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Abstract

The demand for computational power is higher than ever. With the increasing challenges of pack-
ing more transistors in a single chip and growing manufacturing costs, new approaches are ex-
plored to improve performance and reduce energy consumption. One emerging trend is hetero-
geneous computing systems that combine multiple processing units, including hardware accelera-
tors. Accelerators excel in specific workloads, delivering top performance and energy efficiency.
Given the heterogeneity of such systems, programming them reveals several challenges to devel-
opers: (a) know different tools and programming models, (b) deep architectural understanding
of available accelerators, (c) manually modify existing applications code, identifying hotspots and
determine which accelerator is most suited for each (intuition, profiling, etc.), and (d) re-write code
using one or mode different programming models. Consequently, taking advantage of heteroge-
neous systems yields a lot of burden on developers and researchers, slowing down the adoption.

Our work presents a framework that automatically identifies hotspots in sequential C code
and adapts it for running in a selected target — CPU parallel or GPU. Our approach uses static
analysis to characterise the hotspot and analytical models to estimate execution times, guiding
the optimal target selection. Our framework uses source-to-source techniques to insert OpenMP
directives for running the hotspot in the selected target. If the analytical models estimate no benefit
in parallelising or offloading the hotspot, the code is not modified to run sequentially in the CPU.

The framework has two major parts:(a) performance modelling, and (b) automatic paralleli-
sation and offloading. Our evaluation uses existing benchmark suites with different versions for
the same kernel: sequential and manually annotated with OpenMP. Firstly, we evaluate the ana-
lytical models by analysing the OpenMP versions and comparing the estimated optimal target to
real-world measurements. We show that characterising the hotspot at the Abstract Syntax Tree
(AST) level yields good results for a relative performance context, achieving 9 optimal decisions
for 12 examples. Despite 2 slowdowns, the impact is negligible, adding fractions of a second
to baseline execution time. Secondly, we evaluate our methodology for automatic parallelisation
and offloading using OpenMP. We compare the achieved speedups of our automated approach to
the manually annotated versions in the benchmark suites. We achieved a 7.9× geometric mean
speedup, reducing the total execution time from 150.7 to 23.9 minutes.

Keywords: Automatic Parallelisation, Automatic Offloading, Performance Modelling, Static Anal-
ysis, Heterogeneous Systems, CPU, GPU
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Chapter 1

Introduction

1.1 Context and Motivation

Over the last decades, the chip manufacturing industry has driven performance and energy effi-

ciency improvements by continuously advancing lithography processes that reduce transistor size

and increase density. Gordon Moore observed performance doubled approximately every two

years, while maintaining the manufacturing cost, power consumption and die area [62]. However,

manufacturing costs have been rising rapidly, and the advances in lithography are constrained as

the transistors reach atomic scale [68].

Heterogeneous systems are emerging as one possible solution to respond to the growing de-

mand for performance. These systems combine general-purpose CPUs with specialised devices

that achieve outstanding performance and energy efficiency in specific workloads [68, 33]. At

present, CPU-GPU systems are commonplace in the latest TOP500 and Green500 supercomput-

ers list [3], and many computing workloads can benefit from GPUs’ highly parallel architectures

to accelerate the application, including simulations and machine learning.

Modifying existing applications to make the best use of available computational resources in

heterogeneous systems presents several challenges resulting in a slow adoption. With the ongo-

ing trend for increasing availability of heterogeneous systems — combining CPUs, GPUs, and

specialised accelerators — exploring solutions that ease their adoption is crucial to accelerate

scientific research and for many workloads. Over the last years, the industry and academia con-

tributed with assistant tools to guide developers, new programming models to increase portability

and productivity, and approaches to optimise applications automatically. Nonetheless, there is still

room for improvement, and many issues remain unsolved [61].

1.2 Challenges in heterogeneous computing

Writing applications for CPU-GPU systems is challenging for developers and researchers for var-

ied reasons [61]:

1
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Architecture details. To extract maximum performance, developers must understand the exe-

cution flow at the architectural level to leverage available parallelism and optimise memory

usage — which is the main factor for slow execution times and power consumption [33].

For instance, on CPUs, the cache is crucial to reduce memory accesses time. Therefore,

algorithms should be cache-oblivious, improving spatial and temporal data locality. GPUs

execute applications differently, constantly pre-empting groups of threads to overlap mem-

ory accesses with computation. The programmer must first break the algorithm into many

independent work units to take advantage of the thousands of streaming processors making

calculations in parallel.

Workload partitioning. Due to the characteristics of accelerators and workload properties,

some tasks execute faster on the CPU and others on the GPU. Selecting the optimal schedul-

ing and work partitioning needs to consider several factors. For instance, the host CPU and

the GPU do not share memory. Therefore, offloading computation to the GPU has an over-

head for transferring data back and forth. More complex partitioning strategies try to keep

both CPU and GPU busy by distributing the workload on both units or finding independent

tasks in the application. However, doing this process manually requires expertise and is

time consuming. Moreover, the optimal strategy is not portable among different platforms

and hardware. Chikin et al. [30] show that offloading a convolution kernel to the GPU in

a POWER8 CPU + NVIDIA Tesla K80 system results in a slowdown of 2.1×. However, in

a POWER9 + NVIDIA Tesla V100 results in a 4.4× speedup. This example illustrates that

workload scheduling and partitioning depends strictly on the hardware. After one new prod-

uct iteration for the CPU and GPU, the optimal strategy has changed. Therefore, previously

optimised applications have to be re-written or adjusted whenever the platform changes.

Programming models. Programming models can be categorised as low and high-level. NVIDIA

introduced CUDA [11] for general-purpose computing on NVIDIA GPUs and supports C,

C++ and Fortran. AMD presented the HIP [15] programming model which is similar to

CUDA model, but it can target AMD and NVIDIA GPUs. Support for NVIDIA is achieved

by transpiling the HIP code to CUDA. OpenCL [9] emerged as an agnostic programming

model for diverse hardware, including GPUs and FPGAs. It is an API for C/C++, and the

library implementation is left to vendors. Unlike CUDA and HCC, OpenCL enables code

portability — one source code can target various accelerators. The three models are con-

sidered low-level because they expose many architectural details and have steep learning

curves. High-level programming models abstract most of the micro-architecture details.

Moreover, they generally require fewer changes in the existing code base and are portable.

OpenMP [10] and OpenACC [8] are directive-driven programming models and examples

of high-level programming models. The problem is programming models have trade-offs

between performance, ease of use and portability [38].

In conclusion, developing or modifying applications for heterogeneous systems poses many

challenges. It requires vast experience, knowing many programming models and vendor-specific



1.3 Objectives 3

tools. Moreover, optimising an application for top performance can be a long and time-consuming

process. Developers may not have the necessary expertise and time to alter their algorithms to take

advantage of heterogeneous systems. Making heterogeneous systems more accessible and easy to

use is essential in many areas of application. Contributions that assist or automate applications

parallelisation and offloading are of enormous interest. Despite the existing contributions, several

problems remain unsolved or have various limitations [61].

1.3 Objectives

Our work proposes a framework that automatically parallelises loop nests for CPU and GPU using

source-to-source techniques without any user intervention. We propose static analysis at AST

level to find parallelisable code regions. Analytical models are used for guiding target selection

for each parallel region. Given the relative performance modelling problem, we hypothesise using

AST analysis to collect the metrics the analytical models need (e.g. the number of floating-point

operations). The parallelisation on CPU and offloading to GPU is achieved using the OpenMP

programming model and inserting the necessary pragmas.

We expect our approach to select at compile time between CPU parallel and GPU to reduce

the hotspots execution times compared to the baseline, i.e. sequential execution in the CPU. Be-

sides, we aim for an agnostic compiler solution that generates modified source-code with OpenMP

pragmas, allowing the user to modify the code further and use the most suitable compiler available

for the target platform.

1.4 Methodology

Our framework addresses two main problems. One is determining which loop nests can be par-

allelised, for instance, ensuring the loop is free of loop carried dependencies. The second part

is performance modelling, using analytical models to estimate execution time for three targets:

(a) CPU sequential, (b) CPU parallel, and (c) GPU. The target with the lowest estimated execu-

tion time is considered the optimal one.

Our approach uses static analysis and source-to-source techniques. We use Clava [25], a

source-to-source framework to abstract compiler infrastructures, such as LLVM. Using a domain-

specific language, LARA, one can write scripts that query and modify source code at the AST

level. Clava outputs C/C++ files from the AST, reflecting any modifications performed with LARA

scripts [28, 27]. Existing literature work that performs analysis at the IR level is restrained with a

specific compiler infrastructure, and their output is, usually, a binary file. Such approaches work

as black-boxes with few customisation opportunities. Our approach using Clava means the output

of our framework is source-code. It enables the user to modify further the code for tuning the

application or porting it to another system. Moreover, the user is free to compile the code with any

compiler, which is particularly advantageous when using some compute platforms, such as IBM
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or Cray systems, that offer customised compilers for their hardware platforms and leverage better

performance [55].

Our approach builds on top of AutoPar [21], a library available in Clava, to determine which

loops are safe for parallelisation. The code is parallelised using the directive-based OpenMP

programming model. Depending on the target, different pragmas and clauses are inserted– CPU

parallel or GPU. Compilers compliant with OpenMP and that support offloading directives, such

as GCC and Clang, can compile the resulting source code. The binary launches on the CPU and

the selected loops can run in parallel in the CPU or be offloaded to GPU, as decided statically by

our framework.

We use state of the art analytical models to guide target selection at compile time. In our

context, execution time estimation does not have to be accurate. Instead, we need reasonable

relative estimates. We explore the feasibility to characterise parallel loop nests at the AST level

rather than complex analysis in lower-level representations or even machine instructions. For

comparison, we also use LLVM MCA [2], a tool that analyses assembly instructions and produces

estimates for the number of clock cycles spent in the CPU.

The main contributions are:

• A framework that automatically selects between CPU and GPU targets for critical loops and

involves automatic parallelisation via OpenMP and source-to-source techniques.

• An approach based on static analysis techniques and analytical models to select the best

target for each parallel region (a) CPU sequential, (b) CPU parallel, and (c) GPU.

• Demonstrate the feasibility of characterising hotspots at AST-level in a relative performance

modelling context.

• Integration of LLVM Machine Code Analyser [2] in a source-to-source approach to estimate

computational cost of instructions in CPUs. Extensions to the Chikin et al. [30] method to

improve estimations accuracy.

• Adaptation of the Kim et al.’s [47] GPU analytical model for the OpenMP offloading context

and to address some limitations concerning modern GPU architectures.

• Experimental results using 14 benchmarks from the UniBench [56] repository show the

capability of the approach to map and improve performance for 11 of the 14 kernels.

1.5 Structure of the Dissertation

The remainder of this dissertation is organised as follows: Chapter 2 presents LLVM MCA and an

overview of the GPU architecture with an emphasis on NVIDIA GPUs. Chapter 3 describes the

state of the art in heterogeneous computing techniques for CPU-GPU systems. Chapter 4 describes

the implemented analytical performance model for the CPU, based on existing work. Besides, it

describes the two approaches considered for characterising the application: AST analysis and
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using LLVM MCA. Chapter 5 presents the used GPU analytical model, from state of the art, and

Chapter 6 identifies and addresses some of its limitations. Chapter 7 discusses the framework

overall, including implementation details for the analysis at AST level, parallelisation strategy

and how the analytical models are integrated for guiding target selection. Chapter 8 presents the

experimental results. Finally, Chapter 9 concludes the dissertation and proposes future work.



Chapter 2

Background

2.1 LLVM Machine Code Analyser

The llvm-mca [2] is a performance analysis tool that helps predict the performance of a region

of code and diagnose bottleneck issues. It analyses a sequence of assembly code and produces

reports that include: Instructions Per Cycle (IPC), CPU cycles, pressure on the various hardware

resources, and timeline views of the instructions state transitions at every simulated cycle (dis-

patched, executed, retired, ...). According to official documentation 1, the reported information is

inspired in Intel’s Architecture Code Analyzer (IACA), which has reached the end of life (EOL)

back in 2019.

llvm-mca uses the scheduling models available in the LLVM infrastructure, which are spe-

cific for each target device/architecture. The models specify: instruction latencies and define avail-

able hardware resources, the number of resulting micro-ops after decoding an assembly instruc-

tion, ports needed by instruction’s micro-ops, and the dispatch width (rate for issuing micro-ops

from the frontend section to execution engine section), among other architectural parameters.

llvm-mca is a static analysis tool, i.e., it does not execute instructions in the CPU. Instead,

it uses the information available in the scheduling models to simulate the different steps in a real

CPU, further discussed below. The region of assembly code is simulated in a loop for a number

of user-configurable passes. It is advantageous when inspecting a loop’s body and exploring the

various degrees of pipelining of modern superscalar CPUs.

2.1.1 What MCA models exactly?

This section analyses llvm-mca in the context of superscalar architectures to illustrate what ex-

actly is modelled and with what accuracy. This analysis is based on official documentation and by

inspecting some scheduling models in the LLVM’s source-code repository2.

1https://www.llvm.org/docs/CommandGuide/llvm-mca.html
2https://github.com/llvm/llvm-project/tree/main/llvm/lib/Target/X86

6

https://www.llvm.org/docs/CommandGuide/llvm-mca.html
https://github.com/llvm/llvm-project/tree/main/llvm/lib/Target/X86


2.1 LLVM Machine Code Analyser 7

The CPU is organized in various sections. To execute an instruction it is necessary to go

through multiple stages. The main sections are commonly described as [46, 70, 34]: (a) Front-End,

(b) Execution Engine or Back-End, and (c) Memory Subsystem.

2.1.2 Front-end

In the front-end, instructions are fetched from an instruction cache (I-Cache), decoded and split

in a sequence of micro-operations (µops) which are natively executed in the execution units. The

micro-ops flow into the back-end section at a given rate that depends on various factors but is

bounded by the interconnects — typically, just a handful of ops per clock cycle.

llvm-mca does not model the front-end of a CPU, and therefore any bottleneck there is

not reflected in the analysis. Instead, llvm-mca assumes all instructions have been decoded

and fetched into the first step of the back-end. The actual first unit in the back-end varies from

architecture. In general, the first unit is a ReOrder Buffer (ROB) or a Retire Control Unit (RCU) for

out-of-order CPUs. The mentioned buffers queue micro-ops to be retired in programs order after

execution completes. This approach allows micro-ops to be scheduled and issued in any order as

micro-ops become ready for execution.

2.1.3 Back-end

Assuming the micro-ops are already queued in the front-end, ready to be dispatched to the back-

end, llvm-mca models the following stages from the back-end phase:

Dispatch. Instructions, already decoded in micro-ops, are retrieved in groups and in program

order into ROB or RCU. The group’s size is limited by the issue width, an architecture pa-

rameter. llvm-mca fetches instructions if the following requirements are met: (a) there are

available entries in the ROB/RCU buffers, (b) there are sufficient physical registers for al-

location and renaming, and (c) the scheduler(s) buffer entries are not full. The dispatch

pipeline phase in llvm-mca not only pushes instructions into ROB/RCU but also dis-

patches the instructions to the respective schedulers. Recent Intel x86 micro-architectures

have a unified scheduler unit [17, 34], while AMD’s Zen micro-architectures [19, 60, 70]

have separate schedulers, for integer and memory instructions, and for floating-point and

vectorised instructions. Each scheduler has its queue of instructions and physical register

files. llvm-mca pipeline model supports and manages multiple schedulers and register

files.

Issue. Instructions in the scheduler queues may not be ready for execution if the source

operands are not ready. At every simulated cycle, llvm-mca checks which scheduled in-

structions are ready for execution. Instructions in the ready state are issued into proper

execution units. In contrast to ROB/RCU, which has to remember the original program’s

instructions order, the scheduler can issue in any order, assuming the CPU is Out of Or-

der (OoO). Older instructions are prioritized over recent instructions, and a round-robin
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scheduling policy is used to even execution units pressure. Note that in Intel/AMD x86

architectures, some micro-ops can be issued to multiple ports. llvm-mca tries to even ex-

ecution units’s usage. The ports to which a given instruction can be allocated is part of the

scheduling models.

Write-Back. Operations that complete execution remain in ROB/RCU, as they must be com-

mitted in the program’s order. When one operation’s source operand depends on an executed

instruction result, the value can be broadcasted from ROB/RCU enabling speculative exe-

cution.

Retire Stage. Also known as the commit stage, is when the result is written to the physical

register, and the respective entry in ROB/RCU can be released.

In the back-end section, llvm-mca models the main parts of current pipeline superscalar

processors. However, it does not model branch predictions.

Another limitation is the lack of modelling for HyperThreading (HT) [54] or Simultaneous

Multithreading (SMT). HT and SMT are Intel and AMD processors’ feature that enables shar-

ing CPU Core resources between two different threads. It is particularly advantageous when two

threads require different CPU resources, increasing resource usage and overall system throughput.

Note that with HT/SMT some Core resources are partitioned statically, while others are compet-

itively shared (e.g., schedulers and execution units) [17, 60]. Consequently, the accuracy of the

llvm-mca estimations is affected. Although the documentation [2] does not explicitly state the

lack of support for HT/SMT, evidence can be found in source-code comments 3.

One additional limitation, not stated in llvm-mca documentation [2], is lack of modelling

for optimisations that happen on the fly in the CPU. For example, the Move Elimination or Zero-

Latency Move Instructions, where some register to register move operations are solved in the front

end, not consuming any resources in the back-end (e.g., queues, scheduling units) [17, Section

3.5.1].

1 .intel_syntax

2 main:

3 mov eax, ecx

4 add eax, ebx

Listing 2.1: An assembly excerpt to demonstrante Move Elimination optimisations

To demonstrate the lack of pipeline-level optimisations in llvm-mca, consider the assembly

example in Listing 2.1. The first instruction moves ecx to eax, and then makes an addition:

eax = eax + ebx. In this example, it would be possible to skip the initial mov operation and

map the register eax to ecx at physical level. Analysing the snippet with llvm-mca shows that

the move elimination optimisation is not considered, as all instructions consume resources in the

back-end and there is a data dependency between the two — the add only starts executing after

mov completion. Therefore, it is very likely that other optimisations are not modelled either.
3https://github.com/llvm/llvm-project/blob/main/llvm/lib/Target/X86/

X86ScheduleZnver2.td#L119

https://github.com/llvm/llvm-project/blob/main/llvm/lib/Target/X86/X86ScheduleZnver2.td#L119
https://github.com/llvm/llvm-project/blob/main/llvm/lib/Target/X86/X86ScheduleZnver2.td#L119
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2.1.4 Memory subsystem

The last section in the execution pipeline of a CPU is the memory subsystem. Load and store

operations are issued to dedicated execution units and buffered in load and store buffer units. The

memory buffers have an interface for the first level data cache (L1D) for reading and storing data.

Modern CPUs offer mechanisms for forwarding stores to loads. Consider a store operation

at address A. It will be buffered in the store unit while the actual data is flushed to the cache,

committing the memory operation. Also, suppose a load operation for the same address A that

follows the store in the original program order. Even if the data is not committed to the cache, the

data from the store can be forwarded to the load, serving it immediately. The technique enables the

CPU to run speculatively and avoid the latency of storing and then reading from the L1D cache.

Regarding llvm-mca there are some limitations in the memory subsystem. Although it

does not bound the store and load buffers, allowing infinite memory operations in-flight, it has

Command Line Interface (CLI) parameters to specify custom number of entries (-lqueue and

-squeue).

The memory model does not support different memory operation types (e.g., write-back,

write-combining) but conservatively ensures consistency. For example, load operations can be

re-ordered as long as there are no interleaving stores. Stores are performed in order and cannot

pass previous loads.

Other limitations are the lack of store-to-load forwarding and no modelling of the cache hi-

erarchy. Therefore, llvm-mca does not simulate cache misses or hits in L1D. Instead, it uses a

load-to-use latency for load operations that should approximate a cache hit in L1D.

2.2 NVIDIA GPU Overview

2.2.1 CUDA programming model

From developers point of view, the GPU is a scalable array of processing units that execute hun-

dreds or thousands of threads in parallel. As the CUDA programming model has different ab-

straction layers to enable transparent scalability, the same application can execute on different

architectures with varying computing resources.

In CUDA, the programmer splits the problem into independent sub-problems that can execute

concurrently and in any order. These independent sub-problems are represented as thread blocks.

The blocks are scheduled and organised in one or more groups of threads that cooperatively and

simultaneously execute the sequence of instructions [12, Chapter 2].

Despite the top-down description, in practice, the code is written from the perspective of a

single thread following a Single Instruction, Multiple Threads (SIMT) model. In CUDA C/C++,

the thread operations are defined in a function known as the kernel. Listing 2.2 illustrates the

SIMT model adding two vectors: C = A+B. The most basic approach for breaking the problem

into independent tasks is assigning each data element to a single thread, i.e., each thread adds one

element of A with B and stores the result in C. All threads perform the same action, but on different
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elements of the vectors. The presented approach assumes the number of launched threads matches

the vector sizes, and each thread has an unique identifier, tid. In Listing 2.2, the identifiers range

in [0,N[, where N is the problem size and number of threads launched.

1 __global__ void vecAdd(float *A, float *B, float *C) {

2 int tid = blockDim.x * blockIdx.x + threadIdx.x;

3 C[tid] = A[tid] + B[tid];

4 }

Listing 2.2: Naive vector addition in CUDA programming model

The common approach to ensure threads operate on distinct data elements is to use a global

unique identifier. As explained before, a kernel is launched in a GPU organised in different

thread blocks, and each thread block has one or more groups of threads. Each thread block has

an ID, assigned sequentially, and each thread has a relative ID to the thread block. The pair

(BlockId,T hreadId) defines an unique identifier for each thread. At code level, an unique inte-

ger identifier can be calculated as BlockId ∗BlockDim+T hreadId, where BlockDim is the thread

block size. Listing 2.2 shows how to calculated the identifier in CUDA, storing the result in the

tid variable.

In order to launch a kernel in the GPU, the programmer specifies a launch configuration —

also known as grid geometry —, setting the number of thread blocks and respective size. The

blocks and threads within the block can be organised in a 1D, 2D or 3D grid. Accordingly, the

register identifiers (e.g., blockIdx.x) have the x, y and z axis, making CUDA more flexible

when working with multi-dimensional algorithms.

Listing 2.3 shows one possible kernel launch configuration for the vector addition in Listing

2.2, assuming the problem size is 16×256 = 4096.

1 int main() {

2 ...

3 vecAdd<<<16, 256>>>(A, B, C);

4 ...

5 }

Listing 2.3: Launching vector addition kernel with 16 thread blocks and 256 threads per block

2.2.2 Streaming Multiprocessor

The previous section presented the GPU at a high abstraction level from a programmer’s point of

view. This section provides more details on how blocks and threads are scheduled and executed at

the hardware level in NVIDIA architectures.

The SM is one of the main building blocks at the hardware level in NVIDIA GPUs. The

SM aggregates all parts for executing applications, including execution units, warp schedulers,

dispatch units, registers, and other on-chip memories (e.g., caches). It also includes units for

graphical applications, but that is out of context for this work. A GPU device combines one or

more SMs, off-chip memories shared among the SMs, and the host interface to receive commands

and data from the CPU.
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When the GPU receives instructions from the host CPU to execute a kernel, the thread blocks

are distributed among the SMs. In turn, each SM arranges the thread blocks in groups of threads

of fixed size, called warps — 32 threads in all architectures released so far. Accordingly, each SM

manages a pool of warps and is responsible for creating the warps, scheduling and executing them.

Each SM has one or more warp schedulers, a unit responsible for selecting the best warp

from the pool for execution. Some warps might not be ready to execute due to data dependencies,

synchronization barriers and other reasons. Therefore, the scheduler must select warps in a ready

state. The scheduling algorithm is not documented, but it is presumably based on readiness and

fairness, i.e., all warps are given even time slices.

When one warp is elected for execution, the dispatch unit commits one instruction at a time.

If all threads are on the same execution path, they execute the instruction in parallel and reach

maximum efficiency. When the threads diverge, the SM needs to execute instructions for all the

active paths. For instance, consider an if else statement, where half of the warp executes the

statements in the if block and the other warp executes the else block. When the SM issues

instructions for the if block, threads on the else block are inactive and do not execute any

instruction, reducing the overall throughput and efficiency.

One significant difference between GPUs and CPUs is that GPUs devote most of the die area

to computing units, while CPUs have large I/O and control blocks, shrinking the space available

for the cores. Even inside each core, considerable space is dedicated to complex units such as

branch predictors, decoders, instruction re-ordering, among others. On the other hand, GPUs try

to remove as much control logic on the hardware as possible. As a result, instructions are executed

in order and the scheduling and when to pre-empt warps is delegated to compilers [48].

Another interesting design choice in GPU architectures is that warp execution context resides

on-chip during the lifetime of a warp, enabling free warp switching in the warp schedulers. On the

other hand, CPUs need multiple steps to save and restore the context of each thread. That design

approach means that when a warp stalls (e.g., memory operation), the SM can swap to another

ready-to-execute warp with small or no overhead keeping the computing units as busy as possible.

To achieve high occupancy levels it is vital to select a suitable grid geometry.

Reducing control logic and warp scheduling latencies implies that hardware resources, such

as registers, are assigned when the warp is created and the allocation is fixed. Until the warp

completes the execution, the allocated resources cannot be used elsewhere. As resources are finite,

there is a limit on the number of simultaneous warps on the SM, thereby limiting the size of thread

blocks the programmer can use. Note that thread blocks are assigned to SMs as a whole and it is

the SM responsibility to create the warps — the programmer has no control over it. The number of

distinct thread blocks assignable to an SM is also constrained due to the finite resources available.

The GPU has a pool of thread blocks that are assigned to SMs as they complete executing a set of

thread blocks.

2.2.3 Execution units in Streaming Multiprocessors

This section outlines the most relevant execution units available in the SM [52]:
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CUDA Core, Core, Streaming Processor. The terminology varies from author to author, but

as the NVIDIA documentation primarily uses the Core and CUDA Core terminology, that nomen-

clature is used throughout this work. Terminology aside, a CUDA Core has an ALU unit and a

Floating Point (FP) unit. It supports 32-bit and 64-bit integer operations. On the other hand, the

FP only supports 32-bit operations and includes fused multiply-add instructions. It is important

to note that both ALU and FP sub-units do not implement all instructions natively. For instance,

integer multiplication and divisions are not native operations in many NVIDIA architectures, de-

pending on the target market segment. This topic is further discussed later on.

Load/Store Units. Memory instructions are dispatched to Load (LD) and Store (ST) units.

These are responsible for calculating the requested addresses and issuing the data requests to the

memory units freeing the SM to continue executing instructions from the same or other warps.

Special Function Units (SFU). Execute transcendental instructions, such as trigonometric

functions, square root, logarithmic and others.

Double Precision (DP) Units. Units for handling 64-bit double-precision operations. These

units are often not mentioned or depicted in the SM diagrams in official documentation, especially

on GPUs for the consumer segment, as the number of units just too low. As an example, the typical

ratio of CUDA Core to DP units is 32/1 per SM. For professional and data-centre segments, the

scenario is entirely different. The Tesla P100, based on Pascal architecture, has a 2/1 ratio per SM

[6].

According to the Fermi architecture report [4], the CUDA Cores are fully pipelined, and the

dispatch units issue instructions every cycle.

2.2.4 Memory Hierarchy

GPU memory hierarchies are more complex than in CPUs, in the sense that the number of memory

components is higher and some memory spaces are disjoint. The memory layers vary in capacity,

latency and are often optimised for specific purposes.

In the CUDA programming model, memory can be viewed in two ways: the logical memory

space and the memory chips at the hardware level. A programmer usually thinks of memory in

the logical representation, which is exposed in the programming model. Logical memory includes

the global, local, shared, texture/surface and constant memory spaces. The hardware is composed

of device memory (DRAM), caches and other dedicated on-chip memory units — e.g., shared

memory or registers. Often, multiple logical spaces map to one memory device or share data-

paths.

The most relevant logical memories available in CUDA are enumerated below:

Global Memory. In general, a global memory access is thought as accessing the device or

DRAM memory, the memory device with largest capacity that is shared between all SMs.

It is also the slowest memory to access. Device memory is connected to a two-level cache
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system, and all read/write memory goes through the cache hierarchy. Generally speaking,

reads and writes are always cached in L2, but some architectures have opt-in L1 caching

and the size is user-configurable.

Shared Memory. This memory space has a dedicated on-chip per SM. It is allocated per

thread-block basis and is often used for data-sharing (communication) and synchronisation

between threads that belong to the same thread-block. It is low latency memory (similar

to register accesses) with high throughput. Shared memory usage is fully controlled by the

programmer. On some older architectures, L1 and shared memory were unified in a single

memory device.

Registers. Each partition in the SM a register file shared by active threads in the warp sched-

uler. Each architecture has a limit on the number of registers that can be allocated to a thread

and respective thread block.

2.2.5 Driver and Runtime APIs

The CUDA C/C++ programming language is an extension of the C/C++ language. The syntax

extensions are minimalist and mainly used for kernel launching, marking functions as kernels

(i.e. code that executes on the GPU device) and specify memory location (e.g., constant, shared

memory, and others).

Additional features are available through APIs. There are two types of interfaces: CUDA

Driver API [13] and CUDA Runtime API [14]. The former is a low-level API that provides more

fine-grained control over contexts/processes and module management. The Runtime API is built

on top of the Driver API and is the interface that is most commonly in CUDA. It is used to allocate

memory buffers on the GPU, manage data transferring between host CPU and GPU, among others

[12, Chapter 3].

2.2.6 Compute Capability

In the CUDA programming model, Compute Capability (CC) is a concept that represents a set of

features supported in a given GPU. The CC also defines some architectural properties, e.g., the

number of registers available and on-chip memory sizes.

The compute capability is expressed with major and minor revision numbers, M.m. Generally,

the major number is incremented with the introduction of new architectures. For instance, all

devices with CC 6 are from the Pascal architecture. The minor revision is related to refinements

on the architecture or different configurations for targeting distinct market segments (e.g., desktop

and mobile personal computing, data centre, HPC) [12].



Background 14

2.3 Summary

This Chapter presented the LLVM MCA [2] tool, explaining the capabilities of LLVM MCA, as

well as its limitations regarding superscalar pipeline modelling. This Chapter also presented an

overview on NVIDIA GPU architectures, the CUDA programming model and terminology used

throughout this dissertation.



Chapter 3

Related work

This chapter presents a literature review on automatic code parallelisation and offloading for CPU-

GPU systems and its associated challenges. Section 3.1 describes automatic and naive paralleli-

sation of sequential C code, generating code that targets GPUs using source-to-source techniques.

Section 3.2 introduces skeleton programming, which are libraries with high-order functions for

common parallel patterns, abstracting the details of GPU programming. Other work addresses au-

tomatic workload partitioning on available processing units for best performance and is described

in Section 3.3. Section 3.4 presents approaches for creating a fully automatic flow that detects

potential parallel code regions, generates code for GPU, and partition the workloads for best per-

formance. Essentially, it is a combination of methodologies from Sections 3.1 and 3.3 in a single

framework. The following Section 3.5 addresses the data management problem that exists when

offloading computation to the GPU. Section 3.6 presents an overview on revised literature. Some

related work is described in greater detail as it is closely related to our work.

3.1 Automatic parallelisation for GPU

This section presents approaches that automatically analyse sequential C code, find parallel re-

gions, and generates GPU code.

In this dissertation, we refer to such approaches as naive because they do not evaluate if there

are any benefits in offloading to the GPU and can result in slowdowns. Most approaches we found

use source-to-source techniques for code generation, with the following advantages.

• The developer can inspect the resulting code and fine-tune it.

• It is possible to use any compiler compliant with the used programming model, as different

compilers support diverse architectures or achieve distinct optimisation levels.

• The developer can revert some of the changes due to performance penalties or algorithm

correctness.

15
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The proposed tools for automatic parallelisation targeting GPUs use one of the following pro-

gramming models: (a) CUDA [11], (b) OpenCL [9], and (c) OpenACC [8].

3.1.1 C-to-CUDA

C-to-CUDA [24] generates parallel CUDA from sequential C code. It parallelizes affine doall

and doacross loops using polyhedral models. In doall loops, loop iterations are independent and

can execute simultaneously. In the second class of loops, doacross, inter-iteration dependencies

exist. C-to-CUDA enables the fusion of successive loop nests by working on the largest region

of static control code. Further, it explicitly manages the memory hierarchy, generating efficient

access patterns on global memory to enable coalescing and the use of on-chip memories, like

constant memory, for repeatedly used data.

3.1.2 PPCG

PPCG [71] is similar to C-to-CUDA [24]. It is a source-to-source compiler that uses polyhedral

techniques to generate CUDA. Despite the similarities, the authors highlight a few key distinctions.

For example, concerning data allocation in the GPU memory hierarchy, C-to-CUDA moves all

arrays to shared memory without considering capacity constraints and inter-thread data usage that

could benefit from global memory coalescing. PPCG is cautious in this regard. It tries to move

data to registers when there’s is reuse; if access is non-coalesced data is moved to shared memory;

otherwise, it is left on global memory. They also present a code generation scheme for imperfect

loop nests where statements are not in the innermost loop (perfect loop nests).

PPCG and C-to-CUDA reach performance levels close to hand-written and optimised code.

However, these tools generate kernels whenever possible without considering profitability in of-

floading. Furthermore, by using polyhedral models the approach is limited to affine loops.

3.1.3 DawnCC

DawnCC [58] is a source-to-source compiler that automatically annotates C code with OpenM-

P/OpenACC directives to exploit data parallelism and offload computations to GPU. According to

the authors, DawnCC was the first tool to insert OpenACC/OpenMP directives without user inter-

vention and ensures correctness. Moreover, the authors address two particular challenges: pointer

disambiguation and optimisation of data transfer operations.

The compiler supports doall loops, i.e., loops where every iteration can execute simultane-

ously. It uses well-known compiler techniques to find the loops. The tool inserts parallelism/of-

floading directives and explicit data transfer clauses to specify what needs to be copied from CPU

to GPU and vice-versa. DawnCC addresses the pointer aliasing problem as it can compromise

the parallelisation correctness. Loop nests are pointer aliasing free if all memory locations are

referenced by at most one pointer. It uses symbolic range techniques to compute the lower and

upper bound indices for every pointer symbol. Given the base address and the bounds, it computes

the region of memory referenced by a given pointer, which is sufficient to evaluate if two pointers
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overlap. DawnCC inserts the pragmas with a conditional directive that at runtime asserts if the

loop is free of pointer aliasing. If it is not, the sequential code executes. Besides, OpenACC data

directives need explicit memory boundaries. The symbolic range analysis solves that issue as well.

