785 research outputs found

    Development of an Ammonia Reduction After-Treatment Systems for Stoichiometric Natural Gas Engines

    Get PDF
    Three-way catalyst (TWC) equipped stoichiometric natural gas vehicles have proven to be an effective alternative fuel strategy that shows significant low NOx emissions characteristics. However, recent studies have shown the TWC activity to contribute to elevated levels of tailpipe ammonia (NH 3) emissions. Although a non-regulated pollutant, ammonia is a potent pre-cursor to ambient secondary PM formation. Ammonia is an inevitable byproduct of fuel rich operation that results in lowest NOx slip through the TWC after-treatment system.;The main objective of the study is to develop a passive Ammonia Reduction Catalyst (passive-ARC) based NH3 reduction strategy that results in an overall reduction of ammonia as well as NOx emissions. The study investigated the characteristics of Fe-based and Cu-based zeolites SCR catalysts in storage and desorption of ammonia at high exhaust temperature conditions, that are typical of stoichiometric natural gas engines. Continuous measurements of NOx and NH3 before and after the SCR systems were conducted using a Fourier Transform Infrared Spectrometry (FTIR) gas analyzer. Results of the investigation showed that both, the Fe- and Cu zeolite SCRs adsorbed above 90% of TWC generated NH3 emissions below 350--375 °C SCR temperatures. Desorption or slipping of NH3 was observed at exhaust gas temperatures exceeding 400 °C. In terms of NOx conversions, Fe-zeolite showed efficiency between 50--80% above temperatures of 300--350 °C while Cu-zeolite performed well at lower SCR temperature from 250 °C and above with a conversion efficiency of greater than 50%.;In order to efficiently reduce both NOx and NH3 simultaneously over longer durations it was found that an engine-based air fuel ratio operation strategy for the passive-ARC system must be developed. To this extent, the study extended its objectives to develop an engine-based control strategy that results in stoichiometric ammonia production operation followed by brief lean operation to regenerate the saturated ammonia reduction catalyst using high NOx slip through TWC. The study presents comprehensive results of ammonia storage characteristics of SCRs pertaining to stoichiometric natural gas engine exhaust as well as an advanced engine control strategy approach to simultaneously reduce both NOx and NH3 using an alternating air -fuel ratio approach

    On the reaction mechanism for selective catalytic reduction of NOx by NH3 over Cu-zeolites

    Get PDF
    Nitrogen oxides (NOx) are major pollutants from combustion processes, being corrosive and hazardous to human health. The main technology for exhaust aftertreatment of NOx emitted from diesel engines is selective catalytic reduction with ammonia as reducing agent (NH3-SCR). Among a range of catalysts for NH3-SCR, copper-exchanged zeolites are efficient with high activity and selectivity combined with good hydrothermal stability. Zeolites are crystalline microporous aluminosilicates constructed by corner-sharing SiO4 and AlO4 tetrahedra. Replacement of a four-valent Si by a three-valent Al gives the framework a negative charge, which is compensated by a cation. The cation in the case of copper exchanged zeolites is Cu(I) or Cu(II).In this thesis, the reaction mechanism for NH3-SCR over copper-exchanged zeolites with CHA framework (Cu-CHA) has been studied through density functional theory in combination with ab initio thermodynamics and molecular dynamics. Firstly, the character of the active site for NH3-SCR over Cu-CHA under typical reaction conditions has been investigated. It is found that the Cu(I)-ion is preferably solvated by two NH3 ligands forming a linear Cu(NH3)2+ complex under low-temperature operating conditions. The storage of NH3 in the Cu(NH3)2+ complex is consistent with measured features from NH3_3 temperature-programmed desorption. Moreover, the linear Cu(NH3)2+ complex is found to be important for solid-state ion exchange of Cu(I) into zeolites, which is one strategy for zeolite functionalization.Secondly, a complete reaction mechanism for low-temperature NH3-SCR over Cu-CHA has been explored. The reaction is found to proceed in a redox manner via alternating Cu(I) and Cu(II) oxidation states. A pair of Cu(NH3)2+ complexes is found to be required for O2 activation in similarity to O2 activation in homogeneous catalysis. The potential energy surface for O2 dissociation is found to depend strongly on the choice of the exchange-correlation functional. The PBE+U approach together with van der Waals corrections is found to provide a reasonable, simultaneous accuracy of the different bonds in the system. Based on the fact that Cu(I) is solvated and the need of complex pairs for O2 activation, two possible reaction cycles for low-temperature NH3-SCR are proposed. The reaction is suggested to proceed in a multi-site fashion over both copper-sites and Bronsted acid sites.\ua0The proposed mechanism highlights the similarities between low-temperature NH3-SCR over Cu-CHA and homogeneous liquid-phase catalytic reactions and provides a solid basis for future improvements of Cu-exchanged zeolites for NH3-SCR

