that t = schedule(r);
(ii) ∀t < s, ∃r ∈ (k, k + 2s−2] such that t = schedule(r).

OPODIS 2015



8:8 Bounds for Blind Rate Adaptation

BCSSelect (for source s)
Initialization:
k ← 1
for j ← 1 to logL
Qj ← Q0

nextpacketj ← p1

Transmission:
do
j ← schedule(k)
Send (nextpacketj , k) with latency ` = 2j

pop(Qj)
nextpacketj ← peek(Qj)
k ← Update(k)

while TRUE

Update(k)
if k = L/2 then

return 1
else

return k + 1

Figure 2 The BCSSelect Algorithm.

The BCSSelect algorithm (described in Figure 2), applies the schedule function as a
subroutine to sample latencies from a (bounded) binary carry sequence – which ensures, as
with the random distribution from before, that all latencies are sampled, but small latencies
are sampled more often than their slower counterparts. In more detail, the algorithm uses
schedule to sample the BCS until the first time latency L is sampled, at which point it
restarts the sequence. As a result, the sequence of latencies sampled by schedule can be seen
as repeating the same bounded BCS block with L/2 terms.3 Here the source sends current
BCS index k along with the packet, as this will prove useful in the later multihop version of
the algorithm we study later.

We now argue that BCSSelect is O(logL)-competitive, the same competitive ratio as
RandSelect.

I Theorem 5. The BCSSelect blind rate selection algorithm is O(logL)-competitive with
respect to single hop networks and static links.

Proof. Fix receiver v with C(s, v) = c, where log c ∈ J = [1, logL]. Fix T0 = L logL as
well and suppose all the execution runs for T ≥ T0 rounds. By the same token, we have
OPT = c because the optimal solution runs with the sender v knowing C(s, v) = c a priori
and applying latency c throughout the execution.

Now the task is to find the average latency of BCSSelect. Consider the number of
rounds required by the update of nextpacketlog c, upper bounding the average latency we
are looking for. One BCS block has L/2 terms because the greatest BCS index j = logL is

3 Notice that the probability of selecting latency ` given by distribution π from RandSelect is equal to
the proportion of latency ` in one such bounded BCS block.
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selected for the first time when k = L/2. According to Lemma 3 and 4, the total time cost
to generate one block is exactly the time needed to get another j = logL after the previous
j = logL, given by:

∑logL−1
j=1 (L/2) · (1/2j) · 2j + 2logL = L(logL+ 1)/2. Lemma 3 tells us

that latency c (BCS index log c) appears every 2log c = c iterations of schedule. So log c
appears L/2c times in one block, and the average time needed for nextpacketlog c to update
will be O

(
L(logL+1)/2

L/2c

)
= O(c logL).

In conclusion, the competitive ratio of BCSSelect during one block is O(logL). Because
of the fact that the infinite latency sequence is actually the repeating of the same block, the
competitive ratio during the whole execution process is still O(logL). J

4.3 Lower Bound
We now prove our algorithms near optimal by showing that every blind rate selection
algorithm is at best Ω (logL/log logL)-competitive. Our argument is combinatorial in nature
– it demonstrates that no sequence of rate selections can be sufficiently competitive for every
receiver in a particular lower bound network – and therefore it applies to randomized solutions
as well as deterministic.

I Theorem 6. For a randomized blind rate selection algorithm A, if A is f(L)-competitive
with respect to any single hop network and static links, then f(L) ∈ Ω (logL/log logL).

Assume for contradiction that we have some algorithm A that is o (logL/log logL)-
competitive for all networks and weight functions. For our lower bound, we define the
following single hop lower bound network: let D be a directed graph that consists of
n = logL/ log logL receivers4 denoted r1, r2, ..., rn. Next, we define the weight function
C such that for each i ∈ [n], C(s, ri) = logi L. That is, the weights in this network are:
W = {logL, log2 L, log3 L, ..., loglogL/log logL L = L}. We proceed with a series of proof step
that build toward the conclusion that executing A in the lower bound network cannot yield
the assumed small latency at every receiver. Our first step is to transform the algorithm
A into an algorithm B that uses only the latencies in W . The following lemma states that
there exists transformation of this type that do not affect performance. The proof is deferred
to the full version of this paper [8].