The evaluation results show the relative performance between code automatically annotated by

DawnCC and the original sequential version. For embarrassingly parallel programs, the DawnCC

version results in considerable speedups. However, shorter benchmarks exhibit slowdowns due to

the lack of cost analysis to weight offloading decisions.

3.2 Skeleton programming

Skeleton programming consists of a library with templates for general data and task-parallel com-

pute patterns. The library defines interfaces for the patterns in order to abstract the details of paral-

lel programming. Another advantage in skeletons is portability. The purpose is that the library has

an optimized and tunned implementation that encapsulates memory hierarchies, synchronization,

programming models, and other features very close to the architecture.

The patterns are generic and related to data element accesses and computation. Therefore, the

developer has to implement a user-function that defines the actual operation on a set of elements

and is a parameter for the skeletons — high-order functions.

3.2.1 SkePU

SkePU [35] is a C++ library that implements parallelised skeletons for common data access pat-

terns. Skeletons are implemented and optimised in various programming models, targeting CPUs

and GPUs. A skeleton is a high-order function and requires a user-defined function to specify the

operation. To make use of skeletons, the user needs to modify his program where needed.

The skeletons available in SkePU support patterns such as Map, Reduction, MapReduce,

MapOverlap, and MapArray. For instance, the mapping skeletons iterate over a data sequence

and transforms the original items into new ones according to some function, f (x), defined by the

user. The skeleton’s operators are defined by the user via available macros in SkePU. Skeletons are

initialised with the declared operator and then invoked on data input — an array or a C++ iterator.

SkePU skeletons are objects with member functions for the different implementations — se-

quential CPU, parallel CPU with OpenMP, CUDA, and OpenCL. The user can invoke a specific

implementation or leave the decision to SkePU, which selects the implementation and target based

on availability — however, the exact approach or heuristic is not described in [35]. SkePU sup-

ports multi-GPU with OpenCL and CUDA implementations, and by default, uses all GPU units

available and evenly distributes the workload. However, the user can limit the number of GPUs

that SkePU uses.

Furthermore, SkePU proposes a container based on STL’s1 vector that tracks data located

on GPU to manage data transferring. Data is sent back to the CPU only when the host CPU

1https://www.cppreference.com/Cpp_STL_ReferenceManual.pdf

https://www.cppreference.com/Cpp_STL_ReferenceManual.pdf


Related work 18

accesses it, using a lazy approach. This approach prevents redundant data movements, particularly

in subsequent skeletons that run on GPU as input data for skeletons resides on GPU already.

Despite its benefits, the container has a single dimension. As, it is the only supported data structure

in SkePU, it limits the flexibility in using the library.

SkePU 2 [37] is an improvement on the original SkePU. It simplifies the programming inter-

face adopting C++11 features and type-safety. The skeletons are more flexible than the predeces-

sor version and support multi-dimension containers — MapArray becomes redundant. Moreover,

it adds support for the Scan pattern (also known as the prefix or cumulative sum). The reduc-

tion skeleton for matrices can be applied in one or two dimensions with configurable direction

(row-first or column-first). Row-major order is also supported.

3.2.2 Muesli

Muesli [36] is a C++ library that offers several data-parallel and task-parallel skeletons that support

multi and many-core architectures, and clusters. It uses OpenMP for multi-core CPUs, CUDA for

GPUs, and Message Passing Interface (MPI)2 to handle communication in clusters.

Data-parallel skeletons include a map, zip, fold, and scan patterns. The skeleton behavior is

defined with user functions or functors implemented using C++11 templates. Besides, it supports

task-parallelism and offers skeletons for farm, pipe, divide and conquer, and branch and bound

topologies.

Muesli has distributed data structures to be used with the skeletons. There are variants for

an array, matrices, and sparse matrices. The data structures abstract the data partitioning and

communication between host and GPU in the same node and between separate nodes with MPI.

Moreover, the data structures enable the developer to have a global view of the data structure and

not worry about local partitions. However, Muesli also gives the possibility to use local indices

(relative to a partition on some processing unit). The data structures track data modifications in

host CPU and GPUs to check data coherence and prevent redundant communications.

C++ templates enable support for standard and user-defined data types, which makes the li-

brary very flexible. One problem, however, is the need for serialisation in inter-node communica-

tion. By default, Muesli offers implicit serialisation for primitive data types or pointerless objects.

Such data types are stored in memory as contiguous blocks. However, for more complex structures

that have pointers, it is necessary to pack all the data in a contiguous memory block before trans-

ferring it between nodes. Such object classes must extend a Muesli class and implement the object

serialisation method, which is invoked on transmission and reception, for packing and unpacking

the object.

Muesli is a portable library and can be compiled to target different systems: a combination of

shared-memory multi-core CPUs with GPUs or multi-GPUs and distributed memory systems with

clusters of the previous combinations. However, it is not clear if the user can control workload

2https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
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partitioning considering the problem size to prevent slowdowns or if Muesli has built-in techniques

to manage it. The article seems to suggest Muesli uses everything available in the system.

3.2.3 Bones

Bones [64] is a source-to-source approach based on algorithmic skeletons techniques to ease C

code parallelising for CPU and GPU. Skeleton libraries require the user to modify the code manu-

ally, reconstructing the algorithm on top of the available skeletons. Besides, some libraries require

specific data structures and containers. Bones proposes algorithm classifications to address some

of the difficulties in skeleton programming. The classifications are introduced manually by the

user. However, these are typed with compiler pragmas, reducing the user effort when compar-

ing to other skeleton libraries such as SkePU [35, 37], or Muesli [36]. Moreover, Bones aims to

generate target code that is readable and editable for further manual tuning.

The algorithm classification grammar lets the user define input and output data-structures and

the data access patterns: elements are accessed individually, data is accessed in a tile pattern,

and so on. For instance, 512x512|element → 512x512|element indicates an algorithm

that reads elements individually from a 512×512 data structure, and writes to a 512×512 struc-

ture. According to this grammar rule, the operations are independent and can be parallelised.

In the source code, the classification is introduced with enclosing pragmas: #pragma kernel

512x512|element → 512x512|element ... #pragma endkernel.

Bones parses the input sequential C code with algorithm classification pragmas and generates

the AST. The AST is used to extract information and instantiate a skeleton according to the user’s

algorithm classification. From the AST, it generates the final code. Skeletons support different

targets: CPU, AMD GPU, and Nvidia GPU. For the first and second targets, skeletons produce

OpenCL, and for the latter, CUDA.

3.3 Automatic workload partitioning

One of the concerns in heterogeneous computing is distributing the tasks in a program among the

available processing units. Various aspects need attention to extract maximum performance. For

instance, tasks can be mapped based on their characteristics. An algorithm that is very irregular

and has complex branching is more suited to CPU. On the other hand, highly parallel problems

benefit from GPU architectures with many thousand of cores available.

Offloading tasks to an accelerator is not for free. For instance, there is overhead due to data

transferring as the host and accelerators may not share memory. Literature uses static, dynamic, or

hybrid approaches to evaluate offloading benefits and account for overheads. Static analyses are

inherently incomplete as not all information is available at compile time (e.g., the iteration number

in a loop). Therefore, an alternative is dynamic analyses, i.e., at runtime. However, this can

introduce considerable overhead. Hybrid approaches mix static and dynamic analyses. At compile

time they extract relevant information and at runtime conditional expressions are evaluated to make

a final decision.
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Selecting the optimal target for an individual task is quite complex by itself. However, this

does not ensure an optimal workload partitioning as some processing units are idle. Consequently,

more complex analyses explore load balancing, pipelining and task parallelism. In load balancing,

a data-parallel task is distributed among the processing units to keep all units busy. If all units

complete their sub-tasks at similar times, the partitioning is optimal. Pipelining techniques try

to hide communication and other overheads, keeping some units busy with computation, while

the preparation steps happen in parallel ahead of offloading computation. Finally, task parallelism

detects independent tasks that can execute simultaneously. Since they are independent, they can be

distributed among available hardware units. The main issue is then selecting the optimal allocation

scheme to reduce power consumption or execution times.

Literature on workload partitioning is vast. This section addresses existing work on individual

code region analyses. Techniques such as load balancing, pipelining or task parallelism are out of

scope for our work objectives.

3.3.1 Hybrid CPU-GPU execution in SkePU

Kessler et al. [77] extended SkePU 2 [37] with a hybrid workload partitioning backend. For

simplification, SkePU 2 is referred as SkePU in this Section. The proposed approach inspects

SkePU skeletons individually and splits the problem among CPU cores and multi-accelerators

— known as workload balancing. The partition ratios can be set by the user or automatically

estimated with performance benchmarking.

When the Skeleton is invoked, the workload is partitioned in two parts accordingly to a ratio

parameter: one for the CPU and another for accelerators. The ratio parameter is configured by

the user or auto-tuned on a skeleton basis. The CPU partition is split into N−1 parts, where N is

the number of cores in the CPU. The remaining core is responsible for managing the accelerators.

The accelerator partition is further divided when multiple devices are available, a feature available

in CUDA and OpenCL backends. However, in this approach, the workload is evenly distributed.

It does not ensure optimal partitioning if the available accelerators are not equal devices.

With auto-tuning enabled for estimating the partition ratio, the framework uses performance

benchmarking to find a suitable value. As estimating optimal workload partitioning for all cases

requires complex and demanding algorithms, they propose an auto-tuner that yields good estimates

on common scenarios and assume execution time has a linear relation with problem size. The

tuner is performed once per skeleton for a given application. Therefore, different applications

require individual tunning. The auto-tuner measures execution time on CPU and accelerators

using the different backends available. The collected execution times are approximated with a

linear regression t = a×N + b, where N is the problem size, and a and b are constants. The

approximation assumes the user function has constant complexity. The partition ratio R splits the

workload into two partitions: N×R for CPU and N×(1−R) for accelerators. The partition ratio is

optimal when the execution time is equal, avoiding idling in processing units. Therefore, solving

both linear regressions for R outputs the optimal partition ratio. The value of R may indicate that
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accelerator-only or CPU-only are the optimal schemas. In such cases, the SkePU uses just one of

the backends accordingly.

3.3.2 Chikin et al.

Chikin et al. [30] propose a novel approach for using performance analytical models to guide the

offloading decisions. The authors also present an initial study on target-offloading, introduced in

OpenMP 4.0 specification.

Their approach uses one analytical model for CPU and another for GPU. Besides, it proposes

a new symbolic analysis to evaluate the memory access patterns and classify them as coalesced

or uncoalesced. The inputs are applications with hotspots outlined with OpenMP directives. The

prototype framework augments the compiler to collect information in the static analysis phase to

construct skeleton models. The OpenMP regions are duplicated, creating a compiled version for

CPU (parallel) and another for GPU. At compile time, the skeleton models are incomplete as not

all information is available. The OpenMP runtime is augmented to feed the missing data to the

skeleton models and to estimate the speedup in offloading to the GPU, deciding which kernel ver-

sion grants optimal performance. The overhead is minimal because calculating analytical model

estimations consists in computing few linear equations.

The experimental results show that overall execution times are improved, which means the

offloading decisions are optimal. It further demonstrates that predicted GPU speedups are rela-

tively close to the real values. The authors suggest that the GPU model requires further tunning,

for example, a detailed memory hierarchy modelling. Finally, some assumptions and heuristics

also lead to more errors, such as assuming that conditional branches execute 50% of the time.

Analytic performance models reduce runtime overheads and do not require previous runs of the

target application for profiling, making it appealing for production systems. Precise models can

estimate execution times or relative speedups with high accuracy, an important factor for optimal

offloading decisions.

3.4 Automatic parallelisation and workload partitioning

This section presents work that automatically finds parallel code regions in sequential applica-

tions, evaluates performance gains in offloading and makes the necessary code transformations to

execute the code region on an accelerator. It addresses the problems presented in Sections 3.1 and

3.3, all in the same framework.

3.4.1 HTrOP

Plessl et al. [67] proposes HTrOP, a tool that automatically analyses sequential code, detects

computational intensive regions (hotspots) and generates parallel OpenCL kernels — that can

target multiple co-processors such as GPGPUs and FPGAs. The decision for offloading happens

at runtime, when all information is available. It either selects the best available accelerator or
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executes the sequential version on CPU. The tool takes LLVM bitcode as input. Therefore, it

supports any language in the LLVM infrastructure: e.g. clang for C/C++, flang for Fortran.

Hotspot analysis is performed at compile-time and supports a subset of loops that fit the poly-

hedral model with the following restrictions: the loop trip count expressions must be an affine

function and not have cross-iteration dependencies. Hotspots are assigned a score computed as a

weighted sum of floating-point and integer instructions. Hotspots that do not exceed a user-defined

threshold score are not offloaded. Remainder hotspots are considered offloading candidates and

are wrapped into functions that contain a parallel OpenCL code generated from LLVM bitcode.

The offloading decision for these hotspots is delayed for runtime. In order to achieve it, function

calls are augmented with a control unit that makes the decision when all the information needed is

available: (a) input/output data sizes, (b) available accelerators, and (c) the possibility to reuse one

accelerator on successive hotspots to reduce additional overheads. The control unit might decide

to execute the sequential version if there is no offloading benefit. Otherwise, it selects the best

accelerator available and compiles the OpenCL kernel, generated at compile-time, for the selected

device.

The proposed approach supports different accelerators using the OpenCL programming model.

Moreover, evaluation results show performance levels close to manually written OpenACC appli-

cations. However, hotspot detection is limited to affine loops that fit polyhedral models. Also,

it does not regard each accelerator architecture which might benefit from code transformations

and optimizations. Finally, the runtime kernel compilation induces significant overheads that need

amortization, therefore reduces the set of problems that could profit from offloading.

3.4.2 Etino

Etino [65] is an automatic and fully static tool for mapping computations in sequential C code to

the GPU. It results in a hybrid program that uses both CPU and GPU to speed up the application

compared to the baseline sequential CPU code. Cost models guide the workload partitioning.

Etino parses the original program and constructs an Extended Call Graph (ECG), which in

practice is a Call Graph with additional information. Except main, functions are duplicated in

the graph, creating a node for CPU execution and another for GPU, i.e., fcpu and fgpu. The ECG

captures caller-callee relations. Assuming a function f calls g in the original program, in ECG,

both fcpu and fgpu link to g. That way, the callee knows the caller’s execution context, and it

is possible to account for communication and accelerator initialisation overheads. Cost models

augment the ECG to estimate the computing cost for every function and the cost for a function

call others (edges). An algorithm processes the ECG to find a subset graph that minimizes the

overall cost. This approach’s weakness is that separated invokes for a function g in the same

caller f are not distinguished in the graph. As a result, all calls for g in function f are assigned

to the same processor. After the scheduling algorithm, Etino calls DawnCC [58] to insert the

OpenACC/OpenMP directives in parallel regions assigned to GPU. Although a function is set to

run on the GPU in ECG, only parallelisable loops are annotated with OpenACC/OpenMP and thus
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are offloaded. Functions set to run on CPU remain unchanged. The result is then compiled with

ppcg or clang to produce the final executable.

Etino uses analytical performance models to capture hardware characteristics. The authors

argue that some hardware characteristics might interact with each other in complex ways, hence

they suggest using heuristic approaches to find the parameters. As a result, the authors propose

using Simulated Annealing (SA) and uses a quality metric that compares the original version’s

performance on the CPU to the current Etino’s scheduling version. The cost model starts with

random values, and at each iteration, the model parameters change slightly. As the quality met-

ric increases, meaning a speedup against the baseline, the model parameters are guiding good

scheduling schemes. For tunning the cost model, Etino uses a set of benchmarks as input and the

operation is done once per system. One interesting aspect in Etino is that code parameters are

also tunned with SA. For instance, the loop trip count. It assumes loops execute a fixed amount of

times and all branches in conditional statements run.

The evaluation results show that the careful workload partitioning in heterogeneous systems

results in more considerable speedups or avoids slowdowns than other related work that offloads all

parallel loops to the GPU. However, the evaluation does not compare Etino to handwritten code.

That comparison would be interesting to understand the impact of disregarding data input sizes

and compare manual workload partitioning against Etino to understand the efficiency in autotuned

cost models with SA.

3.5 Data management optimisation

In the typical heterogeneous systems, accelerators and host CPU do not share memory. Conse-

quently, when an application offloads computation tasks to accelerators it has to transfer data from

the host’s memory to the accelerator’s memory. At the end of the computation in the accelerator,

the results may need to be transferred back to the host. Accelerators and host CPU are usually

connected via buses with limited bandwidth. Therefore, data and instruction movements may in-

duce significant overheads that limit the profitability in offloading. Careful data management can

significantly improve performance.

OpenMP, starting with version 4.0, supports offloading to accelerators. It grants implicit data

movements, delegating that task to the compiler. However, compilers like Clang and GCC move all

data dependencies of a kernel to GPU memory without judging data availability on the target GPU.

When the kernel completes, data is sent back to the host regardless it is needed or was modified.

Such approach can generate redundant communications. Consider offloading two consecutive

kernels, where the result of the first one is an intermediary computation and input for the second

one. The implementation in Clang/GCC sends the intermediary results back to the host, despite

not being needed. Moreover, the exact intermediary data is sent to the GPU, although the data

was already in memory as a result of the first kernel. This section presents work that addresses

memory communication optimisations in OpenMP/OpenACC applications.
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3.5.1 DawnCC

DawnCC [58], first introduced in Section 3.1, also contributes to optimising data transfers. Two

consecutive kernels might use the same data, or the result of one kernel being the input for a

second kernel, thus already in GPU memory. Individual kernel analysis leaves out opportunities to

reduce the number of memory transfers. DawnCC uses data environments, supported on OpenMP

and OpenACC, to solve the problem. Essentially, a data environment defines a region where some

some data transfers happen when entering and leaving the region. Data that is moved to the GPU

is persistent throughout the region. The data environment aggregates one or more parallel regions,

therefore no communication in-between is necessary.

DawnCC uses control flow graphs (CFG), data dependency graphs, and symbolic range anal-

ysis. With the CFG and data dependency analysis, it explores the possibility for data re-use and

memory that can be allocated in the accelerator for intermediary results. Besides, it uses the

symbolic range analysis to reduce the amount of data transferred, sending just the necessary data

instead of entire arrays.

The evaluation highlights the importance of memory transferring optimizations, noting gains

up to 50% in some benchmarks. Moreover, the authors compare the explicit data management

against CUDA Unified Memory — a runtime NVIDIA technology that manages buffer allocation

and coherence between CPU and GPU memories without user intervention. The results reveal that

for larger data problems, the manual memory management results is significantly better.

3.5.2 Chapman et al. tool

Chapman et al. [59] propose a tool that performs static data reuse analysis between the kernels

at compile-time and makes the necessary transformations in the source code to manage data com-

munication efficiently.

Their approach processes applications with OpenMP target directives, indicating the code re-

gion should be offloaded to the GPU. It uses LLVM infrastructure to perform static data reuse

analysis between kernels on the AST level. For every target region, it performs live data analysis

on the accessed variables. The tool considers two hypotheses where data re-use is very likely:

(a) kernel call happens inside a loop, and (b) kernels called in the same function. After collecting

the data and performing the analysis, it makes the necessary transformations inserting OpenMP

data mapping clauses.

3.5.3 OpenMP Automatic Offloading (OAO)

Wang et al. [72] propose the OpenMP Automatic Offloading (OAO) tool. It translates shared-

memory OpenMP programs, originally written for multi-core CPUs, to execute on heterogeneous

systems by adding OpenMP offloading directives. Moreover, it introduces a runtime library to

reduce host-device communication.

The OAO library is a set of APIs inserted automatically in the source-code to track the data

state. For example, it traces if data is located on the host memory only, device only or is present
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on both. In the latter case, the data state may be coherent. If it is not, then either the CPU or device

have a more recent version of the data and it may be necessary to transfer it. Essentially, the data

state is tracked in a state machine that transitions between states throughout the program execution.

Given the data states, the OAO manages the data transferring to minimize communication as much

as possible. OAO uses source-to-source techniques to insert the API calls that update the state

machines state, as well as data transmission.

One advantage for the OAO runtime approach is tracking the data consistency on the applica-

tion level, supporting intra-function and inter-function memory management. However, according

to the authors it cannot track multilevel pointers.

3.6 Overview

Given the presented objectives in Section 1.3, the following questions are of interest to define our

methodology:

• What are the possible strategies to find code regions or hotspots that may benefit from CPU

parallelisation or GPU offloading?

• How to estimate the optimal target, between CPU, CPU Parallel and GPU, for computing a

hotspot?

• How to transform sequential C/C++ code to run in parallel in CPU or in GPUs?

The presented literature throughout this chapter proposes different techniques to address these

questions. Table 3.1 summarises the most relevant work found on literature. It compares the input

for the implemented framework/tool, the programming models used, the approach for detecting

hotspots, and finally, how offloading decisions are driven. Furthermore, it also indicates whether

the tool implementation is available in some way, e.g. as source-code or binaries. Table 3.2 shows

the benchmarks used by literature for evaluation. In case no specific benchmark suite is used, the

names of the kernels are enumerated.
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Table 3.1: Overview of existing literature for automatic parallelisation and offloading in CPU-GPU heterogeneous systems

Name Input Generates Hotspot detection Offloading decision Public?
C-to-
CUDA
[24]

C CUDA
Polyhedral models. Supports doall and
doacross loops

Naive 7

PPCG [71] C CUDA
Polyhedral models. Supports doall and
doacross loops

Naive 33

DawnCC
[58]

C OpenMP / OpenACC
Classic compiler techniques. Supports
pointer aliasing free doall loops

Naive 34

Chikin et
al. [30]

OpenMP
with target

regions

Extended OpenMP runtime for dy-
namic offloading decisions

N.A.
Analytical performance models (CPU +
GPU)

7

HTrOP
[67]

LLVM bitcode
Executable (generates OpenCL, com-
piles on runtime)

Polyhedral models. Affine doall data-
parallel loops

Static and Runtime. Total num-
ber of integer/floating-point instruc-
tions above user-defined thresholds and
accelerator reuse heuristic

35

Etino [65] C
Executable binary (generates Ope-
nACC)

Classic compiler techniques. Uses
DawnCC for annotation, thus supports
pointer aliasing free doall loops

Cost models, automatically tunned with
Simulated Annealing

36

3https://repo.or.cz/ppcg.git
4https://github.com/gleisonsdm/DawnCC-Compiler
5https://github.com/pc2/htrop
6https://hub.docker.com/r/gpoesia/etino/tags

https://repo.or.cz/ppcg.git
https://github.com/gleisonsdm/DawnCC-Compiler
https://github.com/pc2/htrop
https://hub.docker.com/r/gpoesia/etino/tags
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Name Benchmarks

C-to-CUDA [24]
Coulombic Potential, N-Body Simulation, MRI Kernels, Stencil
Computation Kernels, Gauss Seidel

PPCG [71] Matrix Transpose, PolyBench 3.1 suite [75]
DawnCC [58] PolyBench suite [75]
Amaral et al. [30] UniBench suite (based on Polybench) [75, 56]

HTrOP [67]

2D matrix multiplication, Black-Scholes, Finite impulse response
signal processing, Chain of convolutions to enhance image qual-
ity 2D simulation of heat transfer, N-body particle simulation,
Motion detection, Cryptographic hash function with 256-bit di-
gest, 3D stereo matching

Etino [65]
PolyBench [75], MgBench, Computer Language Benchmarks
Game (BenchGame), DataMining Benchmark Suite

Table 3.2: Benchmarks used in literature for evaluation

3.6.1 Parallelisation strategies

Most of the presented work does hotspot detection considering loops as the primary source for

intensive computing tasks. It is expected, as most scientific work performs several operations on

distinct data elements. Therefore, in practice, the algorithms are implemented as loops that allow

repeating the same set of instructions over different data elements. Although some approaches

apply classic compiler techniques to analyse loops and determine if they are parallelisable, there

is a trend for using Polyhedral models, despite its limitations for non-affine and irregular loops.

In Table 3.1, only Chikin et al. [30] does not detect hotspots automatically, as the input is source

code with manually annotated OpenMP regions.

Our approach is similar to existing literature in the sense that we only consider loops as poten-

tial candidates for acceleration. However, we use static analysis at AST level and classic compiler

techniques to determine if loops can be parallelised.

Despite our work and some of existing literature targeting multiple devices, architecture spe-

cific tuning (e.g., loop level transformations) is not address in the literature presented in this dis-

sertation.

3.6.2 Artefact and supported targets

Our methodology uses source-to-source techniques to generate OpenMP code with offloading sup-

port. We argue that generating modified source-code offers more flexibility for users. For instance,

they can further modify the code, tuning it for specific target architectures. Another advantage for

source-to-source techniques is that users can choose any compiler compliant with OpenMP, which

may leverage better performance when using vendor compilers on specific platforms (e.g. IBM,

Cray) [55]. As the OpenMP offloading capabilities improve and compiler implementations are

more optimised, we argue it is an interesting programming model for our proposal. It reduces the

invested time in generating code for targeting different vendor hardware. Besides, OpenMP is well
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known. Therefore, users that may want to further modify the code may already be familiar with

OpenMP.

Compared to existing literature, some approaches use source-to-source techniques as well. C-

to-CUDA [24] and PPCG [71] generate CUDA for accelerating the application, thereby are limited

to NVIDIA GPUs. Etino [65] generates OpenACC, which is vendor agnostic, and it is expected

to work on AMD and NVIDIA GPUs. DawnCC [58] can generate OpenACC and OpenMP with

offloading directives. Although their focus is GPUs, it may be possible to disable offloading

through compiler flags and run the OpenMP regions in parallel in the CPU as well.

The remainder approaches generate binary files. There is a trend for using LLVM infras-

tructure in recent research work (see, e.g., Chikin et al. [30] and HTrOP [67]). We argue it is a

limitation because such frameworks work as black-boxes from the users perspective. Besides, they

are tied with the LLVM infrastructure, which we consider to be an important limitation. Chikin

et al. analyses pre-annotated applications with OpenMP and targets parallelisation in multi-core

CPUs and GPUs. HTrOP generates OpenCL, which has a wider support for targeting different ac-

celerators. For instance, there is support for FPGAs. However, the experimental results consider

CPUs, GPUs and Intel Xeon Phi.

Our approach considers three targets: CPU sequential (original), CPU parallel and GPU. Dif-

ferent OpenMP directives are inserted depending on CPU parallel or GPU target selection. Al-

though DawnCC can be used to target parallel CPUs, it requires manual configuration at compile

time via flags. Some compilers may not even support disabling offloading. Our technique gener-

ates the code for the three targets, thus no further user intervention is needed.

3.6.3 Target selection

Concerning target selection, C-to-CUDA [24], PPCG [71] and DawnCC [58] are all naive. In

other words, their approaches does not perform target selection analysis. Instead, they try to

parallelise all loops as long they can prove loop is absent of loop carried dependencies. Since the

parallelisation strategy is naive, it may result in application slowdowns. Nonetheless, these tools

are useful to facilitate the parallelisation work.

On the other hand, HTrOP [67], Etino [65] and Chikin et al. [30] use some strategy to guide

target selection. HTrOP uses a simple approach that needs user intervention for tuning a threshold

value to improve target selection. Etino uses cost models. Their approach is interesting since the

cost model parameters are tunned by a simulated annealing algorithm. Chikin et al. uses well

established analytical models from the literature to estimate the benefit of offloading OpenMP

parallel regions to the GPU.

Since naive parallelisation may result in slowdowns, our methodology uses analytical models

to guide target selection. We use the same analytical models as Chikin et al. We contribute to

the GPU analytical model to address some of its limitations. Chikin et al. also explores using

LLVM MCA [2] for estimating computational cost in the CPU, which is one of the parameters

for the CPU analytical model. LLVM MCA simulates the superscalar CPUs pipeline execution,

analysing the code at assembly level. Therefore, it is expected to generate accurate estimations
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compared to our AST level analysis. We also identified some limitations in their LLVM MCA

approach and we propose some refinements.

3.6.4 Static analysis

We use AutoPar [21], a library integrated in Clava [25], that performs static analysis to determine

if loops are parallelisable. Our approach uses static analsysis at AST level to collect the metrics

necessary for the analytical models and evaluate the relative performance between CPU, CPU

Parallel and GPU. Code generation and target selection is done at compile time.

HTrOP [67] and Chikin et al. [30] propose hybrid approaches. Both collect some information

at compile time. The HTrOP approach prepares the OpenCL version for selected parallel regions

at compile time. But, the offloading decision is always delayed to runtime. Their runtime selects

the target accelerator considering the available devices in the system, cost estimation and other

heuristics. After selecting the target, the OpenCL kernel is compiled. Although the authors try

to minimise the induced overhead due to on the fly compilation, there is an impact in the overall

execution time. Nonetheless, one advantage for their approach is that in production systems the

available accelerators may change. Hence the motivation for compiling the OpenCL at runtime

considering what is effectively available in the system. With respect to Chikin et al., they delay the

offloading decision to runtime if some parameters are statically unknown (e.g., loop trip counts).

In contrast to HTrOP, they generate one OpenMP version that may either target GPUs or parallel

CPUs at compile time. Therefore, the compiler always generates code for both targets. At runtime,

the analytical models are evaluated for selecting the target and no further compilation is needed.

3.7 Summary

This chapter presented a literature review on heterogeneous computing, particularly CPU-GPU

systems. The presented work aims to ease the adoption of such systems.

Some methodologies propose skeleton programming or special languages for abstracting par-

allel and GPU programming details. However, the developer has to adapt the existing code base

manually. Moreover, skeletons are not general enough, and therefore it might be difficult to ex-

press an algorithm on the available skeletons.

Other works propose automatic frameworks that parallelise sequential code, partition the work-

loads and optimise data communication. Some are source-to-source approaches that try to paral-

lelise or offload all loops without estimating if there is any benefit performance or energy wise.

Other strategies use heuristics or analytical models to guide offloading decisions.

Compared to existing literature, our approach (a) uses fully static analysis to prevent overheads

while the application is running, (b) the analysis is done at AST level and is compiler agnostic,

(c) uses source-to-source techniques, ensuring maximum flexibility for the user, and (d) we adapt

analytical models from existing literature for selecting the optimal target and address potential

limitations.
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CPU Analytical Models

This chapter introduces the analytical models used to estimate kernel’s execution times on the

CPU in two scenarios: (a) sequential, using a single CPU core, and (b) parallel with OpenMP on

physical cores.

The models implemented in this dissertation for CPU targets are based on Liao and Chapman’s

OpenMP model [51]. Liao and Chapman estimate computational costs by counting operations at

the OpenUH’s Intermediate Representation (IR) [29] and mapping IR operations to machine in-

structions with preset scheduling tables. Chikin et al. [30] uses the same CPU model; however, the

authors experiment using LLVM Machine Code Analyser (MCA) [2] to estimate computational

cycles, replacing some parts of the cost model.

This dissertation does not contribute to the analytical models — it only makes some adjust-

ments where needed. However, we propose different approaches for estimating the cost of a code

region, an input parameter for the models.

• An AST-level analysis approach. Although less accurate than analysis in lower-level rep-

resentations, our aim is optimal target selection rather than accurate time estimations. Op-

erations counted at the AST are mapped to ISA instructions and then available latency and

throughput tables are used to estimate the elapsed cycles.

• Use llvm-mca [2], as proposed by Chikin et al. [30], but addressing some limitations in

their method. A lower-level analysis tool allows to compare target selections against our

AST-based approach.

This chapter is organised as follows. The first sections introduces the OpenMP model proposed

by Liao and Chapman [51]. The following section presents the models implemented in this work,

based on Liao and Chapman. Then we present the two approaches for estimating computational

cost: first, the AST-based analysis and then using llvm-mca [30].

30
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4.1 Background: Cost-models for CPU

Equation 4.1 shows the Liao and Chapman [51] cost model for OpenMP parallel regions targeting

shared-memory systems. The model is the basis for the analytical model implemented in this dis-

sertation, presented later in Section 4.2. The remainder of this section describes the most relevant

parts of the Liao and Chapman model for this dissertation.

Parallel_regionc = Forkc +
m

∑
j=1

[max(T hread0_exe_ jc, ...,T hreadn−1_exe_ jc)]+ Joinc

T hreadi_exe_ jc =Worksharingc +Synchronisationc

Worksharingc = Parallel_ f orc | Parallel_sectionc | Singlec

Synchronisationc = Masterc |Criticalc | Barrierc | Atomicc | Flushc | Lockc

Parallel_ f orc = Schedule_times× (Schedulec +Loop_chunckc +Orderedc +Reductionc)

Loop_chunckc = Machinec_per_iter×Chunk_size+Cachec +Loop_overheadc
(4.1)

4.1.1 The fork-join model

The OpenMP programming model is a fork-join model. When the initial thread encounters a

parallel region, such as the omp parallel, it calls routines to initialise a team of threads that

start idle. Launching the threads has a computational cost of Forkc cycles, which varies from

system to system and the number of threads launched [29]. There is an implicit synchronisation

barrier at the end of the parallel region to ensure all threads terminate their work before the main

thread continues executing the program beyond the parallel region [10]. The cost to terminate the

parallel region and destroy the threads is Joinc.

A parallel region may have one or more work distribution constructs. The summation in

Parallel_regionc accumulates the cost for m workshare regions. Each workshare region distributes

work by the threads participating in the parallel region. As the n threads in the team operate in

parallel, only the longest-running thread defines the workshare execution time, as expressed by

max(T hread0_exe_ jc, ...,T hreadn−1_exe_ jc).

The overall cost for each parallel construct in OpenMP, in Equation 4.1, is Parallel_regionc

cycles.

4.1.2 Synchronisation

In many parallel algorithms, some operations are not independent or must happen in a specific

order. In those cases, algorithms are designed to exploit parallelism as possible, but eventually,

threads perform operations serially. For instance, threads that write to the same variable must
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access it atomically (i.e., one thread at a time). OpenMP has several constructs to enable syn-

chronisation that introduce overheads as denoted by Synchronisationc in Equation 4.1. Explicit

synchronisation barriers are not considered in this dissertation.

4.1.3 Workshare Region

Inside the parallel regions, OpenMP workshare constructs are used to assign tasks to threads. The

most common example is the omp for construct used in for-loops. According to a scheduling

policy, it splits the iteration space and assigns chunks of iterations to threads.

The parameter Worksharingc in Equation 4.1 models different OpenMP constructs that may be

used in parallel regions. For this dissertation, we focus in the parallel for construct, Parallel_ f orc,

used in for-loops.

