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ABSTRACT

Ring-based resonant standing wave oscillators have been shown to be a useful clocking tech-

nique that can distribute and generate a high frequency, low skew, low power, and stable clock

signal. By using through-silicon-vias, this type of standing wave oscillator can be used to gener-

ate the clocking scheme for 3D integrated circuits. In this thesis, we propose the use of such 3D

standing wave oscillators and show how independent 3D oscillators in different stacks can syn-

chronize through the use of a redistribution layer stub. Inter-chip clock synchronization is then

accomplished without the need for a PLL. In addition, we propose the first 3D ring-based resonant

standing wave oscillator bootstrap and reset circuit to initialize and stop oscillation.

Using a 3D ring-based resonant standing wave oscillator, we propose a ring-based data fabric

for 3D stacked DRAM and compare the results with existing approaches such as High Bandwidth

Memory (HBM) or Wide I/O memory. We show that our Memory Architecture using a Ring-

based Scheme (MARS) can provide the increases in speed necessary to overcome current memory

bottlenecks, and can scale effectively as future 3D stacks become larger. Our MARS can trade

off power, throughput, and latency to match different application requirements. By using a narrow

bus, and connecting it to all channels, the MARS8 can provide an alternative memory configuration

with ∼ 6.9× lower power consumption than HBM, and ∼ 2.7× faster speeds than Wide I/O. Using

multiple ring topologies in the same stack, the channel count can double from 8 to 16, and then

to 32. This is possible since MARS uses about 4× fewer TSVs per channel than HBM or Wide

I/O. This provides speeds up to ∼ 4.2× faster than traditional HBM. This scalable architecture

allows higher throughput and faster system performance for next-generation DRAM. The MARS

topology proposed in this thesis can be used in a variety of computing systems, from lightweight

IoT to large-scale data centers.
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1. INTRODUCTION

1.1 Overview

The technological revolution over the past several decades has revolutionized our daily lives.

From high-performance data centers to miniaturized wearable devices, technology has become an

integral part of our daily life. As the dependence on technology has grown, so have the techno-

logical innovations. Over the years we have seen devices shrink, integrated circuits (ICs) become

more complex and processor speeds grow rapidly. Despite these tremendous innovations, many

challenges still plague modern IC development.

A common challenge that still faces most IC designs is the ability to generate and distribute a

clock signal. Clock signals have been heavily utilized since the first ICs in order to allow synchro-

nization between different logical components. The clock signal provides a means to synchronize

the movement of data signals throughout an IC in a fast and efficient manner. Most designs consist

of banks of synchronized registers that are separated by combinational logic. This creates func-

tional “stages” in the design where the timing of each stage can be evaluated using timing analysis.

By analyzing the timing of these stages, designers can ensure the clock meets the requirements of

each logical stage. In most cases, this is done by ensuring the clock signal switches at a rate slower

than the worst-case propagation delay of any given stage.

A clock distribution network distributes the clock signal from an originating point on the IC

to a set of clock regenerators, which each drive the clock signal to a subset of the synchronized

registers of the design. As ICs become larger and more complex, this clock distribution network

becomes a significant design challenge. Because the proper operation of a clock signal is vital

to the overall chip’s operation, significant attention is given to the characteristics of the clock

distribution network. The design of an efficient clock network can improve both the performance

and the power consumption of the IC. In addition, a well-designed clock network helps ensure that

the timing requirements are met, for correct communication between functional elements.
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1.1.1 Clock Network Design Challenges

Clock signals are foundational to IC development and logic communication. The distribution of

these clock signals, however, have many challenges that require careful consideration. Among the

difficulties engineers experience when designing these clock distribution networks include large

fan-outs, asymmetric physical layouts, technology scaling, as well as process, voltage and temper-

ature (PVT) variations. Addressing these challenges often requires trade-offs and a balance must

be struck for each design based on the system requirements.

The first major challenge faced when designing a clock distribution network is the large fan-

out of the clock signal. This large fan-out is a result of the clock signal distributing from a single

source location to a large number of clock regenerators on an IC. Because the regenerators require

a low skew, low jitter rail-to-rail signal, the design of the clock distribution network must handle

the large fan-out. This is typically accomplished by appropriately inserting buffers throughout the

network to restore the signal strength. The downside of using buffers is that it results in increased

clock skew due to PVT variations. The change of voltage, also known as the slew rate, provides a

way to measure how “sharp” this clock edge is at the desired regenerator inputs.

The physical layout of the clock network is another challenge that is becoming more difficult

as ICs become larger. The challenges with implementing traditional clock distribution networks

is that they tend to not follow common very-large-scale integration (VLSI) block partitions. Even

though this has historically been addressed by pre-routing the clock network, the recent move

towards intellectual property (IP) based design makes it hard if not impossible to pre-route clock

signals. This results in irregularities in the layout of the clock network which results in sub-optimal

performance. Also, functional logic blocks sometimes maintain their own locally optimized clock

networks. The clock distribution scheme must adapt to these different networks.

The clock distribution network has also been severely affected by technology scaling. As new

technology generations use smaller process nodes, the long global wires used in a clock distribution

network have become more resistive. This is a result of the decreased width of these global wires.

With an increased resistance, the propagation delay of the clock signal becomes more important.
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Performance demands have resulted in the need for faster switching frequencies while the global

wires have become more resistive. Therefore, the ability to ensure proper arrival of the clock edges

at different clock endpoints is becoming increasingly difficult with technology scaling, and the

increase in wire delays relative to logic delays.

Finally, another major challenge in designing clock distribution networks is that clock paths,

interconnect buffers and wire parasitics are highly sensitive to PVT variations. Therefore, as the

interconnect, device and operational parameters vary, the performance metrics of a given clock

distribution network can fluctuate. This can degrade the reliability of the synchronous elements of

an IC and even cause system failure. Therefore, clock distribution networks must be designed to

handle process and environmental variations to ensure an IC can perform at its full potential.

1.1.2 Desired Clock Network Properties

The previously mentioned clock distribution design challenges are measured by the ability of

the clock network to meet a set of desired metrics. The predominant metrics used to determine

the quality of a clock network’s design are the slew rate, the clock skew, the clock jitter, and the

network power consumption. The goal is to maximize/minimize these performance metrics but

this usually comes with trade-offs. The relative importance of these different metrics is dependent

on the application.

As previously mentioned, the slew rate of a signal is the change in voltage over time. A higher

slew rate is desirable since it means that the endpoints in the distribution network switch faster.

A high slew rate ensures that the registers can operate reliably, and thus allows for faster clock

speeds (which means increased performance). A low slew rate, however, can result in unexpected

operation of the receiving circuits and can reduce system performance.

Another desired metric of clock networks is a low clock skew. Skew refers to the difference in

arrival time of the same clock signal at different endpoints in the distribution network. Ideally, all

synchronous elements in the IC should see a coincident edge of the clock. This ensures that cir-

cuits trigger at the same time and ensures reliable communication between functional components.

However, slight differences in wire length, wire parasitics, and even temperature can result in the
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clock arrival times at different endpoints to differ. Figure 1.1 shows the clock skew that occurs

when the delay to two different endpoints do not match. The flip-flop labeled B will see a delayed

clock edge compared to flip-flop A at a delayed time interval. This results in B’s output appearing

at its Q port later than flip-flop A’s output, as illustrated by the duration between the dotted lines in

Figure 1.1. A higher skew value results in decreased system performance as the clock period must

be slowed down in order to accommodate the worst-case skew.

Figure 1.1: Clock distribution network skew example

The duty cycle of the distributed clock is the fraction of the clock period for which the signal

is active (high). For example, a 50% duty cycle clock is high for half the period and low for half

the period. The desired duty cycle that is presented at the source of the clock distribution scheme

should appear at the endpoints. This deviation from the ideal clock period and duty cycle is known

as the clock jitter. Figure 1.2 shows an ideal clock signal with a 50% duty cycle compared with a

clock that has jitter. The dotted lines show the time difference between these clock edges. Jitter,

combined with the previously mentioned skew, can result in significant differences in the clock

edges seen at the clock network’s endpoints. This degrades the quality of synchronization and

ultimately leads to decreased performance.

The final major metric used to measure the quality of a clocking scheme is its power and energy

4



Figure 1.2: Clock distribution network jitter example

consumption. For devices that run off of a battery, the energy consumption is a critical metric. For

other systems, power consumption is an important metric. As ICs continue to increase in size, and

clock frequencies get faster, the clock distribution network becomes a significant contributor to

the overall power budget. A first-order approximation of the dynamic power consumed by a clock

signal is represented in Equation 1.1.

Pdyn = fCLV
2
DD (1.1)

In the above formula, f represents the switching rate (frequency) of the clock, C represents

the total load capacitance and VDD represents the supply voltage. The load capacitance is a com-

bination of the capacitance of any gates in the fan-out, as well as capacitive parasitics of the wires

that make up the clock distribution network. As expected, with higher performance (higher clock

frequency) and larger distribution networks (larger load capacitance) the dynamic power a clock

network consumes grows linearly. The power is quadratically related to the supply voltage of

the clock drivers. In order to minimize the power consumed, while still meeting the previously

mentioned clock metrics, a clock distribution network must strike a balance between its various

systems requirements.
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1.1.3 Traditional Clock Distribution Schemes

Clock distribution has been a heavily studied area since the development of the first ICs. Many

interesting and creative clock distribution networks for both high-performance and low power ap-

plications have been proposed. This section discusses many previously proposed and utilized clock

distribution networks along with a discussion on their advantages and disadvantages. This will lead

to our proposed design and how it can be deployed in an exemplary memory system.

Figure 1.3: Common clock tree distribution schemes

One strategy used for clock distribution is to evenly space buffers from the source to the end-

points to form a tree-like structure. In this tree, the clock source is referred to as the root of the tree

with the initial trace from this root being the trunk of the tree. The individual wires that fan-out

from the trunk are called the branches with the endpoints being the leaves of the tree. The left

side of Figure 1.3 shows this tree-like structure with a series of buffers that drive the clock from

any path from the root to a leaf. The tree shown on the left side of Figure 1.3 is often used in

ad-hoc, automatically generated clock distribution networks in application-specific integrated cir-

cuit (ASIC) designs. The right side of Figure 1.3 shows a mesh based version of a similar clock

tree where the branches are shorted to minimize the wire resistance of the tree. This mesh based

scheme reduces the resistance by adding wires in parallel, which helps minimize the clock skew
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and jitter seen at the leaves [4, 5]. However, the addition of extra wires in the mesh raises the total

power consumption of the distribution network.

Figure 1.4: H-tree Clock Network

A variation to the previously mentioned tree approach is the “H-tree”. This popular clock

topology attempts to match the wire length from the global distribution point (root) to each of the

endpoints (leaves) [6, 7]. This is done via structural symmetry, where each path from the root to

any leaf of the tree contains identical wire lengths and buffer locations. The symmetric structure

of the network, where a pair of bifurcations appear like a letter “H”, gives rise to the H-tree name

and is shown in Figure 1.4. Ideally, this network would have identical clock propagation delays to

every endpoint and be resilient to PVT variations. Unfortunately, modern IC designs cannot obtain

perfectly balanced H-trees due to keep out zones, unbalanced endpoint locations and the growing

importance of wire delays, which require multiple intermediate buffers in the H-tree, resulting in

susceptibility to PVT variations [8]. Because of these challenges, the H-tree approach typically

has trouble maintaining low skew and jitter but performs well when the tree remains small.

Variations of this H-tree topology are also heavily utilized, such as X-Trees and tapered H-trees

[9, 10]. A tapered H-tree progressively decreases the width of the wires as the signal propagates
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to deeper branches in the tree. By tapering the wires, the tapered H-tree minimizes the reflections

of the clock signals at the fan-out points. Tapering wires also reduces the coupling capacitance

seen between ground lines and the toggling clock line. This reduction in the coupling capacitance

decreases the dynamic power consumption of the clock network. However, tapering the clock

signal paths increases the wire resistance which makes the signal characteristics similar to a non-

tapered H-tree network [11]. X-trees are similar to H-trees but possess fan-outs of four rather than

two [12]. This might fit the available space better for certain ICs and can also be combined with

the H-tree structure to create a hybrid approach.

The previously described tree-based schemes rely on an increasing number of branches to dis-

tribute the clock to all network endpoints. Distributing the clock with a tree structure may require

a substantial number of branches for designs with a lot of endpoints (such as microprocessors).

As the tree grows in depth, the skew, jitter and power consumption of the network will increase,

resulting in degraded network performance. To overcome these drawbacks, a grid-based structure

can be used.

Figure 1.5 shows a two-dimensional grid that distributes the global clock to different local re-

gions on an IC. The dotted lines show a basic X-tree like structure that takes the clock source and

distributes it to the locations that are symmetrically selected on the IC. These locations connect to a

grid which has fully connected clock traces in both dimensions such that all points within the grid

are shorted together. This makes local wiring simple as network endpoints can be directly con-

nected to the global grid structure [13]. By shorting the clock drivers together, the grid distribution

network helps minimize the mismatch in path delays to reduce potential skew and jitter [14, 15].

This is accomplished through the balanced load nonuniformities that are a result of the shorted 2D

grid structure. The critical characteristics of the grid are the locations of the drivers, wire dimen-

sions and wire spacing. As expected, a dense grid with many parallel wires reduces the network’s

skew and jitter. However, more toggling wires will increase the dynamic power consumption of

the grid-based network, which usually consumes more power than tree-based structures.

Finally, some ICs use a topology with a central spine. This technique is often combined with

8



Figure 1.5: Grid Clock Network

other methods where the central spine runs the length of the IC and clock distribution to the end-

points is done using a secondary topology that connects to the spine [16]. This method is simple

to implement because it breaks up the distribution into two steps, the global spine and the local

wiring. The use of multiple spines can help divide the IC into regions, with the secondary topology

used for regional clock distribution. A spine tends to minimize wiring area compared to methods

like a grid or mesh. By minimizing area, the spine topology often exhibits a lower power con-

sumption than a grid but can experience higher skew for points on the network that lie far from the

spine [17]. To combat this, some topologies utilize multiple global spines running in parallel but

this increases power consumption.

As shown, these clock distribution networks have advantages and disadvantages that must be

balanced to meet the requirements of different applications. In many modern IC designs hybrid

approaches are used in order to meet the needs of different functional blocks in the IC. For exam-

ple, slower operating functional blocks might use a H-tree structure as it can help reduce power
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consumption. For higher performance blocks a grid might be favorable since it can lower the clock

skew and jitter needed for high clock frequencies.

1.2 3D IC Stacks

Though clock distribution networks have been a well-studied area for decades, new generations

of ICs require specialized clock network schemes that do not conform to traditional approaches.

One such application that has little prior research in terms of clocking topologies are 3D IC stacks.

3D IC stacks can increase electronic density and performance. Prior systems were limited by

2D IC placement on typical 2D printed circuit boards (PCBs). To overcome this bottleneck, 3D

ICs exploit the use of the z-dimension by placing multiple ICs on top of each other to create a

“stack”. This allows the ICs in the stack to behave as if they were in a single device, thereby

achieving higher bandwidth and performance. This is critical in applications such as memory,

where bandwidth is becoming an increasing bottleneck to system performance.