    Sensing, Actuation, and Embedded Control for a Custom SCR Nitrogen Oxides Emissions Reduction System

    Get PDF
    Diesel engines are the main power source for medium and heavy duty on road vehicles. With the rising standards for mileage of vehicles set by the Corporate Average Fuel Economy and the Environmental Protection Agency, diesel engines should soon be considered in lieu of gas engines. Despite advantages of diesel engines, diesel emissions include harmful gasses like carbon monoxide, nitrogen oxides and particulate matter. Selective Catalytic Reduction (SCR) systems have long been used to reduce diesel emissions from medium to heavy-duty diesel engines. Primary focus of this research effort is the implementation and improvement of a SCR system on light diesel engines. To improve efficiency we implemented a control law to limit the emissions within bounds ensuring low emissions for varied drive cycles. We developed a controller network using user datagram protocol to collect engine data using Arduino. The controller network establishes communication link between sensor data collection and a raspberry pi controller to enable full control over the test station

    Optimization of a retrofit urea-SCR system

    Get PDF
    Oxides of nitrogen (NOx) emissions from legacy diesel engines are often many times over currently mandated standards, contributing significantly to degradation of air quality and negative environmental impact. A retrofit urea-SCR (selective catalytic reduction) aftertreatment system offers a viable solution for reducing NOx emissions from older diesel engines. A stand-alone retrofit urea-SCR aftertreatment system was previously developed by West Virignia University (WVU) engineers, implementing a pre-SCR NOx sensor, open-loop feed-forward control, and stoichiometric NOx reduction logic. During experimental testing at WVU, the urea-SCR system demonstrated NOx reductions of 2% to 53%, depending on the test cycle. In order to optimize the system, this dissertation considered additional control configurations. To evaluate the emissions performance of each control strategy, a neural network heavy-duty diesel engine model was developed along with separate four-state chemical and thermal SCR catalyst models. Each model component was validated with experimental data recorded from the WVU Engine and Emissions Research Laboratory (EERL). The following control configurations were considered: (1) pre-SCR NOx sensor, open-loop feed-forward control, (2) post-SCR NOx sensor, closed-loop feed-back proportional-derivative (PD) control, (3) pre- and post-SCR NOx sensors, closed-loop feed-back proportional-integral-derivative (PID) control, (4) pre-SCR NOx sensor, model-based control.;The evaluation process considered differences between a highly instrumented and highly engineered system. Emissions performance was evaluated over two transient on-road test cycles (FTP, ACES HHDDT_S) and one steady-state marine test cycle (ICOMIA E5), implying broad applicability of the aftertreatment system. The evaluation process was characterized by overall NOx reduction percentage, maximum ammonia slip in parts per million (ppm), and average ammonia slip (ppm). The complexity of the sensor configuration and control strategy calibration were evaluated, as well as how adaptable a given configuration was to variations in engine behavior and sensor measurement accuracy. Finally, total cost was compared between each control configuration, considering system capital, maintenance, operation, control strategy engineering, and system calibration. A final cost per ton of NOx reduced was presented for each control configuration, assuming a six year operational cycle in marine and on-road applications. Based on the collective emissions, complexity, and cost analyses, a configuration implementing pre- and post-SCR NOx sensors and closed-loop PID control was identified as optimal for a retrofit application. Model results demonstrated NOx reductions of 44%, 53%, and 47% over FTP, ICOMIA, and ACES High-Speed Cruise (HHDDT_S) cycles, respectively. The total annual NOx reduction cost was {dollar}8,800 per ton of NOx reduced for an on-road application and {dollar}3,651 per ton of NOx reduced for a marine application

