10 research outputs found

    ์„ฑ๋Šฅ๊ณผ ์šฉ๋Ÿ‰ ํ–ฅ์ƒ์„ ์œ„ํ•œ ์ ์ธตํ˜• ๋ฉ”๋ชจ๋ฆฌ ๊ตฌ์กฐ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์œตํ•ฉ๊ณผํ•™๊ธฐ์ˆ ๋Œ€ํ•™์› ์œตํ•ฉ๊ณผํ•™๋ถ€(์ง€๋Šฅํ˜•์œตํ•ฉ์‹œ์Šคํ…œ์ „๊ณต), 2019. 2. ์•ˆ์ •ํ˜ธ.The advance of DRAM manufacturing technology slows down, whereas the density and performance needs of DRAM continue to increase. This desire has motivated the industry to explore emerging Non-Volatile Memory (e.g., 3D XPoint) and the high-density DRAM (e.g., Managed DRAM Solution). Since such memory technologies increase the density at the cost of longer latency, lower bandwidth, or both, it is essential to use them with fast memory (e.g., conventional DRAM) to which hot pages are transferred at runtime. Nonetheless, we observe that page transfers to fast memory often block memory channels from servicing memory requests from applications for a long period. This in turn significantly increases the high-percentile response time of latency-sensitive applications. In this thesis, we propose a high-density managed DRAM architecture, dubbed 3D-XPath for applications demanding both low latency and high capacity for memory. 3D-XPath DRAM stacks conventional DRAM dies with high-density DRAM dies explored in this thesis and connects these DRAM dies with 3D-XPath. Especially, 3D-XPath allows unused memory channels to service memory requests from applications when primary channels supposed to handle the memory requests are blocked by page transfers at given moments, considerably increasing the high-percentile response time. This can also improve the throughput of applications frequently copying memory blocks between kernel and user memory spaces. Our evaluation shows that 3D-XPath DRAM decreases high-percentile response time of latency-sensitive applications by โˆผ30% while improving the throughput of an I/O-intensive applications by โˆผ39%, compared with DRAM without 3D-XPath. Recent computer systems are evolving toward the integration of more CPU cores into a single socket, which require higher memory bandwidth and capacity. Increasing the number of channels per socket is a common solution to the bandwidth demand and to better utilize these increased channels, data bus width is reduced and burst length is increased. However, this longer burst length brings increased DRAM access latency. On the memory capacity side, process scaling has been the answer for decades, but cell capacitance now limits how small a cell could be. 3D stacked memory solves this problem by stacking dies on top of other dies. We made a key observation in real multicore machine that multiple memory controllers are always not fully utilized on SPEC CPU 2006 rate benchmark. To bring these idle channels into play, we proposed memory channel sharing architecture to boost peak bandwidth of one memory channel and reduce the burst latency on 3D stacked memory. By channel sharing, the total performance on multi-programmed workloads and multi-threaded workloads improved up to respectively 4.3% and 3.6% and the average read latency reduced up to 8.22% and 10.18%.DRAM ์ œ์กฐ ๊ธฐ์ˆ ์˜ ๋ฐœ์ „์€ ์†๋„๊ฐ€ ๋Š๋ ค์ง€๋Š” ๋ฐ˜๋ฉด DRAM์˜ ๋ฐ€๋„ ๋ฐ ์„ฑ๋Šฅ ์š”๊ตฌ๋Š” ๊ณ„์† ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์š”๊ตฌ๋กœ ์ธํ•ด ์ƒˆ๋กœ์šด ๋น„ ํœ˜๋ฐœ์„ฑ ๋ฉ”๋ชจ๋ฆฌ(์˜ˆ: 3D-XPoint) ๋ฐ ๊ณ ๋ฐ€๋„ DRAM(์˜ˆ: Managed asymmetric latency DRAM Solution)์ด ๋“ฑ์žฅํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๊ณ ๋ฐ€๋„ ๋ฉ”๋ชจ๋ฆฌ ๊ธฐ์ˆ ์€ ๊ธด ๋ ˆ์ดํ„ด์‹œ, ๋‚ฎ์€ ๋Œ€์—ญํญ ๋˜๋Š” ๋‘ ๊ฐ€์ง€ ๋ชจ๋‘๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ๋ฐ€๋„๋ฅผ ์ฆ๊ฐ€์‹œํ‚ค๊ธฐ ๋•Œ๋ฌธ์— ์„ฑ๋Šฅ์ด ์ข‹์ง€ ์•Š์•„, ํ•ซ ํŽ˜์ด์ง€๋ฅผ ๊ณ ์† ๋ฉ”๋ชจ๋ฆฌ(์˜ˆ: ์ผ๋ฐ˜ DRAM)๋กœ ์Šค์™‘๋˜๋Š” ์ €์šฉ๋Ÿ‰์˜ ๊ณ ์† ๋ฉ”๋ชจ๋ฆฌ๊ฐ€ ๋™์‹œ์— ์‚ฌ์šฉ๋˜๋Š” ๊ฒƒ์ด ์ผ๋ฐ˜์ ์ด๋‹ค. ์ด๋Ÿฌํ•œ ์Šค์™‘ ๊ณผ์ •์—์„œ ๋น ๋ฅธ ๋ฉ”๋ชจ๋ฆฌ๋กœ์˜ ํŽ˜์ด์ง€ ์ „์†ก์ด ์ผ๋ฐ˜์ ์ธ ์‘์šฉํ”„๋กœ๊ทธ๋žจ์˜ ๋ฉ”๋ชจ๋ฆฌ ์š”์ฒญ์„ ์˜ค๋žซ๋™์•ˆ ์ฒ˜๋ฆฌํ•˜์ง€ ๋ชปํ•˜๋„๋ก ํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ๋Œ€๊ธฐ ์‹œ๊ฐ„์— ๋ฏผ๊ฐํ•œ ์‘์šฉ ํ”„๋กœ๊ทธ๋žจ์˜ ๋ฐฑ๋ถ„์œ„ ์‘๋‹ต ์‹œ๊ฐ„์„ ํฌ๊ฒŒ ์ฆ๊ฐ€์‹œ์ผœ, ์‘๋‹ต ์‹œ๊ฐ„์˜ ํ‘œ์ค€ ํŽธ์ฐจ๋ฅผ ์ฆ๊ฐ€์‹œํ‚จ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ์ € ์ง€์—ฐ์‹œ๊ฐ„ ๋ฐ ๊ณ ์šฉ๋Ÿ‰ ๋ฉ”๋ชจ๋ฆฌ๋ฅผ ์š”๊ตฌํ•˜๋Š” ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์„ ์œ„ํ•ด 3D-XPath, ์ฆ‰ ๊ณ ๋ฐ€๋„ ๊ด€๋ฆฌ DRAM ์•„ํ‚คํ…์ฒ˜๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ด๋Ÿฌํ•œ 3D-ํ†”์†Œ๋ฅผ ์ง‘์ ํ•œ DRAM์€ ์ €์†์˜ ๊ณ ๋ฐ€๋„ DRAM ๋‹ค์ด๋ฅผ ๊ธฐ์กด์˜ ์ผ๋ฐ˜์ ์ธ DRAM ๋‹ค์ด์™€ ๋™์‹œ์— ํ•œ ์นฉ์— ์ ์ธตํ•˜๊ณ , DRAM ๋‹ค์ด๋ผ๋ฆฌ๋Š” ์ œ์•ˆํ•˜๋Š” 3D-XPath ํ•˜๋“œ์›จ์–ด๋ฅผ ํ†ตํ•ด ์—ฐ๊ฒฐ๋œ๋‹ค. ์ด๋Ÿฌํ•œ 3D-XPath๋Š” ํ•ซ ํŽ˜์ด์ง€ ์Šค์™‘์ด ์ผ์–ด๋‚˜๋Š” ๋™์•ˆ ์‘์šฉํ”„๋กœ๊ทธ๋žจ์˜ ๋ฉ”๋ชจ๋ฆฌ ์š”์ฒญ์„ ์ฐจ๋‹จํ•˜์ง€ ์•Š๊ณ  ์‚ฌ์šฉ๋Ÿ‰์ด ์ ์€ ๋ฉ”๋ชจ๋ฆฌ ์ฑ„๋„๋กœ ํ•ซ ํŽ˜์ด์ง€ ์Šค์™‘์„ ์ฒ˜๋ฆฌ ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜์—ฌ, ๋ฐ์ดํ„ฐ ์ง‘์ค‘ ์‘์šฉ ํ”„๋กœ๊ทธ๋žจ์˜ ๋ฐฑ๋ถ„์œ„ ์‘๋‹ต ์‹œ๊ฐ„์„ ๊ฐœ์„ ์‹œํ‚จ๋‹ค. ๋˜ํ•œ ์ œ์•ˆํ•˜๋Š” ํ•˜๋“œ์›จ์–ด ๊ตฌ์กฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ, ์ถ”๊ฐ€์ ์œผ๋กœ O/S ์ปค๋„๊ณผ ์œ ์ € ์ŠคํŽ˜์ด์Šค ๊ฐ„์˜ ๋ฉ”๋ชจ๋ฆฌ ๋ธ”๋ก์„ ์ž์ฃผ ๋ณต์‚ฌํ•˜๋Š” ์‘์šฉ ํ”„๋กœ๊ทธ๋žจ์˜ ์ฒ˜๋ฆฌ๋Ÿ‰์„ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ 3D-XPath DRAM์€ 3D-XPath๊ฐ€ ์—†๋Š” DRAM์— ๋น„ํ•ด I/O ์ง‘์•ฝ์ ์ธ ์‘์šฉํ”„๋กœ๊ทธ๋žจ์˜ ์ฒ˜๋ฆฌ๋Ÿ‰์„ ์ตœ๋Œ€ 39 % ํ–ฅ์ƒ์‹œํ‚ค๋ฉด์„œ ๋ ˆ์ดํ„ด์‹œ์— ๋ฏผ๊ฐํ•œ ์‘์šฉ ํ”„๋กœ๊ทธ๋žจ์˜ ๋†’์€ ๋ฐฑ๋ถ„์œ„ ์‘๋‹ต ์‹œ๊ฐ„์„ ์ตœ๋Œ€ 30 %๊นŒ์ง€ ๊ฐ์†Œ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ ์ตœ๊ทผ์˜ ์ปดํ“จํ„ฐ ์‹œ์Šคํ…œ์€ ๋ณด๋‹ค ๋งŽ์€ ๋ฉ”๋ชจ๋ฆฌ ๋Œ€์—ญํญ๊ณผ ์šฉ๋Ÿ‰์„ ํ•„์š”๋กœํ•˜๋Š” ๋” ๋งŽ์€ CPU ์ฝ”์–ด๋ฅผ ๋‹จ์ผ ์†Œ์ผ“์œผ๋กœ ํ†ตํ•ฉํ•˜๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ์ง„ํ™”ํ•˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์†Œ์ผ“ ๋‹น ์ฑ„๋„ ์ˆ˜๋ฅผ ๋Š˜๋ฆฌ๋Š” ๊ฒƒ์€ ๋Œ€์—ญํญ ์š”๊ตฌ์— ๋Œ€ํ•œ ์ผ๋ฐ˜์ ์ธ ํ•ด๊ฒฐ์ฑ…์ด๋ฉฐ, ์ตœ์‹ ์˜ DRAM ์ธํ„ฐํŽ˜์ด์Šค์˜ ๋ฐœ์ „ ์–‘์ƒ์€ ์ฆ๊ฐ€ํ•œ ์ฑ„๋„์„ ๋ณด๋‹ค ์ž˜ ํ™œ์šฉํ•˜๊ธฐ ์œ„ํ•ด ๋ฐ์ดํ„ฐ ๋ฒ„์Šค ํญ์ด ๊ฐ์†Œ๋˜๊ณ  ๋ฒ„์ŠคํŠธ ๊ธธ์ด๊ฐ€ ์ฆ๊ฐ€ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ธธ์–ด์ง„ ๋ฒ„์ŠคํŠธ ๊ธธ์ด๋Š” DRAM ์•ก์„ธ์Šค ๋Œ€๊ธฐ ์‹œ๊ฐ„์„ ์ฆ๊ฐ€์‹œํ‚จ๋‹ค. ์ถ”๊ฐ€์ ์œผ๋กœ ์ตœ์‹ ์˜ ์‘์šฉํ”„๋กœ๊ทธ๋žจ์€ ๋” ๋งŽ์€ ๋ฉ”๋ชจ๋ฆฌ ์šฉ๋Ÿ‰์„ ์š”๊ตฌํ•˜๋ฉฐ, ๋ฏธ์„ธ ๊ณต์ •์œผ๋กœ ๋ฉ”๋ชจ๋ฆฌ ์šฉ๋Ÿ‰์„ ์ฆ๊ฐ€์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•๋ก ์€ ์ˆ˜์‹ญ ๋…„ ๋™์•ˆ ์‚ฌ์šฉ๋˜์—ˆ์ง€๋งŒ, 20 nm ์ดํ•˜์˜ ๋ฏธ์„ธ๊ณต์ •์—์„œ๋Š” ๋” ์ด์ƒ ๊ณต์ • ๋ฏธ์„ธํ™”๋ฅผ ํ†ตํ•ด ๋ฉ”๋ชจ๋ฆฌ ๋ฐ€๋„๋ฅผ ์ฆ๊ฐ€์‹œํ‚ค๊ธฐ๊ฐ€ ์–ด๋ ค์šด ์ƒํ™ฉ์ด๋ฉฐ, ์ ์ธตํ˜• ๋ฉ”๋ชจ๋ฆฌ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์šฉ๋Ÿ‰์„ ์ฆ๊ฐ€์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ƒํ™ฉ์—์„œ, ์‹ค์ œ ์ตœ์‹ ์˜ ๋ฉ€ํ‹ฐ์ฝ”์–ด ๋จธ์‹ ์—์„œ SPEC CPU 2006 ์‘์šฉํ”„๋กœ๊ทธ๋žจ์„ ๋ฉ€ํ‹ฐ์ฝ”์–ด์—์„œ ์‹คํ–‰ํ•˜์˜€์„ ๋•Œ, ํ•ญ์ƒ ์‹œ์Šคํ…œ์˜ ๋ชจ๋“  ๋ฉ”๋ชจ๋ฆฌ ์ปจํŠธ๋กค๋Ÿฌ๊ฐ€ ์™„์ „ํžˆ ํ™œ์šฉ๋˜์ง€ ์•Š๋Š”๋‹ค๋Š” ์‚ฌ์‹ค์„ ๊ด€์ฐฐํ–ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์œ ํœด ์ฑ„๋„์„ ์‚ฌ์šฉํ•˜๊ธฐ ์œ„ํ•ด ํ•˜๋‚˜์˜ ๋ฉ”๋ชจ๋ฆฌ ์ฑ„๋„์˜ ํ”ผํฌ ๋Œ€์—ญํญ์„ ๋†’์ด๊ณ  3D ์Šคํƒ ๋ฉ”๋ชจ๋ฆฌ์˜ ๋ฒ„์ŠคํŠธ ๋Œ€๊ธฐ ์‹œ๊ฐ„์„ ์ค„์ด๊ธฐ ์œ„ํ•ด ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ๋ฉ”๋ชจ๋ฆฌ ์ฑ„๋„ ๊ณต์œ  ์•„ํ‚คํ…์ฒ˜๋ฅผ ์ œ์•ˆํ•˜์˜€์œผ๋ฉฐ, ํ•˜๋“œ์›จ์–ด ๋ธ”๋ก์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ์ฑ„๋„ ๊ณต์œ ๋ฅผ ํ†ตํ•ด ๋ฉ€ํ‹ฐ ํ”„๋กœ๊ทธ๋žจ ๋œ ์‘์šฉํ”„๋กœ๊ทธ๋žจ ๋ฐ ๋‹ค์ค‘ ์Šค๋ ˆ๋“œ ์‘์šฉํ”„๋กœ๊ทธ๋žจ ์„ฑ๋Šฅ์ด ๊ฐ๊ฐ 4.3 % ๋ฐ 3.6 %๋กœ ํ–ฅ์ƒ๋˜์—ˆ์œผ๋ฉฐ ํ‰๊ท  ์ฝ๊ธฐ ๋Œ€๊ธฐ ์‹œ๊ฐ„์€ 8.22 % ๋ฐ 10.18 %๋กœ ๊ฐ์†Œํ•˜์˜€๋‹ค.Contents Abstract i Contents iv List of Figures vi List of Tables viii Introduction 1 1.1 3D-XPath: High-Density Managed DRAM Architecture with Cost-effective Alternative Paths for Memory Transactions 5 1.2 Boosting Bandwidth โ€“ Dynamic Channel Sharing on 3D Stacked Memory 9 1.3 Research contribution 13 1.4 Outline 14 3D-stacked Heterogeneous Memory Architecture with Cost-effective Extra Block Transfer Paths 17 2.1 Background 17 2.1.1 Heterogeneous Main Memory Systems 17 2.1.2 Specialized DRAM 19 2.1.3 3D-stacked Memory 22 2.2 HIGH-DENSITY DRAM ARCHITECTURE 27 2.2.1 Key Design Challenges 29 2.2.2 Plausible High-density DRAM Designs 33 2.3 3D-STACKED DRAM WITH ALTERNATIVE PATHS FOR MEMORY TRANSACTIONS 37 2.3.1 3D-XPath Architecture 41 2.3.2 3D-XPath Management 46 2.4 EXPERIMENTAL METHODOLOGY 52 2.5 EVALUATION 56 2.5.1 OLDI Workloads 56 2.5.2 Non-OLDI Workloads 61 2.5.3 Sensitivity Analysis 66 2.6 RELATED WORK 70 Boosting bandwidth โ€“Dynamic Channel Sharing on 3D Stacked Memory 72 3.1 Background: Memory Operations 72 3.1.1. Memory Controller 72 3.1.2 DRAM column access sequence 73 3.2 Related Work 74 3.3. CHANNEL SHARING ENABLED MEMORY SYSTEM 76 3.3.1 Hardware Requirements 78 3.3.2 Operation Sequence 81 3.4 Analysis 87 3.4.1 Experiment Environment 87 3.4.2 Performance 88 3.4.3 Overhead 90 CONCLUSION 92 REFERENCES 94 ๊ตญ๋ฌธ์ดˆ๋ก 107Docto

    RRAM Crossbar Arrays for Storage Class Memory Applications : Throughput and Density Considerations

    Get PDF
    As more and more high density memories are required to satisfy the Internet of Things ecosystem, academics and industrials are looking for an intermediate solution to fill the gap between DRAM and Flash NAND in the memory hierarchy. The emergence of Resistive Switching Technologies (RRAM) proposes a potential solution to this demand for fast, low cost, high density and non-volatile memory. However, nowadays transistor-less RRAM-based architectures, such as Crosspoint, suffers of several issues such as sneakpath, IRdrop and periphery overhead. In this work, we propose to explore the positioning of RRAM crosspoint memories regarding DRAM and NAND in terms of density and write throughput. We present several design guidelines then show that for the optimal RRAM crosspoint architecture (2-layers with common bitline), massively multiple bank write is the solution to optimize density and write throughput to around 20-100Gbit/cm2 and 200-500MB/s respectively for 32 to 64 parallel access

    Ring-Based Resonant Standing Wave Oscillators for 3D Clocking Applications

    Get PDF