Figure 1.6 shows a 3D IC stack with four slave dies, a master die and an interposer. The slave

dies contain the desired logic that is often replicated to increase bandwidth and density. The master

die is used as a controller to communicate and map commands from external sources to the slave

dies. The interposer acts as an electrical interface between the 3D stack and other circuits that

might be communicating with it on the PCB [18, 19]. With multiple stacks placed on a common

interposer, the communication bandwidth can be increased further. Through-Silicon Vias (TSVs)

are wire stubs that are drilled through the ICs to allow communication between the slave dies, the

master die and the interposer. This allows the stack to behave as if it were a single high bandwidth

device. This high bandwidth is achieved because of the high density and low delay of the TSVs,

which allows for larger and faster busses between the dies. Microbumps form the bonding stubs

between the die, to allow the TSVs at different layers to be connected together vertically through

the 3D stack.

These 3D IC stacks are typically created through a method called die-to-die bonding [18].

This method allows devices to be manufactured separately on each die before stacking occurs. By

manufacturing the die individually, each die can be tested independently before the stack is built.
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Figure 1.6: Example 3D IC Stack

This increases the stack yield since a single faulty die can be discarded without having to discard

the entire stack. The creation of the TSVs can be done before or after the microbump bonding of

the die. If TSVs are drilled after bonding, care must be taken to ensure that each TSV aligns with

the bonds between ICs in the stack. A single misaligned TSV can result in an unwanted short or

open circuit, and cause the entire stack to be discarded. However, TSV drilling after bonding is

usually cheaper as the process is only done once for the entire stack rather than for each individual

die.

Though 3D IC stacks can yield a significant performance boost and reduced size, power con-

sumption and heat dissipation become a major concern [20]. To ensure proper cooling, devices

require package exposure to allow heat to dissipate and prevent the IC from overheating. When

additional die are placed on top of each other, the convective mechanism of heat dissipation is re-

placed by a conductive method of heat dissipation through another die. This makes proper cooling

of each die extremely difficult and can cause system failure if heat is not well controlled.
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Another challenge with 3D IC stacks is the ability to distribute a clock signal for each die.

Traditional clocking schemes are tailored for 2D ICs, and they lack the ability to properly scale in

the third dimension using TSVs. In addition, the traditional 2D clock distribution networks are not

easily modified to accommodate distribution in three dimensions, and therefore could yield lower

quality distribution.

1.3 DRAM History and Background

Current DRAM technologies serve as the workhorse approach for implementing volatile stor-

age in modern computing systems. Non-volatile memories having large memory latencies and

caches are too small to hold the memory needed in most modern programs, DRAM memory

bridges the gap between non-volatile storage and cache memory, which is vital to system perfor-

mance. Since DRAM is so important, there has been a lot of research and development into DRAM

technology over the decades. This has made DRAM technologies one of the fastest growing as-

pects of modern computer systems over the past half-century. This section discusses the history of

different DRAM technologies and describes the disadvantages of current DRAM architectures.

Fast Page Mode DRAM (FPM DRAM) was one of the first mainstream DRAM designs. FPM

DRAM kept the row access strobe (RAS) active while continuously signaling the column access

strobe (CAS) to read data from the same row [21]. By keeping the RAS active, the latency needed

to read the row is only incurred once for every data segment read from that active row. Despite its

simplistic nature, FPM DRAM provided significant performance increase with virtually no added

device cost (Figure 1.7).

The next innovation following FPM DRAM was Extended Data Out DRAM (EDO DRAM),

which added a group of latches after each column multiplexer. This allowed the DRAM to hold the

read data at the output pins while a concurrent column addresses travel across the data bus. EDO

DRAM was slightly faster than FPM DRAM because of its ability to hold the state of a row and

quickly led to the next DRAM generation known as Burst EDO DRAM (BEDO DRAM).

Similar to EDO DRAM, BEDO DRAM would burst multiple consecutive column addresses

worth of data after it received the starting column. This increased the data transfer rate by incurring
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Figure 1.7: FPM DRAM read operation with row kept open

the CAS latency only once before data became available for each strobe of the CAS line. This

method relies on the use of spatial locality to increase the overall throughput of a particular process.

The bursts, however, were limited, as the data was required to reside on the same row.

The innovations in DRAM that have been discussed so far have been inexpensive to imple-

ment but have led to tremendous performance advantages [21]. Such low-cost developments are

becoming increasingly rare since the introduction of Synchronous DRAM (SDRAM), which was

prevalent in modern computing systems by the late 1990s. Unlike its predecessors, SDRAM used

a single-ended clock to synchronize the data being transmitted between the memory module and

the dynamic memory controller (DMC). Despite initial SDRAM designs being slower than BEDO

DRAM, the introduction of a clock allowed reliable communication with the memory module.

SDRAM was the first generation of modern Double Data Rate (DDR) DRAM architectures that

currently dominate the market.

DDR SDRAM differs from SDRAM by passing data on both the rising and falling edge of the

clock cycle as shown in Figure 1.8. This effectively doubled the data transfer rate without having

to double the clock frequency. By utilizing both edges of the clock, DDR is able to maintain low

signal integrity requirements for the control, address and data bus that connect the DMC and the
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Figure 1.8: DDR SDRAM read operation

memory module. Since the introduction of the first-generation DDR SDRAM in 2000, three more

generations of DDR have each shown improvements in the data transfer rate. To achieve these

improvements, engineers have created a standard architectural layout with specified timing param-

eters for communication. By clocking the I/O bus faster, and making the prefetch larger in each

generation, engineers have been able to increase memory speeds despite the use of traditionally

slow memory chips (MCs). However, despite the increases in transfer rates, the speed of DRAM

memory remains significantly slower than modern central processing units (CPUs), with latencies

in the low 100s of CPU cycles.

1.3.1 DRAM Terminology

We define some terminology that will assist the reader throughout this thesis. These memory

related concepts are heavily used in this chapter and chapter three, and show the advantages of the

different DRAM techniques.
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• JEDEC: The Joint Electron Device Engineering Council (JEDEC) is a joint organization

consisting of many industry leaders who create and define new DRAM standards as new

generations are developed.

• DIMM: Dual In-line Memory Module (DIMM) is a circuit board that consists of DRAM

chips that connect to a large data bus with independent electrical pins on each side of the

board. These DIMMs plug into a memory slot on a motherboard to allow for modularization.

• SO-DIMM: Small Outline Dual In-line Memory Module (SO-DIMM) is a smaller version

of a DIMM typically designed for low power mobile devices such as laptops, tablets, and

routers.

• DDR: Double Data Rate is a computer bus that transfers data on both the positive edge and

negative edge of the clock signal.

• DMC: Dynamic Memory Controller (DMC) is a hardware component that maps addresses,

queues requests and communicates between the CPU and the memory module. The DMC is

typically located on the same IC as the CPU.

• MC: A Memory Chip (MC) is an integrated circuit that contains memory arrays to store data.

DIMMs typically have multiple MCs on the board that connect to form the data bus.

• Channel: An independent bus that contains a control portion, address portion and a data

portion to communicate memory commands between the DMC and the DIMM.

• Rank: A set of DRAM MCs that share a common control bus with the DMC and operate

together to provide the total bits required for the data bus.

• Bank: A group of memory arrays (usually distributed across multiple MCs) that provide

storage of a logical unit so that memory requests can be pipelined to different banks.

• Sense Amplifier: A circuit that amplifies small voltage changes on bit lines when reading

data, to quickly read the value stored in a memory cell.
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Figure 1.9: Traditional DIMM architecture with multiple channels

• Refresh: The process of reading data by the sense amps and writing the read values back to

the cell at regular intervals, to prevent loss of information.

1.3.2 Graphics DRAM

Graphics DDR SDRAM (GDDR SDRAM) is a similar memory architecture to DDR but specif-

ically designed for communication with graphics processing units (GPUs). Instead of placing MCs

on a dual in-line memory module (DIMM), which is on a separate PCB, MCs are soldered directly

to the PCB surrounding a GPU. With a wider data bus than DDR interfaces, GDDR uses a multi-

channel architecture to achieve the high bandwidth requirements of graphics applications. Modern

GDDR5 DRAM MCs can provide up to 8Gbps per pin. When you place 12 of these GDDR5 MCs

are placed around the GPU, a traditional 6-channel (2 MCs per channel) GDDR5 architecture is

realized that can achieve up to 384GB/s (using a 64-bit data bus per channel). By utilizing more

channels, a wider bus is realized which is able to meet the processing demands of high-end graph-

ics programs. Figure 1.10 shows a modern GDDR5 layout as previously discussed. There is a total

of 12 MCs to form 6 independent channels where each MC provides 32-bits of the 64-bit channel

data bus.

GDDR5 was a successful development in DRAM technology to meet the higher bandwidth

requirements. However, after nearly a decade of use, the need for even higher bandwidth memory

has driven the development of what is known as GDDR5X. Standardized by JEDEC in 2016,
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Figure 1.10: GDDR5 top view based on Nvidia’s GeForce GTX Titan Black [1]

GDDR5X increased the transfer rate of MCs to up to 14Gbps per pin which is almost double that

achievable by GDDR5 [22]. In addition, the prefetch rate was doubled from 8 to 16 by adding

more banks in parallel for each MC. The latest GDDR technology to hit the market has been

GDDR6 which provides further improvements on its GDDR5 predecessors. GDDR6 improves

MCs to 16Gbps per pin while lowering the supply voltage to reduce power consumption [23, 24].

This DRAM technology first started appearing in Nvidia graphics cards in 2018 and is expected

to help meet the higher bandwidths required of main memory. It is important to note that despite

the increases in transfer rate of the MCs, GDDR5, GDDR5X, and GDDR6 all contain up to 8

channels. The number of channels is limited by the physical space on the PCB that surrounds the

graphics processor. A solution to this is to use 3D stacked memory.

1.3.3 Low Power DDR

Low Power DDR (LPDDR) are forms of DDR DRAM designed for mobile systems by target-

ing lower power consumption, often at the expense of performance. The main difference between

LPDDR and traditional DDR technologies is the reduced supply voltage [25]. By lowering sup-
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ply voltage, and therefore lowering operating temperature of the MCs, the DRAM requires less

frequent refresh commands. In addition to lowering supply voltage, LPDDR typically uses partial

refresh of DRAM arrays and deep sleep mode to ensure power is only consumed when necessary

[26, 27]. LPDDR has had five generations (LPDDR, LPDDR2, LPDDR3, LPDDR4, LPDDR4X)

with a sixth (LPDDR5) currently in development by JEDEC. Similar to traditional DDR technolo-

gies, LPDDR has increased the prefetch size for each generation while maintaining a commitment

to lower power consumption.

1.3.4 Current Dual In-line Memory Module Issues

1.3.4.1 Heat and Power Consumption

Dual in-line memory modules (DIMMs) are circuits that are designed to seamlessly integrate

into CPU boards to provide DRAM-based storage. In fact, they are designed to be simplistic

devices because they rely heavily on the DMC on the CPU to control their actions. This is done

by the DMC sending a series of requests to the DIMM to carry out. As DIMMs become larger and

their hardware becomes more complex, they dissipate more heat and consume more power [28, 29].

With increasing DIMM sizes, the growing use of Buffered DIMMs and faster I/O clocking, DIMMs

become large contributors to the total system power consumption and heat dissipation. This will

become more problematic as the desire for larger main memory continues and the “Memory Wall”

[30, 31] continues to be a bottleneck for system performance.

1.3.4.2 Pin Count

The cost of DRAM cells has continued to decrease since the introduction of DDR SDRAM.

This is a result of reductions in minimum feature sizes in the fabrication process, allowing engi-

neers to pack more memory cells into the same MC. However, packaging costs have not decreased

at similar rates. This makes the pin count of DRAM devices a large contributor to the total price

of the final product [21]. With pin count being a critical factor in final manufacturing costs, ar-

chitecture trends have tried to minimize the pin count. Reducing pin count also leads to reduced

power consumption and heat dissipation. However, reducing pin counts can often lead to reduced
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memory bandwidth and therefore requires a careful trade-off study for different applications.

1.3.4.3 Refresh Rate

With DIMMs continuing to grow in size, the amount of memory they can store continues to

increase. However, as the name suggests, DRAM is dynamic and therefore needs to be refreshed

frequently to prevent data loss. According to JEDEC standards, rows containing valid memory

need to be refreshed every 64ms in order to prevent data loss. This periodicity decreases to 32ms

when the DRAM has an operating temperature of over 85oC [32, 33]. This means that larger

memories need to spend more time refreshing rows. With increasing chip density and more rows

in a refresh bundle, the time spent refreshing cells becomes a significant problem to memory

performance. This will be counterproductive to the advancements made in data transfer rates with

future DDR generations. Figure 1.11 shows the proportional relationship between the capacity of

the memory and the time spent refreshing cells. The figure shows that as the memory size increases

to 32GB, almost a fifth of the time will be used for refreshing stored data. Note that values are

doubled when the temperature is above 85oC [34].

Figure 1.11: Growing refresh rates as DRAM banks increase in size
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1.3.4.4 Commodity Status

DIMMs have been marked as a commodity compared to other components within a computer

system. As a commodity item, cost plays a major factor when considering different DRAM archi-

tectural decisions [21]. This can affect memory speeds as engineers trade off the complexity, power

consumption, and the cost while designing the computer system. In order to make a new memory

architecture competitive in today’s market, the memory designer needs to keep these tradeoffs in

mind.

1.3.4.5 Scalability

Since the introduction of the first DDR memory module, engineers have increased transfer

speeds by increasing the data rate for a DIMM’s I/O bus. As a result, the internal DRAM hardware

has several changes with new generations of DDR SDRAM (Table 1.1). To compensate for the

slow internal DRAM die, each generation of DDR has increased the prefetch length. This means

more data is returned for each column and row address that is transmitted to the DIMM. Though

this technique has been successful in the past, larger prefetch architectures will not only be difficult

to design in future generations of DRAM but will likely transfer data that goes unused.

DDR Generation Internal Memory Chip Clock (MHz) I/O Data Bus Clock (MHz)

DDR 100 - 200 100 - 200

DDR2 100 - 266 200 - 533

DDR3 100 - 266 400 - 1066

DDR4 133 - 266 1066 - 2400

Table 1.1: DDR I/O bus transfer rates
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2. SCALABLE AND SYNCHRONOUS 3D CLOCK DISTRIBUTION∗

2.1 Introduction

Ring-based Resonant Standing Wave Oscillators (RRSWOs) have been shown to be an ef-

fective technique to perform low power clock generation and distribution for high-speed clocks

[2, 35, 36]. The resulting clock signals can achieve very high frequencies and exhibit low skew.

Utilizing through-silicon-vias (TSVs), an RRSWO can form a 3D ring that distributes this high-

speed clock to all the die in a 3D IC stack. In this chapter, we present an RRSWO-based technique

to generate and distribute a high frequency, low skew clock in a 3D IC. We also present a scheme

to synchronize two such 3D RRSWOs without the use of a Phase Locked Loop (PLL). This will

reduce manufacturing cost, provide effective synchronization between the 3D ICs and create a scal-

able system with low clock skew. Finally, we present the design of a robust bootstrap circuit for

3D RRSWOs. We validate our ideas using circuit simulations, including Monte Carlo simulations

to quantify the resilience of our approach to process and voltage variations.