4.1.4 Parallel For-Loops

The cost of a parallel for construct, Parallel_ f orc (Equation 4.1), depends on (a) the compu-

tational cost to execute one chunk of iterations, Loop_chunckc, (b) overheads due to schedul-

ing, (c) reduction operations, and (d) serialised sections in the loop body (e.g., omp ordered).

OpenMP has various scheduling policies, and the number of times chunks are assigned to a thread,

Schedule_times, may vary.

The static and dynamic scheduling policies are the most common ones. With dynamic schedul-

ing, the threads are allocated an initial amount of work, and whenever one thread finishes its cur-

rent chunk, it requests more work. The OpenMP runtime monitors the progress and continuously

assigns more work to threads when requested. In contrast, static scheduling divides the iteration

space into even chunks of work at compile-time. Each thread determines its chunks with simple

arithmetic, using the thread identifier and the number of participating threads. Therefore, runtime

scheduling policies may allocate chunks to threads multiple times, i.e., Schedule_times ≥ 1. For

the static policy, Schedule_times = 1. Furthermore, costs associated with scheduling, Schedulec,

are negligible in the static policy.

The cost for computing a chunk of iterations, Loop_chunckc, depends on the computational

cost of one iteration, Machinec_per_iter, multiplied by the chunk size. Liao and Chapman’s

model (Equation 4.1) also adds cache access cycles, Cachec, and overheads on loop control flow,

Loop_overheadc. The loop overhead is the cost for incrementing the control variable and testing

the conditional expression for entering the loop.

4.1.5 Computational cost per loop iteration

To determine Machinec_per_iter, Liao and Chapman use a cost-model from the OpenUH com-

piler [51, 29], inherited from the Open64 compiler [73]. Equation 4.2 shows the cost model to
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determine Machinec_per_iter.

Machinec_per_iter = Resourcec +Dependency_latencyc +Register_spillingc

Resourcec = maximum(FPc,ALUc,Load_Storec, Issuec)

FPc =
total_FPc

#FP_units

ALUc =
total_ALUc

#ALU_units

Load_Storec =
total_Load_Storec

#Load_Store_units

Issuec =
Num_inst
Issue_rate

(4.2)

The cost model has three main parts, described below.

Resourcec. It is the number of cycles required to compute instructions in the execution units.

It assumes no instruction dependencies and does not account for cycles spent in memory

accesses that could stall execution. In OpenUH [51, 29], instructions are counted at the IR

level and then mapped to target machine instructions to accumulate the respective latencies.

The model assumes CPU architectures where the scheduler unit issues machine instructions

to distinct execution units, e.g., Arithmetic Logic Unit (ALU), Floating Point (FP). Multiple

execution units for different instruction types enables instruction-level parallelism. There-

fore, the model estimates the total number of cycles per operation type — e.g., total_FPc

for floating-point operations —, and divides it by the number of available units to process

those operations. A possible bottleneck in the CPU back-end is the instruction dispatcher,

which only issues Issue_rate instructions per cycle. Resourcec is the maximum number of

cycles elapsed among the independent executions units and the dispatcher unit.

Dependency_latencyc. The number of cycles the CPU has to stall execution due to dependen-

cies between instructions. A dependence graph is used to make the estimation. During stall

periods, the CPU is not doing valuable work, extending the execution time.

Register_spillingc. When Resourcec is calculated, there is an assumption that all instruction’s

operands are in registers. However, during the register allocation phase in the compiler,

some variables may not be stored in a register and are spilled to memory. Register_spillingc

is the number of cycles spent accessing the memory hierarchy considering the register allo-

cation.

The details for register spilling and dependency latency are omitted in Equation 4.2, as they

are not considered in this dissertation.
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4.2 Implemented analytical models

The previous section discussed the cost models used in the Open64/OpenUH compilers [73, 29]

and the OpenMP model proposed by Liao and Chapman [51]. This section presents the models

implemented in this work, based on Liao and Chapman model.

The main adjustment needed is for calculating the number of elapsed cycles in a sequence of

instructions, Machinec_per_iter, as the original models do not suit modern x86 CPU architectures.

Furthermore, as our work only addresses a subset of OpenMP constructs, parts of the model are

omitted for simplification.

4.2.1 Execution units and instruction issuing

The cost models in Open64 [73] are evaluated in a MIPS R10000 processor [74]; Liao and Chap-

man evaluate OpenUH’s models [51, 29] in an Itanium 2 processor from Intel [57]. The scheduler

units in both CPUs issue instructions to isolated execution units that operate in parallel. For ex-

ample, consider the Itanium 2 core architecture illustrated in Figure 4.1. Decoded instructions are

queued per operation type: B for branching, M for memory operations, I for integer arithmetic, and

F are for Floating-Point instructions. Moreover, there are dedicated execution units for branching,

integer and floating-point, as shown in the diagram bottom.

Figure 4.1: The Itanium 2 core architecture [57]

Modern Intel/AMD x86 core architectures arrange the execution units differently. The sched-

uler issues instructions to ports that interconnect to private and manifold execution units. The

designation "private execution unit" means an execution unit in port p is not shared with any other

port p′. Each has a different set of execution units. Figure 4.2 illustrates the Intel Skylake core

architecture.

Furthermore, execution units are more specialised and go beyond a floating-point, integer and

memory operations distinction. In Skylake micro-architecture, only port 0 can execute integer and
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Figure 4.2: Intel 6th gen., Skylake, core architecture [34]

floating-point division; ports 0, 1, 5 and 6 support integer arithmetic (ALU); a shift operation is

only supported in ports 0, 1 and 6, even though it is commonly executed in ALU units [17, 20].

The issue is even more complex as the same instruction from the x86 ISA may generate distinct

micro-ops depending on the operand type, requiring different number of ports and in different

orders (assuming dependencies between micro-ops). Consider the integer multiplication, IMUL,

and the Skylake micro-architecture. The IMUL variant for memory operands of 16 bits results

in 5 micro-ops and uses the ports 2 ∗ p0156+ 1 ∗ p06+ 1 ∗ p1+ 1 ∗ p23. The variant for 64 bits

operands is decoded in 3 micro-ops that use the ports 1 ∗ p1+ 1 ∗ p23+ 1 ∗ p5. The presented

notation is the same as used by uops.info [20], where 1 ∗ p1 means one micro-op that can only

execute in port 1, p1, and 2∗ p06 means two micro-ops, that can be issued to either port 0 or 6.

Given the presented issues, the model proposed by Liao and Chapman [51, 29] needs adjust-

ments to model modern x86 superscalar architectures, which is the target of this dissertation. Note

that execution pipelines similar to MIPS R10000 or Itanium are still used. A recent example is the

Berkeley Out-of-Order Machine (BOOM) [76] which implements the RISC-V ISA and is heav-

ily inspired by the MIPS R10000 processor. Therefore, different CPUs need specific analytical

models.

4.2.2 Modelling instructions costs in x86 architectures

This dissertation hypothesises analysing code regions at the AST level, e.g., counting operations.

We argue is not feasible to accurately model port usage and dependencies between micro-ops,

similarly to what llvm-mca does (see Section 2.1), with information available at the AST level.

To correctly model the execution steps in the CPU back-end, it is necessary to analyse lower-

level representations such as low-IR (assuming a near one to one mapping to ISA instructions)

or assembly. Nonetheless, it may be possible to relax instruction cost estimations in a relative

performance modelling context. We propose using AST analysis to count operations, map them

from AST semantics to an ISA instruction, and use existing instruction cost tables.

Two metrics are usually considered for elapsed cycle estimations of instructions:
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Latency. It is the number of cycles required to execute an instruction, from the moment the

scheduler unit issues it until it completes execution. Due to the Out-of-Order (OOO) nature

of the processors, more cycles may be required to retire/commit the instruction architec-

turally, as instructions are retired in the program’s order.

Throughput. The number of instructions that can be issued per clock cycle or the number of

instruction’s results per clock cycle. An alternative concept is the reciprocal throughput,

defined by Agner Fog [40] as the average cycles per instruction for a series of independent

instructions of the same type. Consider four pipelined ALU units and integer addition in-

structions, ADD. According to the first definition, the throughput for ADD is four instructions

per cycle because each ALU unit can receive a new instruction simultaneously every clock

cycle. According to Fogs’s definition, the reciprocal throughput for ADD is 0.25 average

cycles per instruction as four units execute the additions in parallel [20].

Neither of these metrics is by itself accurate for cycle estimations. Accumulating latencies per

instruction does not model the pipelining of the execution units and does not consider the number

of ports/units for that instruction. On the other hand, throughput can be overly optimistic because

it is often impossible to saturate the pipelines, either because of the nature of the program that

lacks a chain of instructions of the same kind or because of dependencies among the instructions.

Estimations in this work focus on loop nests where the same block of instructions is executed

multiple times. Considering all the mechanisms inside a CPU to minimise the latency of executing

instructions — e.g., branch predictors, Out-of-Order execution, and pipelining —, the observed

cycles spent in computation should be closer to throughput rather than accumulating latencies.

Equation 4.3 presents our approach for estimating elapsed cycles executing instructions, using

instructions reciprocal throughput. Similarly to the Liao and Chapman model in Equation 4.1,

Machine_per_iterc represents the computational cost for one iteration of the loop body.

Machine_per_iterc = max(Instructionc, Issuec)

Instructionc = ∑
I∈Instructions

rTroughput(I)

totalMicroOps = ∑
I∈Instructions

microOps(I)

Issuec =
totalMicroOps

Issue_rate

(4.3)

The Instructions is a list of ISA instructions in the loop body. The reciprocal throughput,

rTroughput(I), for all ISA instructions, I, is accumulated, giving a lower bound in cycles nec-

essary to execute all instructions — Instructionc. Note that the reciprocal throughput for an in-

struction I is the average number of clock cycles to execute it and already models the available

instruction-level parallelism.

Scheduling units can only issue Issue_rate micro-ops per clock cycle. If the scheduler unit

cannot feed the execution units fast enough, it bottlenecks the back-end. Therefore, the elapsed

cycles on the back-end are determined by the issuing rate and the elapsed cycles in execution units.
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4.2.3 CPU Sequential and Parallel Models

The analytical models implemented for sequential and parallel execution in CPU are presented in

Equation 4.4 and Equation 4.5, respectively.

Sequentialc = Loopc +Loop_overheadc

Loopc = Machine_per_iterc×Num_loop_iter

Loop_overheadc = Loop_overhead_per_iterc×Num_loop_iter

(4.4)

Parallelc = OmpParallelc +
#wr

∑
i=1

(WorkshareRegion_ic)

WorkshareRegion_ic = Loopc +Loop_overheadc

Loopc = Machine_per_iterc×Chunk_size

Loop_overheadc = Loop_overhead_per_iterc×Chunk_size

Chunk_size =
Num_loop_iter
Num_threads

(4.5)

Compared to the original models by Liao and Chapman [51], we changed the equations to

determine Machine_per_iterc, to better suit modern x86 architectures. Concerning the paral-

lel model, Equation 4.5, this dissertation focus on the parallel worksharing loops using the omp

parallel for construct. OpenMP constructs related to other workshare constructs and syn-

chronisation barriers are not included in our implementation. Scheduling overheads are omitted

as we only consider static scheduling, with negligible overhead.

4.2.4 Analytical Model parameters

The analytical models have device and application dependent parameters. The device-specific

parameters are summarised in Table 4.1.

Parameter Unit Description
rTroughput(I) cycles A map of ISA instructions to reciprocal throughput, i.e.

average number of cycles to execute the instruction
microOps(I) u-ops A map of ISA instructions to the number of resulting

micro-ops after decoding in the front-end
Issue_rate u-ops/cycle Maximum number of micro-ops that can be issued per

clock cycle, from the front-end to the back-end
OmpParallel_c(T ) cycles The overhead for creating a team of T threads in a omp

parallel construct
Loop_overhead_c cycles Average cost per iteration in a loop

Table 4.1: Device dependant parameters for the CPU analytical models

Overheads associated with OpenMP constructs can be obtained using the EPCC OpenMP

micro-benchmark [26]. The overhead associated with the parallel for static scheduling con-

struct, OmpParallelc, varies with the number of threads launched. In this work, the number of
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threads is either the number of physical or logical cores, hence the OpenMP micro-benchmark is

used for those number of threads.

Liao and Chapman [51] uses a fixed cost for the common loop header, Loop_overhead_per_iterc:

for(int i = 0; i < N; i++). The same approach is implemented in our work. The result-

ing assembly consists of three instructions. One that increments/decrements the induction variable,

another to make the comparison with N, and finally the jump instruction. One can use llvm-mca

to estimate the cost of executing that sequence of instructions or simply add the latencies.

Information regarding latencies, throughputs and number of micro-ops can be obtained from

existing tables [40, 20, 17].

4.3 Using AST-level analysis for cycle estimations

The previous section established the analytical model that is used in this work for CPU sequential

and parallel estimations. This section presents our approach using AST-level analysis to estimate

the computational cost of a loop iteration. We count operations at AST level and then map to

equivalent ISA instructions — Instructions in Equation 4.3.

4.3.1 Counting operations at AST

For AST analysis, we use Clava [25], a source-to-source compiler that abstracts complex compiler

infrastructures. It allows to query and transform the AST via a domain-specific language called

LARA [28, 27]. The AST is traversed on the code region of interest using LARA scripts for

counting the operations and memory accesses. Each operation is characterised by a type (e.g.

addition, multiplication), a bitwidth (8, 16, 32, 64 bits) and a flag to distinguish between integer

and floating-point data types. Our analysis estimates loop trip counts to precisely count operations

in nested loops. Details concerning our AST level analysis and related issues are discussed in

Section 7.4.

4.3.2 Mapping AST operations to ISA

In Section 4.2.2, we proposed using existing latency and throughput tables [40, 20, 17] to estimate

the necessary cycles to execute a sequence of instructions. As the tables provide costs for ISA

instructions, our approach has to map AST operations to equivalent instructions in the ISA.

Mapping AST-level operations to ISA instructions is complicated, as it depends on how the

compiler generates code, applied optimisations, and some ISA extensions being enabled or dis-

abled by the user. Furthermore, there are many instructions variants for the same arithmetic opera-

tion. For instance, some instructions have versions per operand’s bitwidth, operand type (memory,

register, immediate or literal) and whether the operation is signed or unsigned. It is challenging to

guess precisely what instruction the compiler selects from AST-level analysis.

Table 4.2 shows latencies and reciprocal throughput for some of the integer signed (IDIV) and

unsigned (DIV) division instructions available in x86 ISA. The difference between DIV and IDIV
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for the same operand type is not very large, but for different operands bitwidth the 64-bit version

takes 3.5× more cycles on average than the 32-bit variant.

Instruction Latency (cycles)
Reciprocal Throughput
(avg. cycles per instruc-
tion)

IDIV (M64) [38, 102] 24.14
IDIV (M32) [23, 34] 6
DIV (M64) [6, 95] 21
DIV (M32) [23, 34] 6

Table 4.2: Latency and throughput for a subset of integer division instructions in Intel Skylake
architecture [20]

Our approach only distinguishes instructions per operands bitwidth and assumes operands are

in registers. For the division example, we do not differentiate between unsigned or signed divisions

and the average between the two is used. Our approach only considers arithmetic, relational and

logical operations. SIMD and other extensions to the ISA are not considered.

Our approach has limitations that may compromise the accuracy of the estimations. As a

similar approach is used for the GPU estimations and given the relative performance analysis

context, the introduced error may be acceptable to guide optimal target selection.

4.4 Using LLVM Machine Code Analyser (MCA)

The second approach for estimating the number of cycles per iteration, Machinec_per_iter, is

using the LLVM Machine Code Analyser [2] (see Section 2.1 for details). To the best of our

knowledge, Chikin et al. [30] are the first to use llvm-mca for performance prediction in research

work. The llvm-mca tool is used in this work to compare against our approach based on AST-

level analysis. Besides, we address limitations in Chikin et al. approach [30].

4.4.1 Limitations in Chikin et al. approach

The following limitations were identified in Chikin et al. [30] approach:

1. The authors extract the parallel loop’s body and use llvm-mca to estimate the cycle cost

of one iteration. However, in the presence of loops in the region under analysis, llvm-mca

only simulates one iteration as it does not simulate control-flow (see Section 2.1 for limita-

tions with llvm-mca). Therefore, a more thorough analysis is needed to reduce errors in

the estimations.

2. It is assumed that loops within the parallel loop body have 128 iterations. However, the

relative performance between distinct targets is not constant.
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Control flow limitation

The first limitation has to do with the lack of control-flow simulation in llvm-mca. As explained

in the Section 2.1, the tool takes as input a sequence of assembly instructions that are simulated in

order. Instructions that modify the next instruction address, e.g. call or jmp, consume resources

in the execution engine, but any other side effect is not considered.

To illustrate it, consider the assembly snippet in Listing 4.1, showing a loop with 100 iterations

that increment the value in register eax.

1 .intel_syntax

2 mov ecx, 100

3

4 loop:

5 add eax, 1

6 dec ecx

7 jnz loop

Listing 4.1: Simple loop in x86 Assembly

If llvm-mca simulated control-flow, the execution engine would execute 3×100+1 = 301

instructions. However, the llvm-mca reports 4 instructions, as shown in Figure 4.3. For clarifica-

tion, the command-line parameter -iterations is the number of passes to use in the simulation.

It is handy for a repeating sequence of instructions to explore the pipelining effect. The value of 1

is used to make a single pass on the sequence of instructions and prove that the jumps and register

state are not simulated.

$ llvm-mca --iterations 1 demo.asm

Iterations: 1
Instructions: 4
Total Cycles: 6
Total uOps: 4

Figure 4.3: LLVM MCA report for the assembly excerpt in Listing 4.1

To ensure an accurate cycle estimation, a more careful approach is needed when using llvm-mca

for code regions that may contain loops.

Constant loop trip count limitation

The second limitation in the Chikin et al. [30] approach is assuming that all loops within the par-

allel code region execute 128 iterations. Assuming a constant trip count is a significant limitation

that the authors acknowledge. Although it could make sense in a relative performance analysis

context, the performance ratio between two targets is not constant as the problem size varies.

Consider the matrix multiplication algorithm in Listing 4.2, with N3 temporal complexity. The

OpenMP pragma, omp parallel for, indicates that only the outermost loop, i, is parallelised.
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Suppose a constant trip count is used for the loops j and k, like Chikin et al. [30] approach. In

that case, the problem’s complexity is N× 128× 128, reducing considerably the number of esti-

mated operations each thread would perform. The error in the estimation can affect the offloading

decision, for instance, it could spoil the estimative for GPU due to lack of work to justify the

offloading.

1 #pragma omp parallel for

2 for (int i = 0; i < N; i++) {

3 for (int j = 0; j < N; j++) {

4 C[i * N + j] = 0.0;

5 for (int k = 0; k < N; ++k) {

6 C[i * N + j] += A[i * N + k] * B[k * N + j];

7 }

8 }

9 }

Listing 4.2: Matrix multiplication with column-major access in matrix B

Besides the direct impact in computational cost estimation, other target differentiator proper-

ties depend on the number of operations. For instance, consider the memory subsystem in a CPU

versus a GPU. The matrix multiplication in Listing 4.2 is not cache-oblivious as every memory

access to B[k * NJ + j] will result in a cache miss.

In CPUs, memory accesses like the example are substantial performance penalties. One of the

instructions will always have an operand dependency that takes too long to serve due to access

to the main memory. Besides, the loop has a small instruction intensity for overlapping memory

accesses. Thus, even with branch prediction mechanisms, the execution engine will eventually

stall the thread’s execution.

GPUs operate differently as they constantly pre-empt warps. Thus, assuming there are suf-

ficient warps to keep execution units busy, while one warp accesses memory, other warps can

execute. By the time the first warp gets a chance to execute again, perhaps the data has been

fetched from memory, and the warp is in a ready state. The execution mechanism in a GPU allows

hiding the cost of accessing memory to some extent.

CPUs are generally more sensitive to cache misses than a GPU. To model the performance

impact of cache misses, it is necessary to estimate the number of memory accesses and how many

may result in misses. In the example, the number of cache misses is a function of the loop’s

trip count. Assume a hypothetical analytical model that accurately estimates cache misses. If the

number of memory accesses is orders of magnitude below the reality, then the model’s estimation

could be wrongly optimistic and favour the CPU, guiding wrong offloading decisions.

The conclusion is that even in a relative performance context, it is fundamental to feed the

models with input parameters as accurately as possible. The problem is finding a good balance

between accuracy and how detailed the models must be. The more complex and architecture-

dependent the models are, the less portable they are, as models need to be generated for each

target architecture.
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4.4.2 Potential pitfalls

In addition to the limitations found in Chikin et al. [30] approach, some pitfalls were identified

when using llvm-mca and may affect the estimations accuracy.

Analysing specific blocks of code

Passing an assembly file as input to llvm-mca makes it analyse the entire sequence of assembly

instructions. In our context, it is necessary to reduce the scope of the analysis to portions of code,

e.g. a loop body.

To reduce the scope of analysis to blocks of code, llvm-mca supports comments in the

assembly file to define the boundaries of the region of interest: # LLVM-MCA-BEGIN and #

LLVM-MCA-END. It is possible to insert the annotations at the source-code level using the com-

piler directives for inline assembly: __asm volatile("# LLVM-MCA-BEGIN kernel").

In our approach, the analysis is automated using Clava [25]. The inline assembly is inserted

temporarily for analysis, then the code is compiled to generate assembly and finally llvm-mca is

invoked to generate a report. Implementation details are revisited in Section 7.4.3.

The problem is that compilers assume code in __asm directives to have side-effects, impact-

ing the code generation for statements around it as it may inhibit specific optimisations. In other

words, compiling the source code with and without the annotations may result in a different assem-

bly code. Although the inline assembly is just a comment, the assembly template is not parsed,

according to GCC documentation1. Consequently, the compiler does not know the inline as-

sembly, __asm volatile("# LLVM-MCA-BEGIN kernel"), is just a comment without any

side-effect. Clang handles inline assembly like GCC, thus has the same issue 2.

Impact of inline assembly in loop-level optimisations

The hotspots considered in this work are loop nests, and loops have the potential for various

optimisations, e.g. vectorisation. Depending on how the inline assembly directives are inserted in

the source code, it may inhibit optimisations and affect the compiler outcome.

Our aim, similarly to Chikin et al. [30] approach, is using llvm-mca is to estimate the cost for

one parallel iteration — Machine_per_iterc in Equation 4.4 and 4.5. Therefore, the llvm-mca

directives are inserted in the parallel loops for analysis and two approaches are possible: (a) insert

inside the loop’s body, and (b) wrap the entire loop, including header and body.

Listing 4.3 illustrates the first approach where the annotations are inserted inside the loop

body. The issue is it creates an inter-iteration dependency, i.e., the i+1th iteration depends on the

ith iteration, and optimisations are inhibited.

1“GCC does not parse the assembler instructions themselves and does not know what they mean or even
whether they are valid assembler input.” (https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html#
AssemblerTemplate)

2https://clang.llvm.org/docs/LanguageExtensions.html#asm-goto-with-output-
constraints

https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html#AssemblerTemplate
https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html#AssemblerTemplate
https://clang.llvm.org/docs/LanguageExtensions.html#asm-goto-with-output-constraints
https://clang.llvm.org/docs/LanguageExtensions.html#asm-goto-with-output-constraints
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1 #define LLVM_MCA_BEGIN(name) __asm volatile("# LLVM-MCA-BEGIN " name)
2 #define LLVM_MCA_END(name) __asm volatile("# LLVM-MCA-END " name)
3 void vecAdd(float *A, float *B, float ALPHA) {
4 for (int i = 0; i < N; i++) {
5 LLVM_MCA_BEGIN("kernel");
6 A[i] = A[i] + B[i] * ALPHA;
7 LLVM_MCA_END("kernel");
8 }
9 }

Listing 4.3: Inserting directives for llvm-mca inside the loop body

The second approach inserts the annotations around the entire loop, wrapping both the header

and body, as presented in Listing 4.4. In this approach, the compiler can perform local loop-level

optimisations.

1 #define LLVM_MCA_BEGIN(name) __asm volatile("# LLVM-MCA-BEGIN " name)
2 #define LLVM_MCA_END(name) __asm volatile("# LLVM-MCA-END " name)
3 void vecAdd(float *A, float *B, float ALPHA) {
4 LLVM_MCA_BEGIN("kernel");
5 for (int i = 0; i < N; i++) {
6 A[i] = A[i] + B[i] * ALPHA;
7 }
8 LLVM_MCA_END("kernel");
9 }

Listing 4.4: Inserting directives for llvm-mca around the loop

Although the second approach overcomes the compiler optimisation problem, it has other cons.

For instance, it might restrict inter-loop optimisations, such as loop fusion. Adding the directives

in the innermost loops of a loop nest may create dependencies in the outer loops. Moreover, the

compiler may create various loop versions that end up being surrounded by the directives in the

assembly output, compromising the llvm-mca estimation accuracy. There are different reasons

for loop versioning. For example, if the compiler cannot prove pointers are aliasing free, i.e.

the memory regions pointed by two distinct pointers do not overlap. Consequently, the compiler

generates two loop versions. One version assumes pointers are aliasing free and loop optimisations

are safe to apply. A stricter version assumes pointer aliasing resulting in data dependencies that

prevent optimisations such as vectorisation. The compiler injects code to compare the memory

boundaries referenced by pointers at runtime and then selects the loop version accordingly. In case

the various loop versions are within the annotated region, the llvm-mca estimation represents

executing one iteration of all loop versions, impacting the accuracy.

Modelling loop-level optimisations

To address the constant loop trip count limitation in Chikin et al. [30] approach, where the authors

assume loops in the parallel region to execute 128 iterations, we propose determining the loop trip

count accurately whenever possible. The cost for one loop iteration, as estimated by llvm-mca,
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is multiplied by the trip count to calculate the total loop cost. However, it is crucial to account for

loop optimisations.

Suppose a loop with N iterations in the source code. Assuming no optimisations are applied,

the assembly instructions corresponding to the loop’s body are executed N times. When the com-

piler applies optimisations, such as unrolling, the resulting assembly may be equivalent to more

than one iteration, reducing the number of jumps. In those cases, the estimated cost by llvm-mca

is not for one iteration but rather f iterations, with f being an optimisation factor.

To demonstrate the issue, consider the vector addition code presented in Listing 4.4. When

compiling the code with Clang and -O3, the optimisation report indicates the following loop-level

optimisations, by appliance order: (a) vectorised with a width of 4 and interleaving with a factor

of 2, and (b) unrolled by a factor of 2.

Listing 4.5 shows the resulting assembly. The instructions are commented with letters to iden-

tify the different computing steps. For instance, (A) and (B) are vectorised instructions moving

packs of 4 elements from the vectors in memory to 128-bit registers. The register xmm0 holds

the constant ALPHA value, and is multiplied in parallel by the four elements of vector B in step

(C). The step (D) is the vector addition. The remainder steps store the result in memory and are

omitted for simplification. The interleaving pass is applied after the vectorisation, and essentially

mixes two vectorised iterations. Instructions due interleaving are annotated with apostrophes.

Note how memory accesses in (A’) and (B’) have an offset of 16, because each vectorised

iteration computes 128-bits of data, i.e. 16 bytes. The final optimisation pass applies unrolling

over the already vectorised and interleaved version of the loop. Therefore, the first range of steps,

[A-D’] is basically duplicated.

The rax register in Listing 4.5 is the loop control variable. With all optimisations applied,

the register is increment by 16, meaning the sequence of assembly instructions in loop are equiv-

alent to computing 16 iterations. The optimisation factor, f , can be determined multiplying the

optimisation factors, i.e. f = vecWidth× interleaveFactor×unrollFactor. Note the llvm-mca

directives surround the entire loop block, thus the estimation, llvmCost, is for 16 iterations. Given

that our approach is based on AST-level analysis, the correct approach for estimating the total

loop costs with llvm-mca is llvmCost× N
f , where N is the loop trip count determined with AST

analysis.

4.4.3 Proposed approach

The previous sections presented various challenges to correctly use llvm-mca along with source-

to-source techniques. It is necessary to insert the directives in a way that does not interfere with

the compilation flow and account for loop-level optimisations when computing the total loop cost.

The solution we found to work the best is to split the code region under analysis in smaller

units, which we refer as basic blocks. Our approach recursively traverses the AST, with Clava

[25], and whenever it finds a loop it creates three basic blocks: one before the loop statement, one

after the loop, and one that surrounds the loop itself. llvm-mca is used to get the cost for each
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1 # LLVM-MCA-BEGIN kernel
2 ...
3 .loop:
4 movups xmm1, xmmword ptr [rdi + 4*rax] # (A)
5 movups xmm2, xmmword ptr [rdi + 4*rax + 16] # (A’)
6 movups xmm3, xmmword ptr [rsi + 4*rax] # (B)
7 movups xmm4, xmmword ptr [rsi + 4*rax + 16] # (B’)
8 mulps xmm3, xmm0 # (C)
9 addps xmm3, xmm1 # (D)

10 mulps xmm4, xmm0 # (C’)
11 addps xmm4, xmm2 # (D’)
12 ...
13 movups xmm1, xmmword ptr [rdi + 4*rax + 32] # (A)
14 movups xmm2, xmmword ptr [rdi + 4*rax + 48] # (A’)
15 movups xmm3, xmmword ptr [rsi + 4*rax + 32] # (B)
16 movups xmm4, xmmword ptr [rsi + 4*rax + 48] # (B’)
17 mulps xmm3, xmm0 # (C)
18 addps xmm3, xmm1 # (D)
19 mulps xmm4, xmm0 # (C’)
20 addps xmm4, xmm2 # (D’)
21 ...
22 add rax, 16
23 cmp rax, 4096
24 jne .loop
25 ...
26 # LLVM-MCA-END kernel

Listing 4.5: Partial resulting assembly for the vector addition in Listing 4.4. Compiled with Clang
and -O3. The problem size, N, is set to 4096.

basic block and the costs are accumulated recursively. Basic blocks that correspond to a loop, the

cost is multiplied by the loop’s trip count considering eventual loop optimisation factors.

Algorithm 1 demonstrates our approach. The function basicBlockCost gets a starting AST

scope node, scopen. The first child in scopen starts a new basic block, BB (line 2). If no loops

are found, then the last child of scopen is marked as the ending node for BB (line 13). llvm-mca

is used to estimate the cost for executing the sequence of instructions in BB and the function

basicBlockCost returns the accumulated cost.

Each loop found in scopen ends the current basic block, BB. llvm-mca estimates its cost and

the result is accumulated in blockCost. Then the loop is processed recursively (line 8) and the

cost for executing one iteration of the loop’s body is set in loopnCost. Afterwards, loopnCost is

multiplied by the loop trip count, adjusted to consider loop-level optimisations, to calculate the

total loop cost, stored in blockCost. The AST node that succeeds the loop begins a new basic

block, BB, that will end if further loops are found or when the last node of the current scope,

scopen, is reached.

To better illustrate our approach with a C/C++ example, consider the example in Listing 4.6,

showing the defined basic blocks. The final cost for the parallel region, assuming no loop optimi-

sations, is BB_1c +(BB_2c×M)+BB_3c +((BB_4+BB_5c×P)×N), where each BB_ic is the

llvm-mca estimation to execute the basic block instruction sequence.

Concerning loops, innermost loops are annotated inserting the llvm-mca directives around
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Algorithm 1 Using LLVM Machine Code Analyser recursively

1: function BASICBLOCKCOST(scopen)
2: regionStartn← scopen. f irst()
3: regionEndn← null
4: blockCost← 0

5: for loopn in scopen.query(”loop”) do
6: regionEndn← loopn.be f ore() . Current basic block ends, between current starting

node and the node before the nested loop
7: blockCost← blockCost +MCA(regionStartn,regionEndn)

8: loopnCost← basicBlockCost(loopn.body()) . Recursively process the nested loop’s
body, estimate cost of one iteration

9: blockCost← blockCost + loopnCost× loopn.tripCount() . Multiply estimation for
one iteration by the loop’s trip count

10: regionStartn← loopn.a f ter() . Assume a new basic block after this nested loop
11: regionEndn← null
12: end for

13: regionEndn← scopen.last()
14: blockCost← blockCost +MCA(regionStartn,regionEndn)

15: return blockCost
16: end function
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the loop to not compromise loop-level optimisations. For outer loops, our experiments show it

works better to insert the directives in the loop body, especially in long loops. The assembly

output does not necessarily respect the source code order. Thus, it often happens that the ending

directive appears before the starting directive and llvm-mca fails.

1 // the parallel loop body under analysis
2 {
3 // BasicBlock_1: START
4 <...>
5 // BasicBlock_1: END
6

7 // BasicBlock_2: START
8 for (i = 0; i < M; i++) {
9 <...>

10 }
11 // BasicBlock_2: END
12

13 // BasicBlock_3: START
14 <...>
15 // BasicBlock_3: END
16

17 // BasicBlock_4: START
18 for (i = 0; i < N; i++) {
19 // BasicBlock_5: START
20 for (j = 0; j < P; j++) {
21 <...>
22 }
23 // BasicBlock_5: END
24 }
25 // BasicBlock_4: END
26 }

Listing 4.6: Basic Blocks demonstrantion in a workshare region with nested loops

To conclude, integrating the llvm-mca in a source-to-source approach is prone to fail, es-

pecially in more irregular and large code structures. Furthermore, due to loop versioning and

optimisations, the estimations may be inaccurate. The lack of control flow simulation makes the

tool challenging to use in an automated approached. Although not considered in our approach,

in addition to loops, it is also necessary to analyse other structures more thoroughly, such as if

statements. Finally, we found that inserting the inline assembly directives to delimit code regions

for analysis may compromise the compiler outcome and it is an important limitation. Ideally,

the annotations should be inserted after the assembly is generated to not avoid any interference.

Improving the usage of llvm-mca for performance modelling is left for future work.

4.5 Summary

This chapter presented the analytical models used in this dissertation for estimating execution

times in CPU targets. The analytical model used is based on Liao and Chapman’s OpenMP model

[51]. We simplify the model as we only address OpenMP parallel for constructs , and make the
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necessary modifications to model x86 architectures. We use two approaches for estimating the

computational of a sequence of instructions in a loop body.

The main approach is based on AST-level analysis to count the number of operations, map

them to ISA instructions and use available reciprocal throughput values. Our AST-level approach

does not consider data dependencies and other hazards, resulting in lower-bound estimations.