    Ring-based resonant standing wave oscillators have been shown to be a useful clocking tech-nique that can distribute and generate a high frequency, low skew, low power, and stable clock signal. By using through-silicon-vias, this type of standing wave oscillator can be used to gener-ate the clocking scheme for 3D integrated circuits. In this thesis, we propose the use of such 3D standing wave oscillators and show how independent 3D oscillators in different stacks can syn-chronize through the use of a redistribution layer stub. Inter-chip clock synchronization is then accomplished without the need for a PLL. In addition, we propose the first 3D ring-based resonant standing wave oscillator bootstrap and reset circuit to initialize and stop oscillation. Using a 3D ring-based resonant standing wave oscillator, we propose a ring-based data fabric for 3D stacked DRAM and compare the results with existing approaches such as High Bandwidth Memory (HBM) or Wide I/O memory. We show that our Memory Architecture using a Ring-based Scheme (MARS) can provide the increases in speed necessary to overcome current memory bottlenecks, and can scale effectively as future 3D stacks become larger. Our MARS can trade off power, throughput, and latency to match different application requirements. By using a narrow bus, and connecting it to all channels, the MARS8 can provide an alternative memory configuration with โˆผ 6.9ร— lower power consumption than HBM, and โˆผ 2.7ร— faster speeds than Wide I/O. Using multiple ring topologies in the same stack, the channel count can double from 8 to 16, and then to 32. This is possible since MARS uses about 4ร— fewer TSVs per channel than HBM or Wide I/O. This provides speeds up to โˆผ 4.2ร— faster than traditional HBM. This scalable architecture allows higher throughput and faster system performance for next-generation DRAM. The MARS topology proposed in this thesis can be used in a variety of computing systems, from lightweight IoT to large-scale data centers

    Scalable and Accurate Memory System Simulation

    Get PDF
    Memory systems today possess more complexity than ever. On one hand, main memory technology has a much more diverse portfolio. Other than the mainstream DDR DRAMs, a variety of DRAM protocols have been proliferating in certain domains. Non-Volatile Memory(NVM) also finally has commodity main memory products, introducing more heterogeneity to the main memory media. On the other hand, the scale of computer systems, from personal computers, server computers, to high performance computing systems, has been growing in response to increasing computing demand. Memory systems have to be able to keep scaling to avoid bottlenecking the whole system. However, current memory simulation works cannot accurately or efficiently model these developments, making it hard for researchers and developers to evaluate or to optimize designs for memory systems. In this study, we attack these issues from multiple angles. First, we develop a fast and validated cycle accurate main memory simulator that can accurately model almost all existing DRAM protocols and some NVM protocols, and it can be easily extended to support upcoming protocols as well. We showcase this simulator by conducting a thorough characterization over existing DRAM protocols and provide insights on memory system designs. Secondly, to efficiently simulate the increasingly paralleled memory systems, we propose a lax synchronization model that allows efficient parallel DRAM simulation. We build the first ever practical parallel DRAM simulator that can speedup the simulation by up to a factor of three with single digit percentage loss in accuracy comparing to cycle accurate simulations. We also developed mitigation schemes to further improve the accuracy with no additional performance cost. Moreover, we discuss the limitation of cycle accurate models, and explore the possibility of alternative modeling of DRAM. We propose a novel approach that converts DRAM