2.2 Terminology

Here we define some terminology that will be utilized throughout this chapter. These concepts

relate to our clock generation and distribution approach and help the reader identify the advantages

of our technique.

• Standing Wave: A stationary wave whose phase at any point in space is constant.

• Mobius Crossing: A swapping of two parallel wires to create a closed and infinite signal

path. This can be used to create a standing wave as the signal travels between the logical low

and logical high wires.

• Virtual Crossing: A location opposite the Mobius Crossing where the voltage magnitude

∗Part of the data reported in this chapter has been updated with permission from “Synchronization of Ring-based
Resonant Standing Wave Oscillators for 3D Clocking Applications” by Andrew Douglass and Sunil P. Khatri, 2018.
International Conference on Computer Design (ICCD), pp. 318-325, Copyright by IEEE.
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remains constant, at approximately half the rail voltage.

• RRSWO: A Ring-based Resonant Standing Wave Oscillator is a type of resonant circuit used

to generate and distribute a fast, oscillating signal. It utilizes a set of long parallel wires with

an odd number of inverter pairs connected across the wire pair to provide negative resistance

and sustain the oscillation. With a Mobius Crossing used near one inverter pair in the ring,

the generated clock signal throughout the ring will be sinusoidal and possess the same phase

at all points along the ring.

• Q-factor: A dimensionless parameter which is the ratio of the center frequency of an oscil-

lator to its bandwidth. An oscillator with a high Q-factor is underdamped, indicating that

the oscillator has high amplitudes and a small frequency range. In contrast, a low Q-factor

means that the oscillator has a large frequency range and smaller amplitudes at their resonant

frequency. This makes oscillators with a low Q-factor useful in circuits that require a wider

operating frequency range.

• PLL: A Phase-Locked Loop is a feedback control system that outputs a clock signal which

has a phase and frequency that is identical to the phase and frequency of the control system’s

input signal. These systems are heavily used in modern ICs as they allow for synchronization

of internal clocks in the IC with an external reference clock.

• TSV: Through-Silicon Vias are wire stubs that create signal paths between different dies in

a 3D stack. Because they connect densely packed 3D dies together, they are less expensive

and faster than traditional pin-based connections, such as flip chips and wire bonds.

2.3 Previous Work

The authors in [37] presented an analysis of a rotary traveling-wave oscillator that can operate

in the gigahertz range. Though effective in producing a clock in the three to eight gigahertz range,

the points along the rotary ring have different phases. As the number of inverters in the rotary oscil-

lator increases, the capacitance increases, thus increasing the period of the square wave clock that
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is produced. The authors in [38] also presented a traveling-wave oscillator that utilizes a plurality

of inverter pairs throughout the rotary ring. Their oscillator was analyzed at lower frequencies (2-

3GHz), and they fabricated a chip that shows the resilience of such a clock distribution technique.

Again, the phase change makes it difficult to use in traditional synchronous design. Also, larger

inverter pairs cause an increase in total power consumption.

To implement a clock PLL, [36] and [39] utilized a high-frequency standing wave oscillator

(SWO). In [39], the authors used a plurality of coupled oscillators. To maintain the oscillation, a

cross-coupled NMOS pair is used with a PMOS diode to set the common mode voltage. In [36],

the authors present an RRSWO based PLL, with fine frequency adjustment performed by changing

the body bias of the PMOS devices in the inverter, and coarse frequency adjustment performed by

changing the inductance of the ring. Both techniques present effective means of synchronizing

two clocks but require higher power consumption and more circuitry to ensure the clocks remain

in phase.

The authors in [40] and [41] have also implemented a PLL. However, they utilized an agile

voltage-controlled oscillator (VCO) and an automatically adjusting nominal frequency VCO, in-

stead of an SWO, to achieve frequencies around 1GHz and 10GHz respectively. In [42] the authors

also implement a PLL that can operate in the gigahertz range with a particular emphasis on its set-

tling time. They emphasize the charge pump current and the parameters of the loop filter to achieve

a locking time of 1.5 µs. These techniques allow an efficient search for a nominal frequency but

suffer from higher energy consumption.

Energy efficiency of synchronization is also important, as shown by the authors in [43] and

[44]. They are able to achieve a total PLL power consumption of 4.6mW and 11.4mW respec-

tively. These approaches involve prescient loop filters and a feed-forward compensation technique

to minimize power consumption. However, the maximum achievable frequency using these tech-

niques are lower than 3GHz.

For clock distribution schemes like mesh, H-tree, and traveling wave oscillators, there is an

inherent skew that results from imperfections in fabrication. There have been many proposed tech-
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niques to minimize the skew between endpoints. In [45] the authors propose a skew-compensation

circuit. The circuit is designed to detect the propagation delay to an endpoint and compensate for

potential differences in endpoint delays. However, the frequency of oscillation was limited to a few

hundred megahertz and the power dissipation was significantly higher given the complex circuitry

involved.

Another skew compensation approach is [46], in which the skew of each endpoint of the H-

tree is individually measured and adjusted to be a fixed value by using binary weighted capacitors

at each endpoint. To combat high power consumption, other techniques such as those presented

in [47] try to use currents instead of voltages to distribute a global clock signal. They utilize a

high-performance current mode pulsed flip flop that uses a driver and a receiver on either end of

the clock transmission line. Though they are able to reduce power consumption by up to 42%,

propagation delay can increase up to 35%, which can severely limit the speed of the distributed

clock.

In [48] the authors implement a clock generating device for miniature implantable medical

devices. This is done using an all-digital frequency locked loop which takes advantage of the

inductive power supply. The clock generation is done without a crystal, but the oscillation fre-

quency is only around 100MHz. This is significantly slower than the tens of gigahertz oscillation

frequency that can be achieved with an RRSWO.

As opposed to the previous approaches, our goal is to provide a resilient technique to syn-

chronize two independent clocks without the use of a PLL. This is done using multiple RRSWOs

which allow for fast, low skew oscillation while minimizing power consumption. In the following

sections, we will introduce our proposed technique and present the result of simulations to show

that our approach can improve on previously proposed clock distribution techniques.

2.3.1 Resonant Standing Wave Oscillators

Several research efforts over the years have tried to develop clock generation and distribution

schemes that provide a fast and low skew clock for digital systems. Typically, these approaches

tackle clock generation and distribution separately. The RRSWO presented in [2] and [35] combine
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low power clock generation and distribution approaches for frequencies in the tens of gigahertz

range. Additionally, the Q-factor of such ring-based oscillators is high enough to provide low

jitter and better PVT tolerance, while also providing the ability to modify the oscillation frequency

using PLLs [36, 46]. Despite the advantages of an RRSWO, they have been restricted so far to

synchronizing logic on a single IC.

Figure 2.1: Resonant clock ring with recovery circuits [2]

Figure 2.1 shows an RRSWO, which consists of a pair of wires arranged in a ring, with a

Mobius Crossing along with a single cross-coupled inverter pair at the Mobius Crossing, to provide

25



the negative resistance required to sustain oscillation. Waveforms along the ring are sinusoidal

with the amplitude diminishing as one approaches the virtual “zero" location. A full amplitude

square wave output is extracted from the resonant ring using a series of differential amplifiers

which act as clock recovery circuits. The region near the virtual “zero" location, however, is

considered the “dead-zone" where the sinusoidal amplitude is too small to reliably recover a full

square wave output. As a result, differential amplifiers are not placed in this “dead-zone" region.

The differential amplifiers use a direct current (DC) bias transistor to control the tail current, as

shown in Figure 2.2. A single stage differential to single-ended output is used with a current mirror

active load. This single-ended output is then driven by two inverters in an increasing size inverter

chain. This allows the extracted clock output to drive the capacitive load in an appropriately sized

region of the IC.

Figure 2.2: Differential amplifier clock extraction circuit
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Despite the high frequencies of oscillation, such a ring, as shown in Figure 2.1, has a limited

perimeter. Assume that the ring wire pair has a total inductance L and a total capacitance C. This

would result in an oscillation frequency as shown in Equation 2.1 below.

f =
1

2π

√
1

LC
(2.1)

For higher frequencies (above 10GHz), the perimeter of the ring (P ) needs to be in the 1mm

to 3mm range. This is extremely small compared to typical die sizes, which may be 1cm by 1cm

or larger. This means that the resonant ring is unable to distribute a clock signal across the die area

effectively. One alternative would be to increase the perimeter of the ring, but this would decrease

the frequency of oscillation since it would cause both L and C to increase.

Figure 2.3: Increasing the perimeter of the RRSWO

To increase the perimeter of the ring, without decreasing the oscillation frequency, an odd

number of equally spaced inverter pairs can be placed in between the clock wires [2]. Figure

2.3 shows the traditional RRSWO with a single inverter pair with perimeter P (left), alongside
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an RRSWO with three times the perimeter (right) and the same oscillation frequency. The larger

ring (right), uses three inverter pairs with an equal distance P between each pair. The resulting

configuration oscillates at the same frequency as the single inverter pair (left). In general, an

RRSWO with k inverter pairs and a total perimeter kP will oscillate at the same frequency as the

RRSWO with one inverter pair and a perimeter P (for any odd value of k). Using this approach, the

total perimeter of an RRSWO can be increased to “cover" the entire IC. In this way, the RRSWO

is able to generate and distribute a high frequency, low power resonant clock with very low skew.

The work in this chapter describes a novel circuit to bootstrap the RRSWO. Additionally, in

the context of the use of the RRSWO structure in 3D IC stacks, by utilizing a redistribution layer

(RDL) stub between two RRSWOs, we demonstrate how we can synchronize two clocks in the

tens of gigahertz range with a fast settling time. The use of this RDL stub prevents the need for a

PLL. The key contributions presented in this chapter include:

• Presenting the design of a novel bootstrap circuit which allows the RRSWO pair to oscillate

from a power-up condition.

• Presenting an RRSWO design which is specifically tailored for 3D IC designs.

• Showing that two separate 3D IC stacks can be synchronized by injection locking, using a

wire RDL stub. The resulting system oscillates with minimal skew between the two 3D IC

stacks.

• Showing that the above designs are robust to voltage and process variations by means of

VDD and Monte-Carlo simulations.

• Showing that our proposed design avoids the use of a PLL, which can be expensive, consume

a lot of power and is difficult to operate at the frequencies under consideration.

2.4 Our Approach

The two wires in an RRSWO tend to initialize into an intermediate, non-rail state when powered

up. This is because the ring wires are highly capacitive in nature, which causes the wires to
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reach a static mid-rail stable equilibrium state (which is approximately VDD/2). Prior to our

research, it was assumed that the RRSWO could begin oscillation through the use of the cross talk

between the wire pair in the ring. This would require a transition on a wire to create a large enough

coupling effect on the mid-rail equilibrium state of the ring. However, upon further simulations,

we discovered that the capacitance of any given ring is too high for inter-wire cross talk to cause

a large enough disturbance to start oscillation. Therefore, we developed a bootstrap circuit to

initialize oscillation for any given RRSWO configuration.

2.4.1 Bootstrap Circuit

The circuit of Figure 2.4 forces the ring to oscillate by asserting and then de-asserting the reset

signal (rst). Every inverter pair in the RRSWO is designed using the circuit of Figure 2.4. Every

inverter pair will receive the same set of signals and operate in the same manner.

Figure 2.4: Bootstrap reset circuit

29



When the reset is asserted (rst is driven high and rstb is driven low), both the ring wires are

driven into a high state, due to transistors X5 and M5. Note that DELrst and DELrstb are delayed

versions of rst and rstb respectively. The transistors M2, M3, X2, and X3 are turned off in this

condition. When the rst signal is de-asserted, the upper ring wire (A) remains high longer, since

M5 is driven by a delayed rstb signal (DELrstb). This delayed signal is expected to be less than

half of the expected clock period of the given ring configuration. Additionally, the lower ring

wire (B) is driven low since X4 and X3 both turn on after rst is de-asserted. This gives the upper

ring wire (A) and the lower ring wire (B) different logical values which will begin the oscillation

of the RRSWO. By designing the delay between the delayed and regular rst (and rstb) signals, a

sufficiently large voltage separation can be ensured between the two ring wires, forcing them to

enter the oscillatory state.

Figure 2.5: Bootstrap reset waveform for single 2D RRSWO

Figure 2.5 shows the waveform for a single 2D RRSWO utilizing the bootstrap circuit for the

cross-coupled inverter pairs. The rst signal goes low (rstb goes high) starting at one nanosecond

which begins the oscillation process. The ringA and ringB signals represent the clock wires of

the RRSWO. These signals start in a high state because they are pulled up by transistors M5 and

30



X5, as was shown in Figure 2.4. Once rst is de-asserted (rstb asserted), ringA and ringB begin to

oscillate. DELrst begins to go low (DELrstb goes high) at 1.2 nanoseconds which turns the cross-

coupled inverter pair on. This allows the bootstrap circuit to sustain the RRSWO oscillation. The

signal labeled diff represents the extracted full amplitude square wave clock after signals ringA

and ringB pass through the clock recovery circuit. By 2.4 nanoseconds (1.2 nanoseconds since rst

was de-asserted), the RRSWO enters a stable oscillatory state.

2.4.2 Standalone 3D RRSWO

Figure 2.6 shows a 2D RRSWO on the left that matches the design presented on the right

hand side of Figure 2.3. The gray lines that intersect the various shapes symbolically represent

the pair of clock wires of the RRSWO. The squares represent the inverter pair locations where the

Mobius Crossing can be placed adjacent to any inverter pair. The circles show example locations

of the clock recovery circuits (differential amplifiers) that are designed to extract a full amplitude

square wave clock from the sinusoidal signal that the RRSWO produces. The dotted lines show the

locations of the virtual “zero” crossings where they are exactly halfway between each set of inverter

pairs. As previously discussed, the clock recovery circuits are not placed near these virtual “zero”

crossings as the amplitude of the sinusoidal wave is not large enough to extract a full amplitude

clock.

Using this notation, we can rearrange the 2D RRSWO presented on the left hand side of Figure

2.6 to yield the serpentine structure presented on the right-hand side of the figure. This cross-

sectional view of the 3D IC shows the inverter pairs residing on the bottom (master) die. The

resonant ring is comprised of TSVs, which are shown by the vertical gray wires on the right side

of Figure 2.6. These TSVs are connected through each die by microbumps [49]. The circles show

the same clock recovery circuits (differential amplifiers) from the left hand side of the figure that

produces the square wave output clock. Traces are extended at the top of the stack to accommodate

the virtual “zero" locations. These traces are 2D traces on the top die of the stack. Note that the

clock extraction points are evenly distributed throughout the slave dies.
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Figure 2.6: 2D to 3D adaptation for an RRSWO

2.4.2.1 Experimental Results

The RRSWO bootstrap and synchronization experiments were conducted using the HSPICE

circuit simulator [50]. In order to obtain the resistive, inductive and capacitive (RLC) characteris-

tics of the ring, we used Raphael [51] with the clock wires modeled as cylindrical TSVs. These

clock wire TSVs had a 2 µm diameter with 4 µm spacing between the surfaces of the clock TSVs

as shown in Figure 2.7. The spacing between these clock TSVs and the ground plane encasing

them was set to 5 µm. Using these parasitics, each section of the ring (the section between two

inverter pairs) was modeled using 200 T-sections. Every section is a segment represented by a

2200 µm long pair of TSVs. A 16 nm predictive technology [52], with VDD at 0.7V , was used for

simulations in HSPICE. In total, each segment can support 200 extraction points, since we utilize

200 T-sections per perimeter segment. However, because of the virtual “zero” location, only 133

of these extraction points are used to extract a full amplitude clock signal. Therefore, these 133

points are the only ones that possess the clock recovery circuits (differential amplifiers).