I Lemma 7. Let A be a rate adaptation algorithm that is f(L)-competitive in the lower
bound network. There exists an algorithm B that only selects latency in W but is still
f(L)-competitive in the lower bound network D.

Fix some blind rate selection algorithm B that only uses latencies in W . We now prove
that a constant fraction of the packets received by a given receiver must be at a “good” rate
(i.e., the link weight) for that receiver.

I Lemma 8. Let B be a rate adaptation algorithm that only selects latencies in W and is
f(L)-competitive in the lower bound network D. Fix some duration T0 = L. Let ki be the
number of messages received by receiver ri in a T round execution of B, where T ≥ T0. It
follows that at least dki/2e of these messages are sent at latency `i = logi L.

Proof. Assume for contradiction that half or more of these ki message were sent at a latency
greater than `i. The minimum latency for a packet sent to receiver ri is `i. Therefore, if we

4 For notational simplicity we assume logL and logL/ log logL are positive, integral values.
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8:10 Bounds for Blind Rate Adaptation

assume that at least half the messages arriving at ri are sent at a latency longer than `i, the
next best case average latency for ri would be at least: ((k/2)`i+1 + (k/2)`i)/k.

In the above, we assume the minimum number of packets (in this case, k/2) were sent at
a slower latency, and we made this the next slowest latency after `i (i.e., `i+1 = logi+1 L).
The rate above also assumes the source was only servicing ri and sent packets continuously
with no gaps throughout the T rounds. It is, in other words, a quite optimistic bound. We
now simplify:

(k/2)`i+1 + (k/2)`i
k

= (k/2)`i logL+ (k/2)`i
k

= (1/2) · k · `i(logL+ 1)
k

>
1
2 · `i · logL .

The optimal average latency for ri is clearly `i. Therefore, B is at best (logL/2)-competitive.
We assumed earlier, however, that B is f(L)-competitive for a function that is no larger
than c · logL/ log logL < logL/2 (for sufficiently small constant c > 0). This contradicts our
assumption that at least half of ri’s packets were sent slowly. J

We have just established that to achieve a reasonable competitive ratio for a given receiver
in our network, at least half of the packets sent to the the receiver must use a rate well-suited
to the receiver’s link. We next establish formally another important observation for our
overall lower bound: to achieve a good rate in an execution of length T , the source must
successfully deliver many packets.

I Lemma 9. Let B be an algorithm that is f(L)-competitive in the lower bound network D.
Fix some receiver ri and duration T ≥ T0 = L. It follows that ri receives at least T/(`i · f(L))
packets during these T slots, where `i = logi L.

Proof. Fix some f(L)-competitive algorithm B, as well as some ri and T ≥ T0 = L. Consider
a T -round execution of B in the lower bound network. Let `∗1, `∗2, ..., `∗j be the latency for
each receive event at ri in our T -round interval. Let α be the average latency at ri in this
interval. Notice, by definition: α = (1/j) ·

∑j
h=1 `

∗
h. Also note, however, that by definition:∑j

h=1 `
∗
h = T . It follows that α = T/j, and therefore j = T/α. By assumption, B is

f(L)-competitive. This means that when considering ri in particular, its average latency is
no greater than `i · f(L) and j ≥ T/(`i · f(L)), as required. J

Proof (of Theorem 6). Let A be the rate adaptation algorithm that we assumed to be f(L)-
competitive for some f(L) < c · logL/log logL. Let B be the constrained rate adaptation
algorithm provided by Lemma 7. By the guarantees of this lemma, B is f(L)-competitive in
the lower bound network D. We will now show that this leads to a contradiction.

In particular, we will show that for any sufficiently large duration T ≥ T0 = L, B is
at best Ω(logL) competitive which is ω(f(L)) which contradicts our assumption that it is
f(L)-competitive.