The second approach uses llvm-mca, first proposed by Chikin et al [30]. We identified the

need to manually process loops within the region under analysis, as llvm-mca does not simulate

control flow. llvm-mca is used to estimate the cost of one iteration, which is then multiplied

by the trip count determined with AST analysis. We also demonstrated the need to account for

loop-level optimisations, as the assembly sequence may correspond to more than one loop iter-

ation. Given our source-to-source technique for inserting inline assembly that bounds sections

of interest, the resulting assembly can differ from the original version as it introduces dependen-

cies. Furthermore, in some cases, the ending directive appears before the starting directive causing

llvm-mca to fail. Other issues are related with loop versioning, that may compromise the estima-

tion accuracy. Integrating llvm-mca in a source-to-source analysis presents many challenges. We

propose an approach that mitigates some of the issues but is still prone to fail. Using llvm-mca

for accurate performance modelling is promising, but given our experience, it should be integrated

into an optimised-IR analysis or assembly level. Exploring those options is left for future work.
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GPU Analytical Model

This chapter describes the GPU analytical model proposed by Kim et al. [47], which serves as the

basis for estimating the execution time of GPU kernels in this work. Understanding Kim et al.’s

analytical model is vital to identify limitations, some of which are addressed in Chapter 6. The

last section in this chapter explains how to calculate the number of warps that execute concurrently

in each Streaming Multiprocessor (SM), a parameter necessary for the analytical model. To best

of own knowledge, no existing literature details how to calculate the occupancy, and there is no

official documentation from NVIDIA either.

5.1 Overview

Kim et al. [47] proposed an analytical model for GPU architectures that introduces two key con-

cepts: memory and computation warp parallelism.

Memory Warp Parallelism (MWP). Indicates how many memory requests can be served dur-

ing one warp memory waiting period. In other words, consider the warp warpa that issues a

memory request on time instant ti and gets the data on at instant t f . The MWP indicates how

many warps, other than warpa, can dispatch memory requests concurrently in the interval

[ti, t f ] — not necessarily conclude them.

Computation Warp Parallelism (CWP). It represents how many warps can execute in a Stream-

ing Multiprocessor during one memory waiting period, [ti, t f ]. CWP is always greater than

one because it counts warpa, which completed some computation before starting the mem-

ory request.

The following tables summarise the input parameters and analytical model expressions. In

order to make the subsequent sections easier to follow, application-related parameters are prefixed

with app (short for application) and are listed in Table 5.1. Architecture or device-specific param-

eters are prefixed with arch (short for architecture) and are listed in Table 5.2. These parameters

49
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are inputs for the analytical model. The tables also describe briefly how the input parameters can

be collected — the implementation details are discussed in the next chapter in Sections 6.6 and 6.5.

Table 5.3 summarises intermediate calculations in the analytical model and what they represent.

Application Parameters
Name Description Source

appMemInstsCoal
Number of coalesced mem-
ory instructions per thread

Application code

appMemInstsUncoal
Number of uncoalesced
memory instructions per
thread

Application code

appCompInsts
Number of issued instruc-
tions per thread (includes
memory operations)

Application code

appThreadBlocks Number of thread blocks
User-defined or set by the com-
piler automatically

appThreads-
PerBlock

Number of threads per thread
block

User-defined or set by the com-
piler automatically

appRegistersPer-
Thread

Number of registers needed
per thread

Depends on how the compiler
generates code

appSharedMemPer-
Block

Number of shared memory
bytes used per thread block

In CUDA, Shared Memory usage
is explicit and depends on the ap-
plication code. But, in context of
OpenMP, compilers may use it au-
tomatically and is not controlled
by the user. Thus, it depends
solely on the compilers in the con-
text of this work

N
Active warps per multipro-
cessor

CUDA Occupancy [1]

ActiveBlocksPerSM
Active thread blocks per
CUDA

CUDA Occupancy [1]

Table 5.1: Input parameters of the GPU analytical model with respect to the application

5.2 Memory Warp Parallelism (MWP)

The Memory Warp Parallelism (MWP) indicates how many warps can concurrently access the

memory during one warp memory period. It depends on the number of active warps per Streaming

Multiprocessor (SM), global memory bandwidth, and memory access latencies. Those constraints

are discussed individually in the remainder of this section.
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Device parameters
Name Description Source

archSMCount
Number of Streaming Multiprocessors
(SM) on the GPU device

Device specifications

archSMFreq SM frequency (GHz) Device specifications

archGlobalMem-
Bandwidth

The memory bandwidth between glob-
al/DRAM memory and SM’s memory
controllers (GB/s)

Device specifications

archMem-
TransactionSize

The size of each memory transaction
(bytes)

Compute Capability

archMemTrans-
Uncoal

The number of memory transactions
per uncoalesced memory instruction

Compute Capability

archMemTransCoal
The number of memory transactions
per coalesced memory instruction

Compute Capability

archMemDepart-
DelayCoal

The delay between consecutive coa-
lesced memory transactions (cycles)

Micro-benchmarks

archMemDepart-
DelayUncoal

The delay between consecutive uncoa-
lesced memory transactions (cycles)

Micro-benchmarks

archMemLatGlobal
The global memory access latency (cy-
cles)

Micro-benchmarks

Table 5.2: Parameters with respect to GPU architecture and device hardware

Model properties
Name Description

MemLatUncoal The latency per uncoalesced memory instruction (cycles)
MemLatCoal The latency per coalesced memory instruction (cycles)

MemLat
Average latency per memory instruction that depends on
the number of coalesced and uncoalesced memory instruc-
tions in the application (cycles)

MemDepartureDelay
Average delay between consecutive memory transactions
(cycles)

CWP
Number of warps that execute during one warp memory
period, plus one

MWP
Number of warps that can access the memory concurrently
during one memory period

Mem_cycles Number of cycles in memory per warp
Comp_cycles Number of cycles in computation operations per warp

Table 5.3: Analytical model equations summary
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5.2.1 Bandwidth limitation

The first constraint is related to onboard physical limitations. Global memory or DRAM is off-

chip memory and has maximum bandwidth, archGlobalMemBandwidth. It is shared among all

SMs and connects to SM’s memory controllers. Kim et al. analytical model [47] considers the

global memory bandwidth is shared evenly with the SMs accessing memory at a given time. Thus,

the higher the concurrent access, the less bandwidth is available per SM and respective executing

warp. Besides, the SM clock frequency, archSmFreq, bounds the rate of moving data to on-chip

memories (e.g., L2/L1 cache).

Assuming the data moves to the SM’s memories at peak bandwidth, BwPerWarp in Equa-

tion 5.1 is the maximum bandwidth possible for transferring one memory transaction to local

memories. MemLat is the average memory latency, i.e., round-trip time in cycles for sending the

memory request to global memory and then transfer the data back to the SM. Memory requests

span in multiple memory transactions, each of fixed size, archMemTransactionSize.

BwPerWarp =
archSMFreq×archMemTransactionSize

MemLat
(5.1)

Assuming that memory bandwidth is shared evenly among the SMs, the total necessary band-

width to serve all memory requests at peak bandwidth is BwPerWarp×archSMCount.

Finally, the MWPpeakBw in Equation 5.2 is the number of warps that can access the memory

concurrently, per SM, when limited by the available memory bandwidth.

MWPpeakBw =
archGlobalMemBandwidth
BwPerWarp×archSMCount

(5.2)

5.2.2 Memory access latency

The second factor limiting the number of concurrent memory accesses in an SM during one mem-

ory waiting period, is the average memory request latency and the delay between consecutive

memory requests.

The delays and round-trip latency depend on the type of memory access — coalesced or un-

coalesced. Assuming all threads within a warp are executing on the same branch then all threads

execute the same instruction, but with different operands — the thread’s state. Therefore, when a

warp executes a memory instruction there can be up to 32 requests to different memory addresses.

Accesses to the memory hierarchy are done in transactions of size archMemTransactionSize bytes.

When threads access contiguous memory positions it may be possible to issue a single memory

transaction that serves all the threads — coalesced memory access. However, if that is not possi-

ble, then multiple transactions are needed — uncoalesced memory access. A coalesced memory

access results in a single memory transaction, while uncoalesced accesses issues 32 transactions

(one per thread in the warp) [47].
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Suppose different warps running in the same SM and doing memory accesses that can be

coalesced. Then, each warp’s memory access issues a single memory transaction. But, the trans-

actions are not sent at the same instant in time. Instead, there is a departure delay between consecu-

tive memory transactions from the different warps, archMemDepartDelayCoal. For uncoalesced

accesses, the transactions resulting from the same memory instruction of an warp are also dis-

patched with some delay in between, archMemDepartDelayUncoal. The delays in both types of

memory accesses are illustrated in Figure 5.1. The delays limit how many memory transactions

can be issued during one memory waiting period.

Figure 5.1: Delay between consecutive memory transactions in coalesced and uncoalesced mem-
ory accesses [47].

An application might have different combinations of both kinds of memory accesses — co-

alesced and uncoalesced. Therefore, Kim et al. [47] proposed a weighted average for memory

request latencies, MemLat in Equation 5.3, and departure delays, MemDepartureDelay in Equa-

tion 5.4.

MemLat = MemLatUncoal×WeightUncoal

+MemLatCoal×WeightCoal
(5.3)

MemDepartureDelay = archMemDepartDelayCoal×WeightCoal

+(archMemDepartDelayUncoal×archMemTransUncoal)

×WeightUncoal

(5.4)

The weight factors, WeightCoal and WeightUncoal, and latency for each kind of memory

request, MemLatCoal and MemLatUncoal, are determined by Equation 5.5. Note that archMem-

LatGlobal is an architecture parameter and is the round-trip latency for a single memory trans-

action of fixed size (typically 128 bytes). As coalesced memory accesses issue a single memory

transaction, then MemLatCoal = archMemLatGlobal. For uncoalesced accesses, it is necessary
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to add the multiple transactions and the delays in-between.

appMemInstsTotal = appMemInstsCoal +appMemInstsUncoal

WeightCoal =
appMemInstsCoal
appMemInstsTotal

WeightUncoal =
appMemInstsUncoal
appMemInstsTotal

MemLatCoal = archMemLatGlobal

MemLatUncoal = archMemLatGlobal

+(archMemTransUncoal−1)

×archMemDepartDelayUncoal

(5.5)

Finally, Equation 5.6 shows how to determine MWPwithoutPeakBw, which is the number of mem-

ory requests per SM that can be issued during one memory waiting period, assuming the latencies

and delays are the limiting factors.

MWPwithoutPeakBw =
MemLat

MemDepartureDelay
(5.6)

5.2.3 Putting it all together

The final and simplest constraint is that memory warp parallelism cannot exceed N, the number of

active warps in one SM — number of warps concurrently executing in an SM. Recall that MWP is

the number of warps that can concurrently access the memory during one memory period. Hence,

MWP≤ N.

Lastly, MWP is the minimum value of all presented constraints, as show in Equation 5.7.

MWPpeakBw and MWPwithoutPeakBw estimate the value for MWP isolating specific limiting factors.

Hence, MWP is the minimum of all. For instance, if the minimum value is MWPpeakBw then MWP

is constrained by the bandwidth available. On the other hand, if the limiting factor is N, then there

are no sufficient warps to exploit the available memory level parallelism.

MWP = MIN(N,MWPpeakBw,MWPwithoutPeakBw) (5.7)

5.3 Computation Warp Parallelism (CWP)

Computation Warp Parallelism (CWP) is the number of warps per SM that can perform computa-

tion during one memory waiting period. CWP is the ratio of cycles spent in memory instructions

and in computation instructions, as shown in Equation 5.10. The higher the CWP, the less com-

putation per memory instruction.
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The consumed cycles in memory instructions, in Equation 5.8, depends on the coalesced or

uncoalesced memory request latencies and the number of issued operations.

Mem_cycles = MemLatUncoal×appMemInstsUncoal

+MemLatCoal×appMemInstsCoal
(5.8)

The computation cycles, in Equation 5.9, is a function of the total number of instructions and

respective cost in cycles. Kim et al. [47] use a constant cost of 4 cycles for all instructions.

Comp_cycles = Issue_cycles×appCompInsts (5.9)

CWP = min(N,
Mem_cycles
Comp_cycles

+1) (5.10)

Such as MWP, CWP is at least the number of active warps per SM, N. If that is the case, it

indicates a lack of warps to increase GPU utilization.

5.4 Application Execution Cycles

The output of the analytical model is an estimation of the number of cycles to execute the appli-

cation. A GPU has multiple SMs. Assuming all SMs cooperate to execute the same kernel and

work is evenly distributed, then each SM requires the same amount of time for computing (ap-

proximately). Thereby, the goal is to estimate how much time an SM needs to complete its job,

which represents the application execution time.

The previous Sections, 5.2 and 5.3, introduced the MWP and CWP metrics. Depending on the

relation between the two metrics, the application may be memory or computation bound. Besides,

some memory or computation operations overlap each other and do not contribute to the total

execution time.

The following sections address the different relations between MWP and CWP and how to

calculate the cycles spent in SMs accordingly.

5.4.1 CWP greater than MWP

The first scenario under consideration is when CWP > MWP. In this case, while one warp waits

for its memory request to complete, there are enough warps available for computing, thus better

using the SM resources. In these circumstances, the application is memory bound. Therefore,

the memory operations hide computation cost and contribute the most to the application execution

time.

An example is illustrated in Figure 5.2. Green boxes represent computation periods, while

orange boxes represent memory periods. The darker colours are the periods that effectively con-

tribute for application execution time. The lighter colour boxes happen concurrently with other

operations, and thus their cost is hidden. The vertical axis represents different warps running,
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while the horizontal axis displays how the execution flows over time. The boxes are numbered to

identify the warps.

In Figure 5.2 example, there are 8 active warps. Up to 2 warps can access the memory concur-

rently, hence MWP = 2. For instance, while the first warp accesses the memory, the second warp

can also access it. While the warp1 is on its memory period, two other warps can complete their

computation period, thus CWP = 3 (counting the warp1 itself).
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Computation period (hidden)
Memory period
Memory period (hidden)
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Figure 5.2: An application execution time illustration when warps are memory bounded

Figure 5.2 shows that memory operations contribute the most to the execution time. As some

memory accesses are overlapped to a MWP degree, the exact number of memory requests that

contribute to the application execution time is N
MWP , with N being the number of active warps.

Multiplying by the number of cycles each warp spends in memory periods, Mem_cycles, gives the

elapsed cycles on memory operations, as shown in Equation 5.11.

Exec_cycles = Mem_cycles× N
MWP

+
Comp_cycles

appMemInstsTotal
×MWP

, if CWP≥MWP
(5.11)

Some computation periods also contribute to the execution time and depend on the MWP. In

Figure 5.2, two computation periods are added. One period is due to warp1’s computation period.

The second is because when warp7 finishes its memory period, warp8 is still in progress for an

amount of time that equals one computation period. Another way to think about it is re-arranging

the periods such that the first memory periods instantiate at the same time and in parallel. For

instance, consider MWP = 3. Then, only after warp3 completes its computation period, memory

requests would begin. At that instant, 3 computation periods were completed which matches the

MWP. Thus, the number of computation cycles that contributes to the application execution time

is the cycles per computation period, Comp_cycles
appMemInstsTotal , multiplied by MWP.

In Figure 5.2, the length of memory and computation periods is the same. In reality, the length

of the periods depends on the distribution of memory instructions on the application code and

the cost of computation in between. For simplification, Kim et al. [47] assume all computation

periods are roughly the same, taking the total estimated computation cycles and dividing by the

number of memory instructions, Comp_cycles
appMemInstsTotal .
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Figure 5.3: An application execution time illustration when warps are computation bounded

5.4.2 MWP greater than CWP

The second scenario is when MWP≥CWP. In contrast to the previous case, computation periods

overlap and hide memory periods. In other words, the application is computation bound.

A scenario where CWP = 3 and MWP = 8 is illustrated in Figure 5.3. Computation periods

are the main aspect for total execution time. In fact, all computation periods contribute to the ap-

plication execution. As shown in Equation 5.12, the computational cycles per warp, Comp_cycles,

is multiplied by the number of active warps, N. As in most applications, the execution flow fin-

ishes with a memory operation to store the computation result, hence the analytical model adds

one memory period.

Exec_cycles = MemLat +Comp_cycles×N, if MWP >CWP (5.12)

5.4.3 Lack of warps

The last possible scenario is when there is lack of warps to explore the available parallelism. This

scenario happens when MWP =CWP = N. Since memory operations do not overlap computation

operations and vice-versa, both contribute to the total execution time, as illustrated in Figure 5.4.
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Figure 5.4: An application execution time illustration when it does not explore the available par-
allelism

However, warps still execute in a time sharing fashion and memory and computation periods

overlap each other. As shown in Figure 5.4, all memory and computation periods of one warp

contribute to the execution time, e.g. warp3. Thus, Comp_cycles and Mem_cycles, which are the

total cost in computational and memory operations per warp, are counted once (Equation 5.13).

Moreover, warps begin executing on different time instants, separated by one computation period,
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Comp_cycles
appMemInstsTotal . Therefore, it is necessary to add N−1 computation periods to the execution time.

In the example, the first computation period of warp1 and warp2 are added.

Exec_cycles = Mem_cycles+Comp_cycles+
Comp_cycles

appMemInstsTotal
× (N−1)

, if MWP =CWP = N
(5.13)

5.4.4 Thread blocks and warps scheduling

When a kernel launches on the GPU, it is organized in independent thread blocks and a thread

block is arranged in various warps (typically, groups of 32 threads). The number of thread blocks

and the size of each can be specified by the programmer, or it is determined automatically by the

compiler (e.g. in OpenMP offloading).

When the kernel launches, the thread blocks are queued and then scheduled to the available

SMs. The SM partitions each thread block in warps to be assigned to warp schedulers. A thread

block, and its warps, are scheduled together to the same SM. Although it is not possible to have

warps of the same thread block scheduled to different SMs, it is possible to have different thread

blocks scheduled to the same SM. When an SM finishes a thread block, it can fetch more blocks

from a pool of waiting thread blocks.

The number of thread blocks that are concurrently executing in SM, ActiveBlocksPerSM, is

limited by the resource usage of each thread, e.g. registers and shared memory, as well as the size

of each thread block. The number of active warps per SM, N, is correlated with ActiveBlocksPerSM,

and is used several times in the analytical model equations. As stated before, the programmer only

specifies the number of thread blocks and threads per block. Determining the number of active

warps and active thread blocks per SM is addressed in the next Section 5.5.

For example, consider the Pascal GPU architecture and Compute Capability 6.0 [6]. The SMs

for that architecture have 65536 32-bit registers. Assume an application where each thread needs

150 registers and the thread block size is 256 threads (8 warps). The number of registers needed

per thread block is 256× 150 = 38400 registers, consuming more than half of the register file

size. Consequently, it is not possible to have two thread blocks concurrently executing in the SM.

However, if the register pressure or the size of each thread block are reduced, it might be possible

to have more thread blocks and increase occupancy.

The execution cost, Exec_cycles, represents the cost of executing a single batch of N warps in

an SM (either from the same thread block or from multiple thread blocks). As it is likely that the

number of thread blocks launched by the application is such that is not possible to scheduled all

of them immediately, some thread blocks remain in the queue waiting to be scheduled. Therefore,

each SM may execute batches of N warps multiple times.
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Equation 5.14 shows how to determine the number of times an SM repeats the execution of N

warps, in function of thread blocks launched and how many blocks can be active per SM.

RepsPerSM =
appBlocks

ActiveBlocksPerSM×archSMCount
(5.14)

The final execution cycles is multiplying the cost for computing a batch of N warps by

RepsPerSM, as shown in Equation 5.15.

Exec_cycles = Exec_cycles×RepsPerSM (5.15)

5.5 Calculating Occupancy

This section discusses the calculation of the number of active thread blocks per Streaming Mul-

tiprocessor (SM) and the number of warps running concurrently. To the best of our knowledge,

NVIDIA does not document it and there is not literature about it. However, NVIDIA provides a

spreadsheet where users can input their application’s resource usage [1]. The spreadsheet calcu-

lates the achieved occupancy and how it varies as a function of different resource usage, helping

users fine-tune the grid geometry.

As part of this work, it is necessary to automatically calculate the number of active thread

blocks for the analytical model. Consequently, it was necessary to inspect the spreadsheet, extract

the formulas used internally, and understand their logic (which unveils more details concerning

the architecture). The calculation steps are described in the remainder of this section.

The number of active thread blocks per SM is constrained due to the following three reasons:

Warps/Blocks limit. A hardware limit on the number of warps or blocks can simultaneously

reside per SM. The limit presumably exists because it is necessary to keep all threads/warps’

context and resource allocation is fixed at the hardware level.

Registers. Threads consume registers to store intermediate computation results. Each SM has

a fixed register file size, i.e. number of 32-bit registers available. The more registers are

needed per thread, the fewer threads can be active per SM. In a bottom-up logic, if there

are fewer concurrent threads, the number of active warps and thread blocks is also smaller.

Besides, there might be a hardware limit on how many registers can be allocated per thread

block.

Shared Memory. It is on-chip memory accessible by all threads in a thread block, and it is

allocated per thread block. Similarly to the registers, there is a limit on how much shared

memory can be allocated per thread block.

Given the enumerated constraints, the approach to calculate occupancy presented by NVIDIA

in occupancy calculator [1] is finding the maximum number of thread blocks assuming individual

constraints on: (a) warps, (b) blocks, (c) registers, and (d) shared memory. The effective number

of active thread blocks per SM is the minimum obtained value.
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The following sections discuss each constraint individually. Parameters follow the same nomen-

clature defined earlier — architectural parameters are prefixed with arch and application or user

input values with app. Moreover, the term block in the text and equations refer to a thread block.

Table 5.4 summarises the necessary GPU parameters to calculate occupancy.

Compute Capability parameters
Name Description

archThreadsPerWarp Number of threads that compose a warp
archMaxWarpsPerSM Limit of simultaneously running warps per SM

archWarpAllocUnitSize
The granularity for allocating warps per SM, i.e.
the number of warps is always multiple of this
unit size

archMaxThreadsPerSM Limit of active threads per SM
archMaxBlocksPerSM Limit of active thread blocks per SM
archMaxBlockSize Limit of threads per thread blocks

archSharedMemPerSM
Number of bytes of shared memory available per
SM

archSharedMemPerBlock
Number of bytes that can be allocated per thread
block

archSharedMemAllocUnitSize
The granularity for allocating shared memory per
thread block

archRegsPerSM Number of 32-bit registers available per SM

archMaxRegsPerBlock
Maximum number of registers that can be allo-
cated per thread block

archMaxRegsPerThread
Maximum number of registers that can be used
per thread

archRegAllocUnitSize The granularity for allocating registers per thread
Table 5.4: GPU architecture and device-specific parameters needed to calculate occupancy [1]

5.5.1 Limit on Thread Blocks and Warps

NVIDIA GPUs have a physical limitation for active warps and active thread blocks per Streaming

Multiprocessor (SM). As the goal is to calculate how many thread blocks can concurrently execute

in the SM, the second constraint is straightforward, as shown in Equation 5.16.

BlocksPerSM_blockBound = archMaxBlocksPerSM (5.16)

Concerning the constraint on concurrent warps per SM, it is necessary to calculate how many

warps per thread block are launched, WarpsPerBlock. Given the number of thread blocks used to

launch the kernel (user configured) and the size of each warp (typically 32 threads), Equation 5.17

illustrates how to calculate it.

Each thread block is arranged in WarpsPerBlock warps. Moreover, each SM has a limit of

maximum active warps per SM, archMaxWarpsPerSM. Dividing both values gives the maximum



5.5 Calculating Occupancy 61

number of thread blocks in an SM when bounded by the number of active warps, BlocksPerSM-

_warpBound, as shown in Equation 5.17.

WarpsPerBlock =
⌈

appT hreadsPerBlock
archT hreadsPerWarp

⌉
BlocksPerSM_warpBound =

⌊
archMaxWarpsPerSM

WarpsPerBlock

⌋ (5.17)

5.5.2 Register bounded

On NVIDIA GPUs, each Streaming Multiprocessor (SM) has a fixed amount of 32-bit registers,

archRegsPerSM. Besides, there is a limit on the number of registers that can be used per thread

block, archMaxRegsPerBlock. In general, both parameters are equal, meaning a thread block can

use the entire register file size. However, in some Compute Capability 5.x and 3.x architectures

archMaxRegsPerBlock is half of archRegsPerSM. Therefore, a thread block can only access half

of the register file size. It is not clear why that is the case, but possibly the bank of registers are

split at the hardware level.

Overtime, register allocation has changed. In Compute Capability 1.x architectures, registers

are allocated per block, but on succeeding architectures they are allocated per warp. The difference

changes how to calculate the number of thread blocks per SM when registers are the limiting

factor. As Compute Capability 1.x is deprecated since CUDA 7.0, released in 2015 1, only per-

warp allocation is addressed.

Registers are allocated to warps in chunks of size archRegAllocUnitSize — since Compute

Capability 3.0 the chunk size is 256 registers. The first step is to determine how many regis-

ters a warp needs, RegistersPerWarp. Given the thread-centred programming model, the num-

ber of required registers is defined on a per-thread basis, appRegsPerT hread. In turn, a warp

is a fixed sized group of archT hreadsPerWarp threads. Equation 5.18 shows the product to

compute the total amount of registers needed per warp. As registers are allocated in chunks,⌈
appRegsPerT hread×archT hreadsPerWarp

archRegAllocUnitSize

⌉
is the minimum number of chunks needed, each with arch-

RegAllocUnitSize registers. Multiplying the number of chunks by archRegAllocUnitSize gives

the final number of registers allocated per warp.

RegistersPerWarp =

⌈
appRegsPerT hread×archT hreadsPerWarp

archRegAllocUnitSize

⌉
×archRegAllocUnitSize

(5.18)

The next step is to determine how many warps can be active per SM, assuming that register

usage is the limiting factor, WarpsPerSMregBound . Once again, it is not as simple as dividing the

register file size by RegistersPerWarp because warps are also allocated with some granularity,

archWarpAllocUnitSize. NVIDIA documentation lacks an explanation, but it is possible to ob-

serve that granularity (typically 2 or 4) matches the number of warp scheduler units in the SM.

1http://developer.download.nvidia.com/compute/cuda/7_0/Prod/doc/CUDA_Toolkit_Release_Notes.pdf

http://developer.download.nvidia.com/compute/cuda/7_0/Prod/doc/CUDA_Toolkit_Release_Notes.pdf
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Presumably, registers at the hardware level are statically partitioned and banks of registers are ex-

clusive to each scheduler unit. Assuming an SM with four warp scheduler units and only two active

warp schedulers working, warps cannot benefit from unused registers by the idle warp schedulers.

Equation 5.19 shows how the maximum number of warps per SM is determined, taking

into account the warp scheduling granularity. Note that the number of registers available is

archMaxRegsPerBlock instead of the entire register file size, archRegsPerSM. As explained in

the beginning of this section, in some architectures each thread block can only use a part of all

registers in the SM. Since warps are associated to a thread block, inherently the warps can only

use archMaxRegsPerBlock registers.

WarpsPerSMregBound =

⌊
archMaxRegsPerBlock

RegistersPerWarp×archWarpAllocUnitSize

⌋
×archWarpAllocUnitSize

(5.19)

Finally, the maximum number of thread blocks per SM when constrained by registers can de

determined dividing WarpsPerSMregBound by WarpsPerBlock. If the ratio is < 1, there are not

enough registers for all the warps of one thread block. Equation 5.20 also multiplies the result

by archRegsPerSM
archMaxRegsPerBlock . Note that WarpsPerSMregBound is calculated using the maximum number of

registers available per thread block, archMaxRegsPerBlock. If archMaxRegsPerBlock is half of

the total SM’s register file size, archRegsPerSM, then the number of active threads can double.

Equation 5.20 includes three options. WarpsPerSMregBound was explained assuming the reg-

isters per thread do not exceed the architectural limit archMaxRegsPerT hread. If the limit is

exceeded, the kernel cannot be launched and effectively no blocks can be scheduled. If the threads

do not use registers at all, then the number of blocks is only limited by archMaxBlocksPerSM.

BlocksPerSM_regBound =
0 , if appRegsPerT hread > archMaxRegsPerT hread⌊

WarpsPerSMregBound
WarpsPerBlock

⌋
×
⌊

archRegsPerSM
archMaxRegsPerBlock

⌋
, if 0 < appRegsPerT hread < archMaxRegsPerT hread

archMaxBlocksPerSM , if appRegsPerT hread = 0
(5.20)

5.5.3 Shared Memory

Shared memory is on-chip memory available to all threads in a thread block. Each SM has

archSharedMemPerBlock bytes of shared memory. In contrast to registers, shared memory is allo-

cated on a thread block basis. The amount of bytes consumed by each thread block is application-

dependent (appSharedMemPerT hreadBlock).

Although the amount of shared memory used by a thread block is an application input pa-

rameter, there are two factors to consider that impact the actual amount of memory used. First,

like register allocation, shared memory is assigned in chunks per thread block. The size of each
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chunk is archSharedMemAllocUnitSize bytes. The second factor is that starting with Compute

Capability 8.x, the CUDA runtime driver takes around 1KB of shared memory per thread block.

The occupancy calculator [1] lists runtime driver’s shared memory usage per driver version. The

amount of memory taken depends on Compute Capability and CUDA runtime driver version.

However, for the time being, all driver versions use 1KB and it is enough to check the architecture

version — archCudaSharedMemPerBlock. Considering both factors, Equation 5.21 shows how

to determine the number of shared memory bytes taken per thread block.

cudaSharedMemPerT hreadBlock =

0, if Compute Capability < 8

1024, if Compute Capability≥ 8

SharedMemPerT hreadBlock =
⌈

appSharedMemPerT hreadBlock+archCudaSharedMemPerBlock
archSharedMemAllocUnitSize

⌉
×archSharedMemAllocUnitSize

(5.21)

Finally, Equation 5.22 shows how to determine how many thread blocks can be active per

SM assuming there is a constraint in shared memory, T hreadBlocksPerSM_sharedMemBound.

Similarly to registers, besides the shared memory limit per SM, there is a limit per thread block

and the approach is similar. If the thread block needs more than archSharedMemPerBlock, it is

invalid. Otherwise, the only limiting factor is archSharedMemPerSM.

T hreadBlocksPerSM_sharedMemBound =
0, if appSharedMemPerBlock > archSharedMemPerBlock⌊ archSharedMemPerSM

SharedMemPerT hreadBlock

⌋
, if 0 < appSharedMemPerBlock < archSharedMemPerBlock

archMaxBlocksPerSM, if appSharedMemPerBlock = 0
(5.22)

There is one additional detail in in Compute Capability 2.0-3.0 architectures as the L1 cache

and Shared Memory reside on the same memory chip. In some architectures, the partitions are

fixed, but others allow configuring the memory layout, i.e. how much memory is used as L1 cache

and shared memory. There are pre-configured layouts. Hence, in Equation 5.22, archSharedMemPerSM

is not necessarily the total memory size, but a pre-configured value accordingly to the selected

memory layout. Nonetheless, the default is the maximum possible size.

5.5.4 Final remarks

The previous sections covered how different architectural properties limit the number of active

thread blocks per SM. For each scenario, the number of possible thread blocks is calculated. The
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actual number of active thread blocks is the minimum value obtained for each constraint, as shown

in Equation 5.23.

BlocksPerSM = MIN(

BlocksPerSM_warpBound,

BlocksPerSM_threadBlockBound,

BlocksPerSM_regBound,

BlocksPerSM_sharedMemBound

)

(5.23)

The number of active warps per SM is straightforward: the product of the number of warps

per thread block by the number of active thread blocks per SM (Equation 5.24).

N = BlocksPerSM×WarpsPerBlock (5.24)

5.6 Summary

This chapter presented the analytical model proposed by Kim et al. [47], which is an essential

basis for the analytical model used in this work. The analytical model was designed for the first

CUDA-enabled GPUs from NVIDIA. Since then, architectures have evolved, and the analytical

model needs refinements: Chapter 6 addresses some of its limitations. However, to identify the

limitations in the original analytical model and address them, it is essential to described Kim et

al.’s approach, which was the intent of this chapter.

Furthermore, this chapter presented how to calculate the number of thread blocks concurrently

executed in each SM. Then, the number of active warps is derived, which is used several times in

the analytical model [47].



Chapter 6

Improving the GPU Analytical Model

Since Kim et al. proposed the GPU analytical model [47], GPU architectures have evolved sub-

stantially. This chapter proposes some adjustments to the analytical model in order to reflect

modern GPUs, addressing limitations in instruction cost estimations, number of memory transac-

tions and warp-level parallelism. Finally, it presents how to collect input parameters for the model

in a context where applications are offloaded with OpenMP, which reveals specific issues.

6.1 The OpenMP factor

The original analytical model counts the number of instructions and memory operations per thread,

which is the natural approach given the SIMT CUDA programming model. In OpenMP offloading

context, counting operations has to consider the workshare region concept and how work items are

distributed among the threads in the GPU.

1 #pragma omp parallel for collapse(2)
2 for(int i = 0; i < NI; i++) {
3 for(int j = 0; j < NJ; j++) {
4 // begin of worksharing region
5 ...
6 // end of worksharing region
7 }
8 }

Listing 6.1: A parallel OpenMP loop nest and the illustration of the worksharing region

The workshare region is the block of code that is executed in parallel by all participating

threads. In Listing 6.1, the two outermost loops, i and j, are marked as parallel and are coalesced

into a single iteration space. The body of the loop j is the workshare region. Thus, threads will

execute the code of the loop body for one or more (i,j) pairs, each corresponding to a work item.

The distribution of work items per threads depends on the total number of work items (NI×NJ in

the example), and number of launched threads.

65
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In the GPU context, the total number of threads depends on grid geometry used to launch the

kernel function, which defines the number of thread blocks and their size (number of threads per

thread block). Equation 6.1 shows the total number of launched threads.

NumTotalT hreads = appT hreadBlocks×appT hreadsPerBlock (6.1)

Assuming the number of parallel iterations is higher than the number of launched threads,

the compiler handles the OpenMP workshare region assigning multiple work items per thread.

In practice, the assembly code in the SIMT model has two or more loop iterations. The number

of work items is shown in Equation 6.2. As NumTotalT hreads is not necessarily multiple of

WorkItemsPerT hread, some threads may have fewer work items than others. In general, the

thread’s code may have a conditional statement to ensure it does not go beyond the problem size,

which could cause issues such as writing in invalid memory addresses. However, that should affect

just the last running warps, and for simplification, the issue is not handled in our work.