    NO<sub>x</sub> Removal and Effect of Adsorbate-Adsorbate Interactions

    Get PDF

    NH3 exhaust gas fuel reforming tor diesel engine decarbonisation & lean NOx abatement over Silver/Alumina catalyst

    Get PDF
    The thesis is focusing on the potential roles and applications of NH3_3 in transportation area, where ammonia is applied i) as a hydrogen carrier involved in a catalytic reforming process tor H2_2 production, ii) in its reformed form i.e. H2_2 -NH3_3 mixture for improved NH3_3 combustion in CI engines (as a carbon-free energy carrier), and iii) as a reductant in engine emission abatement under the incorporation of the NH3_3 reforming mechanism and catalytic aftertreatment systems. To implement the above studies, a prototype reformer system and a catalytic reaction mechanism were designed and proved capable of producing Hz - contended reformate. The reformed NH3_3 i.e. H2_2 - NH3_3 mixture was later applied in diesel operation and demonstrated successful engine decarbonisation. With a further incorporation of a Silver/Alumina catalyst in the engine exhaust system, the reformate was revealed as viable reductant for low temperature NOx abatement. Therefore, a combination of the studied systems show a great potential in simultaneous diesel engine emissions reductions, which include CO2_2, CO, HC, PM and NOx

    Reaction kinetics in formulated industrial catalysts

    Get PDF
    In heterogeneous catalysis, a fundamental understanding of the necessary physico-chemical requirements for a catalyst formulation is essential to its success. Understanding of reaction kinetics via modelling can demonstrate how catalysts work, providing functional information around surface active sites and reaction mechanism. This tool, combined with well-designed laboratory experiments to test a catalyst under steady and/or non-steady state conditions, can provide insight into the links between catalyst formulation and reaction performance. The aim of this project is to develop novel strategies and methods in these areas utilising a range of Johnson Matthey catalysts and reaction systems. This thesis places significant focus on obtaining mechanistically and statistically sound kinetic models with reliable model parameter estimates. Methods for this are developed using a batch liquid phase hydrogenation system using a Pt/TiO2 catalyst. Subsequently, non-steady state analysis of catalyst formulations has been explored. This includes the initial transient behaviour of a fresh vanadium phosphorus oxide selective oxidation catalyst under reaction conditions which allowed understanding of the evolution of distinct active site populations on the catalyst surface. A subsequent study of copper-based methanol synthesis catalysts explored the impact of gas phase conditions on the catalyst state. A mixture of steady-state testing and transient response experiments (i.e. via an imposed change in gas phase conditions over the catalyst) provided new insights into the evolution of active site populations and populations of surface species on the catalyst surface. Overall, the reaction kinetics studies demonstrated across this thesis demonstrate not only a series of methods to understand catalyst behaviour in depth but also to understand the key functional requirements for an effective industrial catalyst

    Computational study of heterogeneous catalytic systems. Kinetic and structural insights from Density Functional Theory