timing simulation into a classification problem. By doing so we can make predictions on DRAM latency for each memory request upon first sight, which makes it compatible for scalable architecture simulation frameworks. We developed prototypes based on various machine learning models and they demonstrate excellent performance and accuracy results that makes them a promising alternative to cycle accurate models. Finally, for large scale memory systems where data movement is often the performance limiting factor, we propose a set of interconnect topologies and implement them in a parallel discrete event simulation framework. We evaluate the proposed topologies through simulation and prove that their scalability and performance exceeds existing topologies with increasing system size or workloads

    Energy-Efficient Recurrent Neural Network Accelerators for Real-Time Inference

    Full text link
    Over the past decade, Deep Learning (DL) and Deep Neural Network (DNN) have gone through a rapid development. They are now vastly applied to various applications and have profoundly changed the life of hu- man beings. As an essential element of DNN, Recurrent Neural Networks (RNN) are helpful in processing time-sequential data and are widely used in applications such as speech recognition and machine translation. RNNs are difficult to compute because of their massive arithmetic operations and large memory footprint. RNN inference workloads used to be executed on conventional general-purpose processors including Central Processing Units (CPU) and Graphics Processing Units (GPU); however, they have un- necessary hardware blocks for RNN computation such as branch predictor, caching system, making them not optimal for RNN processing. To accelerate RNN computations and outperform the performance of conventional processors, previous work focused on optimization methods on both software and hardware. On the software side, previous works mainly used model compression to reduce the memory footprint and the arithmetic operations of RNNs. On the hardware side, previous works also designed domain-specific hardware accelerators based on Field Pro- grammable Gate Arrays (FPGA) or Application Specific Integrated Circuits (ASIC) with customized hardware pipelines optimized for efficient pro- cessing of RNNs. By following this software-hardware co-design strategy, previous works achieved at least 10X speedup over conventional processors. Many previous works focused on achieving high throughput with a large batch of input streams. However, in real-time applications, such as gaming Artificial Intellegence (AI), dynamical system control, low latency is more critical. Moreover, there is a trend of offloading neural network workloads to edge devices to provide a better user experience and privacy protection. Edge devices, such as mobile phones and wearable devices, are usually resource-constrained with a tight power budget. They require RNN hard- ware that is more energy-efficient to realize both low-latency inference and long battery life. Brain neurons have sparsity in both the spatial domain and time domain. Inspired by this human nature, previous work mainly explored model compression to induce spatial sparsity in RNNs. The delta network algorithm alternatively induces temporal sparsity in RNNs and can save over 10X arithmetic operations in RNNs proven by previous works. In this work, we have proposed customized hardware accelerators to exploit temporal