WorkItemsPerT hread =

⌈
NumParallelIterations

NumTotalT hreads

⌉
(6.2)

The operations counted at the AST level represent the computation per work item. The total

number of operations per thread is the cost of one work item times the number of work items

assigned to each thread, as exemplified in Equation 6.3.

appCompInsts = appCompInsts×WorkItemsPerT hread

appMemInstsCoal = appMemInstsCoal×WorkItemsPerT hread

appMemInstsUncoal = appMemInstsUncoal×WorkItemsPerT hread

(6.3)

Chikin et al. [30] also identified the need to multiply operations counted at IR-level by an

OpenMP factor, OMP_Rep. However, instead of multiplying the number of operations, they

multiply the Exec_cycles, the cost for executing N warps per Streaming Multiprocessor (SM), as

shown in Equation 6.4. Although a more straightforward approach, it suffers of an incorrection.

Exec_cycles = (Mem_cycles× N
MWP

+
Comp_cycles

appMemInstsTotal
×MWP)

×RepsPerSM×OMP_Rep
(6.4)

For instance, consider WorkItemsPerT hread = 2, i.e., each thread launched in the GPU com-

putes two iterations of the workshare region. Therefore, the number of computation (appCompInsts)

and memory operations (appMemInstsTotal) doubles. Comp_cycles is calculated as Issue_cycles×
appCompInsts (see Equation 5.9), which also doubles due to the increase of computation oper-

ations. However, the ratio Comp_cycles
appMemInstsTotal in Equation 6.4 is the same, as both numerator and

denominator increase proportionally. Using the equation presented by Chikin et al. induces an

incorrection. Therefore we argue that the correct approach, given the original analytical model, is

to adjust the number of operations, as presented in Equation 6.3. In our approach, the remainder

of the analytical model does not require any further adjustment.
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6.2 Warp-level parallelism

Each Streaming Multiprocessor (SM) in recent NVIDIA GPUs is organized in partitions composed

of warp schedulers, as shown in Figure 6.1. Each warp scheduler unit is responsible for executing

warps, and therefore there is warp parallelism in the SM. The original analytical model [47] was

outlined for the Tesla architecture (CC 1.x), where each SM has a single warp scheduler unit.

Consequently, extending the model to account for the multiple schedulers available per SM in

modern architectures is necessary.

SMs are hardware building blocks that combine processing and memory units. Each SM

partition groups registers files, one warp scheduler unit and the execution units available for the

scheduler. Other units such as L1 caches, Shared Memory and Texture Units are private to the

SM, but shared by all the partitions. The remainder of this chapter refers to these partitions as

execution blocks because a partition aggregates the actual units for computing warps — execution,

scheduler and dispatch units — and therefore, it is a block responsible for executing warps.

SM

Instruction Cache

L1/TEX Cache

SM Partition

Warp Scheduler

Dispatch Dispatch

Register File

SP SFU ST LD

. . .

SM Partition

Warp Scheduler

Dispatch Dispatch

Register File

SP SFU ST LD

. . .

Figure 6.1: Partitions in the Streaming Multiprocessors

One possible approach to extend the Kim et al. analytical model [47], presented in Chapter 5,

is related to the following question: can the SM notion used in the analytical model be translated

to an execution block? Since the analytical model only addresses the computing units and global

memory (which is off-chip memory), the notion of SM can be compared to an execution block.

However, there is one exception: in Kepler’s architecture, some execution units are shared between

warp scheduler units [5]. To model Kepler, it would be necessary to discover the scheduling

logic and how instructions are dispatched to the shared units. To the best of our knowledge, it

is undocumented and would require a thorough analysis. Besides, the architecture is old and is

entering the deprecated status as CUDA drivers no longer support Kepler devices. Architectures

released afterwards have well-defined partitions, reducing the motivation to address this problem

in our work.
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Considering the presented hypothesis, several metrics are adjusted to become relative to an

execution block rather than an SM. For instance, the number of active warps per SM, N, is trans-

formed into active warps allocated per partition, ActiveWarpsPerExecBlock. Note that warps in

SMs are evenly assigned and pinned to each partition before starting executing [12]. Therefore,

the number of warps per execution block is determined with a straightforward division, as shown

in Equation 6.5.

ActiveWarpsPerExecBlock =
⌈

N
archSchedulersPerSM

⌉
(6.5)

The number of times each SM computes a group of N warps, RepsPerSM, is transformed in a

equivalent metric concerning the number of repetitions per execution block — ExecBlocksCount

in Equation 6.6.

ExecBlocksCount = archSMCount×archSchedulersPerSM (6.6)

Metrics MWP and CWP become relative to the execution blocks as well, therefore they need

to be updated so that neither is higher than the number of active warps per execution block.

MWP_peakBw is the number of memory requests issued in one memory waiting period. The

original analytical model [47] calculates it assuming global’s memory bandwidth is evenly shared

by all SMs. The assumption is extended to the execution blocks, as shown in Equation 6.7.

BwPerWarp =
archSMFreq×archMemTransactionSize

MemLat

MWPpeakBw =
archGlobalMemBandwidth

BwPerWarp×ExecBlocksCount

MWP = MIN(ActiveWarpsPerExecBlock,MWPpeakBw,MWPwithoutPeakBw)

CWP = MIN(ActiveWarpsPerExecBlock,
Mem_cycles
Comp_cycles

+1)

(6.7)

The last adjustment required is calculating the cycles-cost, Exec_cycles, for executing a group

of ExecBlocksCount execution blocks. As explained in Section 5.4, in the original analytical

model, an SM may execute a group of warps multiple times, and it was necessary to introduce a

factor RepsPerSM. Similarly, an execution block may execute a group of warps multiple times.

Equation 6.8 shows how to determine the repetition factor. Finally, Equation 6.9 determines the

cost for executing all warps scheduled into an execution block.

RepsPerExecBlock =
RepsPerSM

archSchedulersPerSM
(6.8)
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Exec_cycles = RepsPerExecBlock×
Mem_cycles× ActiveWarpsPerExecBlock

MWP + Comp_cycles
appMemInstsTotal ×MWP if CWP≥MWP,

MemLat +Comp_cycles×ActiveWarpsPerExecBlock if MWP >CWP,

Mem_cycles+Comp_cycles+ Comp_cycles
appMemInstsTotal × (N−1) if MWP =CWP = ActiveWarpsPerExecBlock

(6.9)

6.3 Demystifying the coalesced and uncoalesced classification

Kim et al. [47] classifies memory accesses within the warp as coalesced or uncoalesced. Essen-

tially, if all threads of the warp access contiguous memory addresses, then the requested data is

coalesced and all threads are served with a single 128 B memory transaction. When threads access

scattered memory positions, the GPU issues one memory transaction per thread, resulting in 32

transactions — the warp size — of 128 B. Uncoalesced memory requests are inefficient because

more transactions are issued, reducing overall available bandwidth. Moreover, most of the data

delivered by each transaction is unused because typical word sizes ranges from 1 B to 16 B. The

original analytical model [47] was designed for the first architectures of Compute Capability 1.x,

where the binary classification for memory instructions, — as coalesced or uncoalesced —, is

correct and is documented by NVIDIA. However, the following architectures changed how global

memory requests work, relaxing some constraints and enhancing the coalescing mechanism.

The following sections introduce some terminology and how global memory requests have

changed over time. Due to contradictory information from NVIDIA documentation, it was nec-

essary to conduct experiments to understand the sizes of the transactions at different levels in the

memory hierarchy. After understanding the coalescing mechanisms in modern GPUs, we propose

a new approach to estimate the number of transactions and consequently the data traffic. The

analytical model [47] is adjusted accordingly to reflect our proposed approach.

6.3.1 Terminology

This section introduces NVIDIA’s terminology [12, 18]:

Request: A command issued into the hardware memory unit to perform some action, e.g.,

load data from a memory address.

Sector: Aligned 32-byte chunk of memory in a cache line or device memory. An L1 or L2

cache line is four sectors, i.e., 128 bytes.

Transactions: Represents the smallest unit of data to be moved between two memory units.

Regardless of the requested data, memory units always serve the requests with fixed-size

chunks of data. Each request is served with one or more transactions depending on the

access pattern and amount of data.

Wavefronts: It is the maximum unit of work per cycle going through the pipeline stages in

the memory units. The number of cache lines or sectors that can be accessed in a single
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wavefront may be limited due to the need “[...] for a consistent memory space [...] as well

as various other reasons” [18]. A wavefront comprises work items that can be processed

in parallel, but distinct wavefronts are serialized. “The L1TEX unit has internally multiple

processing stages operating in a pipeline.” [18].

6.3.2 Memory requests evolution across architectures

To better understand how coalescing evolved, the following list summarises the documented

changes across architecture generations [12]. CC is short for Compute Capability.

CC 1.0 and 1.1: Coalescing is supported per half-warp, i.e., the groups of threads with iden-

tifiers [0−15] and [16−31]. The accessed words within the half-warps to be of sizes 4, 8,

or 16 bytes. Moreover, they must be perfectly aligned. Finally, the ith thread must access

the ith word. When the requirements for coalescing are met, the number of transactions per

half-warp depends on the word size: one 64 B memory transaction, one 128 B transaction,

or two 128 B transactions for words of 4, 8 or 16 bytes, respectively. If the requirements

fail, each half-warp receives 16 transactions from the memory units, one per thread, each 32

B.

CC 1.2 and 1.3: Some constraints from earlier architectures are relaxed. For instance, words

can be accessed in any order, i.e. the ith thread does not have to access the ith word. Co-

alescing is still applied per half-warp, but implements an iterative algorithm that tries to

coalesce the thread’s requests as much as possible to a minimum 32 B sized transaction.

In summary, the algorithm works as follows: (i) select the lowest active thread ID and its

requested memory segment, MemSeg; (ii) find all other active threads that requested words

falling within the memory segment MemSeg; (iii) successively reduce the transaction size

in half, discarding the upper or lower half of the transaction if unused, until it is not possible

to shrink any further or the transaction size reaches the minimum 32 B size; (iv) threads

that are serviceable with the resulting transaction are marked as inactive; (v) the request is

dispatched, and (vi) if there are active threads left, repeat the process until all threads in the

half-warp are serviced.

CC 2.x and onwards: The Fermi architecture introduced L1 cache for global memory ac-

cesses. The data transferred between L1 and device memory goes through the L2 cache.

Some architectures have opt-in caching in L1 and it may be enabled or disabled by default.

Cache line sizes in L1 and L2 are 128 B, composed of 4 sectors. Each cache line maps to a

segment of 128 B in global memory. L2 has an access granularity of 32 B, thus, it is possible

to access a single sector within the cache lines. In contrast, L1 serves the entire cache line

resulting in 128 B transactions. Requests are processed per warp rather than half-warp as

in previous generations. Moreover, the number of requests varies with the word size being

accessed: (a) a single memory request for words up to 4 B, (b) for 8 B words, two requests
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are issued, one per half-warp, and (c) finally, if the word size is 16 B, there are four mem-

ory requests, one per quarter-warp. The memory requests are broken down into cache line

requests that are issued independently. The request is serviced at L1, or L2 throughput in a

cache hit, otherwise at the throughput of device memory.

Concerning memory unit’s access granularity, there is some ambiguity in documentation.

While it is well established across all NVIDIA architectures that the L2 cache serves transactions

with a granularity of 32 B, for L1 cache different sources point towards different values. CUDA

Programming Guide [12] states a 128 B granularity on L1 for CC 2.0 and onwards. However,

Kernel Profiling Guide [18] suggests a 32 B granularity1. One of the profiling metrics for L1 is

described as: “Total number of bytes requested from L1. This is identical to the number of sectors

multiplied by 32 byte, since the minimum access size in L1 is one sector.”. Therefore, according

to this quote, the access granularity in the L1 is not full cache lines, but 32 B sectors, just like L2

cache.

Moreover, both manuals suggest that the number of requests issued to the memory units is

also different. As described earlier, the Programming Guide reports that the word size influences

the number of issued requests. However, according to [18], one global LD/ST instruction issues

a single request to L1 cache regardless of the word size. A request is processed in the memory

unit to create work packages, the wavefronts. Items within the same wavefront are processed in

parallel, but distinct wavefronts are serialised.

"When an SM executes a global or local memory instruction for a warp, a single

request is sent to L1TEX [unified L1-Data and Texture caches]. This request commu-

nicates the information for all participating threads of this warp (up to 32). [...] the re-

quest requires to access a number of cache lines, and sectors within these cache lines.

The L1TEX unit has internally multiple processing stages operating in a pipeline."

[18]

Concerning memory requests, the analytical model [47] does not take this level of detail into

consideration, and is left for future work. Regarding the L1 access granularity, it is an important

detail as it may influence the amount of memory that is fetched from global memory. This specific

topic is further explored in the following sections.

6.3.3 The impact of mixed access granularity in memory hierarchy

Figure 6.2 illustrates how the transactions flow through memory hierarchy for a given memory

request. In the example, the access granularities are 32 B, 64 B and 128 B for L1, L2 and DRAM,

respectively. Moreover, it assumes the request accesses a single word sized 4 B.

When L1 receives a memory request, it checks if the data is present and valid in its cache lines.

If it is, then L1 can respond to the request transferring a sector of 32 B. Even through the request
1The profiling guide is documentation for the Nsight Compute profiling tools, released in 2018 (https:

//developer.nvidia.com/nsight-compute-history), with support for Pascal (CC 6.x) and later GPUs
(https://docs.nvidia.com/nsight-compute/2022.1/ReleaseNotes/index.html#gpu-support)

https://developer.nvidia.com/nsight-compute-history
https://developer.nvidia.com/nsight-compute-history
https://docs.nvidia.com/nsight-compute/2022.1/ReleaseNotes/index.html#gpu-support)
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Figure 6.2: Example of transactions flow across the memory hierarchy for a memory request
accessing a single memory address. In the figure, L1 has 32 B granularity, L2 has 64 B granularity
and DRAM has 128 B granularity.

is a for single 4 B word, the minimum unit to read data in L1 is the 32 B. In this case, the data is

transferred at L1 throughput, as no other units are involved. However, if the requested data is not

in L1, then the request is routed to L2. L2 has a 64 B access granularity. Therefore, for each 32 B

sector miss in L1, L2 sends one 64 B transaction, which maps to two 32 B sectors in L1. Similarly,

if the data is not present in L2, the request is routed to DRAM, with higher latency times. In our

example, DRAM transactions are 128 B in size.

Consider that the threads in the warp access a 4 B word, but the memory addresses are scat-

tered. In other words, the threads are accessing memory positions that hit in distinct sectors or

cache lines, consequently a different transaction is needed per thread. If there is a cache hit in L1,

the maximum amount if data is WarpSize×L1SectorSize = 32× 32 = 1024 B. However, if the

requests are served by DRAM, then the transferred data is 4 times larger. Of the 4096 bytes of

data, only 128 bytes are used.

Our example shows the importance of access granularity at caches and DRAM and how it can

impact the data traffic in the memory hierarchy. The following sections discuss the granularities

for L1 and DRAM memory, given the contradictory information in NVIDIA documentation.

6.3.4 Experimental setup for determining L1 access granularity

This section describes a simple experiment conducted on two Pascal GPUs (CC 6.x) that should

help clarify what is the granularity for L1 cache. The experiment consists in crafting a kernel that

performs global read and write memory accesses with a configurable access stride inter-threads,

i.e., let s be a striding distance, then thread ti accesses the address baseAddr, and thread ti+1 the

address baseAddr+ s×wordSize. The question is if L1 has a 32 B or 128 B access granularity.

Therefore, we assume both cases and estimate by hand the number of transactions and transferred

bytes. Our estimations are compared to profiling data to derive any conclusion.

Listing 6.2 shows the kernel in CUDA used for this experiment, moving one element from the

src array to dst. The parameter stride configures the striding distance between consecutive

threads. The array index, tid, is calculated such that each thread accesses a unique memory

position per thread and thread block, preventing any cache hits inter-warps (which would affect
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the number of transactions from DRAM). The grid geometry is large enough to let the profiler

collect the hardware counter values accurately. The profiling is repeated several times to ensure

negligible variation in the counters, suggesting the kernel is properly set.

1 #define DATA_TYPE float
2 __global__ void mem(DATA_TYPE *src, DATA_TYPE *dst, int stride) {
3 int tid = blockDim.x * blockIdx.x * stride + threadIdx.x * stride;
4

5 dst[tid] = src[tid];
6 }
7 void main() {
8 ...
9 mem<<<5,256>>>(dev_src, dev_dst, 1);

10 ...
11 }

Listing 6.2: Simple experiment to analyse the number of transactions on different scenarios

The NVIDIA profiler nvprof is used to get the number of transactions and amount of trans-

ferred data. Table 6.1 presents the relevant metrics or events for this experiment. Unfortunately, the

number of transactions from L1/Tex cache is not available for the GPUs at hand. Although there

is a metric called tex_cache_transactions, described as “Unified Cache Transactions”, it is

not giving the expected information. The Nsight documentation [18] has a table that compares the

metrics available in nvprof with the introduced metrics in Nsight, showing a migration path2.

Figure 6.3 shows the equivalent metrics in Nsight for tex_cache_transactions. Essentially,

it is an average percentage of peak rate achieved during load/store operations in the L1/Tex cache.

Therefore, it is not the number of transactions in the unified L1/Tex cache serves, as the metric’s

name suggests3. It was not possible to find a substitute metric for the number of transactions L1

serves. However, it can be inferred from other metrics. The number of transactions served from

L2 depends on the access granularity at L1 being 128 B or 32 B, and the rest of the experiment

relies on this fact.

l1tex__lsu_writeback_active.avg.pct_of_peak_sustained_active
+ l1tex__tex_writeback_active.avg.pct_of_peak_sustained_active

Figure 6.3: Equivalent metrics in Nsight for the tex_cache_transactions in nvprof.

Assume an access granularity of 128 B at L1 for a word size of 4 B. Each warp makes a single

memory request according to CUDA Programming Guide [12] and Nsight [18]. Furthermore,

consider an access stride of 128; therefore, each thread performs a load and store in distinct cache

lines, ensuring cache misses. Consequently, each warp has to be served with 32 transactions of

128 B, assuming L1 has the 128 B access granularity. Due to cache misses in L1, the requests

2https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html#nvprof-
metric-comparison

3nvprof is used instead of Nsight because the latest release dropped support for Pascal GPUs, and older versions
are not compatible with the latest CUDA Toolkits.

https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html#nvprof-metric-comparison
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html#nvprof-metric-comparison
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Metric name Metric description
l2_read_transactions Memory read transactions seen at L2 cache,

which result from L1/Tex cache requests and
other units

l2_write_transactions Memory write transactions seen at L2 cache
dram_read_transactions Device memory read transactions
dram_write_transactions Device memory write transactions
l2_global_load_bytes Bytes read from L2 for misses in Unified Cache

for global loads
l2_local_global_store_bytes Bytes written to L2 from Unified Cache for local

and global stores
dram_read_bytes Total bytes read from DRAM to L2 cache
dram_write_transactions Total bytes written from L2 cache to DRAM

Table 6.1: Relevant profiling metrics in nvprof for the experiment.

are routed to L2. Access granularity for L2 is 32 B, thus the number of transactions from L2 to

L1 increases by a factor of 4, because 4× 32 B sectors from L2 are needed per cache line in L1.

Hence, the number of transactions per warp from L2 to L1 is 128. The requests in L2 also result

in cache misses and are routed to DRAM. Assuming the DRAM access granularity is the same as

L2 (more on this topic later), the number of transactions per warp served from DRAM to L2 is

also 128, as imposed by L1. Given the kernel launch configuration mem«<5,256»>, the number

of warps is 5× 256
32 = 40. Hence, the total number of transactions from DRAM to L2 and L2 to

L1 is 5120. The total bytes transferred from DRAM to L2, and from L2 to L1, is the number of

transactions times the size of each transaction, i.e. 5120×32 = 163840 B. Note that the number

of bytes needed for the kernel is 5×256×4 = 5120 B, i.e. the total number of threads times the

size of each requested word. The efficiency is 5120
163840 ≈ 3%.

Consider the alternative scenario where the access granularity to L1 is 32 B. Because the ac-

cess stride is still 128 and coalescing is not possible, each warp memory request results in 32

transactions of 32 B. Note that the number of transactions has not changed compared to the previ-

ous scenario given there is one transaction per thread in the warp, but the size of the transactions

between L2 and L1 is smaller. Since the access granularity of DRAM, L2 and L1 match, trans-

actions do not have to be split or fused along the memory hierarchy. Therefore, the number of

transactions served from DRAM to L2, L2 to L1, and L1 to the warp is 32×40 = 1280 (40 is the

number of warps). Transactions size is 32 B, thus each unit in the hierarchy transfers 40960 B.

Efficiency, in this case, is about 12.5%.

The next step is to profile the application with nvprof and collect the metrics in Table 6.1.

The profiling results, shown in Table 6.2, approximate the scenario where L1 transactions have a

granularity of 32 B. Interestingly, the number of write transactions from L2 to DRAM is higher

than expected. It is particularly unexpected that the number of write transactions and amount of

written data in DRAM is 3.3× higher compared to L2. If the ratio was approximately 4×, it

could suggest that writing operations on DRAM require writing full cache lines or segments of
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128 B, while read operations can access 32 B sectors within cache lines. Figure 6.4, from the

profiler’s GUI, shows that all writing operations in DRAM are coming from L2. Writing and

reading operations between L1 (unified cache) and L2 are the same, as expected. One plausible

explanation for such observations, is that both GPUs used in the experiment are not operating

exclusively for running CUDA applications. They are also used to render the OS desktop interface.

Therefore, it might interfere with the collected metrics.

Metric name Value
l2_tex_read_transactions 1280
l2_tex_write_transactions 1280
dram_read_transactions 1286
dram_write_transactions 4245
l2_global_load_bytes 40960 B
l2_local_global_store_bytes 40960 B
dram_read_bytes 41152 B
dram_write_bytes 135840 B

Table 6.2: Number of memory transactions and total size on L1/Tex, L2 and DRAM

Figure 6.4: Memory transactions and moved data in physical units (blue) and logical units (green)

Despite the unexpected results in writing operations from L2 to DRAM, we can conclude

that in Pascal the access granularity to L1 is 32 B. Our results are supported by Lia et al. [48]

observations for L1 access granularity, listed below. In conclusion, starting with Maxwell, L1

access granularity is 32 B, the same as L2 cache.

• Kepler (CC 3.x): 128 B

• Maxwell (CC 5.x): 32 B

• Pascal (CC 6.x): 32 B
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6.3.5 DRAM access granularity

The previous section discussed the memory access granularity for L1 cache and showed how it can

impact the amount of data that is fetched from DRAM. It is well established that L2 is accessed

in units of 32 B. However, DRAM is not mentioned in the documentation. DRAM is off-chip

memory and one of the reasons why NVIDIA does not mention the granularity for DRAM is

because it depends on the used memory technology for DRAM modules on the board.

For instance, data access granularity on GDDR5, GDDR5X and GDDR6 is 32 bytes [7]. How-

ever, HBM allows 32 or 64 byte transactions [16, 49]. Both Pascal GPUs used for the experiment

have GDDR-based memory technologies, but some data-center Pascal GPUs use HBM. There-

fore, DRAM access granularity is not an architecture parameter, but rather device dependent. An

NVIDIA engineer in the forums support this conclusions and shares the results for an experiment

in a GPU with HBM2 memory controller, showing it fetches 64 B from DRAM for every cache

miss in a 32 B sector miss in L24.

Based on the experiment results in Table 6.2, the number of transactions between DRAM and

L2 have a ratio 1:1, which means that DRAM in the tested devices has a 32 B access granularity.

6.3.6 Estimating number of memory transactions

Previous sections discussed how memory requests evolved across architecture iterations. It is

possible to conclude that the distinction between coalesced and uncoalesced memory instructions

is no longer suitable for current GPUs. Coalescing still happens to some extent, in the sense that

if the threads within the warp access memory addresses that fall in a common sector, then that

sector serves multiple threads, hence increasing efficiency. This section proposes a new approach

to estimate the number of transactions to DRAM and data traffic. Our approach targets CC 2.x

and later NVIDIA GPUs. Similarly to the original analytical model [47], our work does not model

cache. Therefore, we are concerned with estimating traffic from/to DRAM only.

Let accessGranularity be the largest access granularity imposed by DRAM, L2 or L1. Fur-

thermore, assume that allocated memory is naturally aligned (default for contiguous memory al-

location, [12, Section 5.3.2]) and each memory address belongs to a memory segment. Memory

fetches are done per segment rather than by word, similar to CPUs. Each thread within the warp,

T , requests a memory address, memAddr, which falls in a memory segment with a base address

b memAddr
accessGranularityc. The number of unique memory segments to be accessed is the number of trans-

actions necessary for executing the memory instruction. Multiplying the number of transactions

by the accessGranularity gives the total bytes transferred. Algorithm 2 illustrates this procedure.

6.3.7 Adapting for AST analysis and OpenMP offloading

Algorithm 2 assumes it is possible to calculate the physical/virtual memory address requested by

each thread. However, that problem can be abstracted when the analysis is performed at AST level.

4https://forums.developer.nvidia.com/t/pascal-l1-cache/49571/18

https://forums.developer.nvidia.com/t/pascal-l1-cache/49571/18
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Algorithm 2 Determine the number of transactions per warp’s memory instruction

Require: accessGranularity
Require: MemInstr

1: allMemSegments←{} . A set data structure for storing unique memory segments accessed
when executing MemInstr

2: for thread T in warp W do
3: memAddr←MemInstr.getT hreadAddr(T ) . Calculate the memory addressed requested

by thread T
4: memSegmentAddr←

⌊
memAddr

accessGranularity

⌋
. Calculate the memory segment base address

5: allMemSegments.insert(memSegmentAddr) . Add the memory segment address to the
set

6: end for
7: numMemTransactions← allMemSegments.count()
8: totalMemTrans f ← numMemTransactions×accessGranularity . One memory transaction

per memory segment. Each transaction has accessGranularity bytes

For instance, with respect to load/store operations on arrays, the memory address is calculated as

baseAddr+o f f set. The base address is the starting memory position for the array, which corre-

sponds to a contiguous memory block in memory. In C languages, the base address is abstracted

by the array variable or a pointer. The offset depends on the array index and the array data type.

Since the base address is common to all threads within the warp executing the instruction, the

offset is enough to calculate the number of transactions needed to fulfil the memory request.

1 #pragma omp distribute parallel for collapse(2)

2 for (int i = 0; i < N; i++) {

3 for (int j = 0; j < N; j++) {

4 C[i * N + j] = 0.0;

5 for (int k = 0; k < N; ++k) {

6 C[i * N + j] += A[i * N + k] * B[k * N + j];

7 }

8 }

9 }

Listing 6.3: Matrix multiplication example with OpenMP

Consider the matrix multiplication in Listing 6.3 and assume array elements are floats. Our

goal is to determine the number of transactions using AST analysis. In the innermost loop, k, there

are memory accesses to matrices A, B and C.

Assume that a thread tk computes the kth iteration, and tk+1 the k + 1 iteration. Looking

at the array subscripts, we can conclude that there is a load for A[i*N+k], A[i*N+(k+1)],

B[k*N+j], B[(k+1)*N+j] and C[i*N+j]. The striding distance for array accesses by consec-

utive threads is 1 for array A, N for array B and 0 for C.

Assuming that memory transactions from DRAM are 32 B, then the two loads to A fall in the

same memory segment. Note that the base address is the same, and the offset between the two

loads is stride×dataType = 1×4 B. With respect to array B, the offset is 4 ·N. If it is larger than

32 B (access granularity), then both loads hit distinct memory segments. Let T be the number of
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data elements that fit in a transaction. In this case, a transaction sized 32 B can move 4 floating-

point scalars. Then, the number of words that fit in a single transaction is
⌈

T
stride×dataType

⌉
.

Using the AST analysis it is necessary to determine the striding distance and know the data

type associated to the array. With respect to the striding distance, one possible solution is to extract

the expression in array subscript and use algebraic symbolic analysis. In the innermost loop k, we

assume any other variable in the expression is constant throughout the loop. It is true for the control

variables i and j, but assuming it for other variables may be a limitation. As the loop increments

the variable k in steps of 1, the striding distance for B is Bk+1−Bk = ((k+1) ·N+ j)−(k ·N+ j) =

N. Note that this approach only works for loops with constant steps.

So far, it was assumed that consecutive threads compute consecutive loop iterations. In the

context of OpenMP, that is not necessarily true as it depends in the scheduling policy. For instance,

with static scheduling, the iteration space is split in even chunks which are assigned to threads in

order. Consider 1024 iterations and 8 threads, resulting in chunks sized 128 iterations. Thread

t0 computes the iteration range [0,127], t1 the range [128,255] and so on. The chunk size is

configurable. For instance, it can be set to 1 and each thread is assigned multiple chunks of size

1. Considering the same example, t0 computes the iterations {0,8, ...}, t1 the iterations {1,9, ...}
and so forth. Hence, it is to account both access stride and chunk size to determine the distance

between memory elements accessed by consecutive threads in the same memory instruction.

Equation 6.10 summarises the steps to calculate the number of memory transactions per mem-

ory operation. T hreadsServedPerMemTrans is the number of threads served with a single trans-

action of size archMemTransactionSize. It depends on array data type (dataType), striding dis-

tance between consecutive loop iterations (stride) and the chunk size in OpenMP scheduling

(chunckSize). If the fraction is equal or less than 1, then each transaction serves a single thread.

Finally, the total number of transactions necessary for an array access, is the division of number of

threads in the warp by how many threads each transaction fulfils. T hreadsServedPerMemTrans is

the number of threads that are served with a single transaction of size archMemTransactionSize.

TransactionsPerMemInstr =
archT hreadsPerWarp

T hreadsServedPerMemTrans

T hreadsServedPerMemTrans =
⌈

archMemTransactionSize
dataType× stride× chunckSize

⌉ (6.10)

Our formulation for the problem assumes that dataType is never larger than the transaction

size. If that could be possible, an additional case would be necessary to indicate that a thread may

need more than one transaction and the striding distance and chunk size would be irrelevant in that

case. According to [12], the supported words sizes are 1, 2, 4, 8 and 16 bytes. Thus, as long as the

array data type is a primitive data type in C/C++, our methodology works. However, further work

is necessary to understand how compilers deal with structures in the OpenMP context, whether

struct fields are aligned and how does it interfere with memory accesses.
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6.3.8 Updating the model

This section discusses the necessary changes to Kim et al. analytical model [47] to reflect how

memory requests work in modern GPUs, dropping the distinction between coalesced and uncoa-

lesced memory requests.

In the original model, the memory latency was a weighted average because the latencies would

vary depending on coalesced and unconcealed accesses. With our proposal, the distinction is

dropped, as shown in Equation 6.11. With respect to round trip latencies (archMemLatGlobal),

it should be constant for all transactions given the fixed-size and that all requests hit DRAM.

However, different memory instructions result in varying number of transactions. Therefore, an

average number of transactions is used to estimate the average memory latency.

MemLat = archMemLatGlobal +archMemDepartDelay×avgTransPerMemInstr (6.11)

The departure delay between consecutive memory transactions was distinguished in coalesced

and uncoalesced memory accesses. Consequently, Kim et al. [47] proposed a weighted average

sum. In our proposal, the departure is constant for all transactions and matches the device property

archMemDepartDelay, obtained via micro-benchmarking (see Equation 6.12).

MemDepartureDelay = archMemDepartDelay (6.12)

Finally, the total number of cycles spent in memory operations, shown in Equation 6.13, is the

number of memory instructions multiplied by the average latency per memory instruction.

Mem_cycles = MemLat×appMemInsts (6.13)

6.4 Modelling instructions cost

The original analytical model [47] uses a 4 cycle latency cost for all instructions. However, mod-

ern GPUs have a larger ISA and diversified execution units. For example, Arafa et al. [22] shows

that in a Pascal GP100 Streaming Multiprocessor, single-precision floating-point (SFP) addition,

subtraction and multiplication have latencies of 6 cycles, while a division on average costs 408

cycles. Besides, the number of execution units available per warp scheduler for different opera-

tion types is not equal. In GP100, each warp scheduler has 32 execution units for single-precision

floating-point, 16 double-precision floating-point units and 8 special function units (SFU) for tran-

scendental operations (e.g., trigonometric and logarithmic operations). The warp size in GP100

is 32. Therefore, when the warp scheduler dispatches a 32-bit floating-point instruction, there are

enough units to execute that instruction in parallel for all the threads. In case of a transcendental

instruction, the instruction has to be issued multiple times to the SFU units for sub-groups of 8

threads.
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As discussed earlier for the CPU analytical model (Section 4.2.2), there are different metrics

for cycle-accurate estimations concerning instructions cost: (a) latency, and (b) throughput or

reciprocal throughput.

Similarly to the CPU analytical model, our approach uses throughput metrics. NVIDIA dis-

closes the instruction throughput in the CUDA Programming Guide [12, Section 5.4] for different

types of native instructions and Compute Capability architectures. The throughput values are de-

scribed as the number of results per clock cycle per multiprocessor.

Consider again the Pascal architecture and the GP100 SM (Compute Capability 6.0). The

throughput for addition/subtraction integer operations is 64 results per cycle per SM [12]. Con-

sidering the two warp schedulers per SM, then each partition outputs 32 results per cycle. Each

partition has 32 CUDA Cores, thereby each execution unit calculates one integer result per cycle.

Note that additions have a 6 cycle latency [48, 22]. However, floating-point and integer units in

the CUDA Core are fully-pipelined [4], therefore values from NVIDIA are the peak number of

results per clock cycle, assuming a long sequence of independent instructions of the same type

that saturate the pipelines.

Equation 6.14 shows the updated equation for Comp_cycles, the number of cycles each thread

consumes issuing instructions. The Troughput(i) is the throughput provided by NVIDIA for a

given instruction i. The numerator archT hreadsPerWarp× archWarpsSchedPerSM is the total

number of threads per SM, as the throughput disclosed is per SM. Thereby, the equation accumu-

lates the average cycle-cost per instruction at peak throughput.

Comp_cycles = ∑
i∈Instructions

archT hreadsPerWarp×archWarpsSchedPerSM
Troughput(i)

(6.14)

6.5 Collecting device-specific parameters

6.5.1 Data transfers between CPU host and GPU

In the typical CPU-GPU system, the host CPU runs the Operating System and applications. When-

ever an application wants to use the graphical or computational capabilities of the GPU, the driver

on the host-side has to communicate with the GPU and transfer the kernel code. Besides, CPU and

GPU have private system memory. Therefore, kernel code executing on the GPU cannot directly

access the host memory. Instead, data must be transferred to the GPU before the kernel starts, and

the computation results are carried back to the host’s memory. The required data movements may

limit the benefits of offloading. Therefore, it is vital to consider data movement overheads in the

analytical model.