To get this result, let ki be number of packets that the source sends at latency `i ∈W
in a T -round execution of B in the lower bound network D. By Lemma 9, we know that
receiver ri receives at least T/(`i · f(L)) packets. By Lemma 8, we know at least half these
packets are sent at latency `i. It follows that ki ≥ T/(2 · `i · f(L)). We can now evaluate
how many rounds are required for the source to send the needed number of packets at each
rate, and derive the following answer:

n∑
i=1

ki · `i =
logL/ log logL∑

i=1

T

2 · `if(L) · `i = logL
log logL ·

T

2f(L) .
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By assumption, however, f(L) < c · logL/log logL. If we set c to be sufficiently small (e.g.,
c < 1/2), it simplifies to something strictly larger than T . There are only T rounds available,
however, to complete all broadcasts. This yields a contradiction to our assumption about
the bound on f(L), and therefore f(L) is in Ω(logL/ log logL) J

5 Fast Fading Links

In this section, we consider the setting where link weights can change from round to round.
It is straightforward to identify a weight function C that causes our static BCSSelect
algorithm to perform poorly in the face of some dynamism (i.e., achieve only an O(L)
competitive ratio with respect to optimal).

Here we generalize this observation by proving this weakness is true of all deterministic
blind rate selection algorithms. We prove that there is a link weight definition for which
no randomized algorithm can guarantee better than a

√
L-competitive ratio (which is still

exponentially worse than the logL ratio we achieve for static links). Perhaps surprisingly,
this latter bound even holds for the powerful model of unicast communication with a single
receiver and packet feedback. These bounds indicate that it is quixotic to seek an algorithm
that can always adapt competitively to fast fades.

Lower Bound for Deterministic Algorithms. A deterministic blind rate selection algorithm
can be described as a fixed sequence of latency choices. Here we prove that for any such
sequence we can define a link weight function for a two-node network (the simplest possible
network for rate selection) that guarantees a poor competitive ratio.

I Theorem 10. For a deterministic blind rate selection algorithm A, if A is f(L)-competitive
with respect to two-node networks and fading links, then it follows that f(L) ∈ Ω(L).

The proof of this theorem is deferred to the full version [8]. At a high-level, this argument
defines a weight function that keeps the link weight large when the algorithm attempts fast
transmissions, and reduces the weight to something small when the algorithm attempts slow
transmissions.

A Lower Bound for Randomized Algorithms. Here we show that randomization cannot
guarantee much advantage over determinism given fading links. The following theorem holds
even for non-blind rate selection algorithms in which the sender learns the fate of each packet.

I Theorem 11. For a randomized blind rate selection algorithm A, if A is f(L)-competitive
with respect to two-node networks and fading links, then it follows that f(L) ∈ Ω(

√
L). This

bound holds even with packet delivery acknowledgements.

The proof of Theorem 11 depends on the following lemma.

I Lemma 12. For a blind rate selection algorithm A, if A is f(L)-competitive with respect to
two-node networks and fading links, then for every function g : N∗ → R such that g(L) < L/2,

f(L) ∈ Ω (min {(L/g(L)) , g(L)}) .

This bound holds even with packet delivery acknowledgements.

To come close to the optimal solution, a randomized algorithm must effectively guess
correctly the beginning of the fast interval in each block. Receiving feedback after the fact
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8:12 Bounds for Blind Rate Adaptation

regarding whether it guessed correctly does not help its future guesses. We formalize this
argument in the full version of this paper [8]. Armed with this lemma, we can prove our
theorem.

Proof (of Theorem 11). According to Lemma 12, for any appropriately chosen g(L), the
lower bound for any randomized blind rate adaption algorithm A is Ω (min {(L/g(L)) , g(L)}).
In particular, the strongest lower bound Ω(

√
L) is achieved when g(L) =

√
L, and the duration

T ≥ T0 = 2g(L) = 2
√
L. J

6 Multihop Networks

In this section, we turn our attention to routing information through multihop networks.
In particular, consider a multihop network in which the source s may not have a direct
link to some designated receiver t. In this setting, s will have to forward messages through
intermediate nodes to get to t, with each such node needing to make its own rate selection
decisions.