    Full text link
    [ES] En este trabajo estudiamos dos reacciones catalíticas relevantes para la industria y la localización del anión fluoruro en la zeolita RTH, sintetizada en medio fluoruro. El capítulo 3 es el primer capítulo de resultados, donde se estudia la reducción quimioselectiva del nitroestireno en las superficies Ni(111), Co(111), Cu(111) y Pd(111). El mecanismo generalmente aceptado de esta reacción está basado en el esquema propuesto por Haber en 1898, en el que la reacción puede transcurrir por dos rutas, la directa y la de condensación. En este capítulo exploramos ambas rutas, y observamos que la ruptura de los enlaces N-O y la consecuente formación de enlaces metal-O está más favorecida que la formación de enlaces N-H en las superficies Ni(111) y Co(111), debido al carácter oxofílico de ambos metales. Las etapas más lentas involucran la formación de enlaces N-H. En las superficies de metales nobles como Pt(111) y Pd(111) se observa el comportamiento contrario. La superficie Cu(111) es un caso intermedio comparado con los metales nobles y no nobles. Además, el nitroestireno interactúa con los átomos de Cu de la superficie solo a través de grupo nitro, con lo cual es un candidato ideal para alcanzar selectividades cerca del 100%. Sin embargo, la superficie Cu(111) no es capaz de activar la molécula de H2. En este sentido, proponemos un catalizador bimetálico basado en Cu, dopado con otro metal capaz de activar al H2, tales como el Pd o el Ni. En los capítulos 4 y 5 se ha estudiado la reducción catalítica selectiva de los óxidos de nitrógeno (SCR, en inglés) con amoníaco. Usando métodos de DFT, hemos encontrado rutas para la oxidación de NO a NO2, nitritos y nitratos con energías de activación relativamente bajas. También, hemos encontrado que la reducción de Cu2+ a Cu+ requiere la participación simultánea de NO y NH3. Posteriormente, hemos estudiado la influencia del NH3 en este sistema con métodos de dinámica molecular. El NH3 interacciona fuertemente con el Cu+ de forma que dos moléculas de este gas son suficientes para romper la coordinación del catión Cu+ con los oxígenos del anillo 6r, y formar el complejo lineal [Cu(NH3)2]+. Además, los cationes Cu2+ pueden ser estabilizados fuera de la red mediante la formación del complejo tetraamincobre(II). Debido a la presencia de los cationes Cu+ y Cu2+ coordinados a la red de la zeolita, aparecen bandas en la región entre 800-1000 cm-1 del espectro infrarrojo. El análisis de las frecuencias IR de varios modelos con Cu+ y Cu2+ coordinados al anillo 6r, o formando complejos con amoniaco indica que cuando los cationes Cu+ y Cu2+ están coordinados a los oxígenos del anillo 6r aparecen vibraciones entre 830 y 960 cm-1. Frecuencias en esta zona también se obtienen en los casos en que NO, NO2, O2 y combinaciones de dos de ellos están adsorbidos en Cu+ y Cu2+. Sin embargo, cuando los cationes Cu+ y Cu2+ están fuera del anillo (no hay enlaces entre los cationes de cobre y los oxígenos del anillo 6r) no se obtienen vibraciones de IR en esta región del espectro. Estos resultados indican que con el seguimiento del espectro IR durante la reacción SCR es posible determinar si los cationes Cu+ y Cu2+ están coordinados o no al anillo de 6r en las etapas de oxidación y reducción. Por último, hemos simulado el desplazamiento químico de 19F, δiso,, en la zeolita sintetizada RTH. El análisis del δiso de los distintos modelos utilizados nos ha permitido reconocer la simetría del material sintetizado, el cual pertenece al grupo espacial P1 y la nueva celda unidad ha sido confirmada experimentalmente por difracción de rayos X. Finalmente, hemos asignado la señal experimental que aparece en el espectro de 19F a -67.2_ppm, al F- localizado en un sitio T2, el cual es a su vez la posición más estable. Además, la señal a -71.8 ppm se ha asignado al anión F- localizado en un sitio T4.[CA] En aquest treball estudiem dues reaccions catalítiques rellevants per a la indústria i la localització de l'anió fluorur en la zeolita RTH, sintetitzada al mig fluorur. El capítol 3 és el primer capítol de resultats, on s'estudia la reducció quimioselectiva del nitroestireno en les superfícies Ni(111), Co(111), Cu(111) i Pd(111). El mecanisme generalment acceptat d'aquesta reacció està basat en l'esquema proposat per Haver-hi en 1898, en el qual la reacció pot transcórrer per dues rutes, la directa i la de condensació. En aquest capítol explorem totes dues rutes, i observem que la ruptura dels enllaços N-O i la conseqüent formació d'enllaços metall-O està més afavorida que la formació d'enllaços N-H en les superfícies Ni(111) i Co(111), a causa del caràcter oxofílico de tots dos metalls. Les etapes més lentes involucren la formació d'enllaços N-H. En les superfícies de metalls nobles com Pt(111) i Pd(111) s'observa el comportament contrari. La superfície Cu(111) és un cas intermedi comparat amb els metalls nobles i no nobles. A més, el nitroestireno interactua amb els àtoms de Cu de la superfície sol a través de grup nitre, amb la qual cosa és un candidat ideal per a aconseguir selectivitats prop del 100%. No obstant això, la superfície Cu(111) no és capaç d'activar la molècula d'H2. En aquest sentit, proposem un catalitzador bimetàl·lic basat en Cu, dopat amb un altre metall capaç d'activar a l'H2, com ara el Pd o el Ni. En els capítols 4 i 5 hem estudiat la reducció catalítica selectiva dels òxids de nitrogen (SCR, en anglés) amb amoníac. Usant mètodes de DFT, hem trobat rutes per a l'oxidació de NO a NO2, nitrits i nitrats amb energies d'activació relativament baixes. També, hem trobat que la reducció de Cu2+ a Cu+ requereix la participació simultània de NO i NH3. Posteriorment, hem estudiat la influència del NH3 en aquest sistema amb mètodes de dinàmica molecular. El NH3 interacciona