CPU and GPU attached to the same board can communicate through the interconnects to trans-

fer data back and forth and issue commands. In spite of the high theoretical bandwidths for the

interconnects, the bandwidth in real-world usage is typically much lower. Multiple factors bot-

tleneck the effective bandwidth. For example, on the host side, the memory controller frequency,

the RAM speed, and the number of channels for the RAM. On the GPU side, how fast data can
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be written on device memory is also a factor, although memory chips on GPUs have higher band-

widths than their CPU counterparts. Moreover, how the GPU is attached to the system is important

as well. Most GPUs connect via the standard PCI-e connector [41], but recently NVIDIA unveiled

their proprietary NVLINK interconnector; other alternatives exist as well [50].

Besides all the aforementioned hardware-related factors, the host’s memory allocation method

also impacts the effective throughput. In modern operating systems, memory is split into user and

kernel spaces. In contrast to kernel space, user space is pageable memory by default [69]. Pages

are basically well-defined memory units and allow the OS to swap them to secondary memory

(e.g. disks), thus freeing physical memory which is necessary for running the active processes.

Data transmission between peripherals and the main memory is managed by a dedicated con-

troller, known as the DMA (direct memory access). Pageable memory is troublesome for DMA.

Therefore, DMA requires the drivers to allocate page-locked buffers before data transferring [32,

Chapter 15]. Page-locked memory is allocated memory that permanently resides on physical mem-

ory and the OS cannot swap it to secondary memory. As a result, when an application wants to

move data to the GPU, the NVIDIA driver needs to check if the target memory is locked. If it is

not, it must create locked buffers, move the data from the source to the newly allocated buffer, and

finally, it can start the DMA process to transfer data from host to device or vice-versa. Managing

these operations introduces overheads and limits the throughput, especially if page misses occur

in the process.

As a mitigation measurement, CUDA gives the option to allocate memory on the host as page-

locked (also known as pinned memory) using the cudaHostAlloc runtime API [14] in place of

the standard malloc. When an application transfers data to the GPU and the memory is pinned,

the CUDA driver does not need to create additional buffers or clone data. Instead, it can initiate the

data transfer right away. Therefore, communications between host and device become faster, at

the expense of putting more pressure on the host’s main memory (in the sense that pinned memory

cannot be swapped out).

In the CUDA programming model, pinned memory usage is optional and requires the pro-

grammer to use the adequate runtime or driver APIs [13, 14] for allocating the memory on the

host. However, our work focus on OpenMP offloading, which raises the question of whether

compilers such GCC or Clang use pinned memory or not. It was impossible to find a definitive

answer in the existing literature. Therefore, some empirical experiments were conducted and are

described next.

The experiment uses kernels from the UniBench [56], an extension to Polybench [75] that

adds OpenMP offloading support. If an application makes use of pinned memory, it must use the

dynamic APIs cudaHostAlloc or cuMemAllocHost, from runtime and driver libraries respec-

tively. The NVIDIA profiler, nvprof can trace all API calls, enabled with the CLI parameters

shown in Figure 6.5. Therefore, the experiment consists in launching all the kernels in the GPU,

parse the API trace, and look for the mentioned API calls.
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$ nvprof --print-api-trace --profile-api-trace all <executable>

Figure 6.5: Using nvprof with API tracing enabled

Listings 6.4 and 6.5 highlight some of the API calls for Clang and GCC, respectively5. It is

possible to conclude that neither Clang nor GCC use pinned memory in any Polybench kernels due

the lack of calls to cudaHostAlloc or cuMemAllocHost. Therefore, memory allocation on

the host side is done through the standard malloc. This experiment is not sufficient to conclude

that Clang or GCC never use pinned memory, which would require inspecting the source code

or finding some evidence in the documentation. However, experimental evaluation in this work

uses the Polybench suite, and since neither compiler uses pinned memory in this particular suite,

pinned memory is not addressed in this work.

cuStreamCreate // several streams are created

cuStreamCreate

...

cuDeviceGetAttribute // get information about GPU

...

cuMemAlloc // memory allocation on GPU

cuCtxSetCurrent

cuMemAlloc

...

cuMemcpyHtoDAsync // transferring from Host to Device

cuMemcpyHtoDAsync

...

// launch kernel

cuLaunchKernel (__omp_offloading_fd01_37df10a_mm3_OMP_l120 [80])

...

Listing 6.4: Polybench 3MM API call trace when compiled with Clang

5As a side note, the traces contain some interesting details. First, Clang seems to create several streams and trans-
fer the data asynchronously. Secondly, GCC uses just-in-time compilation, proven by the calls to NVRTC library
(cuLinkCreate, cuLinkAddData, etc.). In contrast, Clang compilation flow generates machine code for the target
GPU and embeds PTX in the binary so that it is possible to use JIT on upcoming architectures.
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cuDeviceGetAttribute // get information about GPU

...

cuLinkCreate // calls to NVRTC (runtime compilation library)

cuLinkAddData

cuLinkAddData

...

cuLinkComplete

...

cuMemAlloc // memory allocation on device

...

cuMemcpyHtoD // transferring from Host to Device

...

cuLaunchKernel (mm3_OMP$_omp_fn$0 [81])

...

Listing 6.5: Polybench 3MM API call trace when compiled with GCC

The remainder of this work focuses on data transferring with pageable memory. Since the

effective throughput depends on several hardware characteristics, as mentioned earlier, a possible

approach is to benchmark transferring speeds from host to device and vice-versa with sample

applications. This task is simplified because NVIDIA includes a benchmarking example in the

CUDA samples that does exactly that 6. Running the benchmark should give a good approximation

for the average observed throughput in real-world applications. The application allocates memory

with malloc and pinned memory with cudaHostAlloc. Moreover, it performs transferring in

both directions, i.e. host to device and device to host. Finally, it measures the bandwidths with

varying block sizes.

The obtained results are summarized in Table 6.3, showing memory movements in both direc-

tions, i.e. device to host (DtH) and host to device (HtD). It is important to realise the larger the

block sizes, the higher the throughput, until data blocks are sufficiently large and the bandwidth

reaches a plateau. The presented averages are for blocks with sizes larger than 1GB. For small data

blocks, the latencies involved in the DMA process are the primary factor, limiting considerably

the observed bandwidth.

Memory allocation DtH (GB/s) HtD (GB/s)
Paged 11.76 9.37
Pinned 13.18 12.4

Table 6.3: Memory transferring bandwidth with paged and pinned allocated memory

6.5.2 Memory bandwidth

Another input parameter for the analytical model is the global memory bandwidth, archGlobal-

MemBandwidth. Usually, vendors disclose memory speed rates, clock frequencies and bandwidth

6https://github.com/NVIDIA/cuda-samples

https://github.com/NVIDIA/cuda-samples
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for marketing purposes. In the case of the GPUs, vendors typically disclose one or more of the

following metrics:

Effective memory speed (Gbps). The effective rate at which data is transferred per lane. It

depends on the memory technology. For instance, GDDR3 and GDDR4 memories transfer

two units per cycle, while GDDR5 transfers four units per cycle.

Device memory bandwidth (GB/s). It is a theoretical maximum bandwidth of the global mem-

ory, assuming all memory bus lanes are used at the same time at full speed. This metric is

the one needed for the analytical model and corresponds to archGlobalMemBandwidth.

Memory clock. It is the memory chip clock frequency, which is not the same as the data rate

because, as mentioned, the amount of data transferred per clock varies with the memory

technology.

Bus width. The total number of lanes from the GPU memory controllers to the memory chips

onboard.

All metrics are related to each other. To illustrate it, consider the information for an NVIDIA

GTX 1070 card in Table 6.4. Consider the memory clock frequency. In GDDR5, each clock

cycle in the data channels transfers 4 data units (or bits). Therefore, the effective data rate is

2002×4 = 8008Mbps≈ 8Gbps.

Memory clock frequency 2002 MHz
Effective memory speed 8 Gbps
Memory bus width 256 bit
Bandwidth 256.3 GB/s
Memory type GDDR5

Table 6.4: NVIDIA GTX 1070 memory properties

For the memory bandwidth, it is necessary to account the total number of lanes available. The

data rates for different GDDR type memories are presented in Table 6.5. Besides, the bandwidth

is measured in GB (gigabytes), while the effective memory speed is in Gb (gigabits): dividing the

later by 8 converts to GB. The bandwidth is calculated multiplying the effective memory speed by

the bus width, and then convert bits to bytes: 2002×4
8 ×256 = 256256MB/s u 256.3GB/s.

The Equation 6.15 generalises the equation to calculate archGlobalMemBandwidth when the

disclosed information from vendors does not include the peak device memory bandwidth.

archGlobalMemBandwidth =
MemClockFreq×MemDataRate

8
×MemBusWidth (6.15)
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Memory type Memory Data Rate (relative to clock frequency)
GDDR3, GDDR4 2x

GDDR5 4x
GDDR5X 8x
GDDR6 8x

GDDR6X 16x
Table 6.5: The memory data rates for GDDR memories [7]

6.5.3 Memory latency

The original analytical model [47] uses different latencies to model the memory accesses accu-

rately. For example, it considers the round-trip latency to access the device memory and departure

delays between consecutive transactions. The transactions are distinguished in coalesced and un-

coalesced, and each has different departure delays.

Previous sections argued that the distinction between coalesced and uncoalesced memory re-

quests is no longer proper for modern GPU architectures. Therefore, modelling memory accesses

is simplified, and the necessary parameters are latency for each transaction, archMemLatGlobal,

and the departure delay between successive transactions, archMemDepartDelay.

However, the original analytical model [47] does not explain how they measured the departure

delays, only stating the value are obtained via micro-benchmarks. Besides, Chikin et al. [30] do

not mention the value they use in the experimental evaluation, nor how they measured it. Given

the missing details of the global memory hierarchy, it is assumed that transactions can be issued

every clock cycle, i.e. archMemDepartDelay = 1.

Concerning memory access latency, the parameters are obtained via micro-benchmarking. The

Jia et al. [48] describes how to obtain the parameters and lists values for the Pascal architecture,

which are used for the experimental evaluation in this work.

6.6 Collecting application parameters

This section addresses collecting parameters for the analytical model that characterise the appli-

cation under analysis. For each parameter, it discusses different possible approaches and the one

implemented in this work. The necessary parameters are listed in Table 5.1.

6.6.1 Number of instructions and memory operations

For estimating the application’s execution time, the number of operations per thread is needed for

the analytical model, and different approaches are possible.

Concerning static analysis approaches, different approaches can be used. For instance, Chikin

et al. [30] count the instructions at low-level representations (IR). Other possible paths for NVIDIA

GPUs is analysing the pseudo-assembly PTX code, which is agnostic to a specific NVIDIA archi-

tecture, or using machine code instructions (SASS) for a more accurate analysis.
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Our approach for this work is to collects metrics at AST level. The same approach is used for

CPU and GPU analytical models. Details regarding operation counting are discussed in Section

8.?. The operations at AST, which inherit the semantics of the C language, are then associated to

native instructions in the GPU. That way, we can use the instruction throughput table provided by

NVIDIA, as discussed in Section 6.4.

6.6.2 Grid geometry

The grid geometry parameters are related to the configuration used to launch the kernel on the

GPU: the number of thread blocks, appT hreadBlocks, and the number of threads per thread block,

appT hreadsPerBlock.

In the CUDA programming model, the parameters are explicitly set by the user at the kernel

launch. In OpenMP offloading context, the compiler automatically sets the launch configuration.

OpenMP has some clauses that when applied to a GPU target it should control the grid geometry to

some extent — num_teams and num_threads. However, GCC ignores the clauses in practice,

and Clang does not always respect them. Nonetheless, selecting an optimal grid configuration is a

problem that is not addressed in this work, and the grid selection is delegated to the compiler.

Consequently, the problem is how to find which configuration GCC, Clang or any other com-

piler uses for each workshare region. Accessing internal compiler information is not an option

because this work concentrates on source-to-source techniques and one of our goals is to be com-

piler independent.

The compiler’s CLI options to dump information regarding target offloading are very limited

in both GCC and Clang; it was not possible to find a way to tell the compiler to report the selected

grid geometry. The explored solutions include inspecting optimisation reports, using the verbose

mode, saving intermediate files and logs. Nevertheless, none contains the selected grid geometry

information needed.

An alternative assessed approach is inspecting the resulting binary file. Launching the kernel

on the GPU implies invoking the runtime or driver APIs, which are dynamically linked. Therefore,

disassembling the binary should expose the library calls.

Consider the CUDA vector addition example in Listing 6.6. The kernel function takes three

parameters as input, the addresses of each array. Moreover, it is launched using 10240/512 = 20

thread blocks, each with 512 threads.

1 const short N = 10240;

2

3 __global__ void vec_add(const int *dev_a, const int *dev_b, int *dev_c) {

4 // global thread id

5 unsigned int tid = blockIdx.x * blockDim.x + threadIdx.x;

6 if (tid < N)

7 dev_c[tid] = dev_a[tid] + dev_b[tid];

8 }

9

10 int main(void) {
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11 // Allocate device and host memory

12 ...

13 // Perform any data transfering

14 ...

15 // Call GPU kernel

16 vec_add<<<(N) / 512, 512>>>(dev_a, dev_b, dev_c);

17 // Bring the results from the GPU to Host and release memory

18 ...

19 }

Listing 6.6: Vector addition in CUDA using 10240/512 = 20 thread blocks and 512 threads per

block.

The kernel is launched using a execution configuration [12] syntax vec_add<<<(N) / 512,

512>>>. However, the compiler transforms it into a runtime or driver API call. The prototype for

the runtime API is presented in Listing 6.7, and the driver API’s equivalent is shown in Listing 6.8.

Both function prototypes take the grid and thread block dimensions as parameters, the information

needed for the analytical model.

1 cudaLaunchKernel(

2 const void* func,

3 dim3 gridDim,

4 dim3 blockDim,

5 void** args,

6 size_t sharedMem,

7 cudaStream_t stream

8 )

Listing 6.7: Runtime API function prototype for launching kernels

1 cuLaunchKernel(

2 CUfunction f,

3 unsigned int gridDimX,

4 unsigned int gridDimY,

5 unsigned int gridDimZ,

6 unsigned int blockDimX,

7 unsigned int blockDimY,

8 unsigned int blockDimZ,

9 unsigned int sharedMemBytes,

10 CUstream hStream,

11 void** kernelParams,

12 void** extra

13 )

Listing 6.8: Driver API function prototype for launching kernels

After compiling the application with NVIDIA’s compiler, nvcc, the Linux utility ob jdump

is used to display information from object files, including the disassembled machine instructions.

The command used is shown in Figure 6.6. The option -d enables disassembling, -C is just
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for demangle the symbol names to user-level names, and -M is used to customise the assembly

language to Intel syntax.

objdump -d -C -M intel <object file>

Figure 6.6: Command used to disassemble the application binary file, the result of compiling the
vector addition in Listing 6.6.

Listing 6.9 partially lists the disassembled instructions for the main function, showing some

preparation ahead of the kernel invocation. For instance, there are calls to dim3, used to con-

struct an object representing the grid or thread block dimensions. The function prototype is

dim3(unsigned int, unsigned int, unsigned int). Each parameter corresponds to

an axis in a three-dimensional coordinate system, (x,y,z). Such representation is intuitive when

the kernels work on 2D or 3D problems. Due to the function call conventions [39], before each

dim3 constructor invocation, there is a sequence of mov instructions preparing the arguments list.

In general, the order is right to left. For instance, the first call is dim3(0x200, 0x1, 0x1) and

the second is dim3(0x14, 0x1, 0x1), which is equivalent to (512, 1, 1) and (20, 1,

1). It is precisely the information needed for the analytical model.

1 403c1a: mov ecx,0x1

2 403c1f: mov edx,0x1

3 403c24: mov esi,0x200

4 403c29: mov rdi,rax

5 403c2c: call 403f82 <dim3::dim3(unsigned int, unsigned int, unsigned int)>

6 403c31: lea rax,[rbp-0x10]

7 403c35: mov ecx,0x1

8 403c3a: mov edx,0x1

9 403c3f: mov esi,0x14

10 403c44: mov rdi,rax

11 403c47: call 403f82 <dim3::dim3(unsigned int, unsigned int, unsigned int)>

12 403c4c: mov rax,QWORD PTR [rbp-0x1c]

Listing 6.9: Partial list of disassembled instructions corresponding to the main function in Listing

6.6, demonstrating the initialisation of dim3 structures that define the grid geometry.

However, rather than using the execution configuration syntax, <<<...>>>, the programmer

can instantiate the dim3 manually and use them for launching the kernel. The consequence is that

the order in which dim3 appear in the disassembled code is not necessarily the grid followed by

the thread blocks, as shown in Listing 6.9.

1 403e02: mov rcx,QWORD PTR [rbp-0x38]

2 403e06: mov r8d,DWORD PTR [rbp-0x30]

3 403e0a: mov rdx,QWORD PTR [rbp-0x2c]

4 403e0e: mov eax,DWORD PTR [rbp-0x24]

5 403e11: push rdi

6 403e12: push rsi

7 403e13: mov rsi,rdx // 3rd parameter, thread block dimension

8 403e16: mov edx,eax // 2nd parameter, grid dimension
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9 403e18: mov edi,0x403e5a // 1st parameter, address of function to be called

10 403e1d: call 403f2e <cudaError cudaLaunchKernel<char>(char const*, dim3, dim3,

void**, unsigned long, CUstream_st*)>

Listing 6.10: Disassembled instructions corresponding calling the cudaLaunchKernel runtime

API to launch the kernel

A solution could be finding calls to cudaLaunchKernel or cuLaunchKernel and per-

forming a data-flow analysis to find what data is passed through the parameters corresponding to

execution configuration. Listing 6.10 shows the call to cudaLaunchKernel at address 403e1d.

In the example, it would be necessary to trace the registers rdx and eax and memory addresses in

a bottom-up order, reaching the dim3 instances shown in Listing 6.9. Although it seems a possible

approach, it can be laborious, especially because function call conventions vary with OS, target

architecture and compiler [39]. Moreover, although the disassembling approach can be a solution

when compiling CUDA, it remains to assess if it could work in the OpenMP offloading context

with GCC and Clang.

A similar experiment is conducted with both compilers, GCC and Clang. Rather than using

disassembling, one can use the -S flag to output the assembly code. Starting with GCC, the assem-

bly code reveals a call to GOMP_target_ext, a routine from libgomp — the OpenMP runtime

library used by GCC. It is responsible for creating the threads team on the target accelerator and

launching the kernel. However, it is not clear if the number of teams and threads per team are

calculated before calling the routine or if it is calculated internally in the libgomp. But, it seems

it is calculated internally after inspecting the library implementation lightly. In Clang, the observa-

tions are similar. The generated assembly only contains dynamic calls to OpenMP libraries. Thus,

not only the grid geometry seems to be calculated internally, but any call to NVIDIA APIs also

happens in the OpenMP libraries.

In conclusion, despite the explored options to automatically and statically find both grid and

block dimensions, it was impossible to find a feasible one, especially in the OpenMP context. It

would be necessary to further investigate the compiler’s OpenMP libraries and understand how

they determine the grid geometry. This problem is not addressed and is left for future work.

Concerning the experimental evaluations, the information is collected by profiling the kernels

with nvprof.

6.7 Hardware resources utilization

Each kernel requires different finite resources, such as registers, shared memory or constant cache.

As discussed in Section 5.5, resource usage may limit the number of thread blocks and warps si-

multaneously active in each SM. In order to calculate the number of active warps, it is necessary to

know how many registers and the amount of shared memory each thread or thread block requires.

In the CUDA programming model, the programmer manages the shared memory usage. How-

ever, in the OpenMP context, to the best of own knowledge, there is no way to tell GCC or Clang

where and how shared memory should be used. Nevertheless, according to profiling data, both
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compilers try to take advantage of it. Regarding registers, it depends solely on the compiler, which

is responsible for the register allocation and avoids spilling as much as possible. It also depends on

the target architecture because different compute capability architectures have specific limits on

registers per thread and register file sizes. In conclusion, in the OpenMP context, shared memory

and registers usage depends on how the backend generates the code for the GPU. The question is

how to get that information to feed the analytical models.

With the official NVIDIA toolchain, the information can be accessed after the compiling work-

flow. The compiler nvcc has an option -res-usage that dumps code generation statistics. In

fact, it is a shortcut for PTX assembler, ptxas, and the linker nvlink. Both have a verbose

mode that reports the statistics. A report example after compiling the CUDA 2MM kernel from

the Polybench [42] suite is shown in Listing 6.11. For each kernel, the assembler and linker dis-

plays a summary line, e.g. “Used 20 registers, 368 bytes cmem[0]”. cmem is a short for constant

memory. The report omits unused resources. For instance, if shared memory were used, the

summary lines would state <number> bytes smem, where smem stands for shared memory.

ptxas info : 0 bytes gmem

ptxas info : Compiling entry function ’_Z11mm2_kernel2iiiiffPfS_S_’ for ’sm_61’

ptxas info : Function properties for _Z11mm2_kernel2iiiiffPfS_S_

0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads

ptxas info : Used 20 registers, 368 bytes cmem[0]

ptxas info : Compiling entry function ’_Z11mm2_kernel1iiiiffPfS_S_’ for ’sm_61’

ptxas info : Function properties for _Z11mm2_kernel1iiiiffPfS_S_

0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads

ptxas info : Used 20 registers, 368 bytes cmem[0]

Listing 6.11: Report generated compiling the CUDA version of 2MM for a Compute Capability

6.1 architecture

The next step is to investigate whether Clang or GCC have options to enable dumping simi-

lar reports. In the case of Clang, it is possible to use the -verbose flag, which then is passed

to the PTX assembler. It also has the -Xcuda-ptxas to pass additional options to the assem-

bler. In Clang, this is possible because their approach generates machine code for the selected

GPU architecture (besides embedding PTX code in the final binary for JIT compiling if neces-

sary). As previously hinted in the API traces (see Listing 6.5), GCC only generates the machine

code at runtime. At compile time, it only generates the PTX code. However, registers in the

PTX are just virtual placeholders and allocation is performed when PTX is compiled to machine

code. Setting the environment variable GOMP_DEBUG when the application is launched, GCC’s

OpenMP runtime dumps information about JIT and the assembler statistics, as shown in Listing

6.12. Nonetheless, this implies launching the application, which does not fit our goal for a fully

static approach.

$ GOMP_DEBUG=1 <application>

...

Linking

Link complete: 0.000000ms
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Link log warning : Stack size for entry function ’mm2_OMP$_omp_fn$0’ cannot be

statically determined

info : 192 bytes gmem, 701 bytes cmem[3]

info : Function properties for ’mm2_OMP$_omp_fn$0’:

info : used 62 registers, 0 stack, 392 bytes smem, 344 bytes cmem[0], 40 bytes

cmem[2], 0 bytes lmem

Listing 6.12: GCC’s LIBGOMP dumping assembler statistics in debug mode when launching the

application

Machine code generation is delegated to the NVIDIA toolchain. Clang and GCC just generate

PTX code. Thus, another possible approach could be asking the compiler to output the PTX

pseudo-assembly and compile it with the ptxas assembler, passing the necessary parameters for

printing resource usage statistics. When compiling for CPU targets, compilers support a -S flag

for dumping the assembly code to a file. Using the flag in an OpenMP offloading application does

not seem to work as it is not possible to find any PTX code. No other options seem available for

that purpose. In contrast, the nvcc compiler from NVIDIA offers the -ptx flag.

Despite our efforts, collecting grid geometry and resource usages is not automated in our work.

Engineering this specific problem is left for future work and information is collected via profiling

for evaluation purposes.

6.8 Summary

This chapter presented the necessary modifications to the original analytical model presented by

Kim et al. [47] and discussed different approaches to collect the input parameters for the model.

The first modification in the model is for suiting our methodology. It added an OpenMP factor

due to the work distribution mechanism among the threads. The following modifications addressed

some identified limitations. Firstly, it addressed the warp-level parallelism in the Streaming Mul-

tiprocessors, enabling multiple warps to execute in parallel. Secondly, it discussed the memory

coalescing problem, showing that a binary classification for memory instructions does not suit

modern GPUs. Instead, the number of transactions depends solely on the access stride and word

size. Transaction size depends on the access granularity of the memory units in the memory hier-

archy. Thirdly, Kim et al. use constant latency costs for all instructions, not adequate for modern

GPUs as some instructions take a handful of cycles and others hundreds of cycles [48, 22]. There-

fore, it is essential to distinguish the operations and their respective cost.

The remainder sections discussed collecting the different architectural and application prop-

erties needed for the analytical model. Due to the OpenMP offloading context, we found some

obstacles to determining resource usage (e.g., number of registers) and the grid geometry selected

by the compiler. Collecting the metrics automatically is left for future work.



Chapter 7

Automatic hotspot detection and
acceleration

This chapter presents our framework flow to process sequential C code and output a modified

version with parallelised or offloaded hotspots. The first section describes the considered code

regions as potential hotspots and our approach to determine if they are parallelisable. Next, our

conservative strategy for parallelisation is presented. The subsequent section addresses the AST-

based analysis to characterise hotspots. The last sections explain how OpenMP pragmas are added

and related issues, as well as the analytical models integration for target selection.

7.1 Overview

Figure 7.1 illustrates the framework complete flow. It runs on top of Clava [25] for AST analysis

and code transformations. The input is a sequential C program.

The first step is searching for potential hotspots at the AST level. Similarly to existing literature

(Section 3.6), we only consider loop nests for parallelism opportunities, which are usually time-

consuming code regions. For all loops in the application, our framework validates if the loop is

in canonical form, as required by OpenMP [10], and uses AutoPar [21] to determine if the loop is

parallelisable.

In the next phase, the framework analyses all loop nests validated in the previous step and

applies a parallelisation strategy to define the workshare region, which represents the code region

that is parallel and distributed by participating threads. Through loop coalescing, the iteration

space may be formed by one or more perfectly nested loops. The workshare inner loop’s body

represents the code each thread executes one or more times.

After defining the workshare regions, the framework collects the necessary metrics required

by the analytical models to estimate the execution time. We propose characterising the workshares

and counting operations at the AST level, as in relative performance context it may be possible

92
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Figure 7.1: Framework flow

to relax the accuracy of the estimations without compromising the target selection optimality.

Additionally, an LLVM MCA based approach is implemented for the CPU analytical models,

first proposed by Chikin et al. [30] and discussed in Section 4.4. The framework automatically

integrates the LLVM MCA tool for collecting cycle estimations and experimental results (Chapter

8) compares both approaches.

After collecting the metrics, we create three versions of the workshare region, one for each

target: (a) CPU Sequential (same as original), (b) CPU Parallel, and (c) GPU. Each version is

defined as a function containing the transformed code with the necessary OpenMP pragmas.

Finally, the framework evaluates the analytical models to determine the optimal target. The

original sequential hotspot code is replaced with a call to the function that implements the code

for the selected target.

The following sections address each phase in greater detail.

7.2 Finding candidate loop nests

Our approach considers any loop nest a potential hotspot that may benefit from parallelisation or

offloading to the GPU. However, there are two pre-processing stages for filtering the loops. Firstly,

the loop must be compliant with the OpenMP standard rules. Otherwise, the resulting application

may be incorrect. Secondly, the loop has to be safe for parallelisation, i.e., must not have loop

carried dependencies.

7.2.1 Motivation to enforce OpenMP rules

The OpenMP pragmas can only be inserted in loops that respect a canonical form. Inserting the

parallelisation pragmas in a non-compliant loop may have two side effects:
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• Compilers that enforce OpenMP rules will reject the framework’s generated source code.

• The compiler accepts the incorrect code. Consequently, the application functionality will be

incorrect.

Given our aim to create a tool that automatically parallelises applications, ensuring the gener-

ated application is correct is paramount.

7.2.2 Canonical loops in OpenMP

This section describes the canonical loops according to the OpenMP specification [10] and our

approach to validate loops through static AST analysis. In its general form, a canonical loop has

the structure presented in Listing 7.1.

1 for (init-expr; test-expr; incr-expr) structured-block

Listing 7.1: General form of canonical loops [10].

OpenMP specification states the loop header’s expressions must have several properties. The

following enumeration highlights some of the rules:

• The init-expr declares a variable var which is the loop control variable. In C, the

variable’s data type must be an integer or a pointer.

• The test-expr is a binary relational expression where one of the operands is var and

the other is a loop-invariant expression, i.e., an expression whose value does not change

throughout loop iterations. The control variable, var, cannot be present on both operands.

Furthermore, it supports parent loops control variables: var < outer-var or var <

outer-var * a are valid.

• The incr-expr updates the control variable, var. The stepping must be loop invariant as

well. The supported arithmetic is limited to simple addition and subtractions. The expres-

sion var = var + 4 is valid, but var = var * 2 is not.

• The loop must be a structured-block, a compound of executable statements with a single

entry at the top and single exit at the bottom. In other words, return, goto and break

statements are not allowed.

Validating the initialisation and incremental expressions is straightforward at the AST level.

In addition the framework ensures that all expressions operate in the same variable, inferred as the

loop control variable.

Concerning the test expression, evaluating if an expression is loop-invariant is a well-known

topic in compiler optimisations, allowing to move statements away from the loop to reduce over-

all computing cost. Our approach is limited. Let Expr be the second operand in the relational

expression. For all variables in the expression Expr, we assert they are not modified in the loop’s
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body. In other words, their value is constant throughout the loop. If Expr has function calls, we

assume the expression is not loop-invariant. Note that our approach can be improved with a more

thorough analysis [63].

7.2.3 Determining if a loop can be parallelised

To determine which loops can be parallelised, we use the AutoPar [21] library integrated into

Clava [25]. AutoPar relies on static analysis to determine if loops are safe to parallelise.

To determine if loops can be parallelised, AutoPar performs dependency analysis. Loops are

considered safe for parallelisation when:

• Lack true dependencies;

• Have false dependencies that can be solved with the correct variable scoping (thread private

variables);

• Have true dependencies that are reduction operations.

AutoPar can modify the source code automatically and insert OpenMP pragmas. The paralleli-

sation is done on all parallelisable loops as AutoPar does not analyse the profitability of parallelisa-

tion. Furthermore, AutoPar does not perform loop-level transformations (e.g. tiling, interchange)

to improve performance. Concerning the OpenMP pragmas, it adds the combined construct omp

parallel for and inserts data-sharing clauses such as private and firstprivate to break

false dependencies. Moreover, AutoPar can detect reduction operations on scalar and array vari-

ables, and inserts the appropriate reduction clause specifying the reduction operator and accu-

mulator variable.

AutoPar is an important basis for our work to determine which loops can be parallelised and

the necessary variable scoping to break dependencies.

7.3 Parallelisation strategy

Section 7.2 described our approach to find loops that are compliant with OpenMP specification

and can be parallelised. As AutoPar [21] parallelises all loops without evaluating the profitability,

we propose a conservative parallelisation strategy for the CPU and GPU, which is the topic for

this Section.

Multiple parallelisable loops may belong to the same loop nest. Ideally, our framework should

search for the optimal nest level for parallelisation, but searching for optimal solutions is left for

future work. Instead, our approach is conservative and always selects the outermost parallelisable

loop for parallelisation. Moreover, it tries to coalesce loops [66] to increase the parallel iteration

space. Let loopouter be the outermost loop selected for parallelisation, then our approach coalesces

all perfectly nested and parallelisable loops with loopouter.

Listing 7.2 shows a loop nest of 3 perfectly nested loops. Assume that all loops are safe for

parallelisation. Our approach selects the loop i for parallelisation — loopouter. Considering that
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NI is 1024, there is enough parallel work to distribute in a CPU physical cores, which usually

range from 4 to 128 cores. Therefore, loop coalescing is not particularly beneficial for CPUs.

However, modern GPUs feature thousands of streaming processors. Given that loops j and k are

also parallelisable and are perfectly nested with each other, our approach coalesces the three loops

to create a larger parallel iteration space (NI×NJ×NK) that makes better usage of GPUs highly-

parallel architectures. Besides, GPUs constantly pre-empt threads to overlap memory accesses

and synchronisation barriers with computation. Hence, having more parallel work units than the

number of streaming processors is crucial to efficiently use the GPU.

1 for(int i=0; i<NI; i++) {
2 for(int j=0; j<NJ; j++) {
3 for(int k=0; k<NK; k++) {
4 // body
5 }
6 }
7 }

Listing 7.2: Three perfectly nested loops, before loop coalescing

Listing 7.3 shows a possible implementation of coalescing the three loops into a single space

of NI×NJ×NK iterations.

1 for(int _i=0; _i < NI*NJ*NK; _i++) {
2 int i = _i / NJ*NK; // note: integer division
3 int j = (_i % NJ*NK) / NK;
4 int k = (_i % NJ*NK) % NK;
5 // body
6 }

Listing 7.3: Resulting loop after loop coalescing

We use the OpenMP collapse clause. For instance, inserting the clause collapse(3) in

the loop i in Listing 7.2, instructs the compiler to coalesce the three loops.

7.4 Collecting metrics for analytical models

The previous section presented our parallelisation strategy, defining the loop nests for paralleli-

sation or offloading. Our framework uses analytical models to guide target selection. Analytical

models need the characteristics of the loop nest to estimate its execution time for a given target

device. This section discusses our approach for collecting the necessary metrics, namely the num-

ber of executed computations and memory operations. As operations may be part of a loop, the

total number of operations depends on the loop trip count. Determining loop trip counts with AST

analysis is addressed first.
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7.4.1 Estimating loop trip count

Precise trip count bounding is not always possible due to numerous reasons. Since data is generally

unknown at compile-time, it is impossible to assess a precise trip count when it depends on data.

Another problem is when the control variable depends on parent loops in the nest, resulting in

non-rectangular or zero-trip loops, further complicating the estimation. Determining the number

of iterations in a loop remains an active research problem [23].

Existing approaches in literature

Existing literature presents different approaches for trip count estimation. Some approaches use

Integer Linear Programming (ILP) [31], formulating the problem as an equation system and defin-

ing precise bounds for variables. ILP solvers compute the problem and output the system solution

— the number of loop iterations. However, ILP is only feasible if the constraints depend on con-

stant values. For instance, some loops have a test expression such as i < N and the variable N is

unknown at compile time.

An alternative approach is Abstract Execution [43]. The program is represented symbolically

with abstract domains and values. The first step is analysing program flow to find scopes, regions

of code that may repeat and all possible execution paths. The execution is simulated for each path.