We consider two natural methods to measure optimality with respect to t. The first
method is to consider any single path from s to t in the network, and compare t’s throughput
when the algorithm is run on this path to the throughput obtained by the optimal algorithm
for the path. We call this single path optimality. We describe a deterministic algorithm
called MultiBCSSelect that generalizes the single-hop BCSSelect algorithm to obtain
throughput within a O(logL)-factor of the single path optimal solution. The second method
is to compare the throughput at t when the algorithm is executed in the entire network as
compared to the optimal algorithm executed in the entire network. Notice, once you make
use of the entire network, it might be possible to obtain more performance (e.g, by routing
multiple packets to the destination concurrently over disjoint paths). Our MultiBCSSelect
algorithm cannot guarantee this multiple path optimality. We prove, however, that in some
sense no blind algorithm can. In more detail, we prove that it is impossible for a blind rate
selection algorithm to guarantee a non-trivial approximation of the multiple path optimal
solution and to be δ-order preserving (i.e., sequence numbers of received packets do not
get more than δ values out of order), for any fixed δ. We note that this latter property is
necessary for many network applications, and our MultiBCSSelect algorithm is 0-order
preserving.

6.1 The MultiBCSSelect Algorithm
Here we describe a blind rate adaptation algorithm for multihop packet transmission based on
BCSSelect. In particular, we have the source node s run BCSSelect, as in the single hop
setting. The non-source nodes, by contrast, run the MultiBCSSelect algorithm described
in Figure 3. This algorithm initializes each Qj at an intermediate node as an empty queue.
As an intermediate node receives a packet for the first time, it pushes it onto the back of
each of its queues. This algorithm has nodes sample queues as in the single hop algorithm.
In the case that it samples an empty queue, the node will simply transmit an “empty packet”
(technically, we can interpret this as not sending any packet). We synchronize the indexes
nodes use to sample the BCS by propagating the current index in the transmitted packets.

It is straightforward to show that MultiBCSSelect is correct in a multihop setting.
More interesting is analyzing its performance. Because we consider single path optimality, we
restrict our attention to a subgraph P consisting of a path from s to some fixed destination t,
i.e., VP = {v0 = s, v1, v2, . . . , vn, vn+1 = t}, EP = {(vi, vi+1) : i = 0, 1, . . . , n}. We show that
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MultiBCSSelect(for intermediate nodes)
Initialization:

for j ← 1 to logL
Qj is initialized by an empty packet queue

On receiving (p0, k0):
k ← Update(k0)
for j ← 1 to logL
Qj ← push(Qj , p0)
nextpacketj ← peek(Qj)

Transmission:
do
j ← schedule(k)
Send (nextpacketj , k) with latency ` = 2j

pop(Qj)
nextpacketj ← peek(Qj)
k ← Update(k)

while TRUE

Figure 3 Algorithm of MultiBCSSelect.

the performance of MultiBCSSelect is competitive with that achieved by the best path
P , i.e., the best multihop route to t. (The best multihop route is the path which gives the
highest throughput.)

I Theorem 13. The MultiBCSSelect blind rate selection algorithm is O(logL)-competitive
with respect to the single path optimal solution.

Before completing the proof of Theorem 13, we will bound the performance of the optimal
algorithm on P (the proof of this lemma is in [8]):

I Lemma 14. Fix a multihop route consisting of the path P with n+ 2 nodes v0, . . . , vn+1,
where s = v0 and t = vn+1. Suppose c∗ = max0≤i≤n{C(vi, vi+1)}. For all multihop routes
with n intermediate nodes, if the links are static, the optimal average latency OPTt = Ω(c∗).