fortament amb el Cu+ de manera que dues molècules d'aquest gas són suficients per a trencar la coordinació del catió Cu+ amb els oxígens de l'anell 6r, i formar el complex lineal [Cu(NH3)2]+. A més, els cations Cu2+ poden ser estabilitzats fora de la xarxa mitjançant la formació del complex tetraamincobre(II). A causa de la presència dels cations Cu+ i Cu2+ coordinats a la xarxa de la zeolita, apareixen bandes a la regió entre 800-1000 cm-1 de l'espectre infraroig. L'anàlisi de les freqüències IR de diversos models amb Cu+ i Cu2+ coordinats a l'anell 6r, o formant complexos amb amoníac indica que quan els cations Cu+ i Cu2+ estan coordinats als oxígens de l'anell 6r apareixen vibracions entre 830 i 960 cm-1. Freqüències en aquesta zona també s'obtenen en els casos en què NO, NO2, O2 i combinacions de dues d'ells estan adsorbidos en Cu+ i Cu2+. No obstant això, quan els cations Cu+ i Cu2+ estan fora de l'anell (no hi ha enllaços entre els cations de coure i els oxígens de l'anell 6r) no s'obtenen vibracions d'IR en aquesta regió de l'espectre. Aquests resultats indiquen que amb el seguiment de l'espectre IR durant la reacció SCR és possible determinar si els cations Cu+ i Cu2+ estan coordinats o no a l'anell de 6r en les etapes d'oxidació i reducció. Finalment, hem simulat el desplaçament químic de 19F, δiso, en la zeolita sintetitzada RTH. L'anàlisi del δiso dels diferents models utilitzats ens ha permés reconéixer la simetria del material sintetitzat, el qual pertany al grup espacial P1 i la nova cel·la unitat ha sigut confirmada experimentalment per difracció de raigs X. Finalment, hem assignat el senyal experimental que apareix en l'espectre de 19F a -67.2 ppm, al F- localitzat en un lloc T2, el qual és al seu torn la posició més estable. A més, el senyal a -71.8 ppm s'ha assignat a l'anió F- localitzat en un lloc T4.[EN] In this work, we have studied two heterogeneous catalytic reactions and the localization of the fluoride anion in the as-made RTH framework, synthesized in fluoride medium. The first results, included in chapter 3, correspond to the chemoselective reduction of nitrostyrene on different metal surfaces, i.e, Ni(111), Co(111), Cu(111) and Pd(111). Until very recently, the reduction of the nitro group was explained on the basis of the general mechanism proposed by Haber in 1898 where the reaction can follow two routes, the direct and condensation route. We have explored the relevant elementary steps of both routes and found that because of the oxophilic nature of Ni and Co, the steps involving the dissociation of N-O bonds and formation of metal-O bonds are significantly favored compared with the other steps on both metal surfaces. In addition, the most demanding steps in terms of energy involve the formation of N-H bonds. These findings are in contrast to those of noble metals such as Pt and Pd, where the opposite behavior is observed. The behavior of Cu(111) lies in between the aforementioned cases, and also no chemical bonds between the carbon atoms of the aromatic ring of nitrostyrene and the Cu(111) surface is formed. For this reason, it might be an ideal candidate to achieve nearly 100 % selectivity. However, the Cu(111) surface does not seem to activate the H2 molecule. In this regard, we propose a bimetallic Cu-based catalyst whose surface is doped with atoms of a H2-activating metal, such as Ni or Pd. On another matter, we have also investigated the selective catalytic reduction of nitrogen oxides (SCR-NOx) and the main results are presented in the following two chapters, 4 and 5. By using static DFT methods, we found pathways for the oxidation of NO to NO2, nitrites and nitrates with relatively low activation energies. We also found, in agreement with experimental reports, that the reduction of Cu2+ to Cu+ requires the simultaneous participation of NO and NH3. Later, molecular dynamics simulations allowed us to assess the influence of NH3. The strong interaction of NH3 with the Cu+ cation is evidenced by its ability to detach Cu+ from the zeolite framework and form the mobile linear complex [Cu(NH3)2]+. Cu+ is no longer coordinated to the zeolite framework in the presence of two NH3 molecules. This observation and the fact that the T-O-T vibrations of the framework produce bands in the 800-1000 cm-1 region of the IR spectrum when perturbed by the coordination of Cu+ and Cu2+ cations, indicate that bands in the 800-1000 cm-1 regions should be observed when both copper cations are bonded to the framework oxygens. Finally, we have also studied NMR properties of the as-made pure silica RTH framework, aiming at locating the compensating fluoride anion. The calculation of the 19F chemical shift in different T sites and comparison with the experimental NMR spectra shows that the as-made RTH belongs to the P-1 space group with 16 Si, 32 O atoms, one fluoride anion and one OSDA cation. These results have been confirmed experimentally by XRD. In addition, we have assigned the experimental signal of 19F at -67.2 ppm to the fluoride anion in a T2 site, which in turn is the most stable location found, and the signal of -71.8 ppm to a fluoride anion sitting in a T4 site.My acknowledgements to “La Caixa foundation” for the financial support through “La Caixa−Severo Ochoa” International PhD Fellowships (call 2015), to the Spanish Supercomputing Network (RES), to the Centre de Càlcul de la Universitat de València, to the Flemish Supercomputer Center (VSC) of Ghent University for the computational resources and technical support, and to the Spanish Government through the MAT2017-82288-C2-1-P programmeMillan Cabrera, R. (2021). Computational study of heterogeneous catalytic systems. Kinetic and structural insights from Density Functional Theory [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/161934TESI