Variables are characterised by a domain representing the possible variables’ values. Throughout

the simulation, the domains are updated incrementally. Finally, variable domains are used to bound

the loop trip count.

Other approaches build symbolic algebraic expressions and then use algebra solvers to calcu-

late loop trip counts. It is advantageous when loop trip count depends on unknown parameters.

This approach builds parametric expressions and can be evaluated at runtime [31, 44, 45].

Formulating the problem in OpenMP context

Given the loop constraints imposed by OpenMP, the problem for trip count estimation is simplified.

Firstly, the loop must have single entry and exit points; therefore, statements such as break in

the loop body are not allowed. Secondly, the OpenMP enforces loops in a canonical form, which

simplifies the analysis at the AST level.

Let initExpr be the initialisation expression for the control variable. The test expression is

relational (see Section 7.2.2). Therefore, one operand is the control variable, and the other is a

loop-invariant expression, endExpr. OpenMP also enforces that the stepping must be an arith-

metic addition or subtraction. Multiplications, divisions and any other form are not allowed. Let

incr be an integer quantity for incrementing the control variable, such that at every loop iteration

the control variable, ctrlVar, is updated as follows: ctrlVar = ctrlVar+ incr.

Assuming a loop is in canonical form, the trip count can be stated as
⌊

endExpr−initExpr
incr

⌋
. The

initExpr and endExpr expressions are not necessarily literal values. We use algebraic solvers to

make the operations and simplify the result.
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Non-retangular loops

OpenMP supports non-rectangular loops. The way we stated the trip count problem above is only

valid for retangular loops. Listing 7.4 shows an example for non-retangular loops. Essentially, the

inner’s loop trip count depends on the outer loop. The inner loop iteration space decreases as the

outer control variable increases, thereby the non-rectangular iteration pattern. In these cases, the

loop trip count cannot be estimated independently. In other words, to compute the inner loop trip

count, we need to consider the loop nest as a whole.

1 for(int i = 0; i < N; i++) {
2 for(int j = i; j < M; j++) {
3 // ...
4 }
5 }

Listing 7.4: Non-retangular loop illustration.

Healy et al. [44, 45] propose formulating the problem as a summation and then use the

Bernoulli formula to solve the nested sums. For instance, the non-rectangular loop in Listing 7.4

can be formulated as ∑
N
i=0 ∑

M
j=i 1. Since our approach uses algebraic solvers, we construct a sum

expression that characterises the non-rectangular loop, and the solver outputs the number of iter-

ations for the loop. For example, using Symja1, the expression Sum(1,{i,0,N−1},{ j, i,M−1})
gives the total trip count for the loop j in Listing 7.4.

Generalising the problem: our final approach

We generalise the non-rectangular approach to rectangular loops as well. However, it was pos-

sible to notice that the algebra solver is substantially slower when the lower and upper bounds

are literal values. Consider a loop nest of 3 perfectly nested loops. Assume the control vari-

ables range is [0,4095]. The total iteration count for the innermost loop can be computed as

Sum(1,{i,0,4095},{ j,0,4095},{k,0,4095}). However, the solver takes a considerable amount

of time as if it implements an O(n3) algorithm to compute the sum’s result. The same behaviour

was noticed in other solvers besides Symja.

Our workaround is to prepare a sum expression with symbolic upper and lower bounds. The

summation is evaluated resulting in a symbolic expression that is saved temporarily. Then the

lower and upper bound variables are defined, and the summation result can be re-evaluated to

output the constant result.

Listing 7.5 shows our implementation in Clava. Considering the same loop nest example,

the solver computes the sum expression with symbolic bounds, as shown in line 6. The result is

stored in a variable, clavaSum. Then we define the lower and upper bound variables with the

information collected at the AST level. Finally, the sum result expression is re-evaluated, giving

the trip count for the innermost loop, k.

1https://github.com/axkr/symja_android_library

https://github.com/axkr/symja_android_library
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1 // construct the Java object for evaluating expressions in Symja
2 const ExprEvaluatorJava = Java.type("org.matheclipse.core.eval.ExprEvaluator");
3 const solver = new ExprEvaluatorJava(true, 100);
4 // list of expressions to evaluate in Symja
5 const exprs = [
6 "clavaSum=Simplify(Sum(1, {i, iLower, iUpper-1}, {j, jLower, jUpper-1}, {k,

kLower, kUpper-1}))",
7 "iLower=0",
8 "iUpper=4096",
9 "jLower=0",

10 "jUpper=4096",
11 "kLower=0",
12 "kUpper=4096",
13 ];
14 // execute each expression individually
15 for (e of exprs) solver.evaluate(e);
16 // re-evaluate the Sum’s symbolic result
17 const tripCount = solver.evaluate("clavaSum");

Listing 7.5: Approach to use Symja in Clava, executing Sum expressions with symbolic lower and
upper bounds to prevent performance hits

7.4.2 Counting operations at AST

Using OpenMP for parallelisation and offloading implies that the same code is compiled to differ-

ent targets. We hypothesise that it should be possible to relax the accuracy of the estimations in

a relative performance context without compromising the target selection optimality. Therefore,

our analysis is done at AST rather than analysing machine code or other low-level representations,

being compiler and target agnostic. This section details our approach.

Starting at the workshare region, the AST is traversed recursively. Each operation in the AST

is characterised by a boolean that indicates if the operation type is integer or floating-point, the

bit-width and the operator itself. Memory operations are also associated with a bit-width, and we

distinguish read and write operations.

Our analysis makes some assumptions. For instance, it assumes scalar variables are stored in

registers. As such, only array accesses are counted as memory operations. Operations in the loop

headers and array subscripts are ignored. In some array subscripts, compilers are able to apply

code motion such that the expressions are not re-computed every loop iteration. Instead, array

indices are stored in registers and increment by some constant every iteration.

When traversing the AST, some nodes are handled specially. For instance, when function calls

are found and the implementation is available, the analysis context switches to the function defini-

tion to count its operations. System or library calls are ignored. Our approach can be improved to

count mathematical library calls, such as pow or sqrt. Operations in repeating code blocks, such

as loops, the operations are counted in the loop’s body and then multiplied by its trip count.

Counting operations at the AST level closely relates to language semantics. For instance, how

does a float division in C translate to hardware instructions in GPUs? Some GPUs may not have

native support to compute floating point divisions and use approximation algorithms instead. It
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is up to the analytical models to map the counted operations at AST to native device instructions

before using available latency and throughput tables to calculate the computational cost.

7.4.3 Getting LLVM MCA cycle estimations

An alternative approach for estimating elapsed cycles in the CPU is using the LLVM Machine

Code Analyser (MCA), as Chikin et al. [30] proposed. Section 4.4 discussed the challenges found

using the tool in a source-to-source approach and proposed a methodology that minimises the

interference in compiler code generation, as well as a set of procedures to improve the cycle-cost

estimation for the workshare region.

With the workshare regions defined, our LARA scripts insert the necessary assembly directives

at the AST level to mark the regions of interest for LLVM MCA. Note these changes are temporary

and only for analysis purposes. The resulting C code with the directives is written in a file and

compiled with standard compilers (GCC or Clang). Since LLVM MCA expects assembly code,

the -S flag is added to the compilation flags.

Our LARA script launches the llvm-mca command to analyse the resulting assembly file and

generate a report. Then, our framework parses the information and calculates the total cost for one

parallel iteration of a workshare region. All stages are done automatically using LARA scripts.

7.4.4 The workshare region structure

Listing 7.6 illustrates the internal structure for workshare regions. After the metric collection

phase, every attribute is filled. Our framework can proceed with evaluating the analytical models

for target selection and make the necessary code transformations to insert OpenMP pragmas.

1 class WorkshareRegion {

2 $outerLoopJp; // reference to the outermost loop AST node

3 $innerLoopJp; // reference to the innermost loop AST node. This loop’s body

is the workshare region. If it is the same as $outerLoopJp, loops were

not coalesced

4 numParallelIters; // the size of the parallel iteration space

5 llvmMcaCycles; // estimated cycles for the workshare region using LLVM MCA

6 compOps = {

7 ’flop-add-32’: 5,

8 ’flop-mul-64’: 2,

9 ’iop-add-32’: 1

10 }; // number of computational operations counted at AST, starting at

$innerLoopJp loop body. each operation is floating-point (flop) or

integer (iop), has an operand type, and a bitwidth

11 memOps = {

12 ’write-32’: 2,

13 ’write-64’: 1,

14 ’read-32’ 2,

15 ’read-64’: 1

16 }; // number of memory operations organised per access type (read or write)

and the word size in bits
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17 ompInfo; // information about the OpenMP context defined by AutoPar. it

specifies the data-sharing clauses, e.g. ’private’, ’first-private’. it

also has the collapsing depth, decided based in our parallelisation

approach

18 }

Listing 7.6: The internal structure that represents workshare regions

7.5 Annotating code with OpenMP pragmas

Previous steps in our framework selected code regions for parallelisation and offloading, defining

the workshare regions. This section presents our approach for inserting the OpenMP pragmas in

the source code and addresses specific issues concerning offloading to the GPU.

Our approach iterates workshare regions by function. A function with one or more workshare

regions is cloned, generating a new version per target. One version is an exact copy for running

sequentially in the CPU. A second version is annotated with OpenMP pragmas to run all workshare

regions in parallel in the CPU. A third version offloads workshare regions to the GPU. Listing 7.7

illustrates the three copies created for a function mm2 with two workshare regions. The original

function’s code is replaced to integrate the analytical models and invoke one of the versions.

1 // version for CPU sequential

2 void __mm2_cpu_seq(float *A, float *B, float *C, float *D, float *E) { ... };

3 // version for CPU parallel

4 void __mm2_cpu_parallel(float *A, float *B, float *C, float *D, float *E) { ...

};

5 // version for GPU offloading

6 void __mm2_gpu_parallel(float *A, float *B, float *C, float *D, float *E) { ...

};

7 // original function

8 void mm2(float *A, float *B, float *C, float *D, float *E) {

9 // if GPU is optimal ...

10 __mm2_gpu_parallel(A, B, C, D, E);

11 }

Listing 7.7: Illustration of the different function declarations targetting different devices

Assuming all information is static, the analytical models can generate estimates during our

framework analysis and the optimal assessed target is known. Instead of creating three versions,

an alternative approach is making the necessary transformations in the original function. However,

there is some motivation for creating the three versions. Firstly, one advantage of source-to-source

techniques is allowing the user to modify the code further. Therefore, our approach makes the

three different versions available. If our models guide non-optimal target selection, the user can

easily correct the code by adjusting the function call. Secondly, our approach anticipates future

extensions such as:

• Target-specific optimisations and tuning, justifying the need for different versions per target;
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• Delay target selection decisions for runtime, when one or more parameters are unknown

statically.

The remainder of this section discusses the insertion of OpenMP pragmas for running the

workshare regions in parallel in the CPU or offloading to the GPU.

7.5.1 Parallel running in CPU

As explained before in Section 7.2.3, we use AutoPar [21] to determine if loops can be parallelised.

We also use AutoPar’s internal information, such as variable scoping, to insert the OpenMP prag-

mas on loops selected with our parallelisation strategy.

Listing 7.8 shows the parallelisation for the first workshare in the 2MM kernel from UniBench

[56].

1 int i, j, k;

2 #pragma omp parallel for collapse(2) default(shared) private(i, j, k)

firstprivate(A, B)

3 for(i = 0; i < 4096; i++) {

4 for(j = 0; j < 4096; j++) {

5 C[i * 4096 + j] = 0.0;

6 for(k = 0; k < 4096; ++k) {

7 C[i * 4096 + j] += A[i * 4096 + k] * B[k * 4096 + j];

8 }

9 }

10 }

Listing 7.8: Partial 2MM kernel [56] with the OpenMP constructs for shared-memory parallelism

(N=4096)

7.5.2 Offloading to GPU

AutoPar [21] does not support the accelerator model introduced in recent OpenMP standards [10].

Although the basic pragmas used for shared-memory systems are also available when offloading

to accelerators, additional directives are needed. For instance, code regions to be offloaded have

to be marked explicitly for offloading and it is necessary to control data transferring between the

host CPU and accelerators.

OpenMP constructs for offloading

To offload computation to accelerators, the OpenMP specification introduced the target direc-

tive. All parallel code within the target region is relocated to a given device.

In shared-memory systems, there is a single degree of parallelism. The work is distributed

evenly by available CPUs and their cores. Some accelerators, such as GPUs, offer multiple degrees

of parallelism. The workload is split into independent units of work that can be executed in any

order in the Streaming Multiprocessors (SM) — the thread blocks. In turn, thread blocks are
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organised in groups of threads (warps) that execute concurrently in the same SM. The OpenMP

specification introduces the concept of teams to support multiple levels of parallelism. Threads

within the team can synchronise and share memory. When teams are created, they have a master

thread. Upon work distribution routines, the team’s master thread launches additional threads in its

team, and then the work initially assigned to the team is distributed among the threads. The exact

interpretation of teams and the threads within is implementation-dependent and may vary from

target to target. In the context of NVIDIA GPUs, a team resembles a thread block, and the number

of threads in the team corresponds to the thread block size (which is expected to be multiple of 32,

the warp size).

Listing 7.9 shows our automatic GPU parallelisation for the first workshare region in 2MM from

UniBench [56]. The first directive, omp target, is applied in the outermost loop; hence it is

offloaded to the GPU. The map clauses determine the data environment. In other words, it defines

data to be transferred to the GPU and back to the host. The array dimensions are explicitly set.

Determining array boundaries and data mapping is discussed in further detail below. The second

directive initialises the league of teams. For simplification, we use a composition of constructions,

teams distribute parallel for, meaning the loop iterations are distributed among the

teams and participating threads in each team. The remainder clauses are the same ones used in the

CPU parallel version.

1 int i, j, k;

2 #pragma omp target map(to: A[0:16777216], B[0:16777216]) map(tofrom:

C[0:16777216])

3 #pragma omp teams distribute parallel for collapse(2) default(shared)

private(i, j, k) firstprivate(A, B)

4 for(i = 0; i < 4096; i++) {

5 for(j = 0; j < 4096; j++) {

6 C[i * 4096 + j] = 0.0;

7 for(k = 0; k < 4096; ++k) {

8 C[i * 4096 + j] += A[i * 4096 + k] * B[k * 4096 + j];

9 }

10 }

11 }

Listing 7.9: Partial 2MM kernel [56] with the OpenMP constructs for target offloading (N=4096)

Transferring data between CPU and GPU

With offloading support in OpenMP, the memory model is extended to handle different devices.

When an OpenMP program launches, a data environment is implicitly created for each device.

When host CPU offloads an OpenMP region to the GPU, data in the hosts memory must be mapped

to the device’s internal memory, and data transferring might be necessary.

In OpenMP, there are six memory mapping types, with the more relevant for this work being:

• to: Move data from the host to device.
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• from: Allocate buffer on the device, uninitialized; at the end of computation, data is copied

back to the host memory.

• alloc: Allocate buffer on device, uninitialized; no movement between host-device needed.

Useful to allocate memory regions that are just auxiliary buffers for computation.

• tofrom: A combination of to and from; data is moved from host to device, and then from

device to host.

There are different options for creating data mapping environments. Our approach appends

the map clause to the target construct. The map clause defines a list of variables to be mapped

to the target environment, according to the mapping types enumerated above.

Determine the data mapping type

The data mapping type is determined using AST analysis and a conservative approach. All array

accesses in the workshare region are queried. Each array access is classified as a read or write

operation. After iterating all arrays accesses in the workshare region, each array is classified as

(a) read-only, (b) write-only, and (c) read-write. Read-only arrays are mapped with to and read-

write with tofrom. With respect to write-only arrays, we are very conservative. There might be

a chance where the GPU only writes in a sub-set of the memory region. Therefore, the original

information must be preserved. Arrays classified as write-only are mapped with tofrom.

As our analysis is limited to a workshare region, it limits the opportunities for more efficient

data management. With intra and inter-procedural analysis, out framework could detect that some

arrays are temporary or find data-reuse opportunities to prevent redundant data transfer. Our work

can benefit from existing literature for more efficient data management [59, 72].

Array boundaries

One additional issue concerning the data mapping is when arrays in the workshare region are

accessed via pointers. Consequently, the memory region size is unknown to the compiler. In these

cases, the programmer must specify the number of elements in the arrays to be mapped to device

memory.

Our approach to overcome this problem is using AST analysis to bound the accessed array

indexes. Since the array accesses happen inside loops of the workshare region, in general, array

positions are determined by loop control variables and other constants. Our approach analyses

the array subscript expression and finds all variables in it. For variables that are control variables,

we can infer their lower and upper range by knowing the initialisation expression and the loop

trip count. Any other variable is assumed to be constant, which is a significant limitation. It is

also possible to have array accesses as subscripts, e.g., A[B[i]], which we do not support. After

bounding the variables accessed in the subscript, we can determine the array’s lower and upper

bounds, replacing the variables with their respective boundaries.
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7.6 Target selection with analytical models

The final step in the framework flow is to estimate the best target for executing the workshare

regions within a function. The analytical models discussed in Chapters 4-6 are implemented in

LARA and can be evaluated throughout our framework analysis. Assuming the collected metrics

in previous steps are constant values, the analytical models output a time estimation in seconds.

The target with the lowest anticipated running time is selected as the optimal target.

The original function body is replaced with a call for a function with the modified code for the

selected target. Consider the example in Listing 7.7, presented earlier. If the optimal target is the

GPU, then the original function’s body, mm2, is replaced with a call to __mm2_gpu_parallel.

In case the analytical model estimations cannot be evaluated due to missing parameters, the

original function is not modified. In future work, support for runtime decisions may be added.

7.7 Summary

This chapter presented our overall framework flow. First, it addressed our methodology for find-

ing the hotspots using AST analysis with Clava. We consider loops as candidates if they are in

canonical form and safe for parallelisation. Next, we presented our conservative parallelisation

strategy. We traverse the AST, and the first valid loop is selected for parallelisation. Besides, we

coalesce all perfectly nested loops to increase the degree of parallelism, which is advantageous

for GPUs. The subsequent sections presented our approach for collecting metrics, considering the

two approaches: AST analysis and LLVM MCA. Concerning code transformations, we create one

function version per target. We discussed our approach for determining array boundaries and the

data mapping necessary for transferring data between CPU and GPU. Finally, the original function

code is replaced with a call for the optimal target as estimated by the analytical models.



Chapter 8

Experimental results

This chapter presents the experimental results. The first section describes the platforms used for

benchmarking and the environment setup. The following sections present and analyse the results.

First, we compare different methodologies when using the LLVM MCA to show the impor-

tance of recursively processing loops and multiply its cost by a precise trip count (Section 4.4). The

following section evaluates the CPU analytical models, showing estimate errors for our AST and

LLVM MCA approaches for computational cost calculation. Afterwards, we compare the original

analytical model (Chapter 5) the extended version with our contributions (Chapter 6). Next, we

consider all models and assess the quality for guiding target selection for the various hotspots in

benchmark suite kernels. The following section compares our automatic parallelisation strategy to

manually transformed OpenMP kernels (Chapter 7). Finally, we evaluate the overall framework

showing the achieved speedups with respect to the original sequential version.

8.1 Experimental methodology

8.1.1 Platforms

The experiments and measurements were performed in one platform whose characteristics are pre-

sented in Table 8.1, also showing additional details concerning the software used and its versions.

8.1.2 Platform configuration

Prior launching the kernels on the platforms to measure time execution, some preparing steps are

performed to ensure an environment that suits the work under analysis and prevent external factors

to affect results interpretation.

106
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Property Antarex

CPU

Name 2x Intel Xeon E5-2630 v3
Base Clock 2.4 GHz
Physical/Logical
Cores

8/16 (per physical CPU or NUMA node)

RAM
128 GB (8x16GB, 64 GB per NUMA node)
DDR3 @ 1866 MT/s

GPU
Name NVIDIA GeForce GTX 1070 (Pascal)
Max Clock 2012 MHz
RAM 8 GB GDDR5

Operating System Ubuntu 20.04 (kernel 5.11.0)

Compilers Clang 10.0.0
GCC 9.3

NVIDIA Toolchain CUDA version 11.3
Driver version 465.19.01

Table 8.1: Platform characterisation used for evaluation.

Frequency scaling

CPUs, GPUs and other components that assemble the system operate on varying power modes

and varying frequencies. For instance, the i5-8300H in the Laptop can operate between 1.2 GHz

and 3.2 GHz. The NVIDIA 1070 clock frequencies ranges between 139 MHz and 2012 MHz.

The clock frequencies are an important parameter for the analytical model. Besides, the analytical

models used do not model frequency scaling. Since the CPU and GPU run at varying frequencies,

which value should be used as an input parameter? Fortunately, it is possible to configure the

hardware and operating system to ensure a more steady and predictable frequency.

Starting with the CPU, the following measures are taken:

Disable turbo boost. In general, CPUs technical sheets indicate a base clock and one or more

max turbo frequency. According to Intel, the Turbo Boost feature has different power states

and is designed to last for a short period of time. However, some vendors unlock the turbo

frequency limits, and as long as there is enough cooling, the turbo boost can be sustained for

long periods of time. The base clock, by definition, is the normal operating frequency for the

CPU. Therefore, vendors design the system such that the CPU can operate on the base clock

indefinitely without constraints on power or thermals. For our experiments, the turbo boost

is disabled on the operating system such that the clock frequency does not exceed the base

clock (Table 8.1). In Linux operating systems with the intel_pstate1 driver, turbo boost

can be disabled by writing 1 to /sys/devices/system/cpu/intel_pstate/no_turbo.

CPU Governor. Disabling the turbo boost makes the average clock frequency tend to the base

clock. However, when the application is launched for the first time, it is likely the CPU is

operating at lower clock frequencies and might cause interference for kernels that conclude

1https://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt

https://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt
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in less than a second. One possible solution is to configure the CPU governor. According

to Linux Kernel documentation 2, setting the governor to performance sets frequency to

the highest value statically. Since the turbo boost is disabled, all CPU cores run at base

frequency at all times.

For NVIDIA GPUs similar techniques are explored. However, the GPUs used for evaluation

are consumer-grade GPUs and the possibility to adjust clock speeds and power limits is restricted.

GPUs tailored for data-center and HPC are more flexible. For instance, the NVIDIA System Man-

agement Interface (nvidia-smi) has two options: -lock-gpu-clocks and -applications-

-clocks. They allow setting static clocks for memory and graphics cores. Unfortunately, it is

not supported in the NVIDIA 1050 and NVIDIA 1070 (Table 8.1).

The best workaround we found is setting performance modes, which are pre-defined oper-

ating profiles that control GPU clock ranges, memory clocks and memory transfer clocks (i.e.,

the PCI-e interface to communicate with host CPU). Running nvidia-settings -query

GPUPerfModes lists the available modes and respective parameter values. However, neither

mode sets a static graphics clock, it just sets lower and upper bounds for frequency scaling.

On the other hand, transferring and memory clocks can be fixed. Running nvidia-settings

-assign GPUPowerMizerMode=1 enables the maximum performance mode.

Hyper-threading (HT) and Simultaneously Multi-Threading (SMT)

Modern CPUs use different approaches to maximize the CPU resources usage, such has instruc-

tion level paralelism and out of the order execution. Nonetheless, due to data dependencies, un-

available execution units or mispredictions, full utilization of the CPU resources is not always

achieved. CPUs that support HT and SMT allow two threads to execute in each core and it is an

additional step to improve resource utilization and increase overall throughput. With SMT/HT,

each physical core has two maintain architectural states (in registers) for each thread. The num-

ber of active threads simultaneously in each core corresponds to the number of logical cores and

it is typically two per core. It is important to understand that with HT/SMT the threads are not

executed in parallel but rather concurrently. Besides, Core resources have to be shared — queues,

schedulers, execution units, register file, etc [54]. Some are statically partition while others are

dynamically allocated. Therefore, HT or SMT with two logical cores per physical core does not

double performance. In some scenarios it might not increase performance at all [53].

The analytical models implemented in our work do not model HT/SMT. Therefore, the kernels

are launched with a number of threads that corresponds to the physical cores rather than logical

cores.

Thread Affinity

Another step to mitigate operating system "noise" is setting the thread affinity. Operating System

(OS) schedulers are constantly seeking to increase system performance and the OS scheduler tries
2https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt

https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
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to even the load across the CPU cores by moving runnable threads to different cores as needed.

Thread scheduling has introduces overheads. Firstly, there is the context switching overhead.

Secondly, when a thread moves from one Core to another, cached data in the initial Core’s private

caches (e.g. L1) is lost.

Thread affinity consists in pinning threads to a specific CPU Core. Thus, the threads start

executing on a given Core and are never move to other Cores through execution. Given that

the analytical models do not model the costs associated to Operating System scheduling, our

experimental setup pins one thread per physical core. With OpenMP, the affinity can be configured

using the environment variable OMP_PROC_BIND [10].

NUMA

Although the Antarex system is a NUMA platform (Table 8.1), modelling the intrinsics of NUMA

is out of scope in our work. Therefore, the kernels execute in a single node and memory allocation

is restricted to the node’s local memory.

Summary

The following is a summary of the setup used:

• Disable turbo boost in the CPU, limiting the maximum clock to base clock.

• Set the kernel governor to performance. It increases the CPU power state, and sets a static

frequency. Assuming the turbo boost is disabled, the frequency matches the base clock.

• GPU power state set to maximum performance, ensuring stable memory clocks and memory

transference rate.

• In Antarex, applications run in a single NUMA node and only access local memory.

• OpenMP:

– Set thread affinity, pinning each thread to a different physical core.

– Number of threads on CPU matches physical cores to mitigate HT or SMT effects.

– Configure the thread scheduling policy to static, OMP_SCHEDULE=static. Dynamic

and other policies are not studied in our work.

8.1.3 Benchmarks

The UniBench [56] suite is used to evaluate the analytical model estimations precision and the au-

tomatic parallelisation mechanism. UniBench is an adaptation of the original Polyhedral Bench-

mark Suite (Polybench) [75] to support OpenMP offloading and contains 14 kernels in total. Each

kernel has two versions. One is the original kernel from Polybench without any modification,
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targeting sequential execution on the CPU. A second variant is manually annotated with OpenMP

pragmas and can execute in parallel on the CPU or offload to the GPU.

UniBench has predefined problem sizes which are used for all kernels and define array sizes

and respective computation workload:

• RUN_TEST: 1100

• RUN_BENCHMARK: 9600

Our evaluation uses custom problem sizes as N = 9600 is too large for the experimental plat-

forms, with most kernels crashing due lack of memory in the GPU. Besides, it is desirable to have

more testing sizes to evaluate the analytical models behaviour as problem sizes increase gradually.

Therefore, four categories are defined and the values are inspired in the original Polybench.

• EXTRA_SMALL: 512

• SMALL: 1024

• MEDIUM: 2048

• LARGE: 4096

It is also important that the suite is representative, i.e., the optimal target varies for different

kernels and problem sizes. Table 8.2 summarises the number of times each target is optimal to run

a given kernel. It is possible to see that the optimal target varies with the problem size. Except for

N = 512, there are always kernels benefiting from all targets under analysis.

Size CPU Sequencial CPU Parallel GPU
512 4 10 0
1024 5 4 5
2048 2 4 8
4096 2 4 8

Table 8.2: Number of times each target is optimal to run a given kernel in Antarex compiled with
-O3, considering the 14 kernels of the UniBench benchmark suite.

8.1.4 Measuring kernels execution time

UniBench [56] kernels are compiled with Clang or GCC with optimisation flags that are specified

in the results discussion. Execution times are measured using rtclock, which measures the time

to invoke the kernel function. Time spent in memory allocation is not accounted. However, when

workshare regions are offloaded to the GPU, data movements contribute to the kernel’s execution

time, as intended. To prevent code elimination, the matrices that are the kernel’s computation

output are reduced (summing all values) and the result is printed to stderr. Therefore, the

compiler will not eliminate the kernel function call.
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Depending on the device target, the UniBench kernels are compiled with different flags that

enable/disable OpenMP, and enable/disable offloading. Table 8.3 summarises the flags for Clang

and GCC. For running the kernel sequentially in the CPU, no additional flags are needed because

by default OpenMP is disabled. To enable parallel running in the CPU, it is necessary to add the

-fopenmp flag. When OpenMP is enabled and GCC finds a target environment, by default

it compiles the OpenMP parallel regions for CPU and GPU (and any other available targets).

Therefore, the offload is disabled explicitly. Finally, for enabling offloading to the GPU, the target

is explicitly set. The GPUs used for evaluation are Compute Capability 6.1. Unfortunately, GCC

only supports old compute capabilities, hence the target is set to nvptx-none=-misa=sm_35.

The stack protection for GPU offloading is disabled to prevent the PTX assembler of crashing.

Lastly, in GCC the optimisation flag has to be explicitly managed. In other words, if the code

is compiled with -O3, the flag is not passed to the backend that generates the PTX code. The

workaround is setting the optimisation flag via the -foffload parameter.

Compiler Target Additional flags

GCC CPU Parallel -fopenmp -foffload=disable

GPU
-fopenmp -foffload=nvptx-none=-misa=sm_35
-foffload="{OPT_FLAG}"
-fcf-protection=none -fno-stack-protector

Clang CPU Parallel -fopenmp

GPU
-fopenmp -fopenmp-targets=nvptx64-nvidia-
-cuda -Xopenmp-target -march=sm_61

Table 8.3: Compiler flags used to enable OpenMP and control offloading to GPU

Each kernel application is launched 5 times. We noticed that for simpler kernels that complete

in less than a second, the times were not very consistent, despite our efforts to configure the

platforms for a stabler environment. Therefore, 25 samples are collected for those kernels. The

times are processed and outliers are removed using interquartile range. The average is used to

represent the kernel’s execution time and it is compared to the analytical model estimations.

8.2 Analysing LLVM MCA techniques

This section evaluates the different techniques explored for using llvm-mca as discussed in Sec-

tion 4.4. The techniques can be summarised as follows:

Workshare Region (A). It is the baseline approach where llvm-mca is used to estimate the

cost of one work item, i.e. one iteration of the parallel code region, without any particular

treatment. The cost is multiplied by the number of work-items assigned to each thread to

estimate the number of computational cycles per thread. In this approach, the assembly

directives are inserted at the beginning and ending of the scope that represents the parallel

region.
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Handling Loops (B). llvm-mca does not simulate control flow structures, such as a loop.

Our proposed approach splits the parallel code region in basic blocks (see Section 4.4) to

isolate sequential code from repeating code sequences. Each basic block is analysed in-

dividually with llvm-mca. For basic blocks associated to loops, their cost is multiplied

by loop’s trip count. Trip counts are estimated in the source-code, resulting in a hybrid

approach.

Loop Optimisations (C). Loop optimisations impact the assembly code sequence which is

analysed with llvm-mca and may impact the number of times the sequence is repeated.

For instance, if the loop is unrolled by a factor of two, the assembly sequence analysed

by llvm-mca represents two loop iterations. Consequently, the trip count estimated in

the source-code has to be adjusted accordingly. The approach B is extended to incorporate

the loop optimisations performed by the compiler and adjust the loop trip count based on

vectorisation, interleaving and unrolling factors.

Assembly directives inside loop’s body (Asmin). To use the llvm-mca, assembly directives

are inserted at the source-code to define the basic blocks. However, the approach for insert-

ing the directives can affect the compilation outcome. For instance, inserting the directives

in the loop body creates an inter-iteration dependency that prevents loop optimisations.

Assembly directives wrapping the loop (Asmwrap). Assembly directives are added around the

loop as an attempt to minimize interferences in the compilation.

Note that Asmin and Asmwrap are strategies for inserting the assembly directives inside the

parallel code region. Therefore, they are always paired to the main strategies — B and C.

Figure 8.1 shows the absolute errors for CPU estimations using different llvm-mca configu-

rations. Approach A simply extracts the parallel code region without further processing, therefore

is not paired to any other technique. Approach B is tested with both techniques for inserting the

assembly directives — Asmin and Asmwrap. The improvement C is only added to (B,Asmwrap),

because with Asmin the directives are inserted in the loop body and block compiler optimisations.

As expected, the approach A results in higher error magnitudes and more optimistic estima-

tions suggested by the negative absolute errors. Most kernels from UniBench [56] have nested

loops within the parallel region. Therefore, B reduces error magnitudes in all cases, with the ex-

ception of FDTD-2D, where parallel regions are composed of a single compute statement — which

justifies the constant error for all tests.

With the configuration (B,Asmwrap), the assembly directives are inserted around the loop,

which enables loop optimisations, and therefore the analysed assembly is closer to what is exe-

cuted when UniBench [56] is compiled. However, the trip count is not adjusted accordingly. For

the majority of the kernels, specially long-running ones, the error drops significantly compared

to (B,Asmin). In spite of that, it is not possible to conclude the approach is better. The kernels

2MM, 3MM, COVAR, GEMM, GRAMSCHM are memory bound due to cache misses. With (B,Asmwrap),

loops are unrolled and in some cases vectorised, increasing the cost of the assembly sequence
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Figure 8.1: Comparison of absolute error in llvm-mca approaches for CPU Sequential. Mea-
surements obtained with Clang, -O3, and problem size set to N = 4096.
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analysed by llvm-mca. That additional cost shadows the CPU stalls due cache misses, hence the

smaller error magnitude. For faster kernels like 2DCONV, ATAX and BICG, (B,Asmwrap) is worst

than (B,Asmin), as expected. In these kernels the memory effects are less relevant and are better

for comparing (B,Asmwrap) and (B,Asmin).

For the remainder of this chapter, experiments using llvm-mca approach apply the method-

ology (B,C,Asmwrap), which is expected to be the correct approach, although the results do not

support the expectation. The experiment can be improved by comparing the llvm-mca esti-

mations to elapsed cycles in the CPU back-end. Using execution times includes elapsed time in

memory accesses which is not modelled, complicating the analysis of the results. Furthermore, the

llvm-mca estimations may suffer from our source-to-source approach as it can affect the com-

piler outcome (see Section 4.4). Therefore, it might be important to include estimations obtained

manually, i.e., adding the llvm-mca directives at assembly level to not affect the compilation and

then run llvm-mca to get the estimations.

8.3 Comparing AST and LLVM MCA approaches

In our work, two approaches are explored to estimate the computational cost of a code region,

a parameter used internally in the CPU analytical model:(a) counting operations at AST level,

mapping to x86 instructions and accumulating the average cycle-cost per instruction, and (b) a

hybrid approach using llvm-mca that simulates the sequence of assembly instructions and out-

puts a cost, alongside an AST analysis to estimate how many times a code region simulated in

llvm-mca repeats. This section compares the estimative errors using both approaches for se-

quential and parallel workloads in the UniBench suite [56].