Figure 2.8 shows the notation used throughout the remaining figures. The bars that are not
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Figure 2.7: Clock TSV cross sectional view

outlined show the average value with the maximum and minimum indicated by the black range

markers (left). The right side shows the power bar (which is outlined by the red dotted line) and

the current bar (which is outlined by the black bar). These values correspond to the power axis and

current axis respectively.

Figure 2.8: Bar chart legend

33



Figure 2.9 shows the standing wave that can be observed in steady state for a RRSWO. The

configuration to obtain this waveform utilized a ring that was 6600 µm in length with three evenly

spaced inverter pairs. The full amplitude standing waves are those points closer to the inverter

pair while those that do not oscillate are close to the virtual “zero” location. Figure 2.10 shows

the output of the clock recovery circuits. This represents the full amplitude clock that can be used

to drive synchronous logic. The waveform shows all 399 points that are able to extract a full

amplitude clock.

Figure 2.9: Overlaid standing waveform for example RRSWO

Figure 2.11 shows the period of a 3D RRSWO with the size of the inverter pair varied. The

values shown represent steady-state behavior, that is after the ring comes out of reset. Three ex-

periments were simulated with each experiment having a different number of segments (and ring

length). As the number of segments increased (1, 3 and 9), the total ring length also increased

(2200 µm, 6600 µm and 19 800 µm) so that every segment remained 2200 µm in length. As ex-
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Figure 2.10: Overlaid extracted clock waveform for example RRSWO

pected, from Figure 2.3, the oscillation period of the RRSWO remained relatively constant as the

number of segments increased. Note as the inverter size increased the clock period slowly in-

creases, since the total ring capacitance increases (see Equation 2.1). However, there was minimal

variation in the clock period as we moved to different points throughout the ring, as shown by the

range marker bars. For all configurations, the period remained within ±0.4% of the average. This

shows that the RRSWO is able to distribute a clock with minimal jitter to all its endpoints.

Figure 2.12 shows the skew of a 3D RRSWO with the same configurations. The skew values

represent the intra-ring skew as we move from the inverter pair location towards the virtual “zero”

crossing. As expected, the skew values got larger as we moved farther away from the inverter pair

location but remained well-controlled. The average skew remained within 2.8% of the average

period while the maximum skew remained within 5.2% of the average period. This shows the

ability for the RRSWO to generate and distribute a fast, low-skew clock to large areas of an IC.

Finally, Figure 2.13 shows the power consumption of a 3D RRSWO as we varied the number of
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Figure 2.11: Period of independent RRSWO

Figure 2.12: Skew of independent RRSWO
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segments and inverter pair size. As expected, the power consumption of the RRSWO increases with

the number of segments and the size of the inverter pairs. The inverter pairs are the primary source

of power consumption in the ring as they maintain the sinusoidal oscillation of the clock wires.

Therefore, as the inverter pair size increases, there is an increase in power per inverter pair of about

0.23mW . This increase is represented by the difference seen from the 160× inverter pair size to the

280×. In addition, as expected, the power consumption roughly triples as the number of segments

triples. On average, each segment consumes approximately 1.21mW of power. This linear scaling

in power consumption is significant as other clocking schemes (like the previously discussed grid

or H-tree) have exponentially growing wire complexity and therefore exponentially growing power

consumption as the size (number of stages) of the H-tree increases. In the following sections,

we will evaluate the changes that occur when a redistribution layer (RDL) stub is introduced to

synchronize two 3D RRSWOs.

Figure 2.13: Power of independent RRSWO
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2.4.3 Synchronized 3D RRSWOs

2.4.3.1 RDL Stub-based Synchronization of two 3D RRSWOs

Until recently, the RRSWO design has been specifically tailored for 2D clock generation and

distribution. In Section 2.4.2, we presented our RRSWO design that was adapted for 3D ICs. In

this section, we will discuss how we injection lock the RRSWOs of two 3D IC stacks.

Two stacks utilizing the 3D RRSWO that was presented in Figure 2.6 can be placed side by

side as seen in Figure 2.14. A short RDL stub connects the RRSWO rings of the two 3D stacks

at the indicated inverter pair locations to synchronize their oscillations. It is important to note that

the RDL stub consists of two identical stub wires. One stub wire connects the outer wire of one

RRSWO to the outer wire of the other RRSWO. The second stub wire connects the inner wire of

one RRSWO to the inner wire of the other RRSWO. This is necessary in order to ensure the clock

wire pair of one ring follows the same phase of the other ring. Use cases of such an architecture

include a fast Network-on-Chip [2, 53], PLL related systems [36, 39] and 3D Stacked DRAM.

Figure 2.14: Synchronizing the RRSWOs of two 3D ICs
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2.4.3.2 Tristateable Inverter Pair Circuit

The bootstrap circuit presented in Figure 2.4 forces the ring into an oscillatory state after power

up. However, when synchronizing two RRSWOs, the skew between the reset signals of the differ-

ent inverter pairs in the two different rings can cause synchronization issues. When the size of the

inverters are the same in both rings, and the skew between the reset signals of these rings is over

half the desired clock period, the rings can synchronize 180 degrees out of phase. Our solution to

solve this issue is to increase the size of the inverter pairs of one ring compared to the other. This

creates a master ring that will “drag” the slave ring to match its phase and oscillation frequency.

Figure 2.15: Tristateable inverter pair

Figure 2.15 shows the additional tristateable inverter pair that are added in parallel with the

inverter circuit in Figure 2.4. When ON is high (ONb is low), then the tristateable inverter pair in

Figure 2.15 will turn on, and the additional inverter, when connected in parallel with the circuit in
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Figure 2.4, will effectively yield a larger ring inverter pair. The resulting increase in capacitance

will slow down the ring slightly but enables us to adjust the size of the inverter pairs within each

ring. By setting ON to high, and ONb to low in the first ring (and ON to low, and ONb to high in the

second ring), we can force all the inverter sizes of the first ring to be larger than those of the second

ring. In other words, the first ring acts as the master ring and the second ring acts as the slave

ring. This ensures the rings will never synchronize 180 degrees out of phase. At the same time, the

design and layout of both rings are identical, resulting in reduced manufacturing costs. The sizes

of the additional tristateable inverters of Figure 2.15 (20× minimum size) are much smaller than

those of Figure 2.4 (at least 140× minimum size), hence the additional inverters do not interfere

with the bootstrap operation.

2.4.3.3 Experimental Results

Figure 2.16 shows the reset waveforms and the clock outputs for two connected 3D RRSWOs

as they transition out of power-up. The rst signal is the reset for the first RRSWO, while the

DELrst signal shows the delayed reset signal. The ringA and ringB waveforms represent the signal

of the outer wire of RRSWO-A and RRSWO-B respectively. This is the sinusoidal signal be-

fore it gets extracted to a full amplitude clock by the differential amplifiers. The diffA and diffB

waveform respectively show the ringA and ringB signals after they pass through the differential

amplifier. Following the de-assertion of the reset signals, the output of the two extraction points

takes approximately 1.5ns to begin oscillating in phase. The signals remain in phase after 3ns (not

shown).

In the following experiments, we simulated two rings which were connected via an RDL stub.

The modeled RDL stub had a total capacitance of 185 fF, a total resistance of 3.4 Ω, and a total

inductance of 1.35 nH (these values were provided by AFRL). There were several parameters

varied, such as the size of the inverter pair, the number of ring segments k per ring, and the location

of the RDL stub. In addition to these variations, we subjected the rings to cycle-by-cycle supply

voltage variations (60mV peak with a 100ps period), as well as long term supply voltage variations

(40mV peak over a 20ns period). For every simulation, we measured the clock period, intra-ring
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Figure 2.16: Power-up of 2 3D SWOs with the variable size bootstrap circuit

skew, inter-ring skew, power (at multiple points throughout the ring) as well as the current through

the RDL stub. The inverter pair size of one ring was kept at 140× minimum size (140× for the

bootstrap circuit with the tristateable inverter pair circuit turned off). The other ring was varied

from 160× minimum size to 280×, where the 20× tristateable inverter pair circuit is included in

these calculated sizes. In other words, the bootstrap reset circuit was varied from 140× to 260×

while the 20× minimum size tristateable inverter pair circuit was turned on.

Figures 2.17, 2.18, 2.19 and 2.20 show the results for two independent RRSWOs that are

connected via an RDL stub. Three different synchronization points are simulated (0, 45, and

90 degrees, where the virtual zero location is 180 degrees). All configurations consist of two

independent rings (each with 3 inverter pairs) that have a total ring perimeter 6600 µm (2200 µm per

segment). The cross-section of the clock TSVs was kept consistent with the dimensions presented

in the standalone 3D RRSWO section (Section 2.4.2).

Figure 2.17 shows the average, minimum and maximum period measured for different inverter

sizes and RDL stub locations. This figure illustrates the ability of the RDL stub to synchronize the

two rings that would otherwise oscillate independently at different frequencies. The results show

that the oscillation frequency drops slightly (compared to Figure 2.11) when a stub is introduced.

For example, two independent rings (no RDL stub) with inverter pair sizes of 160× oscillate at

15.3GHz but instead oscillate at 13.3GHz when an RDL stub is introduced. This is expected
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Figure 2.17: Period synchronization of two 3D RRSWOs with 3 segments each

since the ring parasitics increase due to the introduction of the stub. The bars in Figure 2.17 indicate

the average period of the synchronized rings while the black markers indicate the minimum and

maximum period that was measured for every configuration. A stub located at 0 degrees causes

the worst degradation of the clock period but this degradation is less than ±0.5% compared to the

clock period for a stub at 45 degrees. However, a 0-degree stub results in the lowest variation in the

clock period (no more than ±0.08%). Across all the stub locations, the variation of the clock for

all inverter sizes and all RDL stub locations remained less than ±0.7% of the total clock period,

which is extremely low.

Figure 2.18 and 2.19 shows the well-controlled intra- and inter-ring skew values. In every

simulation, the size of the inverter pairs in the first ring was held constant at 140×, while the

inverter size of the second ring was selected to be 160× through 280× in steps of 20×. The

skew values are at most ±3.6% of the clock period, which is impressive given the high speed of

the oscillator and the fact that no PLL is employed in our simulations. The intra-ring skew is

represented by Figure 2.18 where the average skew is indicated as a vertical bar and the black
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markers show the minimum and maximum skew. Figure 2.19 shows the inter-ring skew, which

is significantly lower than the intra-ring skew values (at most 1.5% of the clock period). This

is because the inter-ring skew is measured between identical points on the two RRSWOs while

the intra-ring skew is measured across different points found in the same ring. The skew values

presented in Figures 2.18 and 2.19 illustrate the effectiveness of our stub-based synchronization

scheme.

Figure 2.18: Intra-ring skew of two 3D RRSWOs with 3 segments each

Figure 2.20 shows the total average power consumption and the current through the RDL stub.

The total average power consumption increases slightly with the inverter size as expected, but

remains relatively constant when the location of the RDL stub is moved. The total average power

consumption is in the range of 4.1 to 5.2 mW , which is close to the values obtained by the energy

efficient PLLs presented in [43] and [44]. Our approach, however, can synchronize clocks over 5×

faster than other energy efficient designs. The bars that are outlined in the black solid line show the

current through the RDL stub. As expected, the amount of current through the stub increases with
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Figure 2.19: Inter-ring skew of two 3D RRSWOs with 3 segments each

the increasing size of the inverter pairs. This is because as the difference in inverter sizes between

the two rings increases, the two RRSWOs would nominally oscillate at different frequencies if no

RDL stub was used. This RDL current is the smallest when the larger inverter is 160× (recall that

the smaller inverter is always 140×), as the inverter sizes of the two rings are similar in size and

would independently oscillate at a similar period.

When cycle-by-cycle supply voltage variations are introduced, with the RDL stub located at 0

degrees, the average clock period is within ±0.3% of the fixed VDD simulations. The minimum

and maximum clock period varies up to ±1.2ps. This is within 1.6% of the average clock period

and is quite low. Average power consumption and current through the stub with cycle-by-cycle

VDD variations remains within ±0.6% and ±4.3% respectively, as compared to the values reported

for fixed VDD. Intra- and inter-ring skew however, is higher (by ±4.4% and ±3.1% respectively)

when VDD is subject to cycle-by-cycle variations, which is expected considering the higher clock

period variations.

With long-term VDD supply voltage variations, the average clock period again remains within
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Figure 2.20: Power consumption and RDL stub current of two 3D RRSWOs

±1.2% of the fixed VDD simulations (Table 2.1). This is significant because most oscillators

have a strong dependence of frequency on the supply voltage. On the other hand, our oscillation

frequency is dominated by the LC parasitics of the ring, hence its period barely changes with

supply voltage variations. The clock period variations decrease compared to the clock period

variations in cycle-by-cycle supply voltage (by about 0.1ps). The intra- and inter-ring skew for

long term VDD changes is less than the skew for cycle-by-cycle changes (±4.1% and ±2.4% with

respect to the clock period).

Table 2.1 shows a summary of the variations seen when cycle-by-cycle and long-term supply

voltage variations are introduced. These results represent simulations with the RDL stub located at

0 degrees. The period, intra-ring skew, and inter-ring skew values are with respect to the average

clock period for the fixed supply voltage simulations. The power and RDL stub current values are

with respect to their fixed supply voltage averages. The variations were higher for cycle-by-cycle

variations compared to long-term variations. However, the variations all remained extremely low

because the RRSWO’s oscillation frequency is primarily dependent on the ring’s inductance (L)
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and capacitance (C), as was shown in Equation 2.1. This is significant as it shows our 3D RRSWOs

are resilient to supply voltage variations.

Fixed VDD Cycle-by-cycle Long-term

Period (ps) ±0.7% ±1.6% ±1.2%

Intra-ring skew (ps) ±3.6% ±4.4% ±4.1%

Inter-ring skew (ps) ±1.5% ±3.1% ±2.4%

Power (mW) ±0.3% ±0.6% ±0.5%

RDL stub current (mA) ±3.9% ±4.3% ±4.2%

Table 2.1: VDD jitter for varying RDL stub locations connecting two 3D RRSWOs

The results presented in Figures 2.17, 2.18, 2.19 and 2.20 show that a wire stub connection can

be used to synchronize two resonant RRSWOs without using a PLL. These RRSWOs will oscillate

with minimal inter-ring skew and consume minimum power while maintaining frequencies above

10GHz. This is significant because we not only generate and distribute a low skew clock, but we

also are able to synchronize these low skew clocks across two 3D IC stacks (all while maintaining

power consumption equivalent to energy efficient PLLs).