    The Extension of the RAINS Model to Greenhouse Gases

    Get PDF
    Many of the traditional air pollutants and greenhouse gases have common sources, offering a cost-effective potential for simultaneous improvements for both traditional air pollution problems as well as climate change. A methodology has been developed to extend the RAINS integrated assessment model to explore synergies and trade-offs between the control of greenhouse gases and air pollution. With this extension, the RAINS model allows now the assessment of emission control costs for the six greenhouse gases covered under the Kyoto Protocol (CO2, CH4, N2O and the three F-gases) together with the emissions of air pollutants SO2, NOX, VOC, NH3 AND PM. In the first phase of the study, emissions, costs and control potentials for the six greenhouse gases covered in the Kyoto Protocol have been estimated and implemented in the RAINS model. Emission estimates are based on methodologies and emission factors proposed by the IPCC emission reporting guidelines. The large number of control options for greenhouse gases have been grouped into approximately 150 packages of measures and implemented in the RAINS model for the European countries. These control options span a wide range of cost-effectiveness. There a re certain advanced technical measures with moderate costs, and certain measures exist for which the economic assessment suggests even negative costs, if major side impacts (cost savings) are calculated. Illustrative example calculations clearly demonstrate that conclusions on the cost-effectiveness of emission reduction strategies are crucially depending on the boundaries of the analysis. The net cost of greenhouse gas control strategies are significantly lower if the immediate cost-savings from avoided air pollution control costs are taken into consideration. For a 15 percent reduction of the CO2 emissions from the power sector in the EU, avoided pollution control costs could compensate two third of the CO2 control costs. Depending on the design of the control strategy, net costs of greenhouse gas mitigation could even be negative, which is in stark contrast to conclusions for a CO2 only strategy. However, there are certain greenhouse gas mitigation measures, such as increased use of biomass that could deteriorate the negative impacts of air pollution, while yielding very little economic synergies. A combined approach towards greenhouse gas mitigation and air pollution control would not only reveal economic synergies, but also harness additional environmental benefits. Even in a situation with stringent emission control requirements for air pollution as it is required by the EU legislation, modifications in fuel use geared towards reductions of greenhouse gases could lead as a side impact to significant reductions in the residual emissions of air pollutants. The economic benefits of such "windfall emission reductions" could be substantial. The extended RAINS model framework will offer a tool to systematically investigate such economic and environmental synergies between greenhouse gas mitigation and air pollution control while avoiding negative side impacts
    corecore