Proof (of Theorem 13). Now we need to capture the average latency of MultiBCSSelect.
Consider some link (vβ , vβ+1) with β being the greatest index such that C(vβ , vβ+1) =
max0≤α≤n{C(vα, vα+1)} = c∗. In other words, (vβ , vβ+1) is the last bottleneck, or the last
slowest link. Since MultiBCSSelect applies synchronous binary carry sequence, a packet
will be in transmission successfully before any packet arrives, indicating that vβ is the last
place where packets get queued.

When running algorithm MultiBCSSelect, according to the analysis from Theorem 5,
the link with weight c sends a new packet within c logL rounds during one block of binary
carry sequence. We will see that the worst case for transmission through path P derives
from the case where C(vi, vi+1) = c∗ for all i > β. Then the average time for vn to update
nextpacketlog c∗ is no more than O(c∗ logL), and the corresponding competitive ratio on this
path is therefore O(logL).

Since this is true for all paths P , including the best such path, we have proved our
claim. J
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6.2 Lower Bound for Multiple Path Optimality
Here we show it is impossible to be multiple path optimal and still maintain a natural packet
ordering property. This latter property is captured by the following two definitions.

I Definition 15. We define the sequence number of a packet p, denoted by seq(p), to be the
order of packet p in the source’s packet queue at the beginning of the execution (where the
packet at the head of the queue occupies position 1, and so on). Fix some non-source node t.
Similarly, we define the transmission number of p with respect to t, denoted by tn(t, p), to
be the order in which t first received p, ignoring duplicate receives of packets.

I Definition 16. Fix some integer δ ≥ 0. A rate adaptation algorithm is δ-order preserving
if for every packet p in the source queue, and every non-source node t, we have |seq(p) −
tn(t, p)| ≤ δ.

This notion of δ-order preserving is important for many applications in which received
packets need to be reordered for processing. If I need, for example, k out of an original group
of t packets to recover some coded information, and some of these packets can get arbitrarily
out of order, I might have to wait an arbitrarily long time to complete the decoding.

We continue by noting that our multihop algorithm is perfectly order preserving:

I Theorem 17. MultiBCSSelect is 0-order preserving.

Proof. The source node copies its source queue into logL transmission queues, each one
associated with a different latency. Packets are removed and transmitted from each queue in
FIFO order. A straightforward consequence is that for any two packets p and p′, such that
seq(p) < seq(p′), the source cannot send p′ for the first time before it sends p (consider the
queue from which the source samples p′ for the first time: in order to reach p′ in that queue,
the source must have previously sampled and transmitted p).

It then follows that all neighbors of the source will receive messages for the first time
in the same order as they appear in the source queue. They will subsequently add them to
their transmission queues the same way. We can, therefore, apply the same argument as
before to show this order is preserved to their neighbors, and so on, until we have considered
every node in the network. It follows that for any non-source node t and any two packets p
and p, if seq(p) < seq(p′), then tn(t, p) < tn(t, p′). J

With these definitions established, we can now state our main theorem, which claims
that a blind algorithm cannot be both non-trivially competitive with respect to the multiple
path optimal results, and be order preserving for some fixed δ.

I Theorem 18. There exists a constant c′ > 1, such that for every integer δ ≥ 0 and
competitive factor c < L/c′, there does not exist a blind rate adaptation algorithm that is
c-competitive with respect to the multiple path optimal path solution and δ-order preserving.

To prove this lower bound, we will make use of a graph Dr = (V,E), where V consists
of a source, s, a destination, t, and L relay nodes, r1, r2, . . . , rL. Let E = {(s, ri) : 1 ≤ i ≤
L} ∪ {(ri, t) : 1 ≤ i ≤ L}. Fix C(s, ri) = 1 and C(ri, t) = L for all i = 1, 2, . . . , L.

Fix some rate adaptation algorithm A that is c-competitive for some constant c > 0. To
prove Theorem 18, we will show that there exists a network such that for all x ≥ 1, there
exists a packet p such that |seq(p)− tn(t, p)| = Ω(x · L). For any fixed δ, therefore, we can
find a sufficiently large x for which the algorithm is not δ-order preserving.