sparsity in Gated Recurrent Unit (GRU)-RNNs and Long Short-Term Memory (LSTM)-RNNs to achieve energy-efficient real-time RNN inference. First, we have proposed DeltaRNN, the first-ever RNN accelerator to exploit temporal sparsity in GRU-RNNs. DeltaRNN has achieved 1.2 TOp/s effective throughput with a batch size of 1, which is 15X higher than its related works. Second, we have designed EdgeDRNN to accelerate GRU-RNN edge inference. Compared to DeltaRNN, EdgeDRNN does not rely on on-chip memory to store RNN weights and focuses on reducing off-chip Dynamic Random Access Memory (DRAM) data traffic using a more scalable architecture. EdgeDRNN have realized real-time inference of large GRU-RNNs with submillisecond latency and only 2.3 W wall plug power consumption, achieving 4X higher energy efficiency than commercial edge AI platforms like NVIDIA Jetson Nano. Third, we have used DeltaRNN to realize the first-ever continuous speech recognition sys- tem with the Dynamic Audio Sensor (DAS) as the front-end. The DAS is a neuromorphic event-driven sensor that produces a stream of asyn- chronous events instead of audio data sampled at a fixed sample rate. We have also showcased how an RNN accelerator can be integrated with an event-driven sensor on the same chip to realize ultra-low-power Keyword Spotting (KWS) on the extreme edge. Fourth, we have used EdgeDRNN to control a powered robotic prosthesis using an RNN controller to replace a conventional proportionalโ€“derivative (PD) controller. EdgeDRNN has achieved 21 ฮผs latency of running the RNN controller and could maintain stable control of the prosthesis. We have used DeltaRNN and EdgeDRNN to solve these problems to prove their value in solving real-world problems. Finally, we have applied the delta network algorithm on LSTM-RNNs and have combined it with a customized structured pruning method, called Column-Balanced Targeted Dropout (CBTD), to induce spatio-temporal sparsity in LSTM-RNNs. Then, we have proposed another FPGA-based accelerator called Spartus, the first RNN accelerator that exploits spatio- temporal sparsity. Spartus achieved 9.4 TOp/s effective throughput with a batch size of 1, the highest among present FPGA-based RNN accelerators with a power budget around 10 W. Spartus can complete the inference of an LSTM layer having 5 million parameters within 1 ฮผs

    Investment Analysis: Peningkatan Performa Dan Effisiensi Dari Adopsi Cloud Engine Pada Industri Kreatif Berbasis Digital Visual Desain Yang Memiliki Kebutuhan Komputasi & Prosesing Tinggi

    Get PDF
    Industri kreatif (Creative Industries) merupakan salah satu sub-sektor baru dalam dunia ekonomi yang perkembangannya sangat pesat. Industri kreatif adalah industri yang mampu menyediakan produk dan layanan dengan nilai ekspresif dan fungsional. Perusahaan yang bergerak dalam industri kreatif sangat bergantung pada teknologi baru. Lebih dari 90% perusahaan yang bergerak dalam industri kreatif tersebut menggunakan teknologi baru sebagai infrastruktur utama penunjang proses aktifitas mereka baik hardware maupun software. Beberapa sektor dalam industri kreatif memiliki aktifitas yang membutuhkan hardware resource lebih tinggi dibandingkan dengan aktifitas kerja pada umumnya. Aktifitas berhubungan dengan proses mendesain visual, digitalisasi/virtualisasi dan kontennya seperti contoh arsitektur, animasi 3D, VR (Virtual Reality), AR (Augmented Reality), Gaming, dsb, memerlukan spesifikasi hardware yang mumpuni untuk dapat