The experiments presented in Figures 2.21, 2.22, 2.23 and 2.24 show the results of varying the

number of segments k in the ring. This was done by adding evenly spaced inverter pairs at a spacing

of 2200 µm in each ring. The clock wire TSV dimensions matched the cross-sectional dimensions

used in the independent ring simulations (Figure 2.7). In addition to varying the number of inverter

pairs, we also varied the size of the inverter pairs in one ring (from 160× to 280× in steps of 20×).

The inverters in the other ring were fixed at 140× as described earlier. Note that the tristateable

inverter pair circuit is turned off in this constant inverter size ring to ensure the two rings never

synchronize 180 degrees out of phase. The wire stub connection was left at 0 degrees for all

simulations, since it yields the best performance in terms of skew, variation of period, average

power and stub current (from Figures 2.17, 2.18, 2.19 and 2.20). In these experiments, the rings
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had a total length of 2200 µm, 6600 µm, and 19 800 µm (corresponding to 1, 3, and 9 respectively).

Figure 2.21 shows the average, minimum and maximum period of the RRSWOs with the varied

inverter size and 1, 3, and 9 segments (see Figure 2.3). As the results show, the average period

varied slightly with the increasing number of segments. This variation, however, was within 5%

of the average period for a given inverter size. The variation in the clock period remained within

0.22% for a given number of segments and inverter size (as shown by the black markers in Figure

2.21). This shows the ring’s ability to generate and distribute a fast, low-jitter clock even as the

number of segments was increased.

Figure 2.21: Period of two 3D RRSWOs with varying number of segments

Figures 2.22 and 2.23 show the average and maximum intra-ring and inter-ring skew as the

number of segments in each ring is increased. The intra-ring skew was slightly higher than the

inter-ring skew but remained within ±4.5% of the overall clock period (which is roughly the same

for all ring sizes as discussed in Figure 2.12). The inter-ring skew for all configurations shows that
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the clock period remained within ±3% at identical points in both rings. This is a critical result in

showing that the two rings are synchronized and oscillating in phase without needing a PLL.

Figure 2.22: Intra-ring skew of two 3D RRSWOs with varying number of segments

The average power consumption, on the other hand, shows a roughly 3× increase in relation

to the 3× increase in the number of inverter pairs (Figure 2.24). This is expected as these large

inverter sizes are the primary contributors to the power being consumed in the RRSWO. The bars

outlined by the solid black line in Figure 2.24 show the current through the RDL stub as the inverter

size and number of segments are varied. As expected, the current increases with the increase in

the number of segments in the ring and the inverter size. This is because the larger rings (the ones

with more segments) requires more drive strength in order to ensure the rings oscillate together.

The experiments that were presented in Figures 2.21, 2.22, 2.23 and 2.24 were repeated for

cycle-by-cycle VDD variations and long term VDD variations (Table 2.2). The addition of varia-

tions on the supply voltage causes higher variations in the clock period (about ±5% for cycle-by-
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Figure 2.23: Inter-ring skew of two 3D RRSWOs with varying number of segments

cycle and ±4% for long term VDD variations compared to ±3% for a fixed VDD). However, the

average clock period remains within ±1.7% of the clock periods for a fixed VDD (Figure 2.21).

The intra-ring skew increases to within ±4% of the average clock period (compared to ±3% for

fixed VDD) with long-term variations in VDD and increases to within ±6% of the average clock

period with cycle-by-cycle variations. Finally, the inter-ring skew increases to within ±6% (com-

pared to ±4.5% for fixed VDD) of the average clock period for cycle-by-cycle variations and to

within ±5% of the clock period with long-term variations. The absolute skew numbers are quite

small, however, as shown in Figures 2.22 and 2.23.

Table 2.2 shows the summary of the supply voltage variations when varying the number of

segments in both 3D RRSWOs. These results represent simulations with 3 segments for both

3D RRSWOs. The period, intra-ring skew, and inter-ring skew values are with respect to the

average clock period for the fixed supply voltage simulations. Similar to the varying RDL stub

location simulations, the variations were higher for cycle-by-cycle variations compared to long-

term variations. Again, the variations all remained extremely low because the RRSWO is primarily
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Figure 2.24: Power consumption of two 3D RRSWOs with varying number of segments

dependent on its total inductance and capacitance.

Fixed VDD Cycle-by-cycle Long-term

Period (ps) ±0.6% ±1.7% ±1.2%

Intra-ring skew (ps) ±2.8% ±5% ±3.1%

Inter-ring skew (ps) ±1.5% ±3.2% ±2.4%

Power (mW) ±1.1% ±4.3% ±2.7%

RDL stub current (mA) ±2.2% ±7.2% ±4.5%

Table 2.2: VDD jitter for varying number of segments of two 3D RRSWOs

Finally, we want to show a comparison between the oscillation of the independent ring and

a pair of rings with an RDL stub connecting them. Figure 2.25 shows the percent decrease in

the oscillation frequency between the oscillation frequency of an independent RRSWO and the
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oscillation frequency of two RRSWOs connected via an RDL stub (Figure 2.11 and Figure 2.21).

As previously mentioned, the oscillation frequency drops slightly when the RDL stub is introduced

because of the parasitics of the stub. This decrease in oscillation frequency dropped by almost

3× as the size of the inverters is increased, as one would expect. It is important to remember,

however, that the smaller inverter size results in the fastest clock frequency. In addition, Figure 2.25

shows that there is a smaller degradation in the oscillation frequency as the number of segments

is increased. This is because a ring with more segments has larger L and C parasitics and hence

insertion of the RDL stub does not increase the total L and C parasitics appreciably. The results

presented show that two RRSWOs connected via an RDL stub are still able to maintain oscillation

frequencies in the tens of gigahertz range.

Figure 2.25: Percent decrease in oscillation frequency when RDL stub is introduced
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2.4.3.4 Monte Carlo Simulations

The final experiments we performed on the stub-connected RRSWOs were Monte Carlo simu-

lations. We used the 9-inverter pair configuration for these simulations because this configuration

has the longest RRSWO rings. These simulations were performed to test the stability of the RR-

SWO structure. In each resulting figure, we show the statistics as the inverter size of one ring was

varied. The total ring perimeter was held at 19 800 µm, the inverter size of the first ring remained at

140×, the wire stub remained at 0 degrees, and there were 9 inverter pairs in each RRSWO. For the

threshold voltage, ±3σ was taken to be about ±6% of the nominal threshold voltage [52]. For the

channel length, ±3σ was taken to be ±10% of the nominal minimum channel length [52]. These

numbers are reasonable given that the inverter pair devices are chosen to be 2× of the nominal

channel length (to reduce the impact of variations) and have large widths as well. Each simulation

was run 30 times (this was determined based on total runtime considerations) and the results are

shown in Figures 2.26, 2.27 and 2.28.

Figure 2.26 shows the period statistics obtained from the Monte Carlo simulations. Compared

to a configuration with 1 or 3 inverter pairs, the 9-inverter pair configuration was least affected

by process variations. It resulted in low variations of the period and low intra-ring skew as the

inverter sizes increased. The bars in Figure 2.26 represent the average period achieved. The

black error markers on the average period bars show the standard deviation (the top of the error

marker being one standard deviation above the average while the bottom of the error marker is one

standard deviation below the average). This shows that despite the increasing standard deviation

with increasing inverter size, 66% (±σ) of our simulations remained within ±3.5% of the clock

period average. Similarly, 95% (±2σ) of our simulations remained within ±7% of the clock period

average.

Figure 2.27 shows the intra- and inter-ring skew for the Monte Carlo simulations. The bars

that are outlined show the average skew values with the black error markers showing a standard

deviation above and below the average for different configurations. The intra-ring skew (indicated

by the left set of bars) has a standard deviation is within ±2% of the average clock period for small
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Figure 2.26: Period of two 3D RRSWOs for Monte Carlo simulations

inverter pair sizes while it increases to ±4% as the inverter pair sizes increase. The inter-ring skew

standard deviation which is within ±1.5% of the average clock period for small inverter sizes and

increases to ±3.5% as the inverter pair sizes increase.

Figure 2.27: Skew of two 3D RRSWOs for Monte Carlo simulations
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Figure 2.28 shows the average power consumption and the current through the RDL stub for

the Monte Carlo simulations. As expected, the average power consumption and current through the

RDL stub gradually increase with increasing inverter size. The error markers show that the standard

deviation of each configuration remains within ±8.3% for power consumption and ±14% for RDL

stub current. However, for all configurations, and considering two standard deviations above the

average, the RRSWO configurations that were simulated still consume less than 16mW of power.

This is significant since our topology consists of multiple clock networks (one for each 3D stack)

and oscillates in the tens of gigahertz range. Again, the effect of the process variations for the

9-inverter pair configuration is less drastic compared to RRSWOs with fewer segments.

Figure 2.28: Power and RDL stub current of two 3D RRSWOs for Monte Carlo simulations

2.5 Conclusion

This chapter first presented a stand-alone RRSWO design for 3D IC stacks. A bootstrap circuit

for stand-alone RRSWOs was also described. In addition, we presented an injection locking ap-

proach via a short RDL wire stub to synchronize two independent 3D RRSWOs. With a wire stub,
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the 3D ring-based RRSWOs do not need a PLL and can maintain fast, low power and synchronized

oscillations. This is significant as it presents a method for synchronizing clocks between ICs with-

out the use of a PLL. We also presented a modified bootstrap design for the stub-connected pair of

RRSWOs. Our bootstrap circuit allows the RRSWOs to begin oscillation from an initial state, and

synchronize with additional RRSWOs in 5× less time than previously proposed PLL approaches.

Finally, we quantified the resilience of the stub-connected RRSWOs to process variations through

Monte Carlo simulations. As 3D ICs become more prevalent, the results we presented in this

chapter can provide a useful architecture to create a scalable and reliable clocking scheme for 3D

systems.
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3. 3D RRSWOS FOR DRAM APPLICATIONS∗

3.1 Introduction

Despite significant improvements in processor performance, main memory has lagged behind

and caused a bottleneck to system performance. To mitigate this “memory wall”, engineers have

increased clocking rates of the memory data bus for each generation of Double Data Rate (DDR)

memory. This enables higher memory bandwidth and has been proven effective for small data burst

lengths. For large data bursts, bandwidth tends to be wasted as data is transferred to the cache, and

often not used. The probability of transferred data not being used increases as main memory sizes

grow and multi-core systems become commonplace. Therefore, different applications utilize dif-

ferent DRAM architectures which vary in bandwidth, cost and power consumption. The following

sections discuss the history of these architectures, their disadvantages and the previous approaches

to alleviate these disadvantages. The final sections describe our approach and the experimental

results of our memory architecture compared to traditional DDR architectures.

3.2 3D Stacked Memory

To improve the performance of traditional DDR technologies that were listed in the first chap-

ter, many industry leaders have developed 3D DRAM stacks to meet the high bandwidth require-

ments. Unlike the previously mentioned DDR architectures, these 3D stacks can increase memory

performance without increasing the form factor. By utilizing compact TSVs, instead of traditional

I/O pins, 3D stacked memories have been able to achieve bandwidths significantly higher than

previous DDR technologies. With high-end applications requiring larger memory footprints, and

faster access times, the following 3D DRAM architectures can help mitigate memory bottlenecks.

∗Part of the data reported in this chapter has been updated with permission from “Fast, Ring-Based Design of
3D Stacked DRAM” by Andrew Douglass and Sunil P. Khatri, 2017. International Conference on Computer Design
(ICCD), pp. 665-672, Copyright by IEEE.
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3.2.1 High Bandwidth Memory

High Bandwidth Memory (HBM) is a high-performance version of 3D stacked memory de-

signed for GPU related applications. Adopted as a JEDEC standard in 2013, HBM targets high

throughput by using a 1024-bit data bus that gets divided into 8 independent channels (128 data

bits per channel). HBM takes traditional DRAM dies and stacks them up to eight high with a logic

die at the base to act as the memory controller. By stacking the memory chips, instead of placing

them on the PCB, 1GB of HBM only takes 35mm2 of space compared to 672mm2 of space in a

traditional GDDR5 architecture [54, 55]. With this smaller form factor, HBM memory stacks can

be placed on an interposer alongside the GPU (Figure 3.1). This allows wider busses between the

DRAM stacks and the processor to support the wider memory channels. However, the use of inter-

posers increases costs since they are significantly more expensive than PCB manufacturing. HBM

stacks are typically four DRAM MCs tall, with each MC containing two independent channels. It

is important to note that these channels are completely independent and are often not synchronous

with one another. The close proximity, higher chip count and wide data bus allow HBM to achieve

throughputs of over 100GB/s per stack [55, 56].

Figure 3.1: HBM cross sectional view
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HBM was first deployed in AMD’s Radeon series GPUs, which is based on the Fiji architecture,

in 2016. In the same year, JEDEC standardized the second generation of HBM known as HBM2.

Similar to its predecessor, HBM2 allows stacks that are up to eight MCs high. However, they are

able to double the pin transfer rates through the use of pseudo channels. These pseudo channels

essentially break individual channels into two independent sets of sub-channels (Figure 3.2). In

what is called legacy mode (a mode used to support HBM), each read/write command will transfer

256 bits during 2 cycles. Using pseudo channel mode (the mode used in HBM2), the 128-bit data

bus is split into 2 individual 64-bit segments that still transfers 256 bits but reduces the four-bank

activation window time [57]. A recent modification to the HBM2 specification allowed for stacks

of up to 12 MCs which has increased HBM2’s peak bandwidth to 307GB/s per stack.

Figure 3.2: HBM2 pseudo channels overview [3]

Industry leaders have also been developing a third and fourth generation of HBM. Each gen-

eration is promising higher stacks and denser DRAM dies to allow for higher capacity and higher
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bandwidth. However, as these DRAM stacks continue to grow in size, the ability to cool the MCs

becomes increasingly difficult. In addition, there is a limited amount of space where TSVs can be

placed which severely limits the number of independent channels that can be achieved per stack.

Later in this chapter, we will show our proposed architecture, which utilizes the previously dis-

cussed 3D RRSWOs in order to achieve an efficient communication topology. Our results will

show that this topology can reduce the number of TSVs, and power consumption while maintain-

ing speeds similar to HBM. This will show that our topology is a great candidate for a high-speed

interconnect in these future 3D memory stacks.

3.2.2 Wide I/O Memory

Wide I/O Memory is another 3D stacked memory but is targeted for low power applications.

Designed with mobile devices in mind, Wide I/O originally promised stacks of DRAM to be placed

directly on top of the processor. This results in significant thermal and power issues since the

heat from the processor die needs to dissipate through the stack. As a result, most Wide I/O

implementations still use an interposer like HBM. Wide I/O promises up to 17GB/s by using four

channels with 128 data bits per channel. The reduced bandwidth comes with less than half the

power consumption of HBM [58, 59, 60].

Wide I/O 2 builds on its predecessor by improving bandwidth to 68GB/s and minimizing power

consumption. Unlike the 512-bit data bus used by Wide I/O, Wide I/O 2 increases the bus width (to

match HBM) to 1024 bits [59]. Targeting high-end lower power applications, Wide I/O 2 became a

JEDEC standard in 2014. To date, this type of 3D stacked memory has yet to make it to production,

partly due to its high price tag for a mobile device.