Let us study the constant competitive algorithm A. Since all links coming out of the source
have the same capacity, relay nodes will receive the same packet in the same transmission
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round. In order to achieve good competitiveness, relay node may not send packets in FIFO
order. Otherwise, there will be a great amount of repetition of packets at the destination t,
since relay nodes receives the same packet in each round. Actually we can claim without
proof that the constant competitive solution for one single transmission round is to have L
different relay nodes send Θ(L) different packets in the queue.

We will prove that after x transmission rounds (xL communication rounds), the maximum
sequence number of the packets that have already been sent will be Ω(x) ·Θ(L) = Ω(xL) for
all x ≥ 1. We will forget about the first L+ 1 communication rounds and regard the start of
the (L+ 2)th rounds as the start of x = 1.

I Lemma 19. When executing A on graph Dr, there exists some relay node r, such that for
every integer x ≥ 1, there exists an integer x′ ≥ x, such that seq(p(r)

x′ ) ≥ (1/c)x′L, where p(r)
x′

is the x′th unique packet that r sends.

We will put the proof of this lemma in the full version [8]. A simple counting argument yields
the next lemma:

I Lemma 20. When executing A in any network, for every node u, after u transmits x
unique packets, the smallest sequence number among packets u has not yet sent is no more
than x+ 1.

We can now pull together the pieces to prove our main theorem.

Proof (of Theorem 18). The key observation used by this proof is that a relay node ri
cannot distinguish an execution in Dr from an execution in the graph D(i)

r which consists
only of: the source s, with a directed edge to ri, with a directed edge to t. Now consider an
execution of A in L copies of D(i)

r , one for each ri. At the same time, run this algorithm
with the same random bits in Dr. We will look at the behavior of A in Dr to point to an i
for which D(i)

r behaves poorly.
In more detail, we apply Lemma 19, which identifies some ri in Dr for which the

lemma statement holds. Let x be the value identified by the statement for ri. Let x′ =
max{x, (δ + 1)/(Lc − 1)}, where δ is the order-preserving bound from the theorem statement.
Consider p(i)

x′ , the x′th packet sent by ri. By the statement, seq(p) ≥ (1/c)x′L. By Lemma 20,
however, there is some sequence number q ≤ x′ + 1, such that ri has not yet sent the packet
with that number.

Now consider ri in D(i)
r . It too will send a packet with sequence number at least (1/c)x′L

before it sends a packet with number x′ + 1. Because ri must eventually send every packet
in this graph (as it is the only relay node), when it does eventually get to the packet with
sequence number x′ + 1, it will be out of order. In particular, the gap between this packet’s
number and the x′th packet’s number is at least: x′(L/c)−q ≥ x′(L/c)−(x′+1) > δ. (Notice,
it is here that we require that c is sufficiently small compared to L.) We have just identified,
however, an execution of A in a graph that is non-order preserving. A contradiction. J

7 Conclusion

In this paper, we study blind multicast rate selection algorithms which do not require feedback
from receivers, and yet allows each receiver to achieve throughput within a reasonable constant
factor of its link’s optimal capacity. We prove these algorithms near optimal and then explore
the fundamental impossibilities of coping with fast fading, even for non-blind algorithms. We
conclude by showing how our deterministic strategy can be effectively adapted to multihop
scenarios.
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We argue that our algorithms are easy to implement in practice, because they are blind,
or they does not require any information on the network structure or the quality of links.
Our formal model of multi-rate transmission, however, is a standalone contribution as it
helps bring together the practical concerns of rate selection with the theoretical toolkit of
algorithmic analysis. This framework yields many interesting open questions. For example,
this paper only scratches the surface of understanding optimal rate selection in general
network topologies. Even identifying an efficient centralized solution for approximating
an optimal selection sequence is an open problem. Another natural approach would be
to consider unicast rate selection where the sender receives feedback on each transmitted
packet’s fate. The existing solutions for this problem rely on heuristics. It would be useful to
study this problem from an algorithmic perspective, seeking formal bounds.
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