menghasilkan dan meningkatkan kualitas hasil akhir serta mendukung kinerja pengguna/pelaku industri kreatif tersebut. Kebutuhan tinggi akan infrastruktur pendukung industri kreatif seperti hardware terbatasi dengan tingginya cost untuk penggunaan infrastruktur tersebut. Dimulai dari pembelian awal, running, maintenance, replace, upgrade dsb. Menjawab masalah tersebut, cloud computing menawarkan salah satu bentuk gabungan antara infrastructure dan platform as service sebagai salah satu bentuk layanan untuk menangani kebutuhan hardware serta platform kerja, yang dalam penelitian ini disebut sebagai Cloud Engine. Penelitian ini melakukan analisis untuk membuktikan keuntungan penggunaan Cloud Engine apabila dibandingkan dengan perangkat workstation konvensional (infrastruktur umum), menganalisis perbandingan keuntungan investasi baik pada starting cost, biaya operasional, raw power performance, maintenance, dan kebutuhan daya antara workstation konvensional dan Cloud Engine dan selanjutnya efisiensi dan efektifitas dalam investasi dihitung menggunakan metode CBA (Cost-Benefit Analysis) untuk mendapatkan keuntungan/project dan rekomendasi terbaik dalam rangka investasi infrastruktur pendukung industri kreatif berbasis digital visual desain. ================================================================================================ The creative industry is one of the new sub-sectors in the world of economics whose development is very rapid currently. The creative industry is an industry that is able to provide products and services with expressive and functional values. Companies engaged in the creative industry rely heavily on new technology. More than 90% of companies which engaged in the creative industry use new technology as the main infrastructure to support their activity processes both hardware and software. Some sectors in the creative industry have activities that require higher hardware resources compared to work activities in general. Activities related to the process of visual design, digitalization/virtualization and its content such as architecture, 3D animation, VR (Virtual Reality), AR (Augmented Reality), Gaming, etc., require a high hardware specification to produce and improve the qualities of the end products and support the performance of users/creative industry performer. The high demand for creative industry supporting infrastructure such as hardware is limited by the immense cost of infrastructure use. Starting from the initial purchase, running, maintenance, replace, upgrade, etc. Answering this problem, cloud computing offers one of the combined forms of infrastructure as service and platforms as service to handle hardware and work platform needs, which in this study are referred to as Cloud Engines. This study analyzes to proven the advantages of the Cloud Engine use, when compared to conventional workstation devices, analyzing the comparison of investment benefits both in the starting cost, operational costs, raw power performance, maintenance, and power requirements between conventional workstations and Cloud Engines, subsequently efficiency and effectiveness in investment is calculated using the CBA (Cost-Benefit Analysis) method to get the best benefits/projects and recommendations in order seek the best infrastructure investment for supporting the creative industries based on digital visual design

    Performance engineering of data-intensive applications

    Get PDF