3.3 Previous Work

There have been several research efforts that address the performance of 3D stacked memory

designs. In [61], the authors explored a solution to reduce skew between the 32 data lines used for

the data bus in HBM. Increases in skew reduce the window for valid data and result in decreased

bandwidth. To achieve a lower read skew, the authors use buffers on the logic die that are adjusted
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by successive approximation register logic. For write skew, they form loopback paths on the logic

die by controlling the buffer delays. After cancellation, they are able to achieve 15× less skew

with a difference of 18ps still left between the data lines [61].

The design of [62] proposes a technique to reduce refresh time for Hybrid Memory Cubes,

which is another form of 3D stacked memory developed by Intel and other companies. The paper

suggests using subarray-level and bank-level concurrency to reduce the time spent performing the

refresh operation for the memory cells. By mapping multiple DRAM rows to subgroups which are

refreshed concurrently, significant time is saved refreshing the memory. This reduces the power

consumption by 5.8% and improves throughput by 6.3% [62].

The work of [63] proposed a new I/O organization to increase memory bandwidth. They com-

bine the internal bandwidth of multiple layers of DRAM die to increase I/O speeds. By time-

multiplexing the I/Os across DRAM dies, the authors claim up to 55% improvements in perfor-

mance for multi-programmed workloads. The most important factor, however, is that it maintains

low cost by leveraging internal global bit-lines instead of adding external global bit-lines [63].

The authors in [64] discuss the improvements that can be made in large scale data servers by

using the message passing interface packet protocol. This protocol, however, requires high mem-

ory bandwidths with short interconnects to ensure memory utilization does not result in system

performance bottlenecks. They show how the use of 3D stacked DRAM can be used to service the

message passing interface protocol to increase system performance in large scale data servers. This

allows many context switches with a fast response time as the amount of memory can be increased

while decreasing the trace lengths.

3D memory stacks possess unique characteristics that result in new storage paradigms. One

such paradigm is the use of a reshape accelerator for 3D stacked DRAM [65]. Simulations are

performed utilizing their proposed reshape accelerator, to map physical addresses via a layout

transform to exploit locality. This method of data reorganization uses the internal operation and

organization of a traditional 3D memory stack by modifying the logic layer. With only a 0.6%

increase in power consumption, this address mapping uses a matrix transform for efficient compu-
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tation. In certain applications with poor initial mappings, the authors show that their technique can

improve total read latencies by up to 2.2×.

3.4 Our Approach

There have been many proposed solutions to solve the performance bottlenecks that have

plagued memory system performance over the past few decades. The development of 3D stacked

DRAM, such as HBM and Wide I/O, have demonstrated significant improvements over current

DDR technologies but resulted in new issues. One issue is the ability to distribute a low power,

low skew and fast clock to all DRAM dies. Another issue is that these 3D memory architectures

need to utilize as few TSVs as possible, in order to maximize the amount of die area that can be

used for DRAM storage. Current 3D memories, such as HBM, utilize a large number of TSVs

in order to achieve higher channel counts (which is required to achieve higher bandwidth). This

increases the power consumption, decreases available die area and increases manufacturing costs.

In order to increase speeds for future 3D memory generations, this chapter explores the use of

3D RRSWOs to provide an efficient, high-speed ring-based communication design which utilizes

significantly fewer TSVs.

3.4.1 Ring-Based Interconnect for 3D DRAM

Our Memory Architecture using a Ring-based Scheme (MARS), shown on the right side of Fig-

ure 3.3, utilizes a series of address, control and data lines that are routed alongside a 3D RRSWO.

These wires intersect each channel in a DRAM stack at Insertion-Extraction Stations (IES’), where

data can be injected or removed from the ring. This creates a circular data path where commands

can be communicated from the memory controller that lies on the logic die to the DRAM memory

stacked above it. A simple RRSWO (discussed in the previous chapter) is used to synchronize all

IES’ within this circular data path. To ensure that all IES’ receive a full amplitude clock, and that

no station falls in the “dead-zone” of the RRSWO, longer clock traces are placed at the top of the

DRAM stack (Figure 3.3 right), such that the “dead-zone” falls over these longer traces. Figure

3.3 shows the comparison between a traditional HBM stack (left) and a MARS stack (right). The
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Figure 3.3: Cross sectional view HBM (left) and MARS (right) for a DRAM stack

dotted lines indicate the division between channels that lie on the same DRAM slave die. There-

fore, both the HBM stack and the MARS stack in Figure 3.3 represent eight independent channels

that lie on four DRAM dies. The configuration shown on the right side of Figure 3.3 is referred to

as MARS8.

Using the MARS concept, Figure 3.4 shows how we can scale the architecture to service higher

channel counts. The left side of the figure shows a MARS configuration that has 8 DRAM dies and

16 channels. We will denote this topology as MARS16. Notice how the ring-based data fabric has

been duplicated where each ring still contains 9 IES’ and services 8 independent channels. The

right side of Figure 3.4 shows a stack with 16 DRAM dies and 32 total channels. We denote this

topology as MARS32. This stack contains 4 independent ring-based data fabrics each connecting

to 8 DRAM channels. Note that the height of both stacks remains the same. According to the

JEDEC standard, as more ICs are added to the stack, the height of the stack remains the same

because the substrate is made thinner by back-grinding, thereby ensuring that the total stack height

is constant. This means that the height of all stack remains constant at 720 µm and allows us to

use the same RRSWO configuration for each of the MARS topologies described in this thesis.
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Figure 3.4: Cross sectional view MARS16 (left) and MARS32 (right)

It is important to note that a 16-high DRAM stack is not currently feasible, but we present the

MARS32 configuration to show the scalability of our approach and show how it can be used for

future aggressive memory stacks.

Our MARS topology contains address, control and data lines that are driven between adjacent

IES’ in each clock cycle. Because there are a total of 9 IES’, including the IES that lies on the logic

die, the clock needs to oscillate at 18GHz in order to ensure that the round-trip time of a memory

command starting at the logic IES is equivalent to that of an HBM design (0.5 nanoseconds). The

RRSWO that was utilized in the previous chapter is well suited to achieve such a frequency with
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low power consumption and low skew. The IES’ are uniformly spaced throughout the circular data

path to ensure information between the stations is synchronized.

Figure 3.5: IES logic design for data and channel lines

Each IES uses a series of asynchronous FIFOs and multiplexers to communicate between the

DRAM channels and the data ring. Figure 3.5 shows the design of the data and channel wires for

each DRAM IES. Data enters each IES at the data_in port and continues to the next IES at the
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data_out port. This data_in signal consists of the 128-bit wide data bus (HBM also uses 128 data

bits per channel) and the 8 redundant data bits. By sharing these lines between all eight channels,

the number of TSVs used in the MARS decreases significantly, reducing power consumption and

manufacturing costs. The infifo represents an asynchronous FIFO [2] that will only accept data

from the ring if accept_data is high. The data stored in this infifo will then be withdrawn by the

DRAM channel at the channel’s I/O clock rate. Outfifo is an identical asynchronous FIFO that

takes data from the DRAM channel and inserts it onto the ring when there is available data and

when the current slot in the ring is empty. This ensures that the pending DRAM data does not

corrupt valid memory commands that are being sent to channels further downstream.

Channel_in indicates which channel the logic die is communicating with. This is a three-bit

bus that operates in a typical binary encoding fashion to choose one of the eight DRAM channels to

communicate with. The channel_in value is compared against the fixed channel code correspond-

ing to that channel in order to determine if the given memory command on the ring is destined for

this channel (indicated by channel_match). The data_valid signal will be high if the given slot in

the ring contains valid data. By comparing this signal with the channel_match, we generate the

accept_data signal which dictates if the given data in the ring is destined for the current DRAM

channel. When the given DRAM channel wishes to return data from a read command, it places

the data in the outfifo. If the empty_outfifo signal is low, which allows the data to be sent out on

data_out when a free slot is available in the ring (i.e. a cycle in which ring data is not valid). In

addition, the channel_out signal will be set to the current fixed channel code to let the IES on the

logic die know which channel the data is coming from, and the data_valid would be set to high.

Each IES is clocked by the outputs of the clock recovery circuits of the RRSWO. This is

indicated by the RClk signal in Figure 3.5. Because the ring is clocked (by RClk) at 18GHz,

the propagation delay must be minimized to ensure that the signals can travel between IES’. This

includes accounting for potential clock skew, propagation delay and logic delay of the IES’. Table

3.1 shows the breakdown of the IES delay, the propagation delay between IES’ and the setup/hold

time of the IES registers. Here we accounted for VDD jitter and process variations through SPICE
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simulations and added some overhead in the timing. With a 55ps clock period, we ensured that

all signals were ready at the next IES 19.72ps after being launched by the current IES (yielding a

5.96ps guard band).

Clk to Out Delay Setup/Hold Time IES Delay Propagation Delay Total

4.03ps 2.12ps 23.17ps 19.72ps 49.04ps

Table 3.1: IES versus propagation delay

Figure 3.6 shows the IES logic for the row address lines. Because commands are executed

in the order in which they are sent to each DRAM channel, there is no need to return address

information to the logic die. In other words, address values are simply sent to the DRAM channel

they correspond to, but the DRAM channel does not need to insert an address into the ring. This

significantly simplifies the logic, reducing propagation delay and the total power consumption of

each IES. Row_in is 7 bits wide to contain the 6 bit row address and 1 redundant bit (to achieve

higher yield by means of post-manufacturing reconfigurability [66, 67]). This row address will

always be presented to infifo but only will be accepted if accept_row is asserted. The row_valid

signal is a single bit that signifies if the row address bus contains a valid row address in this ring

slot. If this bit is high, and this is the expected channel (channel_match is high), accept_row will

be asserted and row_valid will be set to 0, for downstream IES’.

The column address logic, which is shown in Figure 3.7, is identical to the row address logic

that was presented in Figure 3.6. The only difference is that the column_in bus, which represents

the column address, is 9 bits wide. This contains 8 bits for the address and 1 redundant bit for

higher post-manufacturing yield. The column_out bus represents the column address moving to

downstream IES’. The ability to have a separate row and column address bus allows for row and

column addresses to be sent simultaneously to a given DRAM channel in order to increase memory

command bandwidth on the ring.

66



Figure 3.6: IES logic design for row address lines

Figure 3.7: IES logic design for column address lines

In addition to the 158 bits that enter the IES in Figures 3.5, 3.6 and 3.7, there are another 32

bits that represent the data bit inversion and the data mask bits (16 bits each where every byte of

the data bus has a data inversion bit and data mask bit). A data inversion bit is set to 1 to indicate
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Memory Architecture Number of TSVs

Wide I/O 872

HBM 1696

MARS8 402

MARS16 804

MARS32 1608

Table 3.2: Total number of TSVs

that the corresponding data byte is transmitted in a complemented form (for power reduction). A

data mask bit is used to inform the DRAM which bytes on the data bus it should ignore when

a write command is issued (allows data values that have a smaller width than the data bus to be

stored). These inversion and mask bits behave like data_in in Figure 3.5, and they travel along the

ring with the data they correspond to. Finally, there are the 2 clock wires of the RRSWO, 4 parity

signals (1 per 32 data lines), 4 data error signals (1 per 32 data lines) to indicate when an error

occurs on the data bus and 1 address error signal to indicate when an error occurs on the address

bus. This gives us a total of 201 bits (or TSVs) for one side of the ring. However, because the

ring is unidirectional, we must double the number of TSVs. This gives us 402 bits (or TSVs) for

8 channels in our proposed MARS. We can compare this to a traditional HBM stack which has a

212-bit bus for each DRAM channel [68]. This means that the total number of TSVs needed for

HBM is 1696 for the eight channel configuration which was shown in Figure 3.3. Table 3.2 shows

the TSV counts for the eight channel HBM and the different MARS configurations. Note that

MARSX represents our proposed MARS with X number of channels. It is important to note that

the MARS does not need strobe lines because data is only transferred on the positive edge of the

clock compared to using both edges in HBM. This is why the MARS bus is smaller than the bus

width of a single channel in HBM (206 for MARS compared to 212 for a single channel in HBM).

This shows the significance of our 3D RRSWO structure as it provides a low skew, low power,

and fast clock to between all DRAM dies. Wide I/O only utilizes 8 channels and therefore has

68



approximately half the TSVs that HBM utilizes. The larger memory arrays used in Wide I/O, to

reduce power consumption, require a larger address bus which gives Wide I/O 218-bits per channel

compared to HBM’s 212 bits.

To meet the aforementioned timing requirements, the logic delay in each IES must be mini-

mized. The critical path in this IES logic is from channel_in, through the comparator, to chan-

nel_out in Figure 3.5. This is why there is an additional buffer added between the channel_in latch

and the multiplexer (to match the path delays and prevent glitches). The comparator utilizes a set

of XNOR gates to compare each bit of channel_in with the fixed channel code and then uses an

AND gate to generate channel_match (which determines if all bits in channel_in match the fixed

channel code). The latches shown in Figures 3.5, 3.6 and 3.7 are D-latches built using CMOS

transmission gates. This minimizes the delay seen by the registers, which includes the setup/hold

time, but requires equivalent delays from all paths in order to ensure that shorter signal paths do

not cause race conditions.

The infifo and outfifo represented in Figure 3.5, 3.6 and 3.7 are both asynchronous FIFOs

used to communicate between the DRAM die and the ring-based interconnect. By utilizing the

asynchronous FIFO from [2], we are able to ensure reliable data communication between the ring

clock domain (Rclk) and the slower DRAM clock domain. Figure 3.8 shows the implementation

of the asynchronous FIFO labeled infifo in Figure 3.5, 3.6 and 3.7. The signals prefixed with

“R_” are clocked by the 18GHz RClk while those signals prefixed with “P_” are clocked with the

slower DRAM die clock. The outfifo implementation is identical except that all signals prefixed

with “P_” should be swapped with signals prefixed with “R_”. The signal R_Write_en represents

the accept_data signal from Figure 3.5, where the R_Write_en signal is synchronous with the RClk

signal and the P_Read_en is synchronous with based on the DRAM die clock.

3.4.2 Experimental Results

The MARS design was tested using multiple simulation tools to obtain accurate estimates of

power consumption and speed. HSPICE [50] was used to ensure that the clock and IES’ operated

at the desired frequency. The simulations in HSPICE used the 16nm PTM fabrication process [52].
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Figure 3.8: Input asynchronous FIFO [2]

Raphael [51] was used to generate 3D parasitics (capacitance, inductance, and resistance) of the

wiring. Ramulator [69] was used to measure memory latencies for different CPU traces. Though

this program yields only an estimate of memory performance, it presents useful insight into the

relative performance of different memory architectures. DRAMPower [70] was used to estimate

power and energy consumption for different memory architectures. It performs these estimates

based on current consumption statistics published by JEDEC.
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3.4.2.1 3D Ring Clock

To model the 3D ring-based clock, we first extracted the capacitance, resistance, and inductance

of the clock wires using Raphael as was done in Chapter 2. A distributed model of the clock wiring

parasitics was constructed in HSPICE. This distributed model utilized 500 T-sections with a single

inverter pair. According to JEDEC, the typical height of a 2GB, 4GB, and 8GB HBM stack is

720 µm [3]. Based on this knowledge, we chose the length of the ring perimeter to be at least

2200 µm for two reasons. First, the ring is at least double the height of the stack because it must

travel up the stack and then down as well. Along with the clock wires, the memory commands

and data also travel up and back down the stack to reach all DRAM channels. Second, the extra

trace at the top of the stack must be at least 33% of the total ring length to accommodate the clock

recovery “dead-zone”. This left 1474 µm (67% of 2200 µm) of the ring capable of extracting a full

differential clock, which meets the requirement for the stack height as well. The additional 34 µm

(1474 µm - 1440 µm) are used for local wiring on the logic die.