Figure 8.2 shows the absolute errors in CPU estimations using the two approaches. The abso-

lute errors are the difference between the estimated time necessary to execute the kernel against

real-world measurements in Antarex. The kernels are compiled with Clang using the -O3 optimi-

sation flag.

The first conclusion is that the absolute errors achieved in the distinct approaches are very

similar. It is a very interesting remark given that llvm-mca has the ability to analyse the as-

sembly code, which is fully transformed and optimised by the compiler. Aside from the problem

of the problem of inserted assembly directives that may affect the compilation outcome, the as-

sembly code analysed with llvm-mca is expected to match what is executed on the hardware.

Besides, llvm-mca simulates the pipelining stages of superscalar processors, modelling port us-

age, instruction dependencies, and other fine-grained details. In contrast, our AST approach counts

the operations at AST level and has no information concerning how the code is transformed by

the compiler. Moreover, our approach assumes there are no dependencies. Finally, with respect

to instruction execution costs, it simply accumulates the average cost per instruction, assuming

maximum throughput. Therefore, the expectation was llvm-mca estimations would have much

smaller error magnitudes, as our AST approach is quite optimistic. Despite the error proximity, in

general, the magnitude of the errors in the llvm-mca approach is smaller as expected.
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Figure 8.2: Absolute error comparison for llvm-mca and AST approaches in CPU Sequential
estimations, using Clang and -O3.
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Table 8.4 summarises the average estimation errors for varying problem sizes. The conclusions

are consistent regardless of the problem size.

Problem sizes
Average absolute error w.r.t execution times (s)

Sequential Parallel
AST llvm-mca AST llvm-mca

1024 -2.4 -1.8 -0.27 -0.2
2048 -56.79 -52.16 -7.31 -6.73
4096 -585.54 -549.15 -80.5 -75.95

Table 8.4: Average absolute error on different problem sizes.

The same experiment is performed for parallel execution, as shown in Figure A.3. The obser-

vations are the same as for for sequential execution in Figure 8.2.

Another important advantage of llvm-mca is it naturally models the compiler’s configura-

tion because it analyses the assembly code, the compiler’s backend output. In other words, the

llvm-mca estimations should be consistent regardless of the compiler flags used. Our AST ap-

proach is agnostic to the compiler configuration and the estimations are always constant, regard-

less of the optimisation flags. In the future, our approach could be extended to estimate classic

compiler optimisations and adapt the analysis accordingly.

To evaluate the resilience of llvm-mca and AST approaches to different optimisation flags,

analytical model estimations are generated for three compiling configurations:

• -O3 optimisation flag, used in earlier experiments.

• -O2 with vectorisation disabled. In this test, our llvm-mca approach is adjusted accord-

ingly to only update loop trip counts based on unrolling, which is still enabled in -O2.

• -O0, disabling all optimisations. Our llvm-mca approach no longer adjusts loop trip

counts.

Although -O0 might be rarely used in production, it is included for two reasons:

• UniBench [56] kernels’s execution times in Antarex do not change significantly from -O3

to -O2 with no vectorisation, as shown in Figure A.1. The reason is vectorisation is mostly

applied in short running kernels or in workshare regions with small footprint relative to the

total kernel execution time (see Table A.1). Therefore, -O0 is added as it exposes a larger

gap in execution times compared to optimised versions.

• With -O0 compiler optimisations are disabled and allows to evaluate the effectiveness of

the two approaches on different compiler setups.

Since the kernels execution times vary depending on the optimisation flags, for this evaluation

we use the relative error between the analytical model time estimations and the measurements

collected in Antarex. Figure 8.3 shows the relative errors trend for the different optimisation flags.

On top, the error evaluation for the AST approach and below for llvm-mca.
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Concerning the AST approach, the error magnitudes are larger with -O0. Considering our ap-

proach, that ignores operations in array subscripts and loop headers, it is expected to approximate

more the -O2 and -O3 optimisation levels, rather than -O0.

Error values for some kernels present fluctuation. Interestingly, the fluctuations trends are sim-

ilar in both approaches. The kernel 2DCONV has a particularity. It is optimised with vectorisation,

but its trip count is not multiple of the vector width (Table A.1). Therefore, Clang creates a second

version of the loop which is unrolled by a factor of two to complete the reminder iterations. Given

N = 4096, the loops in 2DCONV iterate 4094 times. 4092 iterations are performed in the vectorised

loop version, and the reminder 2 iterations in the unrolled loop version. The assembly analysed

by llvm-mca will include both versions and therefore should increase the error. Interestingly, in

the llvm-mca approach the error is higher in -O0 than in -O3, when it should be the other way

around. 2DCONV has high arithmetic and memory intensity (see Table A.1). Each loop iteration

does 9 memory accesses. Even though the access stride is sequential with opportunity for caching,

given the small execution time, perhaps the error fluctuation is due memory side effects.

The kernels ATAX, BICG and MVT have similarities: equal arithmetic and memory operations

intensity, and the only optimisation applied to loops is unrolling (Table A.1). However, MVT and

ATAX have one workshare region that is not cache oblivious as one matrix is accessed in column-

major order. Nonetheless, MVT has stabler errors in AST and llvm-mca approaches compared

to the other two kernels. One additional difference between ATAX and BICG is that both have a

loop that initialises one matrix to zero before the OpenMP context. With -O2 and -O3, the loop

is eliminated and replaced with a system call to memset3. Therefore, that loop is ignored in our

experimental setup. However, it may contribute to the large error jumps from -O0 to -O2. In

BICG the error is stable from -O2 to -O3 in both approaches, while ATAX still fluctuates from

-O2 to -O3. In that case, given that ATAX is not cache oblivious, the error may be due to memory

accesses. As 2DCONV, ATAX, BICG and MVT execute in a fraction of a second, some of the error

deviations may just be noise.

Concerning long-running kernels, the results are quite consistent with some exceptions. All

kernels are memory bound due to high cache miss rates. The exceptions are SYRK and SYR2K and

present a small variation from -O0 to -O2 in both approaches.

The kernel FDTD-2D also presents considerable variations in both approaches. This particular

kernel has an outermost loop with 500 iterations that aggregates four workshare regions, a unique

detail compared to other kernels where workshare regions are outer loops. The results indicate a

possible limitation in our experimental setup or performance modelling approach, but the issue is

not identified for the time being.

8.4 Evaluating GPU analytical model

This section evaluates the GPU analytical model estimations. Our work implemented the origi-

nal analytical model proposed by Kim et al. [47] and an improved version to address potential

3https://www.man7.org/linux/man-pages/man3/memset.3.html

https://www.man7.org/linux/man-pages/man3/memset.3.html
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limitations regarding (Chapter 6):

• Warp-level parallelism inside the Streaming Multiprocessors

• Use reciprocal throughput for instructions costs, rather than a fixed cost of 4 cycles

• Adapt the memory coalescing modelling for modern GPU architectures

Figure 8.4 compares the baseline and our improved version in UniBench. The chart shows the

absolute errors for N = 4096, and for kernels compiled with -O3 and -O0. Our implementation for

the GPU analytical model relies solely in AST analysis. It has the same limitation as our approach

for CPU time estimations: it is agnostic to compiler optimisations. Unfortunately, we could not

find a similar tool to llvm-mca designed for NVIDIA GPUs that can analyse PTX or NVIDIA

native assembly.

2DCONV
2MM

3MM
ATAX

BICG

FDTD-2D
GEMM

GESUMMV

GRAMSCHM
MVT

SYR2K
SYRK

−100

0

100

−
0
.25

49
.4

9 72
.6

9

−
0
.18

−
0
.18

2.
65 15
.7

3

−
0
.22

57
.7

4

−
0
.18

−
22
.31

0.
18

−
0
.25

−
2
.27·10 −

2

−
1.22

−
0.21

−
0
.2

−
0
.95

−
7
.5

−
0
.22

−
2
.33

−
0
.21 −

38.57

−
3
.04

A
bs

ol
ut

e
er

ro
r(

s)

N = 4096, -O3

2DCONV
2MM

3MM
ATAX

BICG

FDTD-2D
GEMM

GESUMMV

GRAMSCHM
MVT

SYR2K
SYRK

−200

−100

0

100

−
0
.27

21
.9

3

15
.4

5

−
0
.2

−
0
.2

−
78.08

−
20.14

−
0
.24 −

56
.5

−
0
.19 −

45
.02

−
13.3

−
0
.28

−
27.58

−
58.47

−
0.23

−
0
.23

−
81
.69

−
43
.37

−
0
.24

−
116.57

−
0
.22 −

61.27

−
16.52

A
bs

ol
ut

e
er

ro
r(

s)

N = 4096, -O0

Baseline Improved

Figure 8.4: Comparing the baseline and improved GPU analytical models with N = 4096. On top,
the results for -O3. The bottom has the results for -O0.

The results for -O3 show that our approach is an improvement over the original analytical

model [47], particularly in more computational intensive kernels. The exception is SYRK, where

the error magnitude in our approach is higher.



Experimental results 120

Regarding the -O0 results, our implementation is worse. A similar observation was done

for the CPU analytical models, where the AST approach was better on -O3 results than -O0.

A possible justification can be the fact that using instruction throughput is too optimistic and

approximates the slower execution times of -O3, hence the smaller error in -O3.

8.5 Assess offloading decisions

The previous sections evaluated the CPU and GPU analytical models individually, comparing

different scenarios to assess the estimations precision. However, our work uses the analytical

models simultaneously to guide offloading decisions for hotspots in the application code. This

section evaluates the offloading decisions driven by analytical models when working together.

Figure 8.5 shows the maximum speedup possible for the UniBench [56] kernels and the achiev-

able speedups if the offloading decisions were driven from the analytical models. Two speedups

are presented for the analytical models due to the AST and llvm-mca approaches used to estimate

execution times in the CPU.

The speedup is relative to the baseline target, i.e., running the kernel in the CPU sequentially,

as shown in Equation 8.2. The maximum or optimal speedup is determined from real-world mea-

surements, selecting the target that executes the kernel faster (Equation 8.1), and then calculating

the ratio relative to the baseline.

Optimal_Targett = min(CPU_Seqt ,CPU_Part ,GPUt) (8.1)

Speedup =


Optimal_Targett

CPU_Seqt
, if Optimal_Targett ≥CPU_Seqt

− CPU_Seqt
Optimal_Targett

, otherwise
(8.2)

The analytical models are used to estimate the total time to execute the kernel in the CPU,

CPU Parallel or GPU. The lowest estimated time determines the offloading target driven by the

analytical models. Note that the achieved speedups in Figure 8.5 are calculated using the measured

times rather than estimated times. In other words, if the analytical models guide offloading to the

GPU, then Optimal_Targett is the real measured execution time for the GPU. There are three

different interpretations for the achieved speedup:

Optimal. The analytical models guide the optimal offloading decision if the achieved speedup

matches the maximum speedup.

Improvement. The achieved speedup is smaller than the maximum, meaning the guided of-

floading decision is not the optimal decision, but still accelerated the kernel compared to the

baseline, i.e., running the kernel sequentially in CPU.

Slowdown. The achieved speedup is negative. By definition, the speedup is a ratio and there-

fore it is a positive value. However, Equation 8.2 makes an adjustement for slowdowns,
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converting it in a negative value for easier interpretation. For instance, a speedup of 0.05 is

translated to −20 and it means the application is 20× slower than the baseline.
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Figure 8.5: Speedups achieved driven by analytical model estimations.

Figure 8.5 compares the speedups for two problem sizes and using -O3. For N = 4096, except

for BICG and ATAX, the analytical models guide offloading decisions that accelerate the kernel

relative to the baseline. Besides, all offloading decisions are optimal, except for SYR2K. Regarding

BICG and ATAX, the kernels finish in under a second. Despite the≈ 2× slowdown, the application

is slower in the 10−2 seconds magnitude. The results for N = 512 are a different picture, with many

kernels suffering slowdowns. Only 6 kernels are improved, but none has the optimal decision.
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The remainder 6 kernels result in slowdowns. Despite the high slowdown values, the kernels in

N = 512 complete in less than a second. Therefore, the slowdowns add [10−1,10−3] seconds to

the optimal execution time.

The results in Figure 8.5 also show that both approaches (AST and llvm-mca) have the

same efficiency. In fact, they always derive the same offloading decisions. It was somewhat

expected since previous experiments shown that the absolute errors between the two approaches

were always close to each other. For N = 1024, there are 5 optimal decisions, 2 improvements

and 5 slowdowns, as shown in Table 8.5. The potential acceleration lost is also in the range

[10−1,10−2] seconds. The offloading decision results for N = 2048 are the same as N = 4096.

The evaluation is repeated for -O0 and summarised in Table 8.5. The parity between AST

and llvm-mca in offloading decisions remains and there is a similar trend for more incorrect

decisions on smaller computational kernels. For N = 4096, only FDTD-2D does not have an

optimal offloading decision, but it is improved nonetheless.

-O0 -O3Problem sizes
Optimal Improve Slowdown Optimal Improve Slowdown

512 3 4 5 0 6 6
1024 7 3 2 5 2 5
2048 10 2 0 9 1 2
4096 11 1 0 9 1 2

Table 8.5: Offloading decisions classification summary. Equal results for AST and llvm-mca
approaches.

In addition to the quality of the target selection decisions guided by the analytical models, it is

important to evaluate their relative errors. If the relative errors for the three targets are very close

to each other, then our methodology is more likely to guide good offloading decisions. However,

if the relative errors are very scattered for all targets, it means our approach is not robust enough,

despite the promising offloading results presented in Table 8.5. Figure 8.6 presents the standard

deviation of relative errors on the three targets: CPU sequential, CPU parallel and GPU. A null

standard deviation means the relative errors is the same for all targets. That is the ideal scenario,

as the correct offloading decision is granted.

To conclude, the analytical models performed well overall in the UniBench kernels [56]. There

is room for improvement, specially in short running kernels where sub-optimal decisions are quite

common. Although the penalty is small and unnoticeable to a user, it occupies accelerators un-

necessarily. One possible quick fix introducing a threshold when comparing the analytical model

time estimations, rather than doing a strict comparison.

8.6 Evaluating automatic parallelisation

One central part of our work is to identify parallelisable code regions automatically. This section

compares the automatic parallelisation against the manually annotated code in Unibench kernels
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Figure 8.6: Standard deviation on the relative errors for the three targets. The chart shows the
standard deviation for our AST and LLVM MCA approaches. Problem size set to N = 4096 and
compiled with Clang and -O3. Execution times measured in Antarex.

[56].

Our experiment generates the modified code for CPU Parallel and GPU without any analytical

models guidance. We measure the execution times achieved with our automatic parallelisation on

each target and compare it with UniBench. This experiment demonstrates whether our conserva-

tive parallelisation and offloading strategy leave performance on the table compared to manually

annotated code by experts.

Figure 8.7 and 8.8 compare the speedups achieved relative to baseline sequential execution on

the CPU. Note that we do not transform the sequential code; hence the results are relative to the

same source.

The first issue is that in some kernels, AutoPar [21] does not mark some loops as safe for

parallelisation. In ATAX, only one innermost loop is marked for parallelisation. Compared to

UniBench, the two outermost loops are annotated with OpenMP. The impact is substantial for

GPU, as there is data transferring for every outermost loop iteration. The total amount of data

transferred is unnecessarily large, transferring over 256 GB of data. Consequently, the execution

time is 50 seconds slower w.r.t. UniBench. Kernel BICG suffers from similar issues, where the

primary hotspot is not parallelised. However, the impact is more residual, being 45 ms slower. In

CORR, the primary hotspot with O(n3) complexity is not considered safe for parallelisation either.

Consequently, these three kernels have no speedup compared to the baseline or are much

slower than UniBench versions. These kernels were successfully parallelised in the original Au-

toPar paper. The difference is that the AutoPar paper used the original Polybench benchmark

suite, while our evaluation uses UniBench. Although the kernels are equivalent, they are written

slightly different. For instance, kernel functions in UniBench use pointer parameters, while Poly-

bench uses standard array syntax. Therefore, it is likely due to an AutoPar limitation in the code

analysis.
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Figure 8.7: Speedups comparison of UniBench (CPU Parallel) and our automatic parallelisation
for CPUs. Problem size set to N = 4096 and compiled with Clang and -O3. Execution times
measured in Antarex.

Concerning parallelisation for CPU, Figure 8.7 shows similar speedup levels, the exception be-

ing the kernels mentioned above. GRAMSCHM is slightly improved compared to UniBench, reduc-

ing the execution time of 266 seconds by 5 seconds. The small gains are due to the parallelisation

of three workshare regions compared to one in UniBench.
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Figure 8.8: Speedups comparison of UniBench (GPU) and our automatic parallelisation for GPUs.
Problem size set to N = 4096 and compiled with Clang and -O3. Execution times measured in
Antarex.

Figure 8.8 reveals larger speedups in 2MM, 3MM and GEMM. Our advantage over UniBench is due

to loop coalescing. It reduces execution time on GPU by 1.7, 4.2 and 9.9 seconds, respectively.

SYRK execution time is also reduced by 1 second by offloading the first loop nest. Concerning

FDTD-2D, although the offloaded code regions are the same as in UniBench, the lack of data

mapping optimisation throws away any benefit in offloading. Kernel GRAMSCHM suffers from the

same issue. In both FDTD-2D and GRAMSCHM, the workshare regions are nested in a loop that
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runs sequentially on the CPU. Hence, the multiple unoptimised data transfers have more impact

than in other kernels.

8.7 Framework overall

Throughout this chapter, previous sections evaluated the efficacy of the analytical models estimat-

ing execution times using our AST analysis approach and compared our automatic parallelisation

to the manually annotated kernels in UniBench [56]. This section considers the complete frame-

work. In other words, the sequential kernel versions of UniBench are automatically transformed

by our framework, and the analytical models guide the target selection.

Figure 8.9 compares the speedups achieved. The bar Achieved (auto) represents the speedups

achieved after running the transformed applications. The speedups are measured with respect

to executing the kernels sequentially on the CPU. The bar Optimal (auto) shows the maximum

speedup achievable with our parallelisation approach. As demonstrated before, in some kernels,

speedups are limited due to problems in parallelisation safety checking. Besides, some kernels are

affected due to unoptimised data transferring. Therefore, if the Achieved (auto) bar is smaller than

Optimal (auto), then the analytical models guided a non-optimal target selection. Finally, the third

bar, Optimal (UniBench), shows the maximum possible speedup with UniBench.
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Figure 8.9: Speedups comparison between the framework automatic target selection, framework
with optimal target selection and UniBench with optimal target selection. Problem size set to
N = 4096 and compiled with Clang and -O3. Times measured in Antarex.

Overall, the results are encouraging. The maximum achievable speedup in UniBench kernels

has a geometric mean of 18.2×, while the best case for our framework is 12.9×. As the analytical

models made some non-optimal target selection, the achieved geometric mean speedup is 7.9×.

From a time standpoint, the baseline for running UniBench kernels sequentially in the CPU takes

9E3 seconds. With our framework, it takes 1.44E3 seconds. However, UniBench transformed
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code with manual optimal target selection completes in 1.3E2 seconds, one order of magnitude

faster compared to our framework. The main culprit for the near 10× difference are CORR and

GRAMSCHM. In CORR, the main hotspot is not offloaded, and the sequential running on the CPU

lasts 848 seconds. Offloading to the GPU reduces the execution time by 5 seconds. In UniBench,

offloading GRAMSCHM to the GPU reduces execution time to 65 seconds. The optimal decision

considering our parallelisation strategy would be running parallel in the CPU, and takes 260 sec-

onds, but the analytical models guide offloading to the GPU, which takes 474 seconds. These two

kernels represent approximately 1.2E3 seconds (83%) of total execution time achieved with our

framework, 1.44E3 seconds.

Excluding the kernels — CORR, ATAX and BICG — where some code regions were incorrectly

classified as unsafe for parallelisation, the optimal speedups for UniBench and our automatic ap-

proach are 25.5× and 25.8×, respectively. Nonetheless, due to sub-optimal target selection deci-

sions, the achieved geometric mean speedup is be 17.2×.

8.8 Summary

This chapter presented the evaluation results for our work. It first described the platforms and

experimental setup. Then it evaluated the analytical models on manually annotated OpenMP ker-

nels from UniBench [56], considering the different approaches studied in our work. The results

show the models’ capability to guide good offloading decisions, with optimal decisions in most

cases. Besides, incorrect decisions that would lead to slowdowns only add fractions of a second

compared to the baseline. However, the standard deviation of relative errors is significant in some

kernels. Therefore, further enhancements in the analytical models are needed. Finally, we evalu-

ated our framework as a whole, considering automatic parallelisation and the ability to select the

adequate target to accelerate code regions. We achieved a 7.9× geometric mean speedup without

any user intervention, reducing the total execution time from 9E3 to 1.44E3 seconds.
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Conclusions

Heterogeneous systems are emerging as one possible solution to answer the increasing compu-

tational power demand. To take advantage of those systems is necessary to migrate the exist-

ing code base, written initially as sequential applications. However, programming for heteroge-

neous systems is challenging. A heterogeneous system developer has to know many tools, learn

vendor-specific programming models, and to have expertise in diverse accelerator’s architectures

to achieve maximum performance. Moreover, the developer has to partitioning workloads, which

is a very time-consuming process. Innovations at the software level that assist developers or auto-

mate the transition to heterogeneous systems are needed.

Our literature review exhibits framework proposals that can ease the adoption of heterogeneous

systems with little to no user intervention, particularly significant for common users that may not

have the necessary background. However, we found some shortcomings in existing approaches

that we aimed to address in our proposal, enumerated below.

Binary outcomes. Recent academic research has been embracing the LLVM infrastructure.

The infrastructure is feature-packed with analysis often used in compiler research work.

However, LLVM based approaches are often forced to generate a binary application. In

contrast, source-to-source techniques output the modified source code. We argue it is much

more flexible for the user, as he can inspect and further adjust the code for tuning. Existing

source-to-source tools can expedite several steps, such as hotspot detection, necessary code

transformations to use some programming models, and target selection. Knowledgeable

users can work on the transformed code to achieve more performance.

Compiler enforcing. Approaches that use compiler infrastructures, such as LLVM, are tied to

a specific compiler. However, using other compilers to generate the machine code may de-

liver better performance on some platforms — for instance, the platform vendor’s toolchain.

In contrast, source-to-source approaches output source code. The user can choose any com-

piler that supports the programming models used for parallelisation or offloading.

127
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Target selection. A common limitation in the existing literature is the lack of automatic target

selection. Naive parallelisation or offloading to GPU may result in substantial slowdowns in

some applications. Chikin et al. [30] used analytical models to guide offloading decisions.

Although HTrOP [67] proposes a runtime solution for dynamically selecting the accelerator,

the compilation is done on the fly, adding overheads to the application execution time.

9.1 Concluding remarks

We proposed a fully static and compiler agnostic framework that automatically transforms code

regions with OpenMP pragmas for running in parallel in the CPU or offloading to the GPU. Fur-

thermore, we integrate analytical models for guiding target selection between CPU sequential,

CPU parallel and GPU.

For performance modelling, we use the same base analytical models as Chikin et al. [30]. The

GPU model is adapted for the OpenMP context and some limitations are addressed for modelling

modern GPUs. Our approach differs from the literature as we explore the possibility of collecting

metrics at the AST level rather than lower-level representations (e.g. low-level IR or machine

code). Our reasoning is that each parallel loop is compiled for different targets and our focus is on

relative performance estimations rather than accurate absolute timing estimations for each target.

Using Clava [25] for the AST-level analysis has various advantages, as enumerated below. One

obstacle is some compiler information not being accessible, such as the grid geometry, which is

an input parameter for the GPU analytical model. As the OpenMP support matures in compilers,

we expect future compiler versions to report such information.

• It is compiler agnostic, i.e., it is not tied to a particular compiler infrastructure such as

LLVM.

• The LARA [28, 27] scripting language is more accessible than learning and setting up com-

plex compiler infrastructures.

• Analysis at AST are closer to the source-code, which facilitates the reasoning and debug-

ging.

For comparison, this dissertation also implements an LLVM MCA [2] approach to estimate

CPU computational costs, firstly proposed by Chikin et al [30]. As LLVM MCA does not simulate

control flow, it was identified the need to manually handle loop nests in the code under analysis

and consider loop-level optimisations. Integrating the LLVM MCA in a source-to-source approach

presented several challenges. Firstly, due to loop versioning and the assembly code structure not

matching the source-code, causing the delimiting directives to appear in unexpected places and

inverted orders that resulted in errors. Secondly, inserting the inline assembly directives may

affect the compiler outcome, i.e., the assembly output may not be representative of the actual

instructions executed in the CPU and affect the estimations accuracy. In conclusion, an LLVM

MCA approach may integrate better with lower-level analysis with already applied optimisations.
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Regarding code transformation for automatic parallelisation, we use AutoPar [21], a library

integrated in Clava, to determine which loops are safe for parallelisation with static analysis. Au-

toPar generates OpenMP shared-memory pragmas for all parallelisable loops. We use AutoPar’s

information to determine the variable scoping necessary to break false dependencies. Then we ap-

ply a conservative parallelisation strategy rather than parallelising all loops. As AutoPar does not

support the OpenMP offloading specification, our work extends the AutoPar capabilities. Using

Clava and AutoPar enables our framework to output source-code. Compared to state of the art

approaches that generate executables, our approach lets the user further modify the code and use

any compiler with OpenMP support.

Our experimental results demonstrated a 7.9× geometric mean speedup over 14 kernels of

UniBench [56]. The manually annotated code in UniBench with manual target selection can ac-

complish a 18.2× geometric mean speedup. Our framework’s achieved speedup is limited by our

automatic parallelisation strategy and non-optimal target selection in a few cases. The kernels

were correctly parallelised and produced the same results as the baseline version. Our results indi-

cate that using AST-level analysis to guide target selection may be feasible and worth researching.

Analyses at the AST level may be less accurate, as shown in our comparison against LLVM MCA,

but can guide optimal target selection in a relative performance modelling context. While LLVM

MCA only supports CPU, our AST-level analysis is device agnostic supporting, supporting CPUs,

GPUs and any other device with the proper analytical model. Despite the promising results, some

kernels have a high standard deviation on relative errors for the three considered targets indicating

the need to improve the analytical models and AST analysis.

9.2 Future work

We enumerate here some future work that we find more relevant.

• Workarounds for collecting metrics for the GPU analytical model. Our fully automatic

approach suffers from the impossibility to collect some metrics, such as hardware resource

usage and the grid geometry selected by the compiler. Our experimental evaluation collected

the metrics via profiling and then inserted them via pragmas. As the compilers mature, it

may be possible to dump the necessary data and collect it automatically in our framework.

• Extend the CPU analytical model in the following ways:

– Estimate costs in memory accesses and cache hits/misses. Our experimental results

show large absolute errors in memory-bound applications. Modelling the memory

hierarchy should reduce those errors.

– Model other parallelisation side effects, such as false-sharing and thread binding.

Among other benefits, thread binding can improve data locality and spatiality by pin-

ning threads that access the same data elements in closer cores to share the L2 cache.

• Extend the GPU analytical model as follows:
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– GPUs released afterwards NVIDIA Pascal architectures (CC > 6.0) introduced Tensor

cores, which are specialised cores for matrix operations in the form D = A ·B+C.

Using these cores can increase the throughput compared to equivalent implementations

for Pascal. Besides, tensor cores can operate on smaller precision formats, increasing

further throughput, and are beneficial for AI workloads in general. Therefore, correctly

modelling these operations is essential for the analytical model’s accuracy.

– Model the dual-dispatching in warp schedulers. When a warp has two independent

instructions, dispatch units can issue them for distinct execution units in the same

clock cycle.

– Memory hierarchy. Model the global memory hierarchy (DRAM and caches), and

other specialised memories such as constant and shared memory.

• Evaluate our approach using more complex and irregular applications and possibly extend

it to deal better with those applications.

• Use the analytical models for target-specific optimisations and improve the parallelisation

strategy, e.g. considering task-level parallelism. For instance, consider the matrix multipli-

cation with column-major accesses. The algorithm can be improved by interchanging loops

or applying loop tiling, making it more cache-oblivious. The analytical models could guide

these types of transformations. Besides, selecting the first parallelisable loop in a nest is not

always ideal, and it is an important limitation in our approach.

• Support runtime decisions. Our current approach assumes that the number of operations

and loop trip counts can be determined statically. However, the expressions may be para-

metric and depend on runtime values. Our approach can be extended to collect most of the

information statically and prepare the mathematical expressions. The analytical models are

implemented as C libraries and are invoked at runtime when all parameters are known.
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Appendix A

Benchmark characterisation and
additional experimental results

A.1 UniBench kernel execution times
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Figure A.1: Unibench kernels execution times for different targets and varying optimisation flags.
For the -O2, vectorisation is disabled.

A.2 UniBench kernel characterisation

Table A.1 characterises the kernels in UniBench [56], which is useful to interpret evaluation re-

sults. Each kernel application in UniBench may have one or more OpenMP workshare regions.

The table shows the characteristics for each workshare region. For instance, the matrix multipli-

cation kernel, 2MM, has two workshare regions, listed in the table in order of appearance in the

source code: 2mm_1, and 2mm_2.

The columns arithmetic and memory operations show the number of operations per workshare

region as a function of the problem size N. For arithmetic operations, loop headers and array

subscripts are ignored. Memory operations only count array accesses and are split in read and
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write operations. It is assumed that the scalar variables are stored in registers.

The columns Host To Device (HtD) and Device to Host (DtH) indicate the number of elements

transferred explicitly between the host and the accelerator. The number of elements corresponds to

memory positions in the arrays being transferred and in general is a function of the problem size,

N. The effective number of bytes transferred depends on array’s data types. Workshare regions

in UniBench are grouped in data environments [10]. A data environment in OpenMP manages

memory in a data sharing context. For instance, when the computation is offloaded to an acceler-

ator (e.g., a GPU), the data environment specifies which variables or memory regions have to be

transferred from the host to the accelerator and vice-versa, as well as specify variables to be allo-

cated in the accelerator. In UniBench, most kernels move data to the accelerator before executing

the workshare regions. When the computation completes, the results are transferred back from the

accelerator to the host. In such cases, and assuming the kernel has multiple workshare regions,

the number of data elements transferred is reported just for the first and last workshare region. For

example, in 3MM all workshare regions are grouped in the same data environment, therefore data

movements are reported for the first and last workshare regions.

The rightmost columns in Table A.1 report compiler optimisations when the kernels are com-

piled with Clang and -O3. For vectorisation, both vector width and interleaving factors are re-

ported. If inter is omitted then interleaving is not applied. A workshare region may have nested

loops. Therefore, the optimisations indicate a rank to specify which loop is optimised. The rank

is relative to the function.

Table A.1: UniBench kernel’s characterisation.

Kernel Arith. Ops
Mem. Ops Data Transf. Loop Opt.
R W HtD DtH Vectorisation Unrolled

2dconv 17×N2 9×N2 N2 N2 N2 Rank=1_1,
width=4

No

2mm_1 2×N3 2×N3 N3 3×N2 0 No
Rank=1_1_1,
factor=2

2mm_2 2×N3 2×N3 N3 0 2×N2 No
Rank=2_1_1,
factor=2

3mm_1 3×N3 2×N3 N3 4×N2 0 No
Rank=1_1_1,
factor=2

3mm_2 3×N3 2×N3 N3 0 0 No
Rank=2_1_1,
factor=2

3mm_3 3×N3 2×N3 N3 0 3×N2 No
Rank=3_1_1,
factor=2

atax_1 3×N2 2×N2 +N N N2 +3×N 0 No
Rank=2_1,
factor=2

atax_2 3×N2 2×N2 N 0 2×N No
Rank=3_1,
factor=2

bicg_1 3×N2 2×N2 N N2 +3×N 0 No
Rank=2_1,
factor=2

bicg_2 3×N2 2×N2 N 0 2×N No
Rank=3_1,
factor=2

corr_1 N2 +N N2 N
2×N2 + 2×
N

0 No
Rank=1_2,
factor=4

Continues...
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Table A.1: UniBench kernel’s characterisation.

Kernel Arith. Ops
Mem. Ops Data Transf. Loop Opt.
R W HtD DtH Vectorisation Unrolled

corr_2
2×N2 + 3×
N

N2 +N N 0 0 No
Rank=2_2,
factor=2

corr_3 4×N2 N2 +2×N N2 0 0
Rank=3_4,
width=4

No

corr_4

N3 + 5 ×
N2 +8×N+

4
0 0 0 N2 No

Rank=4_1_1,
factor=2

covar_1 N2 +N N2 N 2×N2 0 No
Rank=1_1,
factor=4

covar_2 N2 2×N2 N2 0 0
Rank=2_1,
width=4,
inter=2

Rank=2_1,
factor=2

covar_3 2×N3
N3 + 4 ×
N2 +5×N+

2

(N2 + 3 ×
N +2)/2

0 N2 No
Rank=3_1_1,
factor=2

fdtd-2d_1 0 1 N 500+3×N2 0
Rank=1_1_1,
width=4, in-
ter=2

Rank=1_1_1,
factor=8

fdtd-2d_2 3×N2 3×N2 N2 0 0
Rank=1_2_1,
width=4

Rank=1_2_1,
factor=2

fdtd-2d_3 3×N2 3×N2 N2 0 0
Rank=1_3_1,
width=4

No

fdtd-2d_4 5×N2 5×N2 N2 0 N2 Rank=1_4_1,
width=4

No

gemm 3×N3 +N2 2×N3 +N2 N2 3×N2 N2 No
Rank=1_1_1,
factor=2

gesummv
5×N2 + 3×
N

3×N2 N 2×N2 N No
Rank=1_1,
factor=2

mvt_1 3×N2 2×N2 +N N N2 +2×N N No
Rank=1_1,
factor=4

mvt_2 3×N2 2×N2 +N N 0 N No
Rank=2_1,
factor=2

syr2k 8×N3 2×N3 +N2 N2 3×N2 N2 No
Rank=2_1_1,
factor=2

syrk_1 N2 N2 N2 2×N2 0
Rank=1_1,
width=4,
inter=2

Rank=1_1,
factor=2

syrk_2 3×N3 2×N3 +N2 N2 0 N2 No
Rank=2_1_1,
factor=2
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Figure A.2: Absolute error in llvm-mca approaches for CPU Parallel. Measurements obtained
with Clang, -O3, and problem size set to N = 4096.
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A.4 Comparing AST and LLVM MCA approaches
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mations, with Clang and -O3.
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