    Data-intensive programs deal with big chunks of data and often contain compute-intensive characteristics. Among various HPC application domains, big data analytics, machine learning and the more recent deep-learning models are well-known data-intensive applications. An efficient design of such applications demands extensive knowledge of the target hardware and software, particularly the memory/cache hierarchy and the data communication among threads/processes. Such a requirement makes code development an arduous task, as inappropriate data structures and algorithm design may result in superfluous runtime, let alone hardware incompatibilities while porting the code to other platforms. In this dissertation, we introduce a set of tools and methods for the performance engineering of parallel data-intensive programs. We start with performance profiling to gain insights on thread communications and relevant code optimizations. Then, by narrowing down our scope to deep-learning applications, we introduce our tools for enhancing the performance portability and scalability of convolutional neural networks (ConvNet) at inference and training phases. Our first contribution is a novel performance-profiling method to unveil potential communication bottlenecks caused by data-access patterns and thread interactions. Our findings show that the data shared between a pair of threads should be reused with a reasonably short intervals to preserve data locality, yet existing profilers neglect them and mainly report the communication volume. We propose new hardware-independent metrics to characterize thread communication and provide suggestions for applying appropriate optimizations on a specific code region. Our experiments show that applying relevant optimizations improves the performance in Rodinia benchmarks by up to 56%. For the next contribution, we developed a framework for automatic generation of efficient and performance-portable convolution kernels, including Winograd convolutions, for various GPU platforms. We employed a synergy of meta-programming, symbolic execution, and auto-tuning. The results demonstrate efficient kernels generated through an automated optimization pipeline with runtimes close to vendor deep-learning libraries, and the minimum required programming effort confirms the performance portability of our approach. Furthermore, our symbolic execution method exploits repetitive patterns in Winograd convolutions, enabling us to reduce the number of arithmetic operations by up to 62% without compromising the numerical stability. Lastly, we investigate possible methods to scale the performance of ConvNets in training and inference phases. Our specialized training platform equipped with a novel topology-aware network pruning algorithm enables rapid training, neural architecture search, and network compression. Thus, an AI model training can be easily scaled to a multitude of compute nodes, leading to faster model design with less operating costs. Furthermore, the network compression component scales a ConvNet model down by removing redundant layers, preparing the model for a more pertinent deployment. Altogether, this work demonstrates the necessity and shows the benefit of performance engineering and parallel programming methods in accelerating emerging data-intensive workloads. With the help of the proposed tools and techniques, we pinpoint data communication bottlenecks and achieve performance portability and scalability in data-intensive applications
    corecore