Figure 3.9: Cross section view of clock TSVs
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The clock TSVs were surrounded by a ground shield, to provide an electrically controlled

environment for all points through each DRAM die. To obtain 18GHz clock operation, the dimen-

sions were chosen as shown in Figure 3.9. Here we can see that the diameter of the clock TSVs

was chosen to be 2 µm while the spacing between these TSVs was chosen to be 4 µm. The spacing

between the clock TSVs and the ground plane was also set to 4 µm. The ground place is modeled

as a rectangular cape and would be implemented as a series of adjacent TSVs.

Once we obtained the dimensions for the ring, we ran Monte Carlo simulations to show the

stability of the RRSWO structure. For the threshold voltage, ±3σ was taken to be about ±6%

of the nominal threshold voltage. For the minimum channel length, ±3σ was taken to be ±10%

of the nominal minimum channel length [71, 72]. These numbers are reasonable given that the

channel length of the inverter pair devices is chosen to be twice the minimum channel length (to

reduce the impact of variations) and have large widths as well. Each simulation was run 30 times

(this was determined based on total runtime considerations) and the results are shown in Table 3.3.

Note that the inverter size was kept constant at 120× the minimum size. Note that the maximum

skew is within the assumed guard band of 5.96ps and the power of the RRSWO is at most 5mW .

Average Min Max Std

Period 55.24ps -2.8ps +3.7ps 1.7ps

Skew 1.79ps 0.11ps 5.81ps 1.54ps

Power 3.65mW -0.82mW +1.42mW 0.69mW

Table 3.3: 3D RRSWO Monte Carlo

In addition to the Monte Carlo simulations, we simulated jitter on VDD to show that it has a

minimal effect on our RRSWO. When cycle-by-cycle supply rail variations were introduced, the

average clock period is within ±0.5% of the period obtained when using a fixed VDD. The min-

imum and maximum clock period vary up to ±0.48ps. This is within 0.87% of the average clock

period and is quite low. Average power consumption with cycle-by-cycle VDD variations remains
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within ±0.3%, as compared to the values under a fixed VDD. Intra-ring skew is slightly higher (by

±5.1% respectively) when VDD is subject to cycle-by-cycle variations, which is expected consid-

ering the higher clock period variations. This jitter, however, is within our assumed guard band of

5.96ps.

With long-term VDD supply rail variations, the average clock period remains within ±0.4% of

the period obtained with a fixed VDD. This is significant because most oscillators have a strong

dependence of frequency on supply voltage. On the other hand, the oscillation frequency of our

RRSWO is substantially dependent on the LC parasitics of the ring wires, hence its period barely

changes with supply changes. The clock period variations decrease compared to the clock period

variations in cycle-by-cycle supply voltage (by about 0.2ps). The skew for long term VDD changes

is less than the skew cycle-by-cycle changes by about 0.73%. The results show here, as well as

the results we presented in Chapter 2, are significant as it shows the resilience of our clocking and

distribution scheme.

As discussed earlier, the RRSWO was tuned in HSPICE to generate a clock that oscillates

at 18GHz. Clock extraction points were placed in the 67% of the ring centered around to the

single inverter pair. These extraction points are located at 180 µm increments, coinciding with the

location of the IES’. The differential amplifiers that extract a full amplitude square wave clock

signal are located at these extraction points. The differential amplifiers, which are referred to as

clock extraction circuits in Figure 2.1, use a DC bias transistor to control the tail current (Figure

2.2). A single stage differential to single-ended output is used with a current mirror active load.

This single-ended output is then driven to an even number of inverters in a chain with increasing

inverter sizes. This allows the extracted clock output to drive the desired capacitive load.

Figure 3.10 shows all the overlaid extracted clock signals from the RRSWO overlaid upon each

other. These overlapping waveforms represent the output from all the clock recovery circuits. This

signal is the RClk input to each IES in Figures 3.5, 3.6 and 3.7. Recall that this RRSWO is 2200 µm

in length with an inverter pair size of 120×. The period of the extracted clock is 55.13ps, which

equates to 18.14GHz. The average skew between the different IES’ is 1.98ps with the minimum
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Figure 3.10: 18GHz ring clock signal before differential amplifiers along the 3D ring

skew being 0.34ps and the maximum skew being 3.18ps (under ideal conditions). This is 4.5×

lower than the skew minimization technique presented in [61]. The total average power consumed

by the ring along with the 9 differential amplifiers was 2.83mW . The power consumed by the

ring is minimal compared to the average power consumed by the DRAM cores. Based on these

results, the RRSWO can deliver a low skew clock to all IES’ and maintain a round trip time of 0.5

nanoseconds. This allows comparable speeds to current HBM standards but utilizes approximately

4× fewer TSVs, when MARS uses eight channels.

3.4.2.2 DRAM Latencies

Utilizing the built-in models from Ramulator [69], several modern DRAM architectures (equiv-

alently referred to as configurations in the remainder of this thesis) were simulated with 11 different

CPU traces. These DRAM architectures are commonly found in modern computing systems to-

day. Each DRAM architecture was run using multiple channels to accurately represent its fastest

configuration. DDR memories have a maximum of 8 ranks per channel since capacitive loading

makes more ranks infeasible [73]. The 3D stacked memories, HBM and Wide I/O, had 8 channels
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and 4 channels respectively based on the JEDEC standard. Table 3.4 shows an overview of the

configuration settings for each DRAM architecture that were simulated.

DDR Arch Number of Channels Ranks per Channel I/O Bus Speed (MHz)

DDR3 2 8 2133

LPDDR3 2 2 2133

DDR4 4 4 2400

LPDDR4 2 2 3200

GDDR5 6 1 5000

WideIO 4 2 266

HBM 8 2 1000

Table 3.4: Ramulator DRAM configurations

Based on the configurations shown in Table 3.4, Ramulator provides the theoretical maximum

bandwidth that is achievable. This parameter is typically used by memory manufacturers to mar-

ket their DRAM architectures. Though a configuration may have a higher theoretical bandwidth

than another, this does not guarantee better performance than the other configuration for all ap-

plications. Table 3.5 shows the theoretical maximum bandwidth for each configuration that was

run with Ramulator. Though GDDR5 has the highest theoretical bandwidth compared to other

commercially available DRAM architectures, our results demonstrate that it is not necessarily the

fastest architecture among the commercially available architectures when running different CPU

traces. As expected, the low power memory architectures have lower theoretical bandwidth. It is

important to mention that those memory architectures that have higher channel counts offer higher

theoretical maximum bandwidth.

Table 3.6 shows details of the traces we simulated, including total requests, the percentage of

those requests that were write commands, and the cache hit rate for every trace that was simulated.

These traces are based on a variety of software programs and provide a diverse battery of DRAM
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DRAM Architecture Maximum Bandwidth (GBps)

MARS32 1024

MARS16 512

GDDR5 160

HBM 128

MARS8 128

DDR4 76.8

DDR3 34.1

LPDDR3 25.6

LPDDR4 25.6

WideIO 17.1

Table 3.5: Theoretical maximum bandwidth

benchmarks. It is important to note that with a higher cache hit rate, fewer commands were issued

to the DRAM subsystem. This will result in fewer bottlenecks on the DRAM architectures and

cause lower latencies in the following graphs.

Every DRAM configuration was run with the cache enabled, to simulate a realistic computer

system. This included an L1 and L2 cache with the sizes being 32KB and 512KB respectively. The

associativity was set to 8-way and the block size was set to 64 bytes for both cache levels. Utilizing

these cache parameters and the traces from Table 3.6, the different configurations were simulated

in Ramulator. We first simulated current DDR technologies to form a baseline to compare our

MARS against. It is important to remember that the DDR architectures from Table 3.4 represent

the highest bandwidth configurations, to compare against our MARS (which is designed for high

bandwidth applications).

Figure 3.11 shows the total read latencies for each memory architecture. This represents the

summation of the latencies of all the read commands over each trace. The summation of the laten-

cies of all read commands is representative of the effective bandwidth of each memory architecture

for different applications. HBM, GDDR5, DDR4, and DDR3 were the fastest memory technolo-
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CPU Trace Total Num of Requests Write Request % Cache Hit %

429.mcf 11396914 10.1 57.3

433.milc 4200650 24.5 57.8

434.zeusmp 3123090 47.9 69.4

436.cactusADM 843180 23.4 54.7

437.leslie3d 4052550 26.3 57.9

450.soplex 2303025 34.7 85.2

459.gemsfdtd 5647830 31.5 64.1

462.libquantum 6447882 16.3 54.4

470.lbm 9988010 42.8 41.9

473.astar 1693787 38.9 63.3

482.sphinx3 742650 3.8 79.6

Table 3.6: CPU trace statistics

gies while those that focus on power efficiency, like LPDDR4, LPDDR3, and Wide I/O, were the

slowest in terms of total latencies. We note that HBM had lower total read latencies for every

trace that was run, and Wide I/O was the fastest among the power-efficient architectures. This is

expected as HBM has significantly higher theoretical bandwidth as seen from Table 3.5 and has

the highest channel count.

Another performance metric we studied was the per-command latency for each command that

was issued to the DRAM (Figure 3.12). Although this metric can measure the average time a

single command takes to execute, it does not accurately represent the parallelization of multi-

channel architectures. Though Wide I/O and HBM seem to perform poorly on a per-command

(or average) latency basis compared to their counterparts, their higher channel counts allow for

significant reduction in overall latencies. Figure 3.12 also shows that between the low power

memory options (LPDDR4, LPDDR3, and Wide I/O) exhibit a significantly higher per-command

latency than the higher performance DRAM architectures (DDR4, DDR3, HBM, and GDDR5).

Low power memory options use slower DRAM cores to reduce power consumption, resulting in
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Figure 3.11: Total read latency for current memory architectures

Figure 3.12: Latency per command for current memory architectures
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increased per-command latencies.

Figure 3.13 shows the average queue length per channel for different DRAM architectures.

The average queue length is a good representation of the parallelization achieved by using multi-

ple channels. This shows that channel count directly affects the average length of the queue since

commands will be divided amongst different channels when possible. The longer the average

queue length, the longer the latency for the command to be issued to in the memory. Our experi-

ment accounts for refresh commands, which increase queuing bottlenecks as the number of rows

to be refreshed grows. As shown in Figure 3.13, the memory technologies with fewer channels

(DDR3, LPDDR3, and LPDDR4) have at least 2.2× larger queue lengths compared to memory

technologies with higher channel counts (DDR4, GDDR5, WideIO, and HBM). The number of

queued commands grows when more frequent requests are issued to the DRAM. This explains the

higher average queue length for traces that have more memory requests. Finally, we note that both

HBM and Wide I/O have among the smallest queue lengths. Since our MARS approach utilizes

high channel counts, we expect the depth of the asynchronous FIFOs in Figure 3.5 to be low as

well.

We compare MARS to GDDR5, Wide I/O and HBM since they lead the existing memory

architectures in terms of performance and queue lengths respectively. Using the GDDR5, Wide

I/O and HBM schemes as a reference, the MARS model (with the fast ring bus) was studied with

varying numbers of channels. The three previously mentioned MARS configurations (MARS8,

MARS16, and MARS32) were tested for both power consumption and latency.

MARS8 is designed to compete with Wide I/O, to focus on low power while achieving fast

memory speeds. The two major differences between MARS8 and Wide I/O is that MARS8 uses a

128-bit wide data bus and 8 channels compared to Wide I/O’s 128-bit data bus with 4 channels.

The MARS16 and MARS32 configurations are targeted to compete with HBM, to achieve

lower latencies. This involves stacking the DRAM dies to 8-high and 16-high respectively as was

shown in 3.4. It is important to note that though 16-high DRAM stacks are not currently available,

we propose the 32-channel option to demonstrate the scalability of the MARS paradigm. MARS
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Figure 3.13: Queue length per channel for current memory architectures

has the ability to meet the aggressive stacking configurations that are anticipated in the future,

something that HBM cannot support due to the number of the associated TSVs (and the large

fraction of the die that they would occupy) and their capacitance.

Figure 3.14 shows the total read latencies for the different memory architectures. This figure

presents the three different MARS configurations, as well as GDDR5, HBM and Wide I/O for

reference. For every trace, MARS32 had the lowest total latency followed by MARS16, HBM,

MARS8, and Wide I/O respectively. This is expected since the extra channels present in MARS32

and MARS16 results in higher throughput over traditional HBM. This is despite the fact that

MARS32 uses approximately the same number of TSVs are HBM (and MARS16 uses half as

many). MARS8 remains faster than Wide I/O (which it’s designed to compete with) because

MARS8 uses 8 channels (compared to Wide I/O’s 4 channels). Note that the number of TSVs of

MARS8 is 2.2× lower than Wide I/O. Also, the y-axis of the graph uses a logarithmic scale and

that the set of bars on the far right represent the geometric mean across the simulated traces.
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Figure 3.14: Total read latency for 3D memory architectures

The total read latency experiment shows how more channels increases throughput by taking

advantage of concurrent command operations. Figure 3.15 shows significantly lower per-command

latencies for HBM, MARS32, and MARS16, as compared to Wide I/O and MARS8. Wide I/O

and MARS8 have the highest per-command latency because they both use slower DRAM dies

to reduce power consumption. Of these architectures, MARS8 has much lower per-command

latencies because of its increased channel counts which prevents memory commands from being

bottlenecked. GDDR5 has the fastest per-command latency because it uses the fastest DRAM

chips to achieve higher bandwidth (since the limited PCB space prevents GDDR5 from increasing

channel counts). All other memory architectures had similar per-command latencies since they

are all based on the same DRAM dies that are used in HBM. For these architectures, increasing

throughput can only be achieved by using more channels, since the per-command latencies are

similar.

Figure 3.16 shows the queue length per channel for the three MARS architectures as well as
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Figure 3.15: Latency per command for 3D memory architectures

Figure 3.16: Queue length per channel for 3D memory architectures
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GDDR5, HBM and Wide I/O. As expected, higher channel counts result in smaller queue lengths

per channel because commands can be distributed across more channels. This relationship is sub-

stantially linear, as MARS8 and HBM have double the queue lengths as MARS16, which in turn

has double the queue lengths compared to MARS32. GDDR5, which utilizes 6 channels, has

queue lengths in between MARS8 and Wide I/O. This is expected since MARS8 uses 8 channels

and Wide I/O uses 4 channels. The slightly higher queue lengths of MARS8 (compared to HBM),

is a result of the slower DRAM cores whose reduced speed causes the queue to get backed up.

Based on the results presented in Figures 3.14, 3.15, and 3.16, we note that MARS can be

configured to achieve higher throughput with the addition of more channels. These higher channel

counts are possible because of the ring, which significantly reduces the number of TSVs needed for

a typical 8 channel architecture. The same channel counts are not feasible in HBM and Wide I/O

since they would result in impractically high TSV counts and their associated electrical and floor

planning issues. For 16 channels, two rings are used, each of which connects to 8 channels. The

same holds for 32 channels where 4 rings are used. By using 32 channels, we show that MARS

can easily scale to larger memory sizes and can continue to boost memory performance (or power

consumption, as discussed in the next section).

In summary, Figures 3.14, 3.15, and 3.16 show that MARS16 and MARS32 respectively have

better total (per-command) latencies by ∼ 2.0× (∼ 0.9×) and ∼ 4.2× (∼ 1.0×), than HBM, which

they are designed to compete with. Similarly, MARS8 has better total (per-command) latency, by

∼ 2.7× (∼ 1.6×), then Wide I/O, which it is designed to compete with.

3.4.2.3 DRAM Power Consumption

Ramulator [69] provides an option to record a trace of all the commands issued to the DRAM

when running a CPU program. This command trace can be fed into the DRAMPower [70] sim-

ulator to estimate power consumption for different DRAM architectures. Each command trace

represented the commands per rank, so the total power consumption was calculated by taking the

sum of the power used for each rank. The power consumption was also combined with the run time

for each trace to find the efficiency (measured in terms of performance per Watt) of each memory
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architecture. This provides useful comparisons between memory latencies and power usage of

the different approaches. We first compare the power and performance per Watt of the existing

schemes (Table 3.4), in order to establish a reference to compare MARS against.

Figure 3.17 shows how low power DRAM architectures, like LPDDR4, LPDDR3 and Wide

I/O, consume significantly less power compared to HBM, GDDR5, DDR3, and DDR4. DDR4/DDR3

consumes up to 4× more power because of their increased speeds but consume less than half the

power of HBM or GDDR5. Although HBM and GDDR5 are the fastest memory technologies

among the existing technologies we studied, the speed gains come at the cost of significantly in-

creased power consumption. With higher power consumption also comes higher heat dissipation.

This results in GDDR5 and HBM needing active cooling (using a fan) compared to the DDR tech-

nologies that are usually passively cooled on a DIMM. Note the logarithmic scale used to show the

power (in milliwatts).

Figure 3.17: Average power consumption for current memory architectures
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Figure 3.18: Total energy consumption for current memory architectures

The total energy consumption for the current memory architectures is shown in Figure 3.18.

GDDR5 and HBM are the highest consumers of energy. However, the difference between the

DDR3/DDR4 architectures and the low power architectures is significantly less. DDR4/DDR3

consumes approximately 2× the energy (compared to 4× the power) as LPDDR4/LPDDR3. This

is because the low power architectures take significantly longer to process memory commands.

GGDR5 consumes significantly more energy than HBM because it relies on faster memory chips

instead of more channels to achieve its high bandwidth. Faster memory chips consume more

power, but do not yield a proportional speedup, thus increasing the energy consumption of GDDR5

compared to HBM. As a result, HBM is shown to be a more effective means of achieving higher

bandwidth since it’s energy consumption is almost 4× less than GDDR5.

Using the total power consumption and the read latencies, Figure 3.19 shows the efficiency for

each existing memory architecture in terms of performance per Watt consumed. Wide I/O proves to

be more efficient than any other memory for all CPU traces because of its low power consumption.
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Figure 3.19: Performance per Watt for current memory architectures

Memories that consume more power, like GDDR5 and HBM, were not as efficient since their

reduction in latency was less than the increase in power. DDR3 showed good performance per

Watt (second only to Wide I/O) which is why its typically found in many consumer devices. We

now compare the GDDR5, HBM and Wide I/O schemes with MARS, since GDDR5, HBM and

Wide I/O represent the memories with the best performance and efficiency respectively.

By combining the power consumption obtained through DRAMPower with the power obtained

for the ring-based interconnect using SPICE, we were able to estimate the total power consumption

for our MARS architectures. Note that this includes the power used by the RRSWO, the IES’, and

the asynchronous FIFOs. The power consumption of the IES’, RRSWOs, address and data lines,

however, was minimal compared to the power consumed by the DRAM banks.

Figure 3.20 shows the average power consumption for the memory architectures (MARS8,

Wide I/O, GDDR5, HBM, MARS16, and MARS32). The Wide I/O memory architecture has the

least power consumption followed by MARS8 (are the two low power, high-bandwidth memories).

The addition of IES’, higher channel count and the higher switching frequency of the MARS
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Figure 3.20: Average power consumption for 3D memory architectures

ring, resulted in a power consumption that was on average 2.8× more than the power used by

Wide I/O. Recall that the latencies of MARS8 are ∼ 2.7× better than Wide I/O. We expect the

power consumption of MARS8 to be reduced by reducing the number of channels or bus width.

The power consumed by MARS8 was ∼ 6.9× lower than HBM. MARS16 and MARS32 also

saw small power increases over the HBM architecture because of the IES’ asynchronous FIFOs

and the RRSWO. The increase in power remained relatively small compared to the HBM power

consumption because the power consumed by the IES’ was smaller in proportion to the power

consumed by the DRAM die. Note that the improvement in latency of MARS16 and MARS32

over HBM far outweighs the modest power increase.

Figure 3.21 shows the total energy consumption of the different MARS configurations com-

pared to GDDR5, HBM and Wide I/O. As expected, Wide I/O has the lowest energy consump-

tion because its power consumption is significantly less than the other architectures. The energy

consumed by GDDR5 is the highest, followed by HBM. Even though HBM has lower power con-
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Figure 3.21: Total energy consumption for 3D memory architectures

sumption than MARS16 and MARS32, the higher channel counts of MARS16 and MARS32 yield

much higher performance so that the energy consumed by MARS16 and MARS32 is lower than

that of HBM. GDDR5 however, has a significantly higher power consumption relative to its per-

formance, which results in increased energy consumption of 3.8× compared to HBM. Again, note

that the energy is plotted on a logarithmic scale.

The final statistic that was measured was the performance per Watt of the different memory

configurations (Figure 3.22). GDDR5 performs the worst because of its significantly higher power

consumption (as the memory chips are clocked significantly faster). HBM also performed poorly

because of its high power consumption compared to the bandwidth it can achieve. The MARS16

and MARS32 had much better efficiency than HBM (by ∼ 1.7× and ∼ 2.9× respectively) because

they can achieve significantly better speeds without a proportional increase in power consumption.

Wide I/O and MARS8 performed considerably better than HBM, MARS16, and MARS32 in terms

of performance per Watt. Despite the increase in power consumption for MARS8 compared to
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Wide I/O, the use of 8 channels (compared to 4 in Wide I/O) and the larger 128-bit data bus

(compared to a 128-bit data bus in Wide I/O) allowed MARS8 to be competitive with Wide I/O in

terms of performance per Watt. This shows that MARS8 can provide a faster memory alternative

than Wide I/O while being only slightly less efficient.

Figure 3.22: Performance per Watt for 3D memory architectures

To summarize Figures 3.20, 3.21 and 3.22, MARS16 and MARS32 consume slightly higher

power than HBM (by ∼ 1.2× and ∼ 1.4× on average) while delivering much better performance

per watt (by ∼ 1.7× and ∼ 2.9× on average). Similarly, MARS8 delivers similar performance per

watt as Wide I/O although its power is ∼ 2.8× higher on average. These numbers can be further

optimized by varying the bus widths, clock frequency, and the number of channels for MARS.

Table 3.7 shows the power breakdown of the different MARS configurations. Note that the

asynchronous FIFO row includes both the infifo and outfifo for all IES’. We can see that the

dominant power consumer for all MARS configurations was the DRAM subsystem. It consumes
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70.7%, 94.0%, and 94.1% of the total power consumption for MARS8, MARS16, and MARS32

respectively. As expected, the IES logic and asynchronous FIFOs are larger contributors to the total

power consumption in the MARS8 configuration. This is because the DRAM dies are designed

for low power and is one reason (along with the doubling the number of channels) that MARS8

consumes 2.8× more power than Wide I/O. For the MARS16 and MARS32 configurations, the

IES logic and asynchronous FIFOs consume only 5.6% and 5.7% of the total power consumption

which allows us to achieve the ∼ 1.7× and ∼ 2.9× improvement in efficiency (GB per second per

Watt) over HBM. Finally, the RRSWOs have minimal power consumption as they consist of only

a single inverter pair.

MARS8 MARS16 MARS32

RRSWO(s) 1.32 2.64 5.28

Asyn. FIFOs 41.45 82.71 122.24

IES logic 67.63 119.03 183.37

DRAM die 266.66 3286.51 4981.23

Table 3.7: MARS power consumption breakdown (mW)

3.4.2.4 DRAM Bus Utilization

In the previously described MARS topologies, we have attached 8 channels to each ring bus

(Figures 3.3 and 3.4). However, when studying the bus utilization of different topologies, all

architectures discussed (including MARS) had less than 7% utilization†. We, therefore, increased

the number of channels attached to each ring bus to see its impact on performance. In Figure

3.23, MARSX-Y refers to X total channels in which each ring has Y channels attached to it.

For example, the traditional MARS8, MARS16, and MARS32 discussed throughout this paper are

†Utilization is defined as the ratio of the number of valid slots in the ring to the total number of slots in the ring,
over the duration of a trace.
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Figure 3.23: Bus usage for different MARS configurations

represented by MARS8-8, MARS16-8, and MARS32-8 (as each of these configurations have 8

channels attached to a ring). As expected, when more channels are attached to a ring the utilization

increases almost linearly. This can be seen from the increase from MARS16-8 to MARS16-16

and the increase from MARS32-8 to MARS32-16 to MARS32-32. However, when the number

of channels is increased, while keeping the number of channels per ring constant, we saw a slight

decrease in bus utilization. This is expected as the memory commands are split amongst more

rings in the memory stack.

Figure 3.24 shows the percentage decrease in performance as the number of channels attached

to a single ring increases. The performance is based on the total read latency, which has been

normalized to the MARS32-8 total read latency, averaged across the different SPEC traces. As we

can see, the percentage of the ring that is being utilized increases as the number of channels per

ring increases, creating a bottleneck to the ring interface with the DRAM channels. This causes the

performance to decrease from MARS32-8 to MARS32-16 (by 4.8%) and MARS32-32 (by 14.7%).
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Figure 3.24: Bus utilization vs performance reduction for MARS

This decrease in performance roughly follows the increasing bus utilization, which is also shown

in Figure 3.24.

3.5 Conclusion

In this chapter, we presented MARS as an alternative 3D stacked memory architecture to de-

crease the TSV counts while increasing the channel counts. MARS increases the memory band-

width by using a fast ring-based data transfer scheme, which utilizes the RRSWO from the pre-

vious chapter. The fast data ring can service multiple channels in the same duration it would

take to clock each channel individually, thereby reducing TSV counts significantly. By using the

techniques shown in this chapter, we show that MARS can be used to create scalable 3D stacked

DRAM, to meet the needs of next-generation high bandwidth applications.

The results from our simulations show that our proposed MARS architecture can overcome

current memory bottlenecks by trading off power, throughput, and latency. MARS can reduce the
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total number of TSVs required per channel compared to current 3D DRAM stacks. This allows

us to pack more channels in the same footprint to increase performance with minimal impact on

power and routing area. Since it has similar power consumption as traditional HBM architectures,

the heat dissipation of MARS will be similar to HBM. We showed that MARS8 can increase

throughput by 2.5× over Wide I/O with only a 30% decrease in efficiency (with about 2.2× less

TSVs). By increasing the channel count to 16, we showed that MARS16 can achieve 1.9× better

throughput over HBM with 1.4× better efficiency (with about 2.1× the TSVs). Finally, we showed

that MARS32 can achieve 3.6× better throughput over HBM with 2.4× better efficiency (with

similar TSV counts).
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4. SUMMARY AND CONCLUSION

In this thesis, we presented a new method for clocking in 3D IC stacks and showed how it can be

used to synchronize independent RRSWOs in different IC stacks. This is done through the use of an

RDL stub that allows a master RRSWO to “drag” a slave RRSWO to oscillate in phase with it. By

utilizing an RDL stub we avoid the use of a PLL for synchronizing clocks, which simplifies logic,

reduces power consumption and provides an inexpensive method for synchronization between ICs.

In addition, we proposed the first 3D RRSWO bootstrap and reset circuit. Prior to this research it

was assumed that inter-wire cross talk could be used to bootstrap this oscillation. In addition, we

showed the 3D RRSWOs are robust to VDD jitter, long-term VDD changes, and process variations.

This shows the resilience of our RRSWO scheme.

Utilizing these 3D RRSWOs, we also presented a ring-based data fabric for 3D stacked memory

called MARS. Our MARS approach provides higher bandwidth over traditional stacked DRAM

by using this fast RRSWO. It allows us to connect 8 channels to a common ring while maintaining

round trip times similar to traditional 3D memory stacks. We showed how our MARS can reduce

the total number of TSVs which allows for higher scalability for future 3D memory technologies.

In addition, we showed how our MARS can trade off power, throughput and latency to match

the requirements of different memory applications. With a narrow bus, and connecting it to all

channels, the MARS8 can increase throughput by 2.5× over Wide I/O with only a 30% decrease

in efficiency (with about 2.2× less TSVs). Using multiple ring topologies in the same stack,

the channel count can double from 8 to 16, and then to 32. MARS16 (MARS32) can increase

throughput by 1.9× (3.6×) over HBM with 1.4× better efficiency (2.4×). MARS16 also reduces

the number of TSVs compared to HBM by 2.1× (MARS32 has similar TSV counts to HBM). This

scalable architecture allows higher throughput and faster system performance for next generation

DRAM. The MARS topology proposed in this thesis can be used in a variety of computing systems,

from mobile platforms to large-scale data centers.
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4.1 Future Work

Our proposed MARS provides a platform for future research in 3D DRAM technologies and

their I/O bus topologies. By varying the number of TSVs, channels and 3D RRSWOs, we show

that MARS can accommodate different memory system requirements. In addition to main memory,

future research can look into the use of the ring-based data fabric in other 3D memory-based

architectures based on Intel’s XPoint memory [74, 75], memristor-based memory [76, 77] and

phase-change memory (PCM) [78]. These memory technologies will become critical in future

computing systems as the demand for fast non-volatile memory increases. With more memory-

based architectures scaling in the third dimension, the 3D ring-based architecture proposed in this

paper can provide a fast and efficient communication scheme to improve system performance.

Figure 4.1: Synchronizing multiple MARS stacks using an RDL stub

In addition, we can scale the MARS by using the synchronization methods discussed in the

previous chapter. This involves using an RDL stub between different 18GHz RRSWOs that allow

DRAM channels in different memory stacks to be synchronized. Figure 4.1 shows two MARS
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stacks (each of which are identical to the stacks on the right side of Figure 3.3). As a future ex-

periment, it would be useful to see the performance, power and energy that can be achieved with

multiple MARS stacks synchronized in this manner. By synchronizing the different stacks, we

could allow for higher channel counts and reliable communication with the DRAM subsystem.

This would decrease TSV counts and allow synchronization between the different memory con-

trollers on different ICs. With synchronized memory controllers, we could develop more intelligent

memory command scheduling and distribution between the different DRAM stacks to maximum

performance and/